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ABSTRACT 

The Middle Bakken Formation of the Williston Basin is a typical tight formation with the 

predicted primary oil recovery of less than 10%, which results in large amounts of oil remaining 

in the reservoir. Therefore, an effective enhanced oil recovery (EOR) method for recovering the 

residual oil is crucially important. To obtain the microscopic EOR mechanisms, molecular 

simulation methods including Monte Carlo (MC) simulations and molecular dynamics (MD) 

simulations were applied to study the various EOR methods, such as CO2 injection, hydrocarbon 

gas injection, and nanofluid flooding. A series of molecular models, including bulk systems, 

interfacial systems, and nanoconfined systems, were built to evaluate the potentials of the injected 

fluids to improve oil recovery. 

CO2 injection is a successful EOR technology that is being widely applied in North American 

oil fields. Studies have suggested CO2-based EOR is technically possible in the Middle Bakken 

Formation. The swelling of the crude oil/CO2 system plays a crucial role in the CO2 flooding 

process. Therefore, a better understanding of the effect of CO2 on crude oil swelling and viscosity 

reduction is critical for a successful CO2 EOR project. In this dissertation, a series of n-alkane/CO2 

systems were studied by performing configurational-bias Monte Carlo (CBMC) simulations and 

MD simulations. The effects of alkyl chain length, pressure, and temperature on the CO2 solubility 

and the swelling factor were investigated. The solubility of CO2 and the swelling factor of CO2 

saturated n-alkane are positively correlated to the pressure, while negatively correlated to the alkyl 

chain length and temperature. With more CO2 dissolved, the interaction energy between n-alkane 

molecules becomes less negative, which indicates the swelling of the n-alkane/CO2 system. N-

alkanes with longer alkyl chain have more negative intermolecular interaction energy, and thus 

have a smaller swelling factor after saturating with CO2. With the increase of the CO2 mole 
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fraction, the viscosity of the n-alkane/CO2 system is reduced. N-alkanes with longer alkyl chains 

have a larger viscosity reduction with increasing amounts of dissolved CO2. 

Besides CO2, hydrocarbon gases, like methane and ethane, can also mobilize the residual oil 

and enhance oil recovery. The gas solubility, volume swelling factor, oil diffusion coefficient, 

minimum miscibility pressure (MMP), and the oil extraction from nanoslits were then studied to 

compare the efficiency of different gases in the EOR process. Based on the Bakken oil 

composition, a molecular model of the crude oil containing different types of alkanes was built. 

MD simulations were carried out to study the interfacial interactions between the Bakken crude 

oil and the injected gases and the oil extraction from the calcite nanoslits. At various pressures and 

reservoir temperature, density profiles were plotted to show the distributions of different 

components, and the solubility of gases in crude oil was calculated. The simulation results show 

that all three gases hold great potential in further improving oil recovery. At constant temperature 

and pressure, ethane holds the highest solubility in crude oil and can induce the most pronounced 

oil swelling. Meanwhile, ethane can achieve the lowest MMP and the most significant oil diffusion 

coefficient. Without the effect of nano-confinement, ethane is most effective in mobilizing crude 

oil. However, CO2 is more effective in extracting oil from the nanoslits. 

Recent studies have also reported various types of nanoparticles (NPs) for improving oil 

recovery either alone or in combination with surfactants. The mechanisms of surface-modified 

silica (SiO2) NPs in improving oil recovery were investigated. Interfacial tensions (IFTs) of octane 

(C8H18)/water systems in the presence of different NPs were calculated. Quartz nanochannels were 

constructed to study the effect of NPs on oil flow through nanopores in rocks. Both water-wet and 

oil-wet surfaces were considered. Simulation results indicate that IFT reduction depends strongly 

on the distribution and the interfacial concentration of NPs. Surface-modified NPs with both 
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hydrophilic and hydrophobic functional groups can reduce the IFT between oil and water. 

However, the IFT reduction is not significant in terms of EOR application. The alkanes/water/NPs 

transportation in confined nanochannels shows that the initial rock wettability affects the water 

flooding performance and the final oil recovery. The surface-modified NPs hold a higher capacity 

in detaching oil droplets from the oil-wet mineral surface regardless of their abilities to change 

interfacial tension. Surface modification is crucial to improve the surface properties of SiO2 NPs. 

The strong interactions between NPs and oil/rock lead to oil detachment and incremental oil 

recovery. The chemical composition of the functional groups and the surface coverage of the 

hydrophilic/hydrophobic functional groups should be carefully tuned to achieve the highest oil 

recovery rate. 

Molecular simulation study provides better insight into the interactions between oil 

components and injected fluids or mineral surfaces at the molecular level. The effect of injected 

fluids on the properties of the oil can be clearly explained. The application of molecular simulation 

methods could play an important role in interpreting experimental results and providing guidance 

for practical oil recovery processes in the Bakken Formation.
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

The Middle Bakken Formation of the Williston Basin is one of the major unconventional tight 

oil reservoirs in the United States. The ultra-low matrix permeability prevents oil from flowing 

naturally into the wellbore. The successful application of horizontal drilling and multistage 

hydraulic fracturing has made it possible to produce crude oil from the reservoir (Iwere et al., 2012; 

Phillips et al., 2007; Yang and Zoback, 2014). However, the predicted recovery factor of primary 

oil recovery is less than 10% due to the tight nature of the formation (Clark, 2009; LeFever and 

Helms, 2006). Therefore, a large amount of crude oil remains in the reservoir. For the oil industries, 

it’s crucial to develop an effective enhanced oil recovery (EOR) technique to recover the maximum 

amount of the residual oil. 

Carbon dioxide (CO2) EOR has been proven to be a successful technology in conventional 

reservoirs (Perera et al., 2016; Qin et al., 2015). CO2 can mobilize the oil through swelling the oil, 

extracting hydrocarbons, and reducing oil viscosity (Abedini and Torabi, 2014; Orr et al., 1982). 

The injection of CO2 into oil reservoirs results in incremental oil recovery as well as CO2 capture 

and storage, which can significantly reduce greenhouse gas emissions to the atmosphere (Abedini 

and Torabi, 2014; Aycaguer et al., 2001; Gaspar Ravagnani et al., 2009). As a typical tight 

formation, the Bakken Formation holds a huge CO2 storage capacity and the potential of 

significantly increasing oil production by injecting CO2 (Sorensen et al., 2014). Both experimental 

studies and numerical simulations have shown that CO2 injection could be an effective EOR 

method to improve the oil recovery in tight formations (Kurtoglu, 2014; Kurtoglu et al., 2013; 

Sorensen et al., 2015; Yu et al., 2015).  
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Although CO2 EOR is a very successful and mature technology in the U.S., it has not been 

applied in many unconventional reservoirs like the Bakken Formation because of the limited low-

cost CO2 supply. In addition, wells in the Bakken Formation produce large amounts of natural gas, 

which is often flared off. This flaring not only wastes energy but also emits large amounts of 

greenhouse gas, carbon dioxide. Some experimental studies have focused on using hydrocarbon 

gas as a working fluid for EOR in the Bakken Formation (Steven B Hawthorne et al., 2019; Jin et 

al., 2016). Hydrocarbon gas injection can improve oil recovery as well as reduce CO2 emissions 

from gas flaring. It has been successfully employed in the North Sea oil fields for several decades 

(Awan et al., 2008). Different gases should be compared for screening the best injected gas. In 

terms of the tight formation, the EOR potential of the gases in the nanopores should be particularly 

analyzed. 

Besides gas injection, the chemical injection has been adjudged as an efficient EOR method 

to recover the residual oil trapped in the reservoir. Among the chemical EOR techniques, surfactant 

flooding is most widely investigated and employed in the oil industries. Surfactants can mobilize 

residual oil by lowering the oil/water interfacial tension and/or by altering the rock wettability 

from oil-wet to water-wet (Kamal et al., 2017b). Under mild reservoir conditions (low temperature, 

low salinity), most surfactants perform well in improving oil recovery. However, under harsh 

reservoir conditions (high temperature, high salinity), the stability and effectiveness of surfactants 

can be a challenging task (Kamal et al., 2017b; Negin et al., 2017). Moreover, the high cost of 

chemicals and the surfactant loss due to the high adsorption on rock surfaces also limit the 

application of surfactant flooding (Gogoi, 2011). Recently, nanotechnology has been employed to 

solve various challenges arising in surfactant flooding. By adding different nanoparticles (NPs) in 

the base fluids (such as water, brine, ethanol, etc.), investigators have developed various types of 
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nanofluids to improve oil recovery (Kamal et al., 2017a; Nazari Moghaddam et al., 2015). Studies 

have shown that NPs can improve oil recovery either alone or in combination with surfactants 

(Hendraningrat et al., 2013; Zargartalebi et al., 2015). Although substantial studies have focused 

on using NPs to improve oil recovery, whether the NPs adsorbed at an interface can reduce the 

interfacial tension is still controversial. The main EOR mechanism of different NPs has not been 

clearly demonstrated. 

Moreover, tight rocks are usually dominated by nanoscale and microscale pore throats 

(Nelson, 2009; Zhang et al., 2020), and fluids are significantly affected by the strong surface-fluid 

interactions (Alharthy et al., 2013). The rock wettability and the nano-confinement should be 

considered in the investigation of EOR methods in tight formation. Understanding the behavior of 

fluids at the nanoscale is important to the development of injected fluids for EOR applications. 

However, nanoscale phenomena are usually difficult to observe from laboratory experiments. In 

recent years, molecular simulations have been employed in the oil industries to study different 

EOR methods (Le et al., 2015; Li et al., 2019b; Tang et al., 2019; Yan et al., 2017). Molecular 

simulations can provide a molecular-level insight into the interactions between components, which 

is generally difficult to obtain from experimental studies. 

 

1.2 Research Objective 

A molecular simulation study on the evaluation of injected fluids for EOR in tight formation 

was conducted. The fluid properties under high temperature and high pressure conditions were 

calculated. The oil extraction processes in nanochannels were presented. For the gas injection EOR 

methods, the feasible working conditions of different gases were evaluated. For the nanofluid 

systems, the mechanisms of different types of NPs in improving oil recovery were demonstrated. 
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1.3 Dissertation Organization 

This dissertation has seven chapters including two main topics, gas injection EOR and 

nanofluids for EOR. 

Chapter 1 is the introduction, which explains the research background, objective, and 

organization of the dissertation. 

Chapter 2 provides a literature review and laboratory tests of the rock and reservoir fluid 

properties in the Middle Bakken Formation. 

Chapter 3 describes the molecular simulation methods and the application in the area of 

petroleum engineering.  

Chapter 4 presents the molecular simulation study on the n-alkane/CO2 systems. The effects 

of alkyl chain length, pressure, and temperature on the CO2 solubility and the alkane swelling 

factor were investigated. 

Chapter 5 presents the interfacial interactions between Bakken crude oil and injected gases at 

reservoir temperature. The gas solubility, volume swelling factor, oil diffusion coefficient, and 

minimum miscibility pressure (MMP) were studied to compare the efficiency of different gases in 

the EOR process.  

Chapter 6 presents the effect of different gases on the oil detachment from mineral surfaces 

as well as the effect of nano-confinement on the oil extraction. 

Chapter 7 presents the effect of different NPs on the interfacial tensions (IFTs) of octane 

(C8H18)/water systems and oil transport through nanochannels.  

Chapter 8 provides the conclusions and recommendations of the dissertation. 
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CHAPTER 2  

RESERVOIR DESCRIPTION OF THE MIDDLE BAKKEN FORMATION 

The Bakken Formation of the Williston Basin is located in western North Dakota, eastern 

Montana, and southern Saskatchewan. As shown in Figure 2-1, the formation consists of three 

members ranging in age from late Devonian to early Mississippian. The Middle Bakken is the 

principal oil reservoir which is bounded by the Upper Bakken Shale and the Lower Bakken Shale. 

This chapter mainly describes the rock and fluid properties of the Middle Bakken Formation. 

 

Figure 2-1 A cross section of the Bakken Formation (West et al., 2013) 

 

The Middle Bakken core plugs from three wells were provided by the North Dakota 

Geological Survey Wilson M. Laird Core Sample Library. Figure 2-2 shows the location and North 

Dakota Industrial Commission (NDIC) well numbers from which the rock core samples were 

obtained. Different samples were prepared based on the type of tests. Results from literature and 

laboratory tests are presented. 



6 

 

        

Figure 2-2 Location (designated by green circles) and NDIC well numbers from which the rock 

core samples were obtained. 

 

2.1 Rock Properties of the Middle Bakken Formation 

2.1.1 Porosity and permeability 

The relationship of air permeability (K) and porosity (Φ) for the Middle Bakken rock is shown 

in Figure 2-3 The porosity of the Middle Bakken rock samples ranges from 1.5-10.8%, and the 

matrix permeability ranges from < 0.0001 to 0.805 mD. There is no simple relationship between 

permeability and porosity for the Middle Bakken Formation samples. For a given porosity, the 

permeability varies over a range of 2–4 orders of magnitude, because the permeability–porosity 

relationship is highly affected by the clay content and the natural fractures. 



7 

 

 

Figure 2-3 Permeability-porosity relationship of rock samples from the Middle Bakken. 

2.1.2 Mineral composition 

The mineral composition of the Middle Bakken rocks was analyzed by X-ray diffraction 

(XRD). XRD records the diffraction or reflection of a beam of X-rays by rock samples. The unique 

arrangement of atoms in each mineral’s crystal structure interacts with the X-ray beam, producing 

regions of diffraction intensity, or peaks, diagnostic for that mineral. XRD data can be processed 

for identifying mineral types and determining the mineral fractions (K. Liu et al., 2017). Powder 

samples were prepared using the micronizing mill. The XRD analysis was performed by the X-ray 

diffractometer. As shown in Figure 2-4, quartz, calcite, and dolomite are the dominant minerals of 

the Middle Bakken samples, and illite is the major clay type. 
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Figure 2-4 XRD results for the Middle Bakken core samples 

2.1.3 Pore structure 

The morphology of the rock samples was observed using scanning electron microscopy 

(SEM). The SEM images were visually examined and different pore types were identified (Figure 

2-5). Pore structures in Middle Bakken samples are mainly comprised of pores associated with 

organic matter (OM), pores between grains and crystals (interparticle), and pores within grains, 

crystals, and clay aggregates (intraparticle) (Loucks et al., 2012; Saraji and Piri, 2015). Very few 

organic matters are found in the Middle Bakken core samples. 
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Figure 2-5 Middle Bakken pore types observed from SEM images (Saraji and Piri, 2015) 

 

Most pores of the matrix are slit-like nanopores or nanochannels. As shown in Figure 2-6, the 

outmost nanochannel is connected with other pores through several pore throats, and the shapes of 

the throats vary greatly. The sizes of the pore throats are all in nanoscale. The sophisticated pore 

network has a significant impact on the fluids flowing through the rock matrix.  

 

Figure 2-6 Slit-like nanopores or nanochannels in a Middle Bakken rock sample 

2.1.4 Pore size distribution 

The core samples were crushed to <250 µm and oven dried for 8 h at 383 K (110 °C) to be 

used for nitrogen (N2) gas adsorption. The N2 adsorption and desorption isotherms were collected 

at 77 K (−196 °C) using the automated gas sorption analyzer. Figure 2-7 shows the N2 
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adsorption/desorption isotherms of the samples. The shape of the hysteresis loop indicates the 

pores of the Middle Bakken rock are slit-shaped pores (Labani et al., 2013). 

 

Figure 2-7 N2 adsorption/desorption isotherms of the Middle Bakken rock samples. 

 

The pore size distributions of the rock samples are shown in Figure 2-8. According to the 

International Union of Pure and Applied Chemistry (IUPAC) classification (Rouquerol et al., 

1994), the Middle Bakken has micropores (< 2 nm), mesopores (2–50 nm), and macropores (> 50 

nm), while the pore volume is dominated by mesopores. 
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Figure 2-8 Pore size distributions of Middle Bakken Formation. 

 

2.2 Crude Oil Properties of the Middle Bakken Formation 

Bakken crude oil is a light crude oil with an API gravity generally between 38° and 43°. Low 

molecular weight hydrocarbons are the dominant components for all oil samples. Very few 

asphaltenes and resins were found in the oil samples (Hawthorne et al., 2016; Kurtoglu, 2014). A 

typical Bakken crude oil composition is shown in Table 2-1. 

 

Table 2-1 Bakken oil components (Hawthorne et al., 2016). 

Oil component 

“Live” oil “Dead” oil 

Mole fraction Mole fraction 

CO2 0.0032 0 

N2 0.0322 0 

CH4 0.2687 0 

C2H6 0.1080 0 

C3-C4 0.1309 0.0001 

C5-C7 0.1369 0.0884 

C8-C13 0.1840 0.4770 

C14-C24 0.0947 0.3016 

C25-C36+ 0.0415 0.1329 

 

The light crude oil with very low viscosity can flow better for production and transport. 

However, within the nanopores or nanochannels, the fluid flow is affected by the strong rock-oil 
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interactions. The flow investigation at the nanoscale is more complex compared to the flow without 

nanoconfinement. 

 

2.3 Triple-Porosity System in the Middle Bakken Formation 

The Middle Bakken Formation can be seen as a triple-porosity system made up of the matrix, 

less permeable micro-fractures, and more permeable macro-fractures after hydraulic fracturing 

(Figure 2-9). The oil flow process is divided into 3 parts: a). from the matrix to micro-fractures, 

b). from micro-fracture to macro-fractures, c). from macro-fractures to horizontal well (Alahmadi, 

2010). 

 

Figure 2-9 triple-porosity system of fractured reservoirs 

After analyzing the oil production of the Bakken production well, the production history is 

divided into 3 main stages: 

Stage 1 represents the transient linear flow in the macro-fractures. The initial production rate 

is relatively high but decreases rapidly. The permeability of macro-fractures is usually high and 

hence this flow stage will be very short.  
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The decline of oil production in Stage 2 was relatively slow, cause the flow in the macro-

fractures, micro-fractures, and matrix can almost make up the pressure reduction in the macro-

fractures. 

Stage 3 is the main and longest flow region. The pressure of the matrix declined gradually. 

This flow stage is governed by exponential decline. 

Understanding the fluid properties at nanoscale and improving the efficiency of oil flow into 

the fractures is extremely important for EOR in the Middle Bakken Formation. 
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CHAPTER 3  

SIMULATION METHODOLOGY 

Although hydraulic fractures are commonly created to enhance the permeability of tight 

formations, the flow of hydrocarbons to the fractures occurs through the intrinsic matrix nanopores 

(Josh et al., 2012). Therefore, it is important to study the fluid properties under nano-confinement. 

However, nanoscale phenomena can hardly be observed from experimental studies. Nowadays, 

molecular simulation has become a powerful tool to reveal details of molecular processes on 

lengths of space and time unreachable to experimental observations. In this chapter, an 

introduction of molecular simulation and its applications in petroleum engineering is presented. 

 

3.1 Molecular Simulation 

Molecular simulation is a method for simulating molecular structures and behavior to 

understand various physical and chemical properties of molecular systems. Based on statistical 

mechanics, quantum mechanics, or experiments, a set of reasonable models and algorithms have 

been constructed. The macroscopical phenomena can be understood at a microscopical level by 

performing molecular simulations. 

There are two main simulation methods in molecular modeling: Monte Carlo (MC) 

(Metropolis et al., 1953) and molecular dynamics (MD) (Alder and Wainwright, 1957, 1959). In 

an MC simulation, each new configuration of the system is generated by a random move of an 

atom or molecule. MC simulation is used to evaluate the configurational properties as ensemble 

averages for a system in equilibrium. While in an MD simulation, the atoms in the system move 

by a driving force based on a force field. MD simulation calculates the properties as time averages. 

The obvious advantage of MD over MC is that MD gives out dynamical properties as well as 
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atoms’ trajectories throughout the simulations. In this dissertation, we mainly adopted the MD 

simulation method, 

 

3.2 Molecular Dynamics Simulation 

MD simulation is a computer simulation method for analyzing the physical movements of 

atoms and molecules. In an MD simulation, atoms are modeled as point charges with an associated 

mass. The interactions between the atoms are described by force fields. The movements of the 

atoms are predicted by solving Newton’s laws of motion. With MD simulation, the equilibrium 

and transport properties of a classical many-body system can be computed. 

3.2.1 Molecular dynamics algorithm 

The basic MD algorithm (Allen and Tildesley, 1989) is shown in Figure 3-1. An MD 

simulation is initiated by assigning atoms with initial coordinates and velocities. For each timestep 

(1~2 fs for atomistic MD simulations) of the simulation, the total force acting on an atom is defined 

as the negative gradient of the potential energy function. Once the forces acting on individual 

atoms are obtained, the atom coordinates and velocities are updated by integrating Newton’s law 

of motion. The system properties of interest (energy, temperature, pressure, etc.) are computed, 

and the atoms’ trajectories, which represents the time-dependent evolution of the system are saved 

during the simulation. The integration is repeated over a sufficient number of timesteps, so the 

thermodynamic properties fluctuate around constant average values and the system reaches 

equilibrium. The production run can only be started after equilibration. The system properties are 

sampled at regular intervals and averaged over the production run. at the end of the simulation. 
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Figure 3-1 Simplified schematic of the molecular dynamics algorithm. 

3.2.2 Force field 

In the MD simulations, the interaction forces and energies between atoms in the system are 

usually evaluated using a classical potential energy function, the so-called force field. The basic 

functional form of a force field includes bonded terms and non-bonded terms. The general form 

for the total energy is written as: 

total bonded non-bondedU U U                                                   (3.1) 

The bonded terms describe the interactions of atoms that are linked by covalent bonds. The 

bonded potential energy is typically expressed as a sum of four components: 

bonded bond angle dihedral improper+U U U U U   ……………………  (3.2) 
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The bond (or stretching) term describes the interaction between two atoms connected by a 

chemical bond (Figure 3-2(a)) The most common potential to be used is the harmonic bond 

potential: 

bond 0( )ij ijU k r r                                                         (3.3) 

where the force constant, kij, and the equilibrium bond distance, rij, are defined for a bond 

connecting atoms of i and j. 

The angle (or bending) term describes the interaction between three atoms connected in 

sequence by two chemical bonds (Figure 3-2(b)). The harmonic angle potential and the cosine 

harmonic angle potential are two common potentials to be used. 

H

angle 0( )ijk ijkU k                                                          (3.4) 

CH

angle 0(cos cos )ijk ijkU k                                                   (3.5) 

where the force constant, 
H

ijkk  or 
CH

ijkk , and the equilibrium angle, are defined for an angle of a series 

of atoms of i, j, and k. 

As shown in Figure 3-2(c) and Figure 3-2(d), the dihedral (or torsion) term describes the 

interaction between four atoms connected in sequence by three chemical bonds. While the 

improper (or improper torsion) term describes the interaction between four atoms, in which three 

of the four atoms are connected to the fourth by three chemical bonds. 
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Figure 3-2 Illustration of different functional terms describing bonded interactions: (a) bond 

stretching (b) angle bending (c) torsion and (d) improper torsion (Images borrowed from 

http://cbio.bmt.tue.nl/pumma/index.php/Theory/Potentials) 

The non-bonded term is used to describe the Van der Waals and the electrostatic interactions. 

The Lennard-Jones 12-6 potential is the most common potential to model the Van der Waals 

interactions and the electrostatic two-body interaction is expressed using Coulomb’s law (Allen 

and Tildesley, 1989). 

The non-bonded potential energy is described as: 

12 6

non-bonded VdW Coul+U =4
4

ij ij i j

ij

ij ij ij

q q
U U

r r r

 




    
              

                 (3.6) 

where εij donates the depth of the potential well, σij represents the distance at which the 

interaction energy of two atoms is minimal, rij is the distance between atoms i and j, qi and qj are 

the partial charges for atoms i and j, respectively. 

The LJ potential consists of two parts: a steep repulsive term and a smoother attractive term 

(Figure 3-3). The part which contains the power 12 describes the repulsive forces between atoms 

http://cbio.bmt.tue.nl/pumma/index.php/Theory/Potentials
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while the part which contains the power 6 denotes attraction. The LJ potential of two atoms is 

minimized at an equilibrium interatomic distance of 6 2 , where the potential energy U is -ε. Two 

interacting atoms repel each other when the distance between the atoms is smaller than their 

equilibrium distance. The atoms attract each other at a moderate distance, which is larger than the 

equilibrium distance, and do not interact at infinite distance. 

 

Figure 3-3 The LJ potential, attraction term only, and repulsion term only between atoms 

The Lorentz−Berthelot mixing rules, ij ii jj   and ( ) / 2ij ii jj    , or the geometric 

mean combining rule, ij ii jj   and ij ii jj   , are usually applied to calculate the Van der 

Waals interactions between unlike atoms (Plimpton, 1995). 

The Coulomb interaction potential determines the electrostatic force between charged atoms. 

The force is inversely proportional to the distance between two atoms squared (F∝1/r2), and it is 

repulsive for atoms with like charges and attractive for atoms with opposite charges. 
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To speed up the simulation, the interactions between two atoms separated by a distance 

greater than the cutoff distance are ignored. As shown in Figure 3-3, the LJ potential is extremely 

small when the separation of two atoms is larger than 2.5σ. However, electrostatic interactions still 

have an impact beyond the system size. Different methods have been developed to add a constant 

term to the force field to compensate for the long-range electrostatic interactions. The main 

methods to deal with long-range electrostatic interactions are the Ewald summation method 

(Toukmaji A.Y. and Board J.A., 1996), the Particle-Particle Particle Mesh (PPPM) (Hockney and 

Eastwood, 1989) and the Multi-level Summation Method (MSM) (Hardy et al., 2009). 

The choice of force field has a great impact on the validity of results from a molecular 

dynamics simulation. The parameters ε and σ, partial atomic charges, as well as the mixing rules 

should be carefully adjusted to accurately model different substances. 

3.2.3 Ensembles 

The three common types of ensembles in the MD simulations are the microcanonical 

ensemble (NVE), the canonical ensemble (NVT), and the isothermal-isobaric ensemble (NPT). 

The microcanonical ensemble represents an isolated system. It is a system of a fixed number 

of particles (N), a constant volume (V), and constant total energy. 

In the canonical ensemble, the number of particles (N), the volume (V), and the temperature 

(T) are fixed. The system is coupled to a heat bath, and exchanges energy with the heat bath to 

keep the temperature around the fixed value. 

In the isothermal-isobaric ensemble, both the temperature (T) and pressure (P) are kept 

constant. The system is allowed to exchange energy with a heat bath of temperature and the volume 

can also change according to the pressure applied to the system. 
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3.2.4 Periodic boundary conditions 

Although MD simulation is a powerful tool to obtain information that is not easily obtained 

from experiments, the atom numbers are still far below the real size of most systems. In order to 

conserve the macroscopic behavior of the system under investigation, periodic boundary 

conditions are most commonly applied in the MD simulations (Allen and Tildesley, 1989). 

Figure 3-4 shows a two-dimensional schematic of periodic boundary conditions. The central 

box corresponds to the original system, and the other boxes are all exact replicas of the central box. 

If a particle moves in the central box, its periodic image in each of the replicated boxes moves in 

exactly the same way. If a particle leaves the central box, one of its images will enter through the 

opposite face. When calculating the interaction between a certain particle and any other particles, 

a cutoff distance is introduced. The dashed circle in Figure 3-4 represents the cutoff distance. Only 

the interactions with neighboring particles inside the cutoff distance are calculated. The 

interactions beyond the cutoff distance are small enough to be neglected. 

 

Figure 3-4 Schematic of periodic boundary conditions 
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3.3 Application of Molecular Simulation in Petroleum Engineering 

Molecular simulation can be used to make comparisons with experimental measurements, 

predict experimental results, test new theories, and provide insights for designing and 

manufacturing of new materials. Moreover, for experiments that are difficult or dangerous to 

produce in laboratory conditions, the molecular simulation could be a better alternative to 

experimental studies. Molecular simulation methods have been widely used in the fields of biology, 

drug design, chemistry, and materials science. In petroleum engineering, molecular simulations 

have been used to investigate the properties of fluids and rock and their interactions at various 

conditions. 

The properties of hydrocarbons have been extensively studied using molecular simulation 

methods. Different force fields, like OPLS-AA (Jorgensen et al., 1996; Siu et al., 2012), TraPPE 

(Martin and Siepmann, 1999, 1998), and NERD (Nath et al., 1998), have been developed to model 

the hydrocarbons. The density, vapor-liquid equilibrium, and viscosity are the main focused 

properties in many published studies (Herdes et al., 2018; López-Lemus et al., 2006; Papavasileiou 

et al., 2019; Ungerer et al., 2007). Molecular simulation can be used to investigate the hydrocarbon 

properties under extreme temperature and pressure conditions, which are difficult to achieve using 

current laboratory equipment. Moreover, the MD simulations have proven to be more reliable in 

predicting thermophysical properties than many classical thermodynamic models, which make 

predictions from the extrapolation of property trends (Ungerer1 et al., 2006). In fully atomistic 

MD simulation studies, pure alkane or alkane mixtures are commonly used to represent the crude 

oil. However, the composition of crude oil is complex, which contains normal and branched 

alkanes, cycloalkanes, aromatics, resins, and asphaltenes. Considering the current computational 

power, it is challenging to conduct a fully atomics MD simulation to simulate the real crude oil. 
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To deal with this problem, coarse-grained (CG) models have been built to simulate the complexity 

of crude oil (Herdes et al., 2015; Müller et al., 2015). In a coarse-grained molecular simulation, a 

group of atoms is represented by one bead, so the number of degrees of freedom is reduced and 

the fine interaction details are eliminated. The simulation of a CG system requires less 

computational resources and runs faster than that for the same system in all-atom representation. 

As a result, an increase of orders of magnitude in the simulated time and length scales can be 

achieved. 

Molecular simulations have also been employed to study the interactions between injected 

fluids (gases and chemicals) and crude oil. The effect of CO2 on the oil swelling (Liu et al., 2015; 

Zhang et al., 2013), viscosity reduction (Li et al., 2019b), and oil/water interfacial tension (IFT) 

(Liu et al., 2016; Makimura et al., 2013; Zhao et al., 2015) have been reported in the published 

studies. Other gases, like nitrogen (N2), methane (CH4), and ethane (C2H6), have also been studied 

using MD simulations in EOR-related researches, including IFT studies (De Lara et al., 2012) and 

the evaluation of minimum miscibility pressure (MMP) (Li et al., 2020; Peng et al., 2018). Among 

all the chemicals used in the oil fields, the surfactant is studied most. The self-assembly structure 

(Chun et al., 2015; Jalili and Akhavan, 2009; Ruiz-Morales and Romero-Martínez, 2018; Tang et 

al., 2014), surface adsorption (Cai et al., 2018; Hu et al., 2012; Wang and Larson, 2015), 

temperature sensitivity (Qu et al., 2016; Sammalkorpi et al., 2007), and salt resistance (Chen and 

Xu, 2013; Qu et al., 2016; Yan et al., 2010) of surfactants, as well as the effect of surfactant or 

surfactant/nanoparticles on the oil/water IFT (Li et al., 2019a; Shi et al., 2018; Vu and 

Papavassiliou, 2019), have been evaluated using molecular simulations. 

Recently, the molecular simulation technique has been used increasingly to study fluid-rock 

systems. Molecular simulation can calculate water or oil contact angles on mineral slabs that are 
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not convenient to measure in laboratories (Chen et al., 2015; Šolc et al., 2011; Tenney and Cygan, 

2014). For nanopore-dominated tight rocks, nanoscale phenomena are usually difficult to observe. 

MD simulation studies have focused on the investigation of oil and gas behavior and its transport 

properties in inorganic (De Almeida and Miranda, 2016; Wang et al., 2016a, 2016b; Zhang et al., 

2016) and organic nanopores (Ho et al., 2018; Wang et al., 2015). Adopting MD simulation, the 

effect of injected gases (Fang et al., 2017; Yan et al., 2017b) and surfactant solutions (Tang et al., 

2019) on the oil detachment in nanochannels have also been studied. The visualization of MD 

simulation results can be used to better understand the oil displacement in nanochannels. 
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CHAPTER 4  

MOLECULAR SIMULATION STUDY ON THE VOLUME SWELLING AND THE 

VISCOSITY REDUCTION OF N-ALKANE/CO2 SYSTEMS 

4.1 Introduction 

As one of the largest reserves of crude oil in the United States, the Bakken Formation plays 

a vital role in meeting the nation’s energy needs. It has been reported that the Bakken Petroleum 

System in the Williston Basin has an estimated original oil in place (OOIP) of 300-900 billion 

barrels (Steven B. Hawthorne et al., 2019; Jia et al., 2019). However, the primary recovery factors 

are only estimated to be less than 10% due to the ultra-low matrix permeability (Clark, 2009; 

LeFever and Helms, 2006). Hence, a considerable amount of oil will remain in the reservoir, 

resulting in an urgent need for effective enhanced oil recovery (EOR) techniques. Since the Bakken 

Formation has huge original oil in place, small improvements in the oil recovery factor would 

result in significant volumes of produced oil. 

Resulting in incremental oil recovery as well as reducing Carbon dioxide (CO2) emission 

(Suebsiri et al., 2006), CO2 injection has become one of the most common enhanced oil recovery 

(EOR) techniques in North America. Many CO2 injection projects have been successfully carried 

out in Texas, New Mexico, and Colorado (Alvarado and Manrique, 2010; Kuuskraa et al., 2013; 

Manrique et al., 2007). In recent years, the Middle Bakken Formation of the Williston Basin in 

North Dakota has become the interest of CO2 EOR. The Middle Bakken Formation is a typical 

tight formation, which holds a huge CO2 storage capacity and the potential of significantly 

increasing oil production by injecting CO2 (Sorensen et al., 2014). The predicted recovery factor 

of primary oil recovery is less than 10% (Clark, 2009; LeFever and Helms, 2006) while using CO2 

injection technique 2.5%−9.4% incremental oil recovery factor can be obtained (Yu et al., 2015). 
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The swelling of crude oil by dissolved CO2 and reduction of crude oil viscosity are two main 

physical mechanisms of the CO2 EOR method (Orr et al., 1982; Seyyedsar et al., 2017). When 

CO2 is injected into a reservoir and contacts the crude oil, the dissolution of CO2 occurs thereby 

causing swelling and density reduction. The swollen oil droplets will increase oil saturation and 

the reservoir pressure. Some trapped oil will be forced out of the pore spaces and move toward the 

fractures or the production well. Thus additional oil can be recovered from reservoirs. The system 

expansion process can reduce crude oil viscosity significantly, and therefore increase the mobility 

of crude oil. 

Some experiments (Dong et al., 2018; Han et al., 2015; Mosavat et al., 2014; Yang et al., 

2012; Zheng et al., 2016) focusing on the CO2 dissolution and swelling effect have been carried 

out, and various models and correlations (Chung et al., 1988; MacÍas-Salinas et al., 2013; Mulliken 

and Sandler, 1980; Simon and Graue, 1964) have been built to predict CO2 solubility, crude 

oil/CO2 mixture viscosity, oil swelling factor, etc. However, experimental studies are often time-

consuming, costly, and cannot cover all the conditions, especially for CO2-crude oil interactions 

in micro- and/or nano-pore spaces in tight formations. Although models and correlations can 

predict many parameters easily, they cannot explain different phenomena scientifically and 

thoroughly. 

Over the last few years, molecular simulation methods including the Monte Carlo (MC) 

method and the Molecular Dynamics (MD) method have been widely used to study the gas 

solubility and diffusion coefficient in liquids, and the viscosity of gas/liquid mixtures (Liu, B. et 

al., 2015, Liu, H. et al., 2014; Moultos et al., 2016; Urukova et al., 2009; Vorholz et al., 2004; 

Zhang et al., 2013). Zhang et al. (2013) provided a reasonable method to study the CO2 solubility 

in octane and the swelling of the octane/CO2 system with MC simulation. Liu, B. et al. (2015) used 
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MD simulation to investigate the effects of temperature, pressure, and alkane structures on the 

swelling of alkane/CO2 systems. They inferred that the dispersion interaction is the main reason 

for the swelling of the alkane/CO2 system. Moultos et al. (2016) studied the CO2 diffusivity in 

various hydrocarbons and reproduced the liquid viscosities with three different force fields. 

While the minimum miscibility pressure (MMP) between Bakken crude oil and CO2 as well 

as CO2 flow in tight Bakken rocks were studied (Hawthorne et al., 2017; Sorensen et al., 2014, 

2017), more work needs to be done on the solubility of CO2 in Bakken crude oil, the swelling 

factors of crude oil/CO2 system, and the crude oil viscosity reduction. In this study, five main n-

alkanes (octane, decane, dodecane, tetradecane, and hexadecane) in Middle Bakken crude oil 

(Kurtoglu, 2014) were selected and a series of configurational-bias Monte Carlo (CBMC) (Frenkel 

et al., 1992; Siepmann and Frenke, 1992) simulations were performed to study the impacts of 

pressure, temperature and alkyl chain length on the solubility of CO2 in different n-alkanes and the 

swelling of n-alkane/CO2 systems. MD simulations were carried out to study the viscosity 

reduction of n-alkanes due to the dissolution of CO2. The main temperature employed in our 

simulations is 383 K, which is consistent with the reported experimental study (Hawthorne et al., 

2017; Sorensen et al., 2014, 2017). 

 

4.2 Force Fields and Simulation Details  

4.2.1 Force fields 

The non-bonded interactions for the force fields employed in this work were described by 

the pairwise additive Lennard-Jones (LJ) 12-6 potentials and the Coulombic interactions. 

In the CBMC simulations, the nonpolar, flexible chain n-alkane molecules were described by 

the transferable potentials for phase equilibria united atom (TraPPE-UA) model (Martin and 
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Siepmann, 1998, 1999), in which methyl (CH3) and methylene (CH2) groups were treated as 

pseudo atoms. The Lorentz-Berthelot combining rules were used to determine the cross-

parameters for unlike-pair interactions. While in the MD simulations, the L-OPLS-AA force field 

(Siu et al., 2012) was selected to describe the n-alkanes, as this force field is more accurate in 

reproducing the viscosity of long-chain alkanes (Ewen et al., 2016). The unlike interactions were 

evaluated using the geometric mean combining rule. The CO2 molecules were described by the 

TraPPE model (Potoff and Siepmann, 2001) with two rigid bonds and a rigid bond angle. 

The non-bonded and bonded parameters for each of the force fields used in this work are 

listed from Table 4-1 to Table 4-4. 

Table 4-1 Parameters for non-bonded interactions used in CBMC simulations 

atom/group qi (e) σii (Å) εii (kcal∙mol-1) 

CH3 0 3.75 0.195 

CH2 0 3.95 0.0914 

C 0.70 2.80 0.0537 

O -0.35 3.05 0.157 

 

Table 4-2 Parameters for bonded interactions used in CBMC simulations 

Stretch r0 (Å) kb(kcal∙mol-1∙Å-2) 

CHx−CHy 1.54 191.77 

C−O 1.16 - 

Bend θ0 (°) kθ (kcal∙mol-1∙rad-2) 

CHx−CH2−CHy 114.0 124.20 



29 

 

C−O−C 180.0 - 

Torsion C1(kcal∙mol-1) C2(kcal∙mol-1) C3(kcal∙mol-1) C4(kcal∙mol-1) 

CHx−CH2−CH2−CHy 0 0.666 -0.136 1.573 

Note: x = 2 or 3, y = 2 or 3. 

Table 4-3 Parameters for non-bonded interactions used in MD simulations 

atom qi (e) σii (Å) εii (kcal∙mol-1) 

CT_CH3 -0.222 3.50 0.066 

CT_CH2 -0.148 3.50 0.066 

HC_CH3  0.074 2.50 0.03 

HC_CH2 0.074 2.50 0.0263 

C  0.70 2.80 0.0537 

O -0.35 3.05 0.157 

 

Table 4-4 Parameters for bonded interactions used in MD simulations 

Stretch r0 (Å) kb(kcal∙mol-1∙Å-2) 

CT-CT 1.529 268.0 

CT-HC 1.090 340.0 

C−O 1.16 - 

Bend θ0 (°) kθ (kcal∙mol-1∙rad-2) 

CT-CT-CT 112.7 58.35 

CT-CT-HC 110.7 37.5 

HC-CT-HC 107.8 33.0 
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C−O−C 180.0 - 

Torsion C1(kcal∙mol-1) C2(kcal∙mol-1) C3(kcal∙mol-1) C4(kcal∙mol-1) 

CT-CT-CT-CT 0.645 -0.214 0.178 0.000 

CT-CT-CT-HC 0.000 0.000 0.300 0.000 

HC-CT-CT-HC 0.000 0.000 0.300 0.000 

 

4.2.2 Simulation details 

The CBMC simulations were performed with a fixed number of 100 n-alkane molecules in a 

cubic unit cell for both pure and CO2 saturated n-alkane systems. The Monte Carlo moves of n-

alkane molecules were translation, rotation, and reinsertion. The relative frequency of the three 

moves was 1:1:1. For CO2 saturated n-alkane systems, with the insertion and deletion of CO2 

molecules, the systems reached equilibrium at specified temperatures and pressures. The Monte 

Carlo moves of CO2 molecules were translation, rotation, reinsertion, and swap. The relative 

frequency of the four moves was 1:1:1:1. The grand canonical (µVT) ensemble (Dubbeldam et al., 

2004; Zhang et al., 2013) was employed for the simulations of CO2 saturated n-alkane systems. In 

this ensemble, the temperature, T, the volume, V, and the chemical potential, µ, were fixed. The 

system volume was allowed to change when the n-alkane was absorbing/desorbing CO2. The 

volume change probability was set as 0.05. A truncated and shifted potential with a cutoff radius 

of 12Å was used. The number of initialization cycles and production cycles was 10000 and 50000, 

respectively. The simulations were performed for a pressure range of 2−10 MPa and a temperature 

range of 323−383 K. Finally, the average values of the properties of interest were calculated and 

analyzed. 
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Equilibrium molecular dynamics (EMD) simulations were used in conjunction with the 

Green-Kubo relation (Green, 1954; Kubo, 1957) (Equation 4.1) to compute the shear viscosity of 

the n-alkane/CO2 systems. 

     0 0
0

B

 
V

t P t P t t dt
k T

 


                                           (4.1) 

where V is the volume of the simulation box, kB is the Boltzmann constant, T is the temperature, 

Pαβ denotes the off-diagonal components of the pressure tensor, and the angle brackets indicate the 

ensemble average. 

One hundred twenty-five n-alkane molecules and CO2 molecules with different mole 

fractions were randomly placed in a cubic box. Then the box was equilibrated in the isothermal-

isobaric (NPT) ensemble for 3 nanoseconds (ns).  The average volume of the simulation box during 

the final 1.0 ns was calculated and employed in the following 5 ns canonical ensemble (NVT) 

simulation. The viscosity was finally obtained from the last 2 ns NVT production run based on 

three independent trajectories. The long-range electrostatic interactions were calculated using the 

particle-particle particle-mesh (PPPM) method (Hockney and Eastwood, 1989) with an accuracy 

of 10−5 and a cutoff radius of 14 Å. The Nosé−Hoover thermostat and barostat (Hoover et al., 1982; 

Nosé, 1984) were applied to control the temperature and pressure, respectively. Fast-moving bonds 

involving hydrogen atoms were constrained with the SHAKE algorithm (Ryckaert et al., 1977), 

and the time step was set to 2 femtoseconds (fs).  

All CBMC simulations were carried out with the open source package RASPA 2.0 

(Dubbeldam et al., 2016). The MD simulations were performed using the LAMMPS package 

(Plimpton, 1995). The configuration snapshots were rendered by VMD software (Humphrey et al., 

1996). The snapshots of the systems simulated in this work are shown in Figure 4-1. 
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(a) (b)  

Figure 4-1 Simulation unit cells of (a) pure and (b) CO2 saturated hexadecane: green and blue 

tubes represent the CH3 group and CH2 group, respectively; red and cyan spheres represent O 

atoms and C atoms, respectively. 

 

4.3 Results and Discussion 

4.3.1 CO2 solubility in n-alkanes. 

The solubility of CO2 in each n-alkane as a function of pressure and temperature is presented 

in Figure 4-2 and Figure 4-3, respectively. For each n-alkane, the solubility of CO2 increases with 

the increasing pressure and decreases with the increasing temperature. As shown in Figure 2, at 

383 K, the solubility of CO2 in n-alkanes with different alkyl chain lengths varies slightly at a low 

pressure (2 MPa), while CO2 is more soluble in n-alkanes with shorter alkyl chain length at a high 

pressure (10 MPa). The standard deviations of CO2 solubility in the five n-alkanes are 0.93, 2.59, 

4.46, 7.93, and 13.14, respectively, at the pressure range of 2−10 MPa, and the temperature of 383 

K. At 383 K and 10 MPa, the solubility of CO2 in n-octane is 2.09 times the solubility of CO2 in 

n-hexadecane. Similarly, under the same pressure condition (6 MPa), the difference in solubility 
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of CO2 in n-alkanes between short-chain n-alkanes and long-chain n-alkanes at a low temperature 

(323 K) is much larger than that at a high temperature (383 K), as shown in Figure 3. The standard 

deviations of CO2 solubility in the five n-alkanes are 15.66, 7.21, and 4.46, respectively, at the 

temperature range of 323−383 K, and the pressure of 6 MPa. At 323 K and 6 MPa, the solubility 

of CO2 in n-octane is 1.92 times the solubility of CO2 in n-hexadecane. 

 

Figure 4-2 CO2 solubility in n-alkanes as a function of pressure at 383 K. 
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Figure 4-3 CO2 solubility in n-alkanes as a function of temperature at 6 MPa. 

4.3.2 Density of pure n-alkanes and CO2-saturated n-alkanes. 

The simulated density values of the pure n-alkanes are consistent with the experimental data 

provided in the National Institute of Standards and Technology (NIST) database (Lemmon et al., 

2011). As shown in Figure 4-4 and Figure 4-5, the density of pure n-alkanes increases slightly with 

the increasing pressure and the decreasing temperature, while the density of CO2-saturated n-

alkanes decreases dramatically with the increasing pressure and the decreasing temperature. The 

reason for this phenomenon can be explained by the impacts of pressure and temperature on the 

solubility of CO2 in n-alkane. With the increasing pressure and the decreasing temperature, more 

CO2 can dissolve in n-alkane resulting in the expansion of the n-alkane, and thus the density of the 

n-alkane decreases. 

 

Figure 4-4 Density of pure (dashed lines) and CO2 saturated (solid lines) n-alkanes as a function 

of pressure at 383K. 
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Figure 4-5 Density of pure (dashed lines) and CO2 saturated (solid lines) n-alkanes as a function 

of temperature at 6 MPa. 

4.3.3 Swelling factor of n-alkanes−CO2 systems. 

The swelling factor, an important indicator for quantifying the oil swelling when CO2 

dissolves into oil, is defined as the volume of the saturated CO2-oil mixture divided by the volume 

of the oil alone (Orr et al., 1982). The swelling factor of n-alkanes/CO2 system as a function of 

pressure and temperature is presented in Figure 4-6 and Figure 4-7. The swelling factor of n-

alkanes/CO2 system increases with the increasing pressure and the decreasing temperature, which 

is consistent with the CO2 solubility in n-alkanes. N-alkanes with a shorter chain length have a 

higher swelling factor when saturated with CO2, which indicates that light oil has a higher swelling 

factor than heavy oil. 



36 

 

 

Figure 4-6 Swelling factor of n-alkane/CO2 system as a function of pressure at 383 K. 

 

 

Figure 4-7 Swelling factor of n-alkane/CO2 system as a function of temperature at 6 MPa. 

4.3.4 Interaction energy. 

As the n-alkane molecule and CO2 molecule are both nonpolar, the intermolecular forces both 

belong to the London dispersion force, we would expect they are soluble in each other. The 
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interactions of these molecules arises solely from the dispersion energy, which will be referred to 

as “interaction energy” in this dissertation. The interaction energy of pure n-alkanes at specified 

pressures and temperatures are calculated, as shown in Figure 4-8. The n-alkanes with shorter 

chains have less negative intermolecular interaction energy, which means it is easier for molecules 

to separate from each other, so a higher swelling factor can be observed when octane is saturated 

with CO2. 

The interaction energy of n-alkane−n-alkane, CO2−CO2, and n-alkane−CO2 in the n-

alkane/CO2 system are also analyzed. Taking hexadecane (Figure 4-9) for example, the interaction 

energy between hexadecane and CO2 molecules becomes more negative with the increasing 

pressure, while the interaction energy between hexadecane molecules becomes less negative. This 

is because more CO2 molecules dissolve in the hexadecane and occupy the intermolecular space 

of hexadecane molecules.  

 

Figure 4-8 Interaction energy of pure n-alkane molecules at 383 K and 10 MPa. 
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Figure 4-9 Interaction energy as a function of pressure in hexadecane/CO2 system at 383 K. 

4.3.5 Viscosity reduction of n-alkane/CO2 system. 

The viscosities of pure n-alkanes and CO2 at 383 K and 35MPa are computed and compared 

with the experimental data in the NIST database (Lemmon et al., 2011). All the simulation results 

are in good agreement with the NIST data, yielding a viscosity value within 4% of the experimental 

one (except 9.5% for dodecane), as shown in Figure 4-10.  
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Figure 4-10 Interaction energy as a function of pressure in hexadecane/CO2 system at 383 K. 

With the increase of the CO2 mole fraction, the viscosity of the n-alkane/CO2 system is 

reduced (Figure 4-11). The viscosity and the CO2 mole fraction are approximately in a linear 

relationship. The slopes of these viscosity trend lines (dotted lines in Figure 4-11) show that the n-

alkanes with longer alkyl chains have a larger viscosity reduction with increasing CO2 mole 

fraction. The average viscosity reduction rate is about 45% when the CO2 mole fraction is 60%. 

 

Figure 4-11 Viscosity of n-alkane/CO2 system as a function of CO2 mole fraction at 383 K and 

35 MPa. 

 

4.4 Conclusions 

In this study, the CBMC simulations and the MD simulations were carried out to investigate 

the volume swelling and the viscosity reduction of the n-alkane/CO2 systems. Results from the 

CBMC simulation indicate that pressure, temperature, and oil composition are the main factors 

impacting the CO2 solubility, and the density and swelling factor of the n-alkane/CO2 system. Both 
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the CO2 solubility and the swelling factor of the n-alkane/CO2 system increase with the increasing 

pressure and the decreasing temperature. The CO2 solubility and swelling effect are more 

pronounced in light oil. The pressure and the temperature have a negligible effect on the density 

of pure n-alkanes, while the density of CO2-saturated n-alkanes decreases dramatically with the 

increasing pressure and the decreasing temperature. The interaction energy between n-alkanes and 

CO2 can reasonably explain the swelling process.  

The MD simulation results show that the viscosity of the n-alkane/CO2 system is 

approximately in an inversely proportional relationship with the mole fraction of dissolved CO2. 

The average viscosity reduction rate is about 45% when the CO2 mole fraction is 60% under the 

reservoir condition. 

Molecular simulation study provides better insights into the interactions between oil 

components and CO2 at the molecular level. The application of molecular simulation methods can 

play an important role in interpreting experimental results and providing guidance for practical oil 

recovery processes in the Bakken Formation.
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CHAPTER 5  

INTERFACIAL INTERACTIONS BETWEEN BAKKEN CRUDE OIL AND INJECTED 

GASES AT RESERVOIR TEMPERATURE: A MOLECULAR DYNAMICS 

SIMULATION STUDY 

5.1 Introduction 

Carbon dioxide (CO2) EOR has been proven to be a successful technology in conventional 

reservoirs (Perera et al., 2016; Qin et al., 2015). CO2 can mobilize the oil through swelling the oil, 

extracting hydrocarbons, and reducing oil viscosity (Abedini and Torabi, 2014; Orr et al., 1982). 

The injection of CO2 into oil reservoirs results in incremental oil recovery as well as CO2 capture 

and storage, which can significantly reduce greenhouse gas emissions to the atmosphere (Abedini 

and Torabi, 2014; Aycaguer et al., 2001; Gaspar Ravagnani et al., 2009). Studies have reported 

that total organic carbon (TOC) can significantly affect the storage and transportation of crude oil 

(Zhang et al., 2020) as well as CO2 storage capacity (Pan et al., 2018). Low-TOC shale is more 

suitable as a caprock, while high-TOC shale provides a large CO2 sink via adsorption trapping 

(Arif et al., 2017). The rock samples in the Middle Bakken are typical inorganic rocks with the 

main minerals of quartz, dolomite, feldspar, and calcite (Steven B. Hawthorne et al., 2019; Zhang 

et al., 2019). TOC content of the Middle Bakken Formation ranges from 0.1 to 0.4 percent by 

weight (Steven B. Hawthorne et al., 2019). As a typical tight formation, the Bakken Formation 

holds a huge CO2 storage capacity and the potential of significantly increasing oil production by 

injecting CO2 (Sorensen et al., 2014). Both experimental studies and numerical simulations have 

shown that CO2 injection could be an effective EOR method to improve the oil recovery in tight 

formations (Kurtoglu, 2014; Kurtoglu et al., 2013; Sorensen et al., 2015; Yu et al., 2015).  

Although CO2 EOR is a very successful and mature technology in the U.S., many reservoir 

targets like the Bakken Formation have not been flooded because of limited low-cost CO2 supply. 
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In addition, wells in the Bakken Formation produce large amounts of natural gas, which is often 

flared off. This flaring not only wastes energy, but it also emits large amounts of greenhouse gas, 

carbon dioxide. Some experimental studies have focused on using hydrocarbon gas as a working 

fluid for EOR in the Bakken Formation (Steven B Hawthorne et al., 2019; Jin et al., 2016). 

Hydrocarbon gas injection can improve oil recovery as well as reduce CO2 emissions from gas 

flaring. It has been successfully employed in the North Sea oil fields for several decades (Awan et 

al., 2008). 

Many experimental studies have been carried out to investigate the EOR potentials of 

different gases such as nitrogen (N2) (Assef and Almao, 2019), CO2 (Hawthorne and Miller, 2019; 

Li et al., 2017), and hydrocarbon gases (Steven B Hawthorne et al., 2019; Hawthorne and Miller, 

2019; Li and Sheng, 2016). Interactions between crude oil and injecting gas play an important role 

in gas solubility, viscosity reduction, swelling factor, and oil extraction. However, from the 

laboratory studies, it is still a challenge to observe microscopic interactions. Over the past few 

decades, molecular simulation methods including Monte Carlo (MC) simulations and molecular 

dynamics (MD) simulations have been applied to study the gas EOR processes. Compared with 

experiments, molecular simulations are more efficient and economical to obtain microscopic 

properties. Zhang et al. (Zhang et al., 2013) studied the CO2 solubility in octane and its effect on 

octane swelling from MC simulations. The simulation results indicate that the interaction between 

octane and CO2 is the main cause of octane swelling. Using both MC and MD simulations, Li et 

al. (Li et al., 2019b) investigated the volume swelling and the viscosity reduction of n-alkane/CO2 

systems. N-Alkanes with different alkyl chains were studied under various pressure and 

temperature conditions. De Lara, L. S. et al. (De Lara et al., 2012) analyzed the interfacial tension 

(IFT) of fluid/oil interfaces and the self-diffusion coefficients of components in the systems. The 
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simulations suggest an increase in the fluid diffusion in the oil phase as the IFT reduces. The 

adsorption and translocation of supercritical CO2/hydrocarbons in mineral nanopores also have 

been studied from MD simulations by many researchers(Le et al., 2016, 2015; B. Liu et al., 2017; 

Simoes Santos et al., 2018). The strong interactions between CO2 molecules and mineral surfaces 

result in the detachment of hydrocarbon molecules from the surfaces. An enhancement of 

hydrocarbon diffusivity can be obtained with increasing dissolved CO2 molecules. 

The CO2 related molecular simulations have been extensively studied, while few MD 

simulation studies focus on the interactions between methane (CH4) or ethane (C2H6) and 

hydrocarbons. As each of these gases has the potential to improve the oil recovery in the Bakken 

Formation, studies should be done to optimize the injected fluid. In this work, to evaluate the 

abilities of CO2, CH4 and C2H6 for mobilizing and recovering crude oil, a series of MD simulation 

systems were built to study the interfacial interactions between Bakken crude oil and gases at 

Bakken reservoir temperature (383 K). The gas solubility, swelling factor, diffusion coefficient, 

and minimum miscibility pressure (MMP) were investigated. 

 

5.2 Models and Methodology 

5.2.1 Molecular models 

Based on the dead Bakken oil components proposed by Hawthorne et al. (Hawthorne et al., 

2016), a quaternary system (C6 + C10 + C19 + C30) was chosen to represent the crude oil (Figure 

5-1). The crude oil model has been successfully used for estimating the MMPs of the CO2−Bakken 

oil system (Peng et al., 2018). 



44 

 

         

                                              (a)                                                                       (b)       

Figure 5-1 (a) Dead Bakken oil composition, (b) crude oil model in MD simulations 

Figure 5-2 shows the molecules and the crude oil model used in the simulations. The force 

field for CO2 was taken from the work of Zhu et al. (Zhu et al., 2009), and CH4 was modeled using 

the TraPPE-UA force field (Martin and Siepmann, 1998), while the NERD force field (Nath et al., 

1998) was used for all other alkanes. The non-bonded interactions between atoms were described 

by the pairwise additive Lennard-Jones (LJ) 12-6 potentials and the Coulombic interactions, 
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where εij represents the depth of the potential well, σij represents the distance at which interaction 

energy of two particles is minimal, rij is the distance between particles i and j, qi and qj are the 

partial charges for particles i and j, respectively. 

Unlike-atom interactions were calculated using the modified Lorentz-Berthelot combining 

rules (Wang et al., 2018) 
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Here, a = 0.9 was adopted for CO2-alkanes interactions, while a = 1 for all other interactions. 

 

Figure 5-2 Various molecules used in the simulations and a snapshot showing the Bakken crude 

oil model. In the CO2 molecule, gray and red particles represent C and O atoms, respectively. In 

the alkane molecules, particles represent methyl (−CH3) groups or methylene (−CH2) groups. For 

clarity, different color codes were employed. 

5.2.2 Simulation details 

Figure 5-3 shows the simulation cells for the injected gases and crude oil system. The 

simulation cell was set as a rectangular box with dimensions Lx × Ly × Lz, where Lx = Ly = 6 nm 

and Lz = 35 nm. Periodic boundary conditions were used in all directions. Initially, each simulation 

cell consists of a slab of crude oil in the middle and different numbers of gas molecules on both 

sides. The pressure of the system was changed by adjusting the number of gas molecules. 
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                                                (a)                                (b)                                  (c) 

Figure 5-3 Simulation snapshots of injected gas-crude oil systems. (a) CO2−crude oil, (b) 

CH4−crude oil, (c) C2H6−crude oil. 

In order to mimic the oil reservoir condition, a temperature of 383 K was set in the 

simulations. The systems were first equilibrated in a 10 ns NVT simulation, and a production run 

of 30 ns was used to average the system properties. The Nosé−Hoover thermostat (Hoover et al., 

1982; Nosé, 1984) with a relaxation time of 200 fs was applied to control the temperature. For the 

systems containing CO2, the long-range electrostatic interactions were calculated using the 

particle−particle particle−mesh (PPPM) method (Hockney and Eastwood, 1989) with an accuracy 

of 10−5. The cutoff radius was set to 20 Å, and the time step was set to 2 fs. 
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All MD simulations were performed using the LAMMPS package (Plimpton, 1995). The 

snapshots were rendered by the OVITO software (Stukowski, 2010). 

 

5.3 Results and Discussion 

5.3.1 Constituent density profiles 

FiguresFigure 5-4,Figure 5-5, andFigure 5-6 show the density (ρ) profiles along the direction 

perpendicular to the interface (z-axis) for the interfacial systems containing CO2, CH4, and C2H6, 

respectively. Solid lines and dashed lines represent crude oil and injected gases, separately. The 

lines with different colors represent results at different pressures. 

In all simulation conditions, the pressure of the system was lower than the MMP. When the 

two phases contact with each other, a small amount of crude oil and injected gases will leave their 

own phase and become solvated by the molecules of the other phase. The clear interfaces are 

formed as the system reaches equilibrium. In each simulation system, two interfaces can be found 

from the density profile. The interfacial width becomes wider as more gas dissolve in the crude 

oil. When the pressure reaches the MMP, the interfaces disappear, and the two phases become 

miscible, which can further improve the oil recovery efficiency. 

From the simulation results, for the injected gas−crude oil system, the oil density decreases 

with the increase of pressure. When the injected gases contact the crude oil, the dissolution of the 

injected gases occurs, thereby causing swelling and density reduction. As the injection pressure 

increases, more gas molecules dissolve into the crude oil, causing larger oil swelling and density 

reduction. 

As shown in the density profiles, CO2 and C2H6 accumulate at the oil-gas interfaces, while 

CH4 does not. Moreover, C2H6 is more soluble in the crude oil than CO2 and CH4, because C2H6 
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has the strongest attractive interaction with the crude oil, and it is more oleophilic than the other 

two gases. 

 

Figure 5-4 Density profile of the CO2−crude oil system at 383 K and various pressures. 

 

Figure 5-5 Density profile of the CH4−crude oil system at 383 K and various pressures. 
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Figure 5-6 Density profile of the C2H6−crude oil system at 383 K and various pressures. 

5.3.2 Gas solubility and oil swelling 

The solubility process plays an important role in the oil swelling as well as the oil recovery. 

From the density profile, the gas solubility was calculated by the amount of gas dissolved in the 

crude oil with the unit of g/100g. The swelling factor is defined as the volume of the saturated 

gas−oil mixture divided by the volume of the oil alone (Orr et al., 1982). While, in this study, the 

swelling factors were calculated by the density ratio of the pure oil to the gas saturated oil. 

Figures Figure 5-7, Figure 5-8,Figure 5-9 show the solubility of the gases in the crude oil and 

the swelling factors as a function of pressure at 383 K for CO2, methane, and ethane, respectively. 

Both the gas solubility and the swelling factor increase with increasing pressure. C2H6 has a higher 

solubility in the crude oil and can induce a more pronounced oil swelling than CO2 and CH4. The 

oil swelling can increase oil saturation as well as the reservoir pressure, and the trapped oil will be 

forced out of the pore spaces. Therefore, for C2H6 injection, more incremental oil production can 

be obtained. 
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Figure 5-7 CO2 solubility & swelling factor as a function of pressure at 383 K. 

 

Figure 5-8 CH4 solubility & swelling factor as a function of pressure at 383 K. 
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Figure 5-9 C2H6 solubility & swelling factor as a function of pressure at 383 K. 

From the simulation results, the swelling factor presents a good linear relationship with the 

gas solubility (Figure 5-10), which is in good agreement with the research results in the literature 

(Chung et al., 1988; Welker and Dunlop, 1963). The greater solubility of gas results in a higher 

swelling factor. The swelling of crude oil due to the dissolution of the injected gas can be predicted 

from the gas solubility. 

At a given gas solubility, CH4 can lead to a more significant oil swelling than C2H6 and CO2. 

However, the injection pressure is much higher for CH4 to attain the same solubility as CO2 and 

C2H6. Therefore, compared with CO2 and C2H6, the operation of CH4 injection is more difficult in 

terms of the injection pressure.  

 

Figure 5-10 Swelling factors as a function of gas solubility at 383 K. 

5.3.3 Diffusion coefficient of crude oil 

The dissolution of the injected gas can also improve the flowability of crude oil. In order to 

evaluate the flowability, the diffusion coefficient of the crude oil was calculated based on the mean 

square displacement (MSD) using Einstein relation (Allen and Tildesley, 1989). 
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where D is the diffusion coefficient, r(t) − r(0) is the center of mass displacement of the molecules, 

the angle brackets indicate the ensemble average, and t is the simulation time.  

Under different pressures, the diffusion coefficients of gas saturated crude oil were calculated, 

as shown in Figure 5-11. With gas molecules dissolve in the crude oil, the interaction between 

hydrocarbon molecules weakens. Therefore, for the injected gas–crude oil system, the diffusion 

coefficient of the oil phase increases with the increase of pressure. Compared with CO2 and CH4, 

C2H6 can induce a higher diffusion coefficient of crude oil, and thus it is more effective in 

mobilizing the crude oil. 

 

Figure 5-11 Diffusion coefficient of the gas saturated crude oil as a function of pressure. 

5.3.4 Interfacial tension (IFT) and minimum miscibility pressure (MMP) 

The MMP is another crucial parameter for a successful gas injection project. When the 

operation pressure is higher than the MMP, the injected gas and crude oil can reach a miscible 

condition that the two phases can mix at any ratio. Compared with immiscible gas injection, the 
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miscible gas injection can further improve oil recovery (Martin, 1983; Martin and Taber, 1992; 

Yu et al., 2015). 

The vanishing interfacial tension (VIT) method (Rao, 1997) was used to determine the MMP 

values. The IFT (γ) was calculated from the expression of pressure tensor (Zhang et al., 1995) as 

follows, 
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                                                    (5.5) 

where Lz is the box length in the z-direction, Pxx, Pyy, and Pzz are the diagonal elements of the 

pressure tensor, and the angled brackets indicate the ensemble average. 

The IFT values of injected gas−Bakken oil systems were calculated at 383 K and various 

pressures. Figures Figure 5-12Figure 5-13,Figure 5-14show the results for CO2, CH4, and C2H6, 

respectively. The IFT decreases with increasing pressure and presents a linear relationship. The 

trend was extrapolated to zero IFT, at which the pressure was determined as the MMP. 

 

Figure 5-12 IFT of CO2−Bakken oil system as a function of pressure at 383 K 



54 

 

 

Figure 5-13 IFT of CH4−Bakken oil system as a function of pressure at 383 K 

 

Figure 5-14 IFT of C2H6−Bakken oil system as a function of pressure at 383 K 

The MMPs of injected gas−crude oil systems at 383 K predicted by the MD simulation are 

listed in table 1. The results agree well with the experimental data and simulation results in the 

literature. The relative errors between the simulation results and the experimental data are around 

5%. 
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Table 5-1 MMPs of injected gas-Bakken oil systems at 383 K from the MD simulation 

 MMPs (MPa) 

Injected gas This study Experimenta Reference simulationb 

CO2 18.04 17.43 16.71 

CH4 32.74 31.14 − 

C2H6 8.80 9.27 − 

a experimental data of MMP from Hawthorne et al. (Hawthorne et al., 2016). 

b simulation result of MMP from Peng et al. (Peng et al., 2018).  

For the Bakken crude oil at its reservoir temperature of 383 K, CH4 approximately doubles 

the MMP compared to CO2, while C2H6 reduces the MMP by about one-half. MMP is the pressure 

necessary to ensure the miscibility of the injected gases and in-situ oil. The MMP results show that 

lower injection pressure is needed for C2H6 EOR to achieve a miscible oil recovery process. Under 

miscible conditions, the interfacial tension becomes zero and capillary pressure disappears, which 

resulting in the injection gas and crude oil form a single-phase and flow together more easily 

through the porous media (Orr et al., 1982; Yu et al., 2015). Compared with immiscible gas 

injection, the injected gas can extract more hydrocarbons from the oil phase during the miscible 

gas injection. Therefore, a much lower MMP allows C2H6 EOR to recover more crude oil than 

CH4 or CO2 EOR at the operation conditions. 

Considering the oil swelling, MMP, and oil diffusion coefficient, C2H6 is more effective in 

mobilizing crude oil than CO2 and CH4. Meanwhile, the re-injection of C2H6 in the Bakken 

Formation can be a potential EOR technology because of the excess C2H6 in the Bakken oil play. 
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5.4 Conclusion 

In this study, the molecular dynamics simulation was performed to investigate the interfacial 

interactions between the Bakken crude oil and the injected gases. The gas solubility, the volume 

swelling factor, the oil diffusion coefficient, and the minimum miscibility pressure (MMP) have 

been studied to evaluate the EOR potentials of different gases (CO2, CH4, and C2H6). The 

simulation results show that each of the three gases holds great potential in improving oil recovery. 

When the injected gases come in contact with crude oil, the dissolution of the injected gases 

occurs, thereby causing oil swelling. Both the gas solubility and the swelling factor increase with 

increasing pressure. The linear relationship between the swelling factor and the gas solubility can 

be used to predict the oil swelling. Compared with CO2 and CH4, C2H6 has stronger attractive 

interaction with crude oil, and thus it is more soluble in crude oil and induces a more pronounced 

oil swelling. Meanwhile, C2H6 leads to a stronger oil diffusivity, and thus it is more effective in 

mobilizing crude oil. Furthermore, C2H6 is more favorable for the Bakken Formation since C2H6 

is sufficient in the Bakken oil play, and there is no need for high injection pressure.  

The molecular-level insight into the interaction between the hydrocarbons and injected fluid 

can be obtained from the molecular dynamics (MD) simulation. The MD simulation is useful in 

predicting the experimental results and guiding the gas injection EOR in the Bakken Formation. 
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CHAPTER 6  

EFFECT OF THE INJECTED GASES AND NANO-CONFINEMENT ON THE OIL 

DETACHMENT FROM MINERAL SURFACES 

6.1 Introduction 

In Chapter 5, only the interactions between the injected gases and crude oil are considered to 

compare the EOR potentials of different gases. However, tight rocks are dominated by nanoscale 

and microscale pore throats (Nelson, 2009; Zhang et al., 2020), and fluids are significantly affected 

by the strong rock-fluid interactions (Alharthy et al., 2013). Besides fluid-fluid interactions, the 

EOR processes also involve the adsorption and transport of injected gases and hydrocarbons in 

nanopores. To further evaluate the efficiency of different gases in improving oil recovery, we 

should take the mineral surfaces and the nanoconfinement into consideration.  

The XRD mineralogy analysis of the core samples shows that the Middle Bakken rock mainly 

consists of different inorganic minerals of various proportions (Figure 2-4). The N2 adsorption 

results indicate the pores of the Middle Bakken rock are slit-shaped pores. Three main minerals 

(quartz, calcite, and illite) in the Bakken Formation were modeled. 

Equilibrium MD simulations were conducted to study the adsorption behavior of oil 

molecules confined in slit-shaped mineral nanopores. Then, the oil detachment from a calcite 

surface in the process of gas injection was also investigated using MD simulations. The effects of 

CO2 and C2H6 on the oil detachment were compared. To further investigate the ability of the two 

gases in terms of oil extraction as well as the effect of nanoconfinement, oil extraction from dead-

end nanochannels was simulated. Considering the conditions with or without nanoconfinement, 

different oil displacement mechanisms were demonstrated. 
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6.2 Models and Methodology 

6.2.1 Octane confined in slit-shaped nanopores 

The quartz (100) surface, calcite (104) surface, and illite (100) surface were cleaved from the 

bulk crystal structures. In the illite unit cell, one octahedral Al3+ was substituted by Mg2+ and one 

tetrahedral substitution of Si4+ by Al3+. The CLAYFF force field (Cygan et al., 2004) was 

implemented to simulate quartz and illite, while the potential model developed by Xiao et al. 

(2011) was adopted to describe the calcite substrate. The slit-shaped mineral pores with a width of 

~6 nm were built. Octane (C8H18) molecules were modeled according to the NERD force field 

(Nath et al., 1998) and added in the slits. The simulated systems of C8H18 confined in slit-shaped 

pores are shown in Figure 6-1. The systems were simulated under the conditions of 383K and 35 

MPa. The pressure of the fluid was controlled using the method proposed by Falk et al. (2012). 

The temperature was controlled using the Nosé-Hoover thermostat. 

 



59 

 

Figure 6-1 Simulated systems of octane confined in slit-shaped pores: (a) quartz, (b) calcite, (c) 

illite. Red, yellow, white, gray, green, pink, light green, purple, blue, cyan spheres represent O, 

Si, H, C, Ca, Al, Mg, K, CH2 group, and CH3 group, respectively. 

6.2.2 Oil detachment from surface and oil extraction under nanoconfinement  

To further compare the EOR potential of CO2 and C2H6, the oil detachment from calcite 

surfaces and oil extraction from dead-end calcite nanochannels were investigated. With the same 

oil and CO2 models as Chapter 5, the initial configurations of oil/CO2/calcite systems were built 

as shown in Figure 6-2. An external force was applied on the topmost slab to keep the pressure of 

the fluid phase being maintained at a specified pressure. The temperature of the systems was 

maintained at 383 K. The simulations of oil extraction by C2H6 were also conducted following the 

same procedure. All systems were simulated for 10 ns in the NVT ensemble. 
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Figure 6-2 Snapshots of models for simulating oil extraction by CO2: (a) calcite surface, (b) 2.19 

nm calcite nanochannel, (c) 5.22 nm calcite nanochannel. 

6.3 Results and Discussion 

6.3.1 Adsorption characteristics of C8H18 in slit pores 

The mass density profiles of C8H18 in different slit-pores are shown in Figure 6-3. The mass 

density profiles are symmetric with respect to the central plane (z = 0) of the two mineral surfaces. 

Dense C8H18 layers exist in the near-wall region. From the spacing between two successive 

troughs, we determined the thickness of each monolayer (~0.45 nm). The density tends toward a 

constant (the bulk density at the same pressure and temperature) when it is farther away from the 

solid surface. The peak values in the density profiles indicate a higher oil adsorption on calcite 

surfaces than the other two minerals. 

 

Figure 6-3 Density profiles of octane in mineral slit-pores. 
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6.3.2 Oil detachment from calcite surface 

At the reservoir temperature of 383 K and three different pressures (10 MPa, 20 MPa, and 

35MPa), the oil detachment abilities by CO2 and C2H6 were investigated. The final configurations 

are shown in Figure 6-4 and Figure 6-5. 

In CO2 cases, at 10 MPa, a small fraction of oil molecules diffuses into the bulk CO2, and 

most oil molecules aggregate together and cannot be detached. As shown in Figure 6-4(a), CO2 

molecules tend to adsorb on the calcite surface due to the strong interactions between O atoms of 

the CO2 and calcium (Ca) sites. A dense CO2 layer is formed on the calcite surface, but it does not 

contribute to the oil detachment. At 20 MPa, more oil molecules dissolve into the bulk CO2, but 

the majority of oil molecules form several smaller aggregates. At 35 MPa, all oil molecules 

dissolve into the bulk CO2. 

 

Figure 6-4 Oil detachment from calcite surfaces by CO2: (a) 10 MPa, (b) 20 MPa, (c) 35 MPa 

In C2H6 cases, at 10 MPa, a small fraction of oil molecules diffuses into the bulk C2H6, and 

most oil molecules aggregate together and cannot be detached. At 20 MPa, most oil molecules 

dissolve into the bulk C2H6 except the dense oil layer. At 35 MPa, no big differences are found 
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compared to the final configuration at 20 MPa. The oil molecules dissolve into the bulk C2H6 more 

uniformly.  

 

Figure 6-5 Oil detachment from calcite surfaces by C2H6: (a) 10 MPa, (b) 20 MPa, (c) 35 MPa 

The density profiles of oil molecules, CO2, and C2H6, were calculated to give a detailed 

distribution of the molecules (Figure 6-6). 
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Figure 6-6 Density profiles for different molecules along z-axis: (a) oil molecules in the CO2 

cases, (b) CO2, (c) oil molecules in the C2H6 cases, (d) C2H6. 

The broad peaks in Figure 6-6(a) indicate that the detached oil molecules by CO2 still attach 

to one another. In each curve of Figure 6-6(b), a distinct peak of CO2 is localized near the calcite 

surface due to the competitive adsorption of CO2 on the calcite surfaces. The peak density value 

remains unchanged with increasing pressure. 

In Figure 6-6(c), the typical adsorption peaks suggest that some oil molecules still adsorb on 

the calcite surface. Except for the adsorption peaks, the even distribution feature of the profiles 

indicates that the oil molecules dissolve into the bulk C2H6 uniformly. From the peak density 

values in Figure 6-6(c) and Figure 6-6(d), the adsorption loading of oil on the calcite surface 

gradually decreases with increasing pressure, while the adsorption loading of C2H6 gradually 

increases with the increasing pressure. This phenomenon is caused by the increasing mutual 

solubility of oil and C2H6.  

The oil detachment from the calcite surface is mainly affected by the swelling effect and the 

mutual dissolution, which lead to the decrease of viscosity and improvement of mobility. C2H6 

shows advantages in detaching oil from calcite surface, particularly at lower pressure, because it 

is more soluble in crude oil and more effective in swelling crude oil. CO2 molecules adsorb on 

calcite surface more preferentially than C2H6, but the competitive adsorption does not contribute 

significantly to the oil detachment. 

6.3.3 Oil extraction from dead-end calcite nanochannel 

Under nanoconfinement, interactions between fluid molecules and the solid surface 

significantly affect the diffusion behavior of the molecules. The final configurations of oil 
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extraction from dead-end calcite nanochannels at 383K and 10 MPa are shown in Figure 6-7. The 

percentages are the extraction efficiency. 

As illustrated in Figure 6-3, only adsorbed oil exists in the 2.19 nm nanochannel. CO2 

molecules have a strong preference for adsorbing on the nanochannel surfaces and extract most oil 

from the nanochannel. In the 5.22 nm nanochannel, the adsorbed oil is detached by CO2 while the 

majority of oil molecules still attach to one another and cannot be extracted from the nanochannel. 

C2H6 mainly dissolve into the bulk oil and swells the oil phase. The swelling effect and mutual 

dissolution result in a small portion of oil extracted from the nanochannels. The interactions 

between oil molecules and the surface-oil interactions prevent the oil molecules from moving out 

of the nanochannel. Most oil molecules are still trapped in the nanochannels. 

 

Figure 6-7 Oil extraction from dead-end calcite nanochannels at 383K and 10 MPa. 



65 

 

At higher system pressure, 35 MPa, the effect of swelling extraction and mutual dissolution 

becomes more pronounced. The oil extraction efficiencies are improved as shown in Figure 6-8. 

At the pressure of 10 MPa, CO2 already extracts the majority of oil from the 2.19 nm nanochannel, 

so no significant improvement in the oil extraction efficiency is found in this case. Similar to the 

cases at 10 MPa, CO2 has a larger oil extraction efficiency than C2H6. Simulation results indicate 

that competitive adsorption plays a more important role than swelling extraction and mutual 

dissolution in extracting oil under nanoconfinement. 

 

Figure 6-8 Oil extraction from dead-end calcite nanochannels at 383K and 35 MPa. 
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6.4 Conclusions 

To comprehensively characterize the gas injection EOR, the complicated interactions 

between fluid and mineral surfaces were investigated. The oil extraction mechanisms from dead-

end nanochannels with the injection of CO2 and C2H6 was assessed. 

The density profile of fluids in a mineral nanochannel is highly dependent on the mineral–

fluid interaction. However, when the width of the nanochannel is greater than a threshold value, 

the fluid, which is in the center of the nanochannel, is slightly influenced by solid substrates and 

has similar properties as the bulk fluid. 

Without nanoconfinement, the swelling extraction and mutual dissolution are the dominant 

factors affecting the oil detachment. C2H6 is more efficient than CO2 in detaching adsorbed oil 

from calcite surfaces. Considering the nanoconfinement, competitive adsorption plays a more 

important role. CO2 is more efficient than C2H6 in extracting oil from dead-end calcite 

nanochannels. 
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CHAPTER 7  

MOLECULAR SIMULATION STUDY OF INTERFACIAL TENSION REDUCTION 

AND OIL DETACHMENT BY SURFACE-MODIFIED SILICA NANOPARTICLES 

7.1 Introduction 

In the tight formations, residual oil is trapped in the narrow throats due to high capillary 

pressure, which is influenced by rock wettability and oil/water interfacial tension (IFT) 

(Hendraningrat and Torsæter, 2014). For the oil industry, chemical injection is another effective 

enhanced oil recovery (EOR) technique. 

Surfactant flooding is one commonly used technology in the chemical EOR process. 

Surfactants can mobilize residual oil by lowering the oil/water interfacial tension and/or by altering 

the rock wettability from oil-wet to water-wet (Kamal et al., 2017b). Under mild reservoir 

conditions (low temperature, low salinity), most surfactants perform well in improving oil 

recovery. However, under harsh reservoir conditions (high temperature, high salinity), the stability 

and effectiveness of surfactants can be a challenging task (Kamal et al., 2017b; Negin et al., 2017). 

Moreover, the high cost of chemicals and the surfactant loss due to the high adsorption on rock 

surfaces also limit the application of surfactant flooding (Gogoi, 2011). Therefore, less expensive 

and more efficient EOR methods are greatly needed.  

Recently, nanotechnology has been employed to solve different problems arising during 

surfactant flooding. By adding different nanoparticles (NPs) in the base fluids (such as water, brine, 

ethanol, etc.), investigators have developed various types of nanofluids to improve oil recovery 

(Kamal et al., 2017a; Nazari Moghaddam et al., 2015). Studies have shown that NPs can improve 

oil recovery either alone or in combination with surfactants (Hendraningrat et al., 2013; 

Zargartalebi et al., 2015). The EOR mechanisms of nanofluids have already been reported by many 
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researchers, which mainly include disjoining pressure, IFT reduction, wettability alteration, 

preventing asphaltene precipitation, and viscosity increase of injection fluids (Sun et al., 2017). 

The presence of NPs can also decrease the adsorption of surfactant molecules on rock surfaces 

(Chen et al., 2018; Zargartalebi et al., 2015). Since silica (SiO2) is cheap and environmentally 

friendly compared to other nanomaterials, SiO2 NPs are the most commonly used nanomaterials 

in nanofluid flooding. Besides, chemical behaviors of SiO2 NPs can be easily controlled by surface 

modification with different functional groups (Bagwe et al., 2006; Jang et al., 2018; Qiao et al., 

2016; Worthen et al., 2016).  

Understanding the behavior of NPs at the nanoscale is important to the development of 

nanofluids for EOR applications. In recent years, molecular simulations have been employed in 

the oil industries to study different EOR methods (Le et al., 2015; Li et al., 2019b; Tang et al., 

2019; Yan et al., 2017a). Atomistic molecular dynamics simulations (Fan et al., 2011; Liang et al., 

2019), dissipative particle dynamics simulations (Luu et al., 2013a; Vu and Papavassiliou, 2019), 

and coarse-grained molecular dynamics simulations (Katiyar and Singh, 2017; Li et al., 2019a) 

have been performed to study the properties of NPs and the effect of NPs on the IFT and oil 

detachment. Molecular simulations can provide a molecular-level insight into the interactions 

between components, which is generally difficult to obtain from experiments.  

While substantial studies have focused on using NPs to improve oil recovery, whether NPs 

adsorbed at an interface can reduce the interfacial tension is still controversial. In addition, seldom 

molecular models have been built to investigate the effect of NPs on oil transportation in nanopores. 

In this study, molecular simulations were performed to study the influence of various NPs on the 

oil/water interfacial tension and the oil detachment and displacement in the quartz nanochannels. 
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Both water-wet and oil-wet surfaces were considered. The EOR mechanisms of the surface-

modified NPs were discussed. 

 

7.2 Models and Methodology 

7.2.1 Molecular models and force field 

All molecular models used in the simulations are illustrated in Figure 7-1. In this work, quartz 

was chosen as the mineral to study because it is a major rock-forming mineral. Hydroxylated quartz 

was used to represent the water-wet rock. To mimic the oil-wet rock, methyl groups were grafted 

on the quartz surfaces (Liang et al., 2019). Octane (C8H18) was selected to represent the oil phase 

in simulating the oil/water interfaces, while alkane mixtures were used in the study of nanofluid 

flooding. The spherical SiO2 NP was carved out from the amorphous SiO2 (Lorenz et al., 2005). 

Typically, the size of NPs ranges from a few nanometers to 100 nm in diameter. However, for the 

economy of computational resources, all the NPs simulated in this work are 1.5 nm in diameter. 

Surface-modified SiO2 NPs were modeled through modifying SiO2 NP with functional groups. 

The alkyl carboxylate ion, −(CH2)4COO-, and various alkyl chains (−(CH2)nCH3) were selected as 

the hydrophilic and hydrophobic functional groups, respectively. Three configurations of 

functional groups on SiO2 surfaces are shown in Figure 7-2. 
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Figure 7-1 Molecular models used in the simulations: (a) octane; (b) water; (c) SiO2 NP; (d) 

surface-modified SiO2 NP; (e) alkyl carboxylate ion; (f) alkyl chain; (g) Na+; (h) hydroxylated 

quartz surface; (i) methylated quartz surface. Gray, white, blue, red, yellow, cyan, and green 

spheres represent carbon, hydrogen, oxygen, oxygen, silicon, carbon, and sodium, respectively. 

(a)  (b)   (c)   

Figure 7-2 Three configurations of functional groups on silica surfaces. R represents −COO- or 

−(CH2)nCH3 (Adapted from Worthen et al., 2016). 

By varying the ratio and distribution of the functional groups on the NP surface, different 

surface-modified NPs were built, as shown in Table 7-1. Both homogeneous nanoparticles (HNPs) 

and Janus nanoparticles (JNPs) were considered in the study. HNPs were randomly covered by 

carboxylates and/or alkyl chains, while carboxylates and alkyl chains were grafted on opposite 

sides of the JNPs. 

Table 7-1 Name and Surface Chemistry of the NPs in the Simulations 

Name surface group composition 

HNP1 100% −OH 

HNP2 100% −(CH2)4COO- 

HNP3 100% −(CH2)5CH3 
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Name surface group composition 

HNP4 50% −(CH2)4COO- + 50% −(CH2)3CH3 

HNP5 50% −(CH2)4COO- + 50% −(CH2)4CH3 

HNP6 50% −(CH2)4COO- + 50% −(CH2)5CH3 

HNP7 50% −(CH2)4COO- + 50% −(CH2)6CH3 

HNP8 50% −(CH2)4COO- + 50% −(CH2)7CH3 

JNP1 70% −(CH2)4COO- + 30% −(CH2)5CH3 

JNP2 60% −(CH2)4COO- + 40% −(CH2)5CH3 

JNP3 50% −(CH2)4COO- + 50% −(CH2)5CH3 

JNP4 40% −(CH2)4COO- + 60% −(CH2)5CH3 

JNP5 30% −(CH2)4COO- + 70% −(CH2)5CH3 

JNP6 50% −(CH2)4COO- + 50% −(CH2)3CH3 

JNP7 50% −(CH2)4COO- + 50% −(CH2)4CH3 

JNP8 50% −(CH2)4COO- + 50% −(CH2)6CH3 

JNP9 50% −(CH2)4COO- + 50% −(CH2)7CH3 

 

In this study, the all-atom Optimized Potential for Liquid Simulation (OPLS-AA) force field 

(Jorgensen et al., 1996; Siu et al., 2012) was employed for simulating alkanes and the functional 

groups. Water molecules were represented with the SPC/E model (Berendsen et al., 1987). For the 

quartz surfaces and the NP cores, we used the model proposed by Lorenz et al. (Lorenz et al., 2005) 

that was developed based on the OPLS-AA force field. The non-bonded interactions between 

atoms were described by the pairwise additive Lennard-Jones (LJ) 12−6 potentials and the 

Coulombic interactions. Interactions were reduced by a factor of 0.5 for 1−4 neighbor pairs. 
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Unlike-atom interactions were calculated using the geometric combining rules. The cutoff radius 

was set to 12 Å, and the time step was set to 1 fs. The long-range electrostatic interactions were 

calculated using the particle-particle particle-mesh (PPPM) method (Hockney and Eastwood, 1989) 

with an accuracy of 10−5. The Nosé-Hoover thermostat and barostat (Hoover et al., 1982; Nosé, 

1984) was used to control the temperature and pressure. All MD simulations were performed using 

the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code (Plimpton, 

1995). The snapshots were rendered by the Open Visualization Tool (OVITO) (Stukowski, 2010). 

7.2.2 Oil/water interfaces 

As shown in Figure 7-3 Initial configuration of water/C8H18 interfaces in the presence of 

NPswith a slab of water in the center and two C8H18 slabs at each side of the box in the x-direction, 

a periodic orthorhombic simulation box was constructed with two interfaces formed. Two NPs 

were distributed at each interface of C8H18 and water. For the system that contains NPs 

functionalized with carboxylates, Na+ ions were added to keep charge balance. The density profiles 

of the C8H18/water systems with various NPs were calculated to show the distribution of NPs in 

the vicinity of oil/water interfaces. The temperature of the systems was kept constant at 300 K, 

and the pressure was maintained at 1 atm. The IFTs of different systems were calculated to 

investigate the influence of NPs on the IFT of the oil/water system. 

 

Figure 7-3 Initial configuration of water/C8H18 interfaces in the presence of NPs 
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The IFTs were calculated from the expression of pressure tensors as follows (Zhang et al., 

1995),  

yy zz

x xx

1

2 2

P P
L P

 
  

 
                                           (7.1) 

where γ is the IFT, Lx is the box length in the x-direction, Pxx,  Pyy, and Pzz are the components of 

the pressure tensor in x, y, and z directions, respectively. The angled brackets indicate the ensemble 

average. 

The systems were first equilibrated for 2 ns, and then the production runs of 5 ns were performed. 

The IFTs were averaged over the last 2 ns of the production runs. 

7.2.3 Alkanes/water/NPs transportation in confined nanochannels 

The initial configuration for simulating the nanofluid flooding process is shown in Figure 7-4. 

The height of the nanochannel is ~6 nm and the length of the nanochannel is ~12 nm. Based on 

the components of a light crude oil sample (Hawthorne et al., 2016; Li et al., 2020), alkane mixtures 

were randomly distributed near the methylated quartz surfaces. In order to construct the nanofluid, 

four NPs were added to the water phase. The detachment and displacement processes of adsorbed 

oil in both water-wet and oil-wet nanochannels were investigated. The simulation temperature was 

kept constant at 353 K. The velocity of the left slab was set to 1.0 m/s (1.0 × 10−5 Å/fs) along the 

x-direction, and the external force was applied on the right slab to keep the pressure of the water 

phase being maintained at 35 MPa (Tang et al., 2019). The time-varying configurations of 

oil/water/NPs in the nanochannels were presented to show the dynamic displacing processes. The 

center of mass (COM) displacements of the oil droplets were calculated to show the oil detachment 

capacity of the NPs. 
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Figure 7-4 Initial configuration for simulating the nanofluid flooding process. 

 

7.3 Results and Discussions 

7.3.1 Location of NPs in the C8H18/water/NPs system 

In Figure 7-5, we present the final simulation configurations of C8H18/water interfaces in the 

presence of different NPs. Unmodified SiO2 NPs (i.e. HNP1) remain in the water phase but stay 

close to the oil/water interface. NPs modified with carboxylates (i.e. HNP2) shift from the oil/water 

interface to the bulk water due to increasing hydrophilicity. NPs modified with alkyl chains (i.e., 

HNP3) move into the oil phase, which shows the hydrophobic nature of the NPs. However, this 

type of NP cannot totally desorb from the interface to the oil phase.  As shown in Fig.4(d), with 

carboxylates in the water phase and alkyl chains in the oil phase, the homogenous amphiphilic NPs 

and Janus NPs stay at the interfaces of oil and water.  
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Figure 7-5 Final configurations of C8H18/water interfaces with different NPs: (a) HNP1; (b) 

HNP2; (c)HNP3;(4) JNP3. 

7.3.2 Effect of NP type on oil/water IFT  

Many experimental results about the effect of NPs on oil/water IFT have been reported. 

However, nanofluids are typically prepared with surfactants, ethanol, propanol, or other chemicals 

as the dispersant. These chemicals are able to reduce the IFT, so attributing the IFT reduction to 

NPs is not convincing. Herein, the effect of individual NPs on the IFT was investigated. The 

C8H18/water system without NPs was first simulated, and the IFT value (49.44±0.19 mN/m) in 

good agreement with the experimental data (51.20 mN/m  and 50.97 mN/m) in the literature (Ndao 

et al., 2015; Zeppieri et al., 2001). Then the IFT values of C8H18/water systems with different NPs 

were calculated. 

Unmodified NP (HNP1) does not tend to adsorb at the interface and can hardly affect the 

oil/water IFT. Surface-modified NPs with both hydrophilic and hydrophobic functional groups can 

reduce the IFT to some extent. For homogeneous NPs, as the carboxylates and the alkyl chains are 

randomly distributed on the NPs, the IFTs change irregularly. Herein, the effect of JNPs on the 
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oil/water IFT is mainly discussed. As shown in Figure 7-6, the IFT is affected by the ratio of 

hydrophilic and hydrophobic functional groups on the JNPs. With −(CH2)4COO- as the hydrophilic 

functional group, when the ratio of −(CH2)5CH3 is 50% (i.e., JNP3), the lowest IFT is achieved.  

 

Figure 7-6 C8H18/water IFT as a function of the ratio of the −(CH2)5CH3 on the JNPs. 

The alkyl chain length of the hydrophobic functional groups can also affect the IFT. As shown 

in Figure 7-7, with 50% −(CH2)4COO- and 50% different alkyl chains grafted on the SiO2 NPs, 

the lowest IFT is achieved when the number of carbon atoms in the alkyl chains is 6 (i.e., JNP3). 
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Figure 7-7 Effect of the number of carbon atoms in the alkyl chains on C8H18/water IFT. 

7.3.3 Effect of NP interface coverage on oil/water IFT 

The simulation results indicate that SiO2 NPs reduce the IFT between oil and water only when 

they are located at the oil/water interface, which agrees with the findings in the literature (Li et al., 

2019a; Moradi et al., 2015). The surface-modified NPs with only carboxylates, HNP2, remain in 

the water phase. Even though the bulk concentration of the NPs is much higher than that of many 

reported experimental studies, no IFT reductions were observed. The NP concentration in the bulk 

phase is not the fundamental factor affecting the oil/water IFT, while the NP concentration at the 

interface is. Similar to other simulation studies, the NP interface coverage was used to characterize 

the NP concentration at the interface (Luu et al., 2013a; Vu and Papavassiliou, 2019). The NP 

interface coverage was calculated as the percent of the interfacial area covered by NPs. JNP3 was 

selected for further investigating the effect of the NP interface coverage on oil/water IFT. The 

C8H18/water systems with a different number of JNP NPs at the interface were simulated. After 
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equilibrium, the NP interface coverages were calculated. In Fig. 8, we present the simulation 

snapshots of JNP3 NPs at C8H18/water interfaces.  

       
(a)                    (b)                          (c)                           (d) 

Figure 7-8 Top views of simulation snapshots for JNP3 NPs at the C8H18/water interface. 

Interface coverages are (a) 18.53%, (b) 34.91%, (c) 53.49%, and (d) 69.32%. Red and blue 

spheres represent atoms in JNP3 NPs and water, respectively. C8H18 molecules are not shown for 

clarity. 

The C8H18/water IFT of each system was also calculated. Variations of the IFT as a function 

of NP surface coverage is shown in Figure 7-9. When the JNP3 NPs cover 18.53% of the interface, 

the IFT is close to the pure C8H18/water IFT. The IFT decreases significantly only when the 

interface coverage is large enough.  
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Figure 7-9 The IFT as a function of the interface coverage of JNP3 NPs 

The IFT reduction depends strongly on the surface chemistry and the interface coverage of 

NPs, which is consistent with previously reported experimental observations (Glaser et al., 2006; 

Moradi et al., 2015; Saleh et al., 2005) and MD simulation results (Fan and Striolo, 2012; Liang 

et al., 2019; Luu et al., 2013a).  Simulation results show that surface-modified NPs with both 

hydrophilic and hydrophobic functional groups can reduce the interfacial tension. From the 

simulation scenarios, the JNP3 shows the highest capability of reducing the IFT. However, the IFT 

reduction in the presence of NPs is not significant in terms of EOR application. A much lower IFT, 

such as that with surfactants, cannot be achieved. Although NPs individually can hardly reduce 

the oil/water IFT, a large number of studies have shown that NPs can increase the efficiency of 

surfactant in reducing the interfacial tension (Biswal et al., 2016; Li et al., 2019a; Mohajeri et al., 

2015; Suleimanov et al., 2011; Sun et al., 2014). The synergistic effect between NPs and 

surfactants has not been well explained. Recently, Tuan V. and Dimitrios V. (Vu and Papavassiliou, 

2019) explained the synergistic effect as NPs at the oil/water interface reduce the contact area 

between oil and water and leads to the less interfacial area available for surfactants, so that fewer 

surfactant molecules are needed to generate a larger IFT reduction than when they are alone at the 

interface. Besides, some investigators have reported that ellipsoidal Janus NPs (Luu et al., 2013b) 

and Janus cylinders (Ruhland et al., 2011) are more effective than spherical NPs in reducing the 

interfacial tension. Further studies are needed to verify the aforementioned research results. 

7.3.4 Effect of rock wettability on oil transportation in nanochannels 

The hydroxylated quartz nanochannel and methylated quartz nanochannel were selected to 

mimic the water-wet and oil-wet rock surfaces, respectively. As shown in Figure 7-10, oil droplets 

are easily detached from the water-wet surfaces and displaced out of the nanochannel at ~6 ns. 
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(a)   

(b)  

Figure 7-10 Adsorbed oil displacement in hydroxylated quartz nanochannel in the water injection 

process: (a) 0 ns; (b) 6 ns. 

In the oil-wet nanochannel, water cannot detach the oil droplets from the rock surfaces even 

after 16 ns simulation (Figure 7-11). The results show that the initial rock wettability affects 

waterflood behavior and oil recovery performance. Pure water cannot recover the residual oil from 

the nanopores in the oil-wet rocks.  

(a)  

(b)  

Figure 7-11 Adsorbed oil displacement in methylated quartz nanochannel in the water injection 

process: (a) 0 ns; (b) 16 ns. 
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7.3.5 Effect of NPs on oil displacement in oil-wet nanochannels 

Figure 7-12 shows the oil displacement processes in the oil-wet nanochannels with the 

injection of different nanofluids.  

 
Figure 7-12 Adsorbed oil displacement in methylated quartz nanochannel in the nanofluid 

injection process. 

Unmodified SiO2 NPs (i.e., HNP1) cannot detach the adsorbed oil in the oil-wet nanochannel 

and totally move out of the nanochannel without attaching to the rock surfaces or the oil droplets. 

Both homogeneous amphiphilic NPs (i.e., HNP6) and Janus NPs (i.e., JNP3) can self-assemble at 

the oil/water interfaces or the oil/water/rock contact regions. These two types of NPs can detach 

the adsorbed oil from the rock surfaces, and partial oil molecules are displaced out of the 

nanochannels at the end of the simulations. Surface-modified NPs with alkyl chains (i.e. HNP3) 

almost mix with the adsorbed oil. The oil films are deformed, but no oil molecules are detached. 

Interestingly, surface-modified NPs with carboxylates (i.e. HNP2) are able to displace the 

adsorbed oil out of the oil-wet nanochannel, even though they cannot reduce the oil/water IFT.  
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For each simulation, the center of mass (COM) displacements of the adsorbed oil droplets 

along (x-direction) and perpendicular (z-direction) to the water flow direction were calculated. 

Figure 7-13 shows the COM displacement of the two oil droplets on the top and bottom slabs.  

   
Figure 7-13 COM displacement of the adsorbed oil (a) along and (b) perpendicular to the water 

flow direction. 

The movement speed of the adsorbed oil can be reflected from the slope of the COM 

displacement curve in the x-direction. The detachment speed of the adsorbed oil can be reflected 

from the slope of the curve in the z-direction. The addition of surface-modified NPs resulted in 

faster movement and detachment of the adsorbed oil, which can be indicated from the large slopes 

of the curves. 

To explore the underlying oil detachment mechanism of different NPs, the interaction 

energies between oil and rock surfaces, water, or NPs were calculated as shown in Figure 7-14. 

Interactions between pure water and oil cannot overcome the adsorption action between oil 

molecules and rock surfaces. When the NPs contact with the adsorbed oil, homogeneous 
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amphiphilic NPs or Janus NPs can provide a driving force on the oil molecules and facilitate the 

detachment of adsorbed oil from the rock surfaces. The interaction energy calculations indicate 

that Janus NPs exert a greater driving force on the adsorbed oil than the other types of NPs. 

Compared with the JNP3 or HNP6 NPs, the HNP2 NPs interact more weakly with the oil phase.  

 
Figure 7-14 Interaction energies between oil and other components in the representative 

simulation scenarios: (a) HNP2 NPs, (b) HNP6 NPs, (c) JNP3 NPs. 

  

Interaction energies between different NPs and the rock surfaces (Figure 7-15) show that the 

HNP2 NPs interact more strongly with the rock surfaces than other types of NPs. The adsorption 

of the HNP2 NPs on the rock surfaces should be the main mechanism of the oil detachment. As 

shown in Figure 7-16, the adsorbed HNP2 NP resulted in the formation of gaps between the oil 

droplet and the rock surface, and then water molecules entered into the gap. With more water 

molecules entering into the gap, eventually, a water channel was formed and the adsorbed oil 

droplet was detached.  
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Figure 7-15 Interaction energies between different NPs and rock surfaces. 

 

 

 
Figure 7-16 Effect of the HNP2 NP on the detachment of adsorbed oil. 

The simulation results indicate that surface-modified NPs can improve the efficiency of oil 

detachment from the oil-wet rock surface. IFT change cannot be fully responsible for the oil 

detachment process since the IFTs of the C8H18/water system and C8H18/nanofluids system are 

very similar. The strong interactions between NPs and oil/rock account for the oil detachment and 

the incremental oil recovery. At the end of the simulations, some NPs are still adsorbed on the rock 

surfaces. As the NPs are partially or fully hydrophilic, the adsorbed NPs on the rock surfaces can 
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also change the wettability of the oil-wet rock to intermediate-wet or water-wet. As the type of 

functional group significantly affects the performance of NPs in detaching and displacing the 

adsorbed oil, different functional groups will be considered in future studies. The ratio and 

distribution of functional groups should be carefully tuned to achieve the largest incremental oil 

recovery.  

 

7.4 Conclusions 

Molecular dynamics simulations were used to assess the mechanisms of EOR associated with 

surface-modified nanoparticles (NPs) and nanofluid flooding. Surface-modified NPs with both 

hydrophilic and hydrophobic chains, also called amphiphilic NPs, can self-assemble at the 

oil/water interface and reduce the interfacial tension. However, the IFT reduction in the presence 

of NPs is not significant in terms of EOR application. 

Simulation snapshots and interaction energy calculations indicate different EOR mechanisms 

of the surface-modified NPs.  In the process of nanofluid flooding, homogenous amphiphilic NPs 

or Janus NPs can self-assemble at the oil/water interfaces or the oil/water/rock contact regions. 

The NPs modified with both carboxylates and alkyl chains exert a great driving force on the oil 

molecules and facilitate the detachment of adsorbed oil from the rock surfaces. While for the NPs 

modified with only carboxylates, the strong interaction between NPs and the rock surfaces play an 

important role in detaching the adsorbed oil.  

Molecular simulations can provide molecular-level insights into the EOR processes and can 

guide scientists and engineers in designing NPs, which can effectively improve oil recovery. 
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CHAPTER 8  

CONCLUSIONS AND RECOMMENDATIONS 

In this dissertation, the characteristics of the Middle Bakken rock and oil were first 

summarized. Then, different potential EOR methods in the tight formation were evaluated using 

molecular simulations. For evaluating different properties of interest, bulk systems, interfacial 

systems, and nanoconfined systems were built and simulated. 

Pressure, temperature, and oil composition are the main factors impacting the CO2 solubility, 

and the density and swelling factor of the oil/CO2 system. Both the CO2 solubility and the swelling 

factor of the oil/CO2 system increase with the increasing pressure and the decreasing temperature. 

The CO2 solubility and swelling effect are more pronounced in light oil.  

The viscosity of the n-alkane/CO2 system is approximately in an inversely proportional 

relationship with the mole fraction of dissolved CO2. The average viscosity reduction rate is about 

45% when the CO2 mole fraction is 60% under the reservoir condition. 

Compared with CO2 and CH4, C2H6 has stronger attractive interaction with crude oil, and thus 

it is more soluble in crude oil and induces a more pronounced oil swelling. Meanwhile, C2H6 leads 

to a stronger oil diffusivity that is more effective in mobilizing crude oil. Furthermore, C2H6 is 

more favorable for the Bakken Formation since C2H6 is sufficient in the Bakken oil play, and there 

is no need for high injection pressure. 

Without nano-confinement, the swelling extraction and mutual dissolution are the dominant 

factors affecting the oil detachment. C2H6 is more efficient than CO2 in detaching adsorbed oil 

from the calcite surface. Considering the nano-confinement, competitive adsorption plays a more 

important role. CO2 is more efficient than C2H6 in extracting oil from dead-end calcite 

nanochannel. 
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In the process of nanofluid flooding, homogenous amphiphilic NPs or Janus NPs can self-

assemble at the oil/water interfaces or the oil/water/rock contact regions. The NPs modified with 

both carboxylates and alkyl chains exert a great driving force on the oil molecules and facilitate 

the detachment of adsorbed oil from the rock surfaces. While for the NPs modified with only 

carboxylates, the strong interaction between NPs and the rock surfaces play an important role in 

detaching the adsorbed oil.  

Molecular simulations can provide molecular-level insights into the EOR processes. Better 

models are needed to predict the experimental results more accurately and guide the EOR projects 

in the Middle Bakken Formation and other tight formations. 
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