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Abstract 

The objective of this thesis was to study the ways, how to improve critical current density (Jc) in 

polycrystalline magnesium diboride (MgB2) bulk. The superconducting devices demand 

economical operation, cheap manufacturing routes, and lightweight. Considering the above-

mentioned qualities, MgB2 meets most of the criteria making it a promising candidate. Properties 

such as decent critical transition temperature (Tc), cheap and abundant raw materials, and light 

weight elements are appealing qualities for practical applications. It is also well known that MgB2 

thin films have high Jc (~ 107 to 108 A/cm2) and upper critical field (Hc2 ~ 60T at 0K). However, 

these values have been never seen in polycrystalline MgB2 bulk; in fact, the Jc values are almost 

two orders of magnitude lower than those observed in thin films. The main reason is poor flux 

pinning, resulting in low Hirr, Hc2 & Jc. Poor connectivity between grains and low density are the 

issue. Sintering has been a standard technique (700 to 850 ºC), resulting in good crystallinity and 

large grain size. Lack of flux pinning at grain boundaries and crystal defects led to considerable 

reduction of self-field Jc.  

   To tackle these issues, we tried to manipulate microstructure with various precursors. In this 

thesis, we fabricated MgB2 bulk using solid state sintering at 775 oC for 3 hours. Since, the melting 

point of boron is very high (~2000 oC) compared to reaction temperature, boron precursor particle 

size plays a vital role in optimizing Jc. We used a commercial nano-amorphous boron and the 

results were astonishing. Jc of 408 kA/cm2 was observed at 20K, self-field. SEM micrographs 

revealed the nano-sized grains in the final microstructure, which approved our hypothesis and was 

successful in improving self-field Jc. In order to improve the high field Jc and upper critical field 

Hc2, we resorted to carbon doping. One serious issue with the carbon doping was lack of 

homogeneous distribution of carbon in the matrix. To overcome this issue, we prepared carbon-

encapsulated boron (CEB) made from pyrolysis of Diborane, hydrogen and gaseous hydrocarbon. 

It was found that low wt% of carbon coatings ensure the best results. A high-field Jc and Hc2 were 

observed in 1.5 wt% carbon encapsulated boron based MgB2 bulk. Tremendous Jc of 660 and 250 

kA/cm2 were observed at 0 and 2 T; 10 K. Hc2 (calculated by extrapolation) was also substantially 

improved, being almost equivalent to the best records reported in MgB2 bulk system so far, 

however at a slight expense of Tc. To further improve this result, our group studied the effect of 

co-dopants such Ag and CEB. Microstructural analysis exposed Ag-Mg phases formed in the 
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matrix and optimum performance was observed for 4 wt% Ag. To compensate the loss of Mg 

reacting with Ag, as well as to increase the Ag-Mg phase fraction, we studied the optimization of 

Mg precursor concentration. 7.5 wt% excess of Mg resulted in the best result, with highest Ag-Mg 

phase (2 wt%), high irreversibility field (Hirr) of 4.76 Tesla and large Jc such as 440 kA/cm2 at 20 

K, self-field. SEM analysis confirmed existence of secondary nano Ag-Mg phases (20-40 nm) 

which acted as pinning centers.  

   The special clean boron precursors first used were expensive, which might make the final 

product costly. In order to make the processing cheap while maintaining high performance, we 

explored a novel technique of high-energy ultra-sonication using various media such as ethanol, 

hexane, and distilled water. We successfully produced nano-sized boron via ultra-sonication, and 

arrived at high Jc in the final bulk. Beside size refinement, the obtained fine boron powder was 

free of B2O3, due to which the MgB2 bulks were of high quality. SEM analysis clearly revealed 

that short duration of ultra-sonication results in particle refinement, while prolonged ultra-

sonication causes agglomeration of boron particles. MgB2 bulks fabricated from various systems 

were studied and the best results were observed in MgB2 prepared with for 15 min ultra-sonicated 

boron dispersed in ethanol and for 30 min ultra-sonicated boron dispersed in distilled water. Self-

field Jc of approximately 300 kA/cm2 at 20 K was achieved (almost 35% improvement compared 

to a regular bulk MgB2).  
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Chapter 1 

Introduction 

 

1.1 Superconductivity 

1.1.1 Background 

   Superconductivity was first discovered in 1911 by H Kamerlingh Onnes (refer to Fig. 1.1(a)), 

which turned to be one the greatest discoveries in the history of science [1]. In fact Onnes was 

studying the resistance of solid mercury at cryogenic temperatures using his prior discovery, liquid 

helium (4.2 K) as a refrigerant where he had observed that the resistance abruptly disappeared as 

can be seen in Fig. 1.1(b). 

 

Fig. 1.1: a) H K Onnes portrait, b) Discovery of superconductivity in Hg at 4.2 K. 

The main features of superconductors are 

i) Sudden disappearance of electrical resistivity below characteristic temperature (also known as 

superconducting critical temperature- Tc) and 

ii) Complete spontaneous expulsion of magnetic flux, which was later discovered by Walter 

Meissner and Robert Ochsenfeld in 1933 [2]. 
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   Their experiments found out that the flux was expelled because of the superconducting surface 

currents that are formed. These currents create magnetic fields that perfectly counter couple the 

applied magnetic field, popularly known as the ‘Meissner effect’. Both fundamental properties of 

superconductors arise when they are cooled to cryogenic temperatures (below Tc). As a matter of 

fact, the applied magnetic field will penetrate slightly into the surface of the superconductor by a 

particular distance known as penetration depth (λ). For superconducting material to be in active 

state, it should be maintained at a temperature lower than Tc, restricted current density and 

subjected to limited magnetic field. For instance, in similar to Tc, there is a maximum current 

density and maximum magnetic field known as the superconducting critical current density (Jc) 

and the critical field (Bc) respectively. Fig. 1.2 depicts the three limiting parameters such as Jc, Tc, 

and Hc as axes and the restricted volume that defines the viability of superconductive nature. 

 

 

Fig. 1.2: Critical volume made from Jc, Tc and Hc as axes for maintaining superconducting state. 

   The superconducting state turns to normal state, should the state of material be outside the 

restricted volume made up of superconductor parameters as mentioned prior. Henceforth, working 

of a superconductor are bound by limited temperatures and magnetic fields, and can only carry a 

huge finite amounts of current, despite the zero resistance. 

 

1.1.2 BCS theory 

   Bardeen-Cooper-Schrieffer (BCS) theory was used as basis for explaining this nature in most of 

the superconducting materials [3, 4]. According to this theory, electrons in the superconducting 
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state form Cooper pairs via an electron-phonon interaction. The energy for Cooper pairing is 

marginally lower than regular two-free-electron system, which allows a tiny energy gap above 

them. Although this energy gap a very small value (2Δ (0K) ~ 1 meV), it is enough for electrons 

to avoid collisions or interactions while moving which are responsible to resistivity. Therefore a 

superconductor exhibits zero resistivity when the thermal perturbation is less than the band gap. 

Many conventional LTS such as NbSn and NbTi can be explained using the BCS theory [5]. Using 

BCS theory the Tc can be assessed by the following equation 1.1: 

𝑇௖  ൌ  ∆ሺ0𝐾ሻ 1.8 𝑘஻⁄       (1.1) 

kB is the Boltzmann constant equivalent to 1.38 × 10-23 J/K). As the energy gap is a very small 

value, Tc’s of the BCS-type superconductors in most of the cases tend to be lower or equal to 30 

K. 

   A core characteristic parameter of Cooper pair is the coherence length (ξ), which is defined as 

the length of electron-electron spacing in Cooper pair. This length can be influenced by the mean 

free path of the electrons (l). ξ of a practical superconductor can be evaluated by the following 

equation 1.2: 

1
𝜉ൗ ൌ 1

𝜉௢
ൗ ൅  1

𝑙ൗ       (1.2) 

Where ξo is the coherence length in theoretical perfect materials (assuming no defects and 

abnormalities). Finally, both the parameters i) penetration depth and ii) coherence length are the 

most vital parameters in superconductivity. Ginzburg-Landau (G-L) theory states the strong 

dependence of two factors in determining the maximum amount of the critical current density (Jc) 

and the critical field Hc [7, 8]. The dependence is as follows 

𝐽௖  ∝  1 𝜆ଶ𝜉⁄       (1.3) 

𝐻௖  ∝  1 𝜆𝜉⁄       (1.4) 

In addition, there is another parameter known as Ginzburg-Landau parameter κ, which is ratio of 

penetration depth and coherence length. This ratio can aid in determining the type of 

superconductors. 

𝜅 ൌ 𝜆 𝜉⁄       (1.5) 
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1.1.3 Types of Superconductors 

   Coming to the types of superconductor, there are two types of superconductors in general, which 

are i) Type I superconductors and ii) Type II superconductors [5, 6]. Materials that ideally follow 

the Meissner Effect come under Type I superconductors. While, Type II superconductors are 

materials with greater Ginzburg-Landau parameter κ (κ > 0.71 for type II superconductors, and κ 

< 0.71 for type I superconductors) and also behave differently when magnetic field is applied. In 

brief, type I superconductors act as perfect diamagnetic materials i.e. they don’t allow any 

magnetic flux through their bodies, however in type II superconductors the magnetic flux is 

partially allowed to enter through their body, creating quantized units of flux called fluxons (o). 

All of the fluxons are aligned in the same direction to the applied field. Each fluxon is comprised 

of a cylindrical core with radius equivalent to coherence length (ξ), and a supercurrent along the 

periphery. The magnetic field emitted from the fluxon decays into the nearby area over a distance 

of λ. Since the superconductor in this state allows magnetic flux while still showing zero resistance, 

it is known as mixed state. This mixed state in type II superconductors exists until very high 

magnetic field. After certain high field known as the upper critical field (Hc2), the superconductor 

changes from the mixed state to the non-superconducting state as can be seen from Fig. 1.3. 

 

Fig. 1.3: Magnetic behavior of a) Type I superconductors and b) Type II superconductors 

   In a theoretical perfect type II superconductor the repulsive interactions between individual 

fluxons forces them to migrate and eventually lose the superconductive nature much faster. Yet, 

in a real superconducting material there are many defects such dislocations, vacancies, precipitates, 

and interfaces etc. that act as flux pinning centers that prevent fluxons from migrating [9]. Hence, 
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presence of more pinning centers improve the maximum Hc2 value at which the superconductor 

becomes non-superconducting. In fact, this can be explicated by estimating energy change in the 

superconductor system. To create and grow a fluxon within the superconductor, an additional 

energy must be provided to the system. This additional energy is termed as ‘condensation energy’. 

However, if the fluxon is overlaid on the pinning centers, the condensation energy essential to 

produce the fully grown fluxon core is minimized. Hence, the system comes to a lower energy 

state and becomes more stable than the normal system (without pinning centers) and therefore the 

flux becomes energetically pinned. Due to this stability, large Jc can be achieved at high fields and 

hence is vital for a superconducting material to have strong flux pinning capability. The properties 

of the flux pinning can be assessed by the bulk pinning force density (Fp) using equation 1.6 

𝐹௣ ൌ 𝐽௖  ൈ 𝐵       (1.6) 

 As mentioned prior, various defects can act as pinning centers. However, pinning ability of a 

pinning center depends on the interaction between the pinning centers and the fluxons, especially 

on parameters such as the size of pinning centers. For optimum pinning performance the size of 

the pinning center should be close to the size of the fluxons (i.e. coherence length). Dew-Hughes 

[10, 11] has summarized the bulk flux pinning force densities in contrast to various types of 

pinning centers (classified by size and shape) in equations 1.7, 1.8 and 1.9: 

Volume pinning ሺ𝑑 ൏ 𝑎, 𝑏, 𝑐ሻ   𝑓ሺℎሻ  ∝  ℎ଴ሺ1 െ ℎሻଶ    (1.7) 

ሺ𝑑 ൐ 𝑎, 𝑏, 𝑐ሻ   𝑓ሺℎሻ  ∝  ℎଵሺ1 െ ℎሻଶ           (1.8) 

Surface pinning ሺ𝑐 ൏ 𝑑 ൏ 𝑎, 𝑏ሻ   𝑓ሺℎሻ  ∝  ℎ଴.ହሺ1 െ ℎሻଶ        (1.9) 

where, h is reduced magnetic field calculated by (h = H/Hc2; 0 ≤ h ≤ 1) and f is normalized pinning 

force density (f = Fp/Fp,max; Fp,max is the maximum pinning force) while a, b, c are the dimensions 

of the pinning centers and d is the inter-flux-line spacing. The reduced magnetic field dependence 

of the normalized pinning force density is solely judged by the flux pinning types and thus plotted 

as a single lined f (h) curve, independent of materials and temperatures. For instance, if the primary 

pinning in a superconductor is from grain boundaries, the f (h) curve plotted will be similar to 

h0.5(1– h)2 at all temperatures (T < Tc). These pinning curves f (h) as per the above mentioned 

equations have characteristic maximum that can be used to detect the primary flux pinning 

mechanism. In most of the cases, h is often estimated using H/Hirr (Hirr is the irreversibility field, 
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i.e. the critical field at which Jc decreases to a finite small value) instead of H/Hc2 because Hc2 can 

be very large in some superconductors that cannot be measured. Therefore improvement in Hc2 

and increasing the pinning centers are the two most universal ways to increase the effectiveness of 

flux pinning capability in a superconductor. 

 

1.2 MgB2 Superconductor 

1.2.1 Discovery 

   Superconducting materials are not as enigmatic as they might seem. Over many years, thousands 

of materials [12, 13] are reported to exhibit superconducting properties. Based on their working 

temperatures and critical superconducting temperatures (Tc) superconductors can be classified into 

two types: i) high temperature superconductors (HTS) and ii) low temperature superconductors 

(LTS). Examples of some HTS are YBa2Cu3Oy (YBCO) [14] and Bi2Ca2Sr2Cu3O10 (Bi2223) [15], 

which can be functioned at temperatures above that of liquid nitrogen (77.3 K). Ripening of the 

cooling technology made it cheap to produce liquid N2 environment. Despite the cost efficacy, 

various obstacles such as high magnetic anisotropy, brittle nature of materials and high cost of 

precursors, hinder their potential to realize practical applications. Simultaneously, in case of most 

typical LTS such as NbTi and Nb3Sn with Tc’s lesser than 20 K, require expensive liquid helium 

(4.2 K) as the coolant, which is economically unattractive. Research carried at the beginning of 

the 21st century delivered the superconductivity community with two new classes of 

superconductors: i) MgB2 [16] and ii) iron-based superconductors [17-19], which have Tc’s around 

25-50 K. Hence, they are popularly known as medium temperature superconductors (MTS) [20]. 

   Magnesium boride as a chemical was discovered in 1864 [21], well before superconductivity 

phenomena. However, superconductivity in magnesium diboride (MgB2 – Tc ~ 39 K) was first 

reported in 2001 by Prof. J. Akimitsu et.al. [16]. This discovery was a slight shock considering 

that the chemical itself was discovered way long ago. After MgB2 was first discovered, thorough 

studies on the crystal structure of MgB2 as well as reaction mechanisms and chemistry was 

published. Although MgB2 was a common compound accessible in many chemical laboratories 

and chemical supplying companies, cryogenic studies were not carried out on this compound until 

2001, which led to a gap of almost 10 decades. Once discovered, scientists and technologists tried 
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to explore and understand the compound, the mechanisms responsible for superconductivity and 

advantages of this new intermetallic over other superconductors. 

 

1.2.2 Highlights of MgB2 

   MgB2 has a simple structure and a comparatively high Tc compared to the traditional metallic 

superconductors (Nb3Ge (Tc -23.2K) etc.) which ruled over superconductor research for quite some 

time. Highlights of this material are larger coherence length (ξ ~ 5-12 nm) compared to these 

superconductors [22]. The upper critical magnetic field (Hc2) of doped MgB2 is quite high which 

enables this material for magnetic applications [23-25]. MgB2 in bulk form has high critical current 

density (Jc), as well as uniform trapped field properties which makes it an interesting candidate for 

technologists as it can be operated in the range 25 to 30 K [26]. To the present modern cryo-

technology, this temperature range is easily attainable without the use of costly liquid He. MgB2 

has lower anisotropy and weak link free grain boundaries, unlike trending cuprates-based HTS. 

Since it is an intermetallic, it also exhibits low normal state resistivity [27]. Being made up of 

lighter elements, MgB2 has quite low density, which in turn reduces the product’s weight 

considerably [28]. This quality makes the material a robust contender for superconducting 

applications, especially in space applications where weight is of utmost importance [29]. Reduced 

production cost is the most attractive feature for the industrial sector [30]. Furthermore, Mg and B 

are precursors that are readily accessible unlike heavy metals and rare-earths which are primary 

constituents in other superconducting systems. The fabrication is also cost efficient because it 

needs comparatively less temperature and time for heat treatment. For example, in the case of high 

Tc cuprates, the heat treatment temperature is higher (1000 oC) and the duration is very long (more 

than 2 weeks). When considering tapes and wires, the sheath materials used for MgB2 based 

superconductors can be cheap Fe, stainless steel etc. while in the case of cuprate superconductors 

it is costly Ag. This because in high Tc cuprates any other sheath material except Ag, will react 

with precursors and destroy superconducting properties as well Tc. Despite the low Tc, (well below 

the cuprate superconductors) much theoretical studies on MgB2 were carried by researchers 

because of its modest crystal structure with sp orbital electrons involved in the superconducting 

mechanism, which is relatively simple and easy to handle theoretically. 
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1.2.3 Structural Properties of MgB2 

1.2.3.1 Crystal Structure 

   In 1954, Jones et al. [31] explored a Mg-B compound by high resolution neutron powder 

diffraction and X-ray diffraction (XRD) and identified the stoichiometry as MgB2 thereby 

determining the crystal structure to be a hexagonal unit cell similar to that of AlB2 [32, 33] (with 

lattice constants a = 3.0834 Å and c = 3.5213 Å). Later, these results were verified by 

contemporary techniques [34], which categorized MgB2 into a P6/mmm space group, with Mg 

atoms occupying (0, 0, 0) sites and B taking (1/3, 2/3, 1/2) and (2/3, 1/3, 1/2) sites or Wyckoff 

positions. The hexagonal Boron atomic planes are intercalated within hexagonal Mg atomic 

planes, forming an alternative layered structure as shown in Fig. 1.4. The six-fold symmetry and 

the anisotropy of the crystal structure are exhibited in MgB2 grains and single crystals. 

 

Fig. 1.4: Crystal structure of MgB2 [35]. 

   The intralayer B–B bond lengths are much shorter than the interlayer distance. In detail, the 

values are B-B intralayer = 0.1780 nm, Mg-Mg intralayer = 0.3084 nm, Mg-Mg interlayer = 0.3524 

nm and Mg-B interlayer = 0.25 nm [36, 37]. Because of this in plane boron bonding, the MgB2 

system shows an anisotropic electronic structure. In one Mg-B bond, Magnesium are positive ions 

and boron atoms are negative ions. Hence, electrons move from Mg to the network of boron atoms 

(sheets or 2D layers). This shows that MgB2 exhibits both ionic and covalent bonding 

characteristics, which enables the material to display novel superconducting properties. 
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1.2.3.2 Electronic Band structure 

   Despite having the similar structure to graphite, MgB2 has quite different band structure such as 

conducting states with two superconducting band gaps. As mentioned, Mg atoms donate their 

valence electrons to the boron planes, which constitute the ionic bond characteristics. These in 

plane B atoms are bonded together via sturdy covalent bonds (2- Dimensional). While on the other 

side, the metallic bonds (3- Dimensional) are situated in the middle of these layers. In the bond 

formation, the sp2 hybridized boron (comprised of 2s and px,y orbitals) contributes to creation of 

partially filled 2D covalent sigma (σ) bands. The hole-bands formed by this are localized in the 

boron plane. While the pz orbital contributes to creation of 3D metallic type pie (π) band which is 

delocalized. In this type of π band, not only the electrons but also the holes act as charge carriers 

[38]. Overall, these 2D-covalent sigma and 3D-metallic pie bands add to the total density of states 

(DOS) in the Fermi level [39-43]. The detailed band structure of MgB2 can be observed from Fig. 

1.5 [44], which was studied long before the uncovering of its superconducting nature [45]. 

 

Fig. 1.5: Electronic band structure of MgB2 superconductor 

   As mentioned earlier, the 3 σ bands formed from 2s, px, and py in the boron layer, and 2 π bands 

formed by boron pz orbitals, very similar to that of graphite. In MgB2, the valence bands are mainly 

made up of B bands unlike Mg, which does not have much contribution. The fermi surface is made 

from the hybrid boron electronic states. These bands join together at the Fermi surface at various 

positions of the Brillouin zone that is responsible for forming an interconnected tube kind of 

network. In this network, σ and π bands are greatly dispersive because of the huge overlap between 
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all p orbitals of nearby boron atoms [46]. Also, the interlayer overlaps such as px,y orbitals are 

much less significant, which makes the kz dispersion of σ bands less than 1 eV. For the above 

discussion, it is clear that the dispersion of the σpx,y band is considerably different from the πpz 

band. For instance, the most major dispersion in σpx,y bands is observed along Γ-K, while the 

dispersion in major along Γ-A in πpz bands. The σ bands are parallel to Γ-A and are placed slightly 

above the Fermi level. These bands also form two cylindrical hole type Fermi surfaces around the 

Γ-A line [47]. On the other hand, π bands form a pair of planar honeycomb like tubular networks 

similar to a bonding orbital (holes) placed at kz = π/c and an antibonding orbital (electrons) present 

at kz = 0. Fig. 1.6 depicts the Fermi surface of MgB2, where the straight up facing cylinders are 

related to σ bands, while the 3D tunnels are related to π bands. In the Fig. 1.6, the green and blue 

cylinders are related to px,y bands (holes). While the blue tubular network comes from the bonding 

pz bands, the red tubular network is related to antibonding pz bands. 

 

 

Fig 1.6: Fermi surface of MgB2 superconductor 

   Theoretical estimations for predicting electronic structure of MgB2 are well reinforced with 

experimental proofs. Angle Resolved Photoemission Spectroscopy (ARPES) is one of the most 

standard techniques to determine electronic band structure of any material. Although ARPES 

determine properties of very thin surface layers and so cannot always be considered reliable to 

represent the whole bulk’s electronic structure. However, experimental results, mainly Fermi 

surface properties such as de Haas-van Alphen effect are in good agreement with the theoretical 
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calculations [48-51]. On the other hand, Nuclear Magnetic Resonance (NMR) is another way to 

study the electronic structure at Fermi level. NMR spectroscopy reveals primarily two properties 

related to electronic structure such as i) Knight shift and ii) Spin–lattice relaxation rate. Estimation 

of in-plane and out-of-plane Hall coefficients reveal that dominant carriers along the a-b plane are 

hole-type, while along c direction the dominant carries are electron type, showing the multiband 

nature of MgB2 [52, 53]. These results are in agreement with theoretical predictions. 

 

1.2.4 Superconducting Mechanism 

   The mechanisms explaining superconducting properties of MgB2 was an intriguing research 

topic throughout the world, soon after the exposure of superconductivity in MgB2. Since the Tc 

was close to the BCS theory estimations, influence of high-frequency phonons are assumed to be 

a vital part. Techniques such as isotope effect, Raman scattering, de Haas-van Alphen effect, 

inelastic neutron and inelastic X-ray scattering are popular for detecting the types and role of 

various phonon modes responsible for superconducting nature. After a lot of research, it is 

concluded that MgB2 is a phonon-assisted BCS based superconductor involving selective coupling 

between specific phonons and specific electronic states. As per the BCS theory the 

superconducting transition temperature (Tc) is related with mass (M) via the following relation 

𝑀ఈ ൈ 𝑇௖ ൌ 𝑘         (1.10) 

Where k is a constant, while α is isotopic coefficient (α =1/2 in case of a simplified BCS model) 

[54]. Specimens prepared using the isotopes such as 10B and 11B are utilized for studying the 

change in transition temperature. These studies revealed that a shift of 1K was observed [58, 59]. 

Similar scenarios were observed in other electron–phonon interaction based conventional 

superconductors such as Mercury, lead etc. Complete information on isotopic shift has been 

elucidated based on phonon-mediated BCS superconductivity theory elsewhere [55]. After all the 

calculations, the projected isotope effect coefficients for both Mg and B are 0.02 and 0.3, 

respectively [56] which dictates that the B phonons are contributing more than Mg to the 

superconductivity. MgB2 is the first superconductor to exhibit two distinct superconducting gaps 

such as one at ~ 2 meV and the other one at ~ 7 meV, which then disappear simultaneously at same 

Tc [57]. The reasons for two different superconducting band gaps are due to the weak coupling in 
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the 3D bands and strong electron coupling in the 2D bands. In addition, this nature in MgB2 was 

experimentally supported by evidences from point contact spectroscopy, specific heat 

measurements and tunneling data [58, 59]. Overall, based on the results from various studies it is 

clear that MgB2 is a BCS based superconductor unlike high Tc cuprates. 

 

1.2.5 Superconducting and Structural Properties 

   MgB2 has a brittle nature, similar to other HTS. In a regular polycrystalline bulk MgB2, the grain 

size ranges from 10 nm to 10 μm [60]. As a result of its peculiar band structure, MgB2 is 

anisotropic, especially between a and c axis. This is because of different bond strengths i.e. Mg-B 

bonds are weaker than the B-B bonds. The penetration depth (λ) of MgB2 ranges from 100-140 

nm at 0K, while the coherence length (  ) is around 5-12 nm. One of the superior feature of MgB2 

is its large coherence length (greater than interatomic spacing), which makes the material 

unaffected by weak-link issue as seen in HTS superconductors. 

   In the family of borides, MgB2 has the highest superconducting critical transition temperature 

(Tc). Tc of MgB2, as a matter of fact any material, can be influenced by various factors likes type 

of synthesis, manipulating synthesis conditions, using dopants or additives, applying external 

pressure, applying magnetic field, disturbing crystal structure, creating crystal defects, introducing 

strain, irradiation with various sources, varying mass of the constituent atoms such as using 

isotopes etc. So far, many elements and compounds as substituents have already been studied in 

the MgB2 system such as C, Al, Mn, Cu, Fe, Li, Na, Si, Zr, Ag, SiC etc. [61-71]. In most of the 

scenarios the value of Tc is always decreasing. Tc drop varies differently with different dopants, be 

it Mg site or B site. Based on dopant research done so far, C substitution at the B site and Al 

substitution at the Mg site are the most fruitful ones as they belong to neighboring elements/groups 

in periodic table although at cost of decrease in Tc. On the other hand, other elements form 

secondary phases instead of substitution, which acted as only obstacles for the super current flow 

therefore deteriorate superconducting performance. Even a scarce amount of impurities can reduce 

Tc drastically [72]. Pressure manipulation can influence the critical temperature of MgB2. In BSC 

based superconductor, increase in pressure can generate alteration in phonon modes resulting a 

drop in Tc. In fact according to prior research Tc change of 1.6K can be observed with a change of 

1 GPa pressure [73]. Elsewhere, bulk MgB2 was irradiated using protons and neutrons in order to 



13 
 

generate disorders and defects which can aid as pinning centers to improve the superconducting 

performance, however the reduction in Tc was huge [74]. 

   MgB2 exhibits higher critical current densities (Jc) than conventional LTS as well as HTS 

superconductors. The lack of weak link issue makes it even exhibit high inter-grain Jc. Lots of 

parameters like microstructure, density, phase purity, heat treatment, flux pinning etc can hugely 

effect the critical current density value of MgB2 bulk superconductor. As the Jc varies with applied 

external magnetic field, its value must be assessed at self-field (zero field) as well as high field 

before considering it for an application. In general, pristine MgB2 exhibits low Jc and upper critical 

field because of poor flux pinning. Improving this aspect has been a popular research topic. In 

order to do so, lot of trials have been made so far to improve the flux pinning such as hot isostatic 

pressing (HIP) [75], Spark plasma sintering (SPS) [76], solid state sintering [77], quenching [78], 

magnetic field processing [79], irradiation [74], high energy ball milling [80], chemical doping 

[81] etc. of all the above mentioned techniques, chemical doping is the most efficient way because 

of its ease of execution. 

   Another way to increase flux pinning centers is to end up with secondary phases (via additives) 

in the final superconductor matrix, which alter the microstructural properties that aid in improving 

the Hc2, irreversibility field (Hirr) and enhance the Jc as well. So far humongous number of dopants 

were tested such as carbon allotropes [82], silicides [83], oxides [84], nano and submicron particles 

of metallic elements [85], etc. Of all materials, carbon allotropes and nano SiC [86] dopants were 

most successful in improving flux pinning centers along with Hc2 and Jc, without substantial drop 

in Tc. Grain boundaries play a vital role on Jc and Hc2 of the bulk MgB2 as they considerably 

contribute to the flux pinning and act as weak links like in HTS. In brief, decrease in grain size 

causes increase in grain boundary interface will aid in improving prior mentioned properties of 

MgB2 superconductor [87, 88]. One main disadvantage of this material is its porosity (almost 50% 

in a regular sintered specimen) as can be seen in Fig. 1.7. 
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Fig. 1.7: low magnification SEM image of bulk MgB2 (almost 50% porous). 

   Several techniques are being probed to counter this problem which include SPS, HIP, Mg 

diffusion etc. Another issue is formation of MgO (insulating in nature) that forms during sintering 

and usually responsible for decreasing Jc, however if tuned can come in hand as flux pinning 

centers. Present day superconductor applications demand different properties based on 

requirement such as high self-field Jc or good high-field Jc or high Hc2 etc. unfortunately MgB2 

being superior over other superconductors have less high-field and self-field Jc (not high enough 

to comprise the cooling costs) and low Hc2. 

 

1.2.6 Fabrication Techniques 

Sintering: 

    The most commonly practiced fabrication technique is sintering. This technique is easy and can 

aid in mass producing required shapes and sizes. Also considered as the most economical way and 

hence used in most of the laboratories and companies. In this technique both the precursors are 

mixed together and subjected to a specific temperature to obtain final product. This technique has 

been optimized over several years. The phase diagram clearly illustrates the phases formed with 

the variation of Mg:B ratio (see Fig. 1.8). After severe research, it is concluded that 750 – 850 oC 

for about 3 hours was perfect temperature for producing good performance bulk [77]. 
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Fig. 1.8: Mg-B phase diagram [89]. 

 

Spark Plasma Sintering: 

   This is a pressure-assisted pulsed-current process in which the powder samples are loaded in an 

electrically conducting die and sintered under a high uniaxial pressure. Because of high pressure 

and local temperature, the density of end products is very high, which is necessary in case of bulk 

MgB2 because of the porous nature. However, this technique is not optimized completely [76]. 

Diffusion technique: 

   In this technique Mg gas is allowed to flow through dense Boron matrix at reaction temperature 

which results in highly dense bulk. However there are issues such as non-uniformity due to 

incomplete diffusion till the center of the matrix, cracks probably due to volume issues or 

embrittlement [79]. 

Hot-Isostatic Pressing: 

   High dense MgB2 bulks were prepared by the HIP method. However, over several years there 

were different types of HIP techniques 
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i) The powder mixture was kept in glass encapsulation (pressure, 200MPa; temperature, 1000 oC 

over 200min; cooling under pressure) which is then used to synthesize bulk MgB2 with diameters 

up to 20mm and thicknesses up to 10mm. This method can be scaled to larger sample sizes and 

complex shapes [75]. 

ii) Frist, the mixture was pressed into pellets by CIP (Cold Isostatic Pressing) method. Next, the 

pressed precursor pellets are sealed in the stainless steel container by Electron Beam Welding in 

vacuum. The sealed SS containers were set into the HIP machine and subsequently sintered at 

900oC for 3 hours under a pressure of around 980 MPa [90]. 

   So far various techniques have been explored such as infiltration growth [91], chemical routes, 

ex-situ [92] etc. On the other hand, dopants, precursor refinement using Ball milling [81] etc. are 

one category of fabrication techniques. All of these techniques are utilized to improve the 

superconducting performance to commercializable level. 

 

1.2.7 Applications 

   Although there are many superconducting materials discovered up till now, only a few of them 

are worthy enough to use in real applications. Till today, conventional low temperature 

superconductors such as Nb3Sn and NbTi make up the majority of superconducting market because 

of good qualities such as decent critical current density, ductility, strength, easiness to fabricate 

into long wires etc. Efforts are being made to replace them with HTS superconductors and MgB2 

superconductors. Few main reasons for the industrial sector to show interest in MgB2 are 

production, light weight and density (2.55 g/cm3), cost effectiveness (both Mg and B are abundant 

and cheap), robustness of material etc. From prior discussion we know that MgB2 is anisotropic, 

however is very less when compared to trending HTS. Hence MgB2 unlike HTS doesn’t require 

an extra texturing step in processing. Certain sectors such as space application have huge interests 

because of how light MgB2 can be. All above mentioned features and advantages make MgB2 a 

strong candidate for making superconductors that can be readily used in real-world applications. 

It is always advised that for optimum performance the superconductors must be used quite below 

Tc. In case of MgB2 the most suitable operating temperature is around 20-30 K which can be 

achieved easily using present cryocooler technology or liquid hydrogen which can avoid the use 
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of very expensive liquid helium. MgB2 is the most promising material for high field magnets 

application in place of Nb3Sn and NbTi as the technology for them is materialized and MgB2 can 

just fit in. Apart from the magnet applications such as NMR, MRI, water cleaning etc. [93, 94], 

MgB2 superconductor has potential uses in superconducting transformers, rotors and transmission 

cables, etc. [95, 96]. 

 

1.2.8 Motivations and Objectives 

   From the above introduction a brief understanding of basic superconductivity and MgB2 bulk 

system elucidates that this material has a great potential to become a commercial product for 

tackling real-world crisis and problems. However, we can also understand that there are some 

issues that need to be solved in order to successfully proceed further with this bulk system. Issues 

include limited upper critical field Bc2, requirement for strong flux pinning and high porosity. The 

porosity and connectivity issue can be solved by exploring various techniques mentioned in 1.2.6. 

From the Jc values of MgB2 films [97, 98], it is clear that bulk has not reached its best performance 

yet. From prior research it is known that grain refinement is key to increase the flux pinning force 

[99-101]. Hence exploring various novel techniques to achieve this refinement will be a part of 

this work. Simultaneously, maintaining cost efficiency to product realization is important and 

therefore exploring cheap and scalable techniques will inherently be a part of this work. 

Improvement of Hc2 was studied with various dopants, and carbon was supposed to be the best for 

doing so. However there has been an inhomogeneity issues in the bulk MgB2 and solving this issue 

which will be another part of this work. 

The main objectives of the thesis are as follows: 

 To improve the self-field and high field critical current density (Jc) of superconducting bulk 

MgB2 for magnet application via grain refinement and suitable dopants. 

 To tackle the inhomogeneity problems such as C-substitution and Mg deficiency in the 

silver added bulk MgB2. 

 To employ novel, cheap and scalable technique such as high energy ultrasonication and 

optimize the parameters for producing high performance bulk MgB2. 
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Chapter 2 

Experimental 

 

2.1 Synthesis 

2.1.1 Production of Bulk MgB2 

   Polycrystalline bulk MgB2 pellets were fabricated via in-situ sintering Mg and B powders (along 

with dopants or additives, if any). These powders were thoroughly mixed and ground in a glove 

box (Ar atmosphere) in the ratio of 1:2 of Mg:B. This mixture was then pressed into pellets of 

20mm in diameter, 7mm in thickness using a uniaxial press with a force of approximately 20 kN. 

These pellets were immediately wrapped by Titanium (Ti) foils and heat treated in a tube furnace 

in Ar atmosphere. The samples were sintered at an optimized temperature of 775 oC in a tubular 

furnace. The sintering soaking time was 3 hours (see Fig. 2.1). The temperature is initially 

increased to 775 oC and finally decreased to room temperature (RT) at a rate of 100 oC /h. The 

pellets after taking out of the furnace were polished to remove outer layer of any possible MgO, 

which are then used for further characterizations.   

 

Fig. 2.1: Heat pattern for sintering bulk MgB2 superconductor. 



25 
 

2.1.2 High Energy Ultrasonication 

   The working principle of this technique is that it generates powerful waves using vibration from 

a metal probe. These high energy waves cause turbulence in the medium and pass the high energy 

to the particles, which then bombard each other and the container walls, resulting in a sharp 

breakage. Tiny air bubbles are formed, releasing destructive forces inside the solution, which aid 

in splintering the particles. An important advantage of this method is that the waves’ generation 

can be controlled and optimized by tuning frequency and power. Fig. 2.2 shows the clear schematic 

of the ultrasonication process. In this, we employed Mitsui UX-300 Ultrasonic Homogenizer. 

 

Fig. 2.2: Schematic of the particle refinement using high-energy ultrasonication. 

 

2.2 Characterization Techniques 

2.2.1 X-ray Diffraction (XRD) 

   In 1913, English physicists Sir William Henry Bragg and his son Sir William Lawrence Bragg 

explained why the cleavage faces of crystals reflect the incident X-ray beams at particular angles 

where they undergo constructive interference (see in Fig. 2.3). The relationship was named after 

them known as Bragg’s law, as shown in equation 2.1 [1]. 

𝑛𝜆 ൌ 2𝑑 𝑠𝑖𝑛𝑛ሺ𝜃ሻ        (2.1) 

The variable d is the distance between atomic layers in a crystal, and the variable λ is the 

wavelength of the incident X-ray beam; n is an integer. This observation was an illustration of X-
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ray wave interference, now known as X-ray diffraction (XRD), and was direct confirmation of the 

periodic atomic structure of crystals postulated over several centuries. Although Bragg's law was 

used to explain the interference pattern of X-rays scattered by crystals, diffraction has been 

developed to study the structure of all states of matter with any beam, e.g., ions, electrons, 

neutrons, and protons, with a wavelength similar to the distance between the atomic planes. 

 

 

Fig. 2.3: Schematic view of x-ray diffraction illustrating the constructive interference for Bragg 

diffraction. 

   Further, there is a simple and well-known equation for measuring the crystallite size from X-ray 

diffraction peaks, known as the Scherrer equation (equation 2.2). 

                                                       𝐷 ൌ 𝐾𝜆 𝛽𝑐𝑜𝑠𝜃⁄       (2.2) 

Where D is the average crystallite size, K is shape factor (~0.9), λ is X-ray wavelength, β is full 

width at half maximum (FWHM) of the peak, and θ is Bragg angle. This equation was named after 

Paul Scherrer. However, there is a limitation regarding the application of this expression; the 

crystallite size must be in sub-micron range. In addition, external software must be used for 

performing Rietveld refinement followed by phase fraction calculations from XRD pattern. In this 

work, we employed MAUD (Materials Analysis Using Diffraction) for refinement and phase 

fraction calculations. 
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2.2.2 Scanning electron microscopy (SEM) and Energy dispersive analysis of X-rays (EDAX) 

   Electron microscopy is a scientific characterization technique that uses a beam of electrons to 

create an image of a sample under study. This setup is placed in vacuum, to avoid interference of 

electron beam with molecules present in air. Several electromagnetic lenses are used to focus the 

electron beam and magnify the images. In general, SEM is capable of investigating surface 

morphology and can magnify the image by several folds [2, 3]. The science behind is that, when 

the electron beam is projected on the sample at desired position and usually scans the surface. 

There are several ways how electrons interact with the sample. After beam collision with sample 

surface, electrons are either absorbed or scattered by the specimen, while emitting characteristic 

X-rays, secondary electrons, Auger electrons and backscattered electrons as illustrated in Fig. 2.4 

[4]. Each type of electrons holds a specific information regarding the sample. For example, 

secondary electrons detected by SEM generate the image. Both the secondary and Auger electrons 

have relatively low energy as they arise from atoms close to the specimen surfaces. When X-rays 

are released, their spectral data carry a specific information regarding individual elements; it is 

employed for identification of chemical structure by EDAX [5]. The application of scanning 

electron microscope in conjunction with Energy Dispersive analysis of X-ray (SEM-EDAX) is a 

powerful tool for characterization of complex materials. The combined use of SEM-EDAX is a 

way to study and understand the structural and compositional complexity of the samples. The SEM 

used in this work is Field Emission Scanning Electron Microscope FESEM; JEOL; JSM-7100F. 

 

Fig. 2.4: Cross-section of electron beam-specimen interaction; Scanning Electron Microscope. 
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2.2.3 Transmission electron Microscopy 

   Transmission electron microscopy (TEM) is one of the most sophisticated instruments for 

analyzing the internal morphology or structure, spatial distribution of the various phases, dark 

field/bright field images, selected area diffraction and views of the defect structure through direct 

visualization. In TEM, the beam of electrons is transmitted through a specimen to form an image. 

Electrons interact strongly with atoms via elastic and inelastic scattering as shown in Fig. 2.5 [6]. 

Hence, to enable electrons to transmit the specimen, it must be very thin, around 5–100 nm for 100 

keV electron beam. The thickness of the sample varies depending on the density and elemental 

composition of the specimen. Elastic scattering of electrons in a highly localized region makes it 

possible to obtain a large resolution. Inelastic scattered electrons are not localized. During elastic 

scattering, the electron beam trajectory slightly shifts because of interaction with electrostatic 

potential of nuclei. Since there is no huge momentum loss, the whole electron beam returns to the 

detector to form the image. In the case of inelastic collision, the energy of electrons in the beam is 

transferred to specimen, causing various effects such as excitation or ionization or lattice vibrations 

etc. [7]. In this work, transmission electron microscope TEM JEOL/ JEM-2100 was used. 

 

 

Fig. 2.5: TEM, beam interaction with thin specimen. 
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2.2.4 Superconducting properties measurements 

   To measure the magnetic moment of superconducting samples, a superconducting quantum 

interference device (SQUID) is used. It is a very sensitive magnetometer used to measure 

extremely delicate magnetic fields. The working principle of this instrument is based on 

superconducting loops containing Josephson junctions.  

 

Critical Transition Temperature (Tc): 

   In this work, Tc of bulk MgB2 was measured using SQUID magnetometer. Magnetic signal or 

susceptibility of cuboidal specimen of known dimensions was plotted against temperature (M-T 

curve) at magnetic fields of 10 Oe. Additionally, Tc,onset (superconducting onset temperature), Tc
o 

(superconducting offset temperature)and ΔTc (superconducting transition width) were also 

calculated to determine the quality of superconductor synthesized. Usually ΔTc < 1K is considered 

an indication of good quality superconducting bulk. Usually onset and offset temperatures are 

estimated as 5 % and 95 % of the final susceptibility value respectively. However, the first 

differential of the M-T curve can give these values much easily. 

 

M-H curves, Irreversibility Field (Hirr) and Upper critical field (Hc2): 

   Magnetic moment of the specimen measured by SQUID magnetometer during magnetic field 

sweep between -5 T and +5 T was plotted against ramping field (M-H curve) at a constant 

temperature below Tc, usually 20 K. Hc2 (the thermodynamic upper critical field) is defined as the 

field at which magnetic moment reaches zero. In the models describing pinning in conventional 

superconductors in terms of pinning force density, Fn-h curve (F=JcH,  Fn =F/Fmax), magnetic field 

was normalized to it, h=H/Hc2. In most of these models, Fn-h curve approached linearly Hc2 

position and it was quite easy to determine Hc2 value. It, moreover, was not much high. However, 

in modern superconductors, including MgB2, Hc2 value is high, moreover thermally excited 

magnetic relaxation appears, which reduces the position, where Jc=0, from Hc2 to irreversibility 

field, Hirr. Though lower than Hc2, also this quantity is rather high. Thus, with the field limitation 

of SQUID to 5 T, it is not always possible to find, especially at lower temperatures, the right Hirr 

value. Moreover, the curve approaches Hirr exponentially and we need to use a certain precision 
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criterion. In our case, Hirr was estimated as the field value at which Jc reaches 100 A/cm2 [9]. At 

temperatures, where Hirr was out of the field limit, an extrapolation from reliable data points gave 

a good approximation. From the M-H curve, Jc was calculated using Bean extended critical state 

model, 

𝐽௖ ൌ 20 ∆𝑚 ሾ𝑎ଶ𝑑 ሺ𝑏 െ 𝑎 3⁄ ሻሿ⁄      (2.3) 

 

where a, b are cross sectional dimensions, b > a, and d is thickness of the specimen (a, b, d in mm) 

and Δm (in emu units, 1 emu = 10-3 Am2) is the difference in magnetic moments during increasing 

and decreasing field in the M-H loop (see Fig 2.6). In this expression, dimensions of a rectangular 

superconducting specimen are crucial parameters for determination of critical current density. 

SQUID specimens with dimensions of approximately 1 x 1 x 0.5 mm3 were cut from MgB2 bulk 

samples [8]. Later, the data will be used to evaluate flux pinning force etc. 

 

 

Fig. 2.6: Illustration of a typical M-H curve used for determination of Jc. 

 



31 
 

2.3 References 

[1] Moram, M. A., & Vickers, M. E., Reports on Progress in Physics, 2009, 72(3), 036502.  

[2]  J. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. 

Michael, "Scanning Electron Microscopy and X-ray Microanalysis," 2007, Springer Science and 

Business Media, LLC: New York. 

[3]  Stadtländer, Christian T. K.-H., “Scanning Electron Microscopy and Transmission 

Electron Microscopy of Mollicutes: Challenges and Opportunities.” 2007. 

[4]  Reimer, L., Scanning electron microscopy: physics of image formation and microanalysis. 

Springer, 1998, 527 p 

[5]  Reimer, L., Electron Energy-Loss Spectroscopy in the Electron Microscope. Springer, 

1996, 490 p. 

[6]  M. Karlik., Materials Structure, 2001, 8(1):3–16. 

[7]  Helmut Kohl, Ludwig Reimer, Transmission Electron Microscopy. Springer Series in 

Optical Sciences. doi:10.1007/978-0-387-40093-8, 2008. 

[8]  Bean C P, Magnetization of high-field superconductors Rev. Mod. Phys., 1964, 36 31–9. 

[9]  Fuchs G, Müller, K.-H, Handstein A, Nenkov K, Narozhnyi V, Eckert D, Schultz L Solid 

State Communications, 1964, 118(10), 497–501. 



32 
 

Chapter 3 

 

High-Performance Bulk MgB2 

Superconductor Using Amorphous Nano-

boron 

 

3.1 Introduction 

   Since the introduction of MgB2 into the family of high temperature superconductors i.e. 39 K [1], 

it has become a potential replacement for many superconducting applications. Extensive research has 

been carried on its characterization [2] and applications [3]. The superconducting transition 

temperature of MgB2 is significantly lower than that of YBa2Cu3Oy “Y-123”, however, MgB2 benefits 

from some BCS -like superconducting features, e.g. a large coherence length and weak magnetic 

relaxation. The discovery of 39 K superconductivity in MgB2, which has stimulated considerable 

interest in it as a family of high temperature superconductors. The transition temperature Tc is higher 

than previously reported superconducting materials such as Nb3Ge (Tc-23.2 K) [4] and YPd2B2C (Tc-

23 K) [5]. This Tc value is highest among A15 intermetallic compounds and intermetallic boro-

carbides. This discovery seems to confirm the speculation that the low mass of boron should be 

responsible for high temperature superconductivity [6]. Unlike YBCO which has to be single 

crystalline to be well superconducting which in turn reduces the ability of material to scale into 

devices, MgB2 overcomes this issue. It is evident that the grain boundaries which act as pinning 

centers are responsible for the superconductivity of the MgB2. However, these superconducting 

properties can be further improved by inserting new pinning centers. Later proton irradiation studies 

by A.D. Caplin's group proved that creating flux pinning centers via defects or doping in the material 
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can help in improving the Jc values [7]. This is where many researchers have started doping MgB2 

with different materials to create pinning centers. 

    Other ways to improve pinning is to increase defects such as grain boundaries etc. by optimizing 

the sintering conditions and composition [7]. As a result, the transport Jc values at liquid helium 

temperature and 10 T reached the level of 105 A/cm2 for Si-doped MgB2 samples [8]. Similar 

improvements were also observed with additions of carbon [9], boron carbide [10], carbon nanotubes 

[11], carbohydrates or hydrocarbons [12], graphene oxide [13], Ni-Co-B nanoparticles [14]. 

However, the critical current density values of MgB2 materials still need a further improvement for 

high critical current densities. 

     From our previous work, it is observed that sintering temperature plays a prominent role in 

controlling Jc and one can achieve high Jc at an optimum temperature range. In the case of MgB2, 

several temperature ranges have been experimented such as <750 oC, <825 oC and >850 oC.  From 

XRD analysis it is observed that single phase MgB2 is obtained around 775 oC.  Also, high Jc is 

observed in the samples prepared at 775 oC sintering temperature, while at other temperatures the Jc 

is lower. To understand this results SEM analysis has been done, which elucidates that at higher 

temperatures (> 850 oC) multiple phases are detected [15]. From the Energy dispersive spectroscopy 

(EDS) analysis, it is evident that few particles are B-rich in nature by forming new MgB4 phases. 

These phases are responsible for the poor Jc values. Apart from the above reasons mentioned, another 

reason was found to be loss of Mg in vapor form when heated to temperatures above its melting point. 

Research studies to avoid this loss has been done in ambient temperature and pressure less conditions 

(by sealing the mixture of magnesium as well as boron in a stainless steel tube and sinter the setup 

like usual). It is observed that the superconducting properties especially Jc was improved [16]. In 

other studies, these MgB4 non-superconducting phases as well as MgO are reported to be helpful in 

improving the superconducting critical current densities by acting as pinning centers if uniformly 

distributed in the matrix [17-18]. MgB2 has been fabricated as crystal, powder, thin films, 

macroscopic wires, nanowires and tapes using various approaches such as solid state synthesis, 

mechanical alloying, sol-gel and vapor-transport process [19-22]. MgB2 offers the possibility of wide 

engineering applications in the temperature range 20-30 K, where conventional superconductors such 

as Nb3Sn and Ni-Ti alloy, cannot play any role due to their low Tc. MgB2 is superior because of its 

ability to show superconductivity in sintered form, as it doesn’t have any weak link issues. 
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Considering the group of intermetallic superconductors, the critical temperature of MgB2 is rather 

high, which helps to lower the cooling costs. The cheaper technology and the high critical current 

density (Jc) in the polycrystalline state makes this material promising for several applications such as 

in power industry, magnetic resonance imaging (MRI), fault current limiters (FCL), and SQUIDS, 

high energy storage, levitation based devices and powerful super-magnets operating at around 20 K 

[23]. For superconducting super-magnet applications, it is necessary to produce a good quality and 

high performance bulk MgB2 material with high Jc and low production cost. In order to improve the 

critical current density of the MgB2 material, various processing techniques have been developed such 

as chemical doping [8], refining of the initial particle size by ball milling [24], and irradiation [7]. 

Significant progress has been made concerning the development of processing techniques, flux 

pinning, critical current density (Jc), large size MgB2 bulk growth. Many dopants have been studied 

to obtain high Jc such as Titanium [25], Carbon and its allotropes [26] etc. Recently high Jc is observed 

in MgB2 doped with 1.5 wt% carbon-encapsulated boron powder, sintered at 805 °C for 3 hours [27]. 

The critical current density, Jc of MgB2 in high magnetic field is correlated with its microstructure. 

Hence, in this work we tried to manipulate the boron particles size, which in turn controls the final 

microstructure, thereby resulting in desired superconducting properties such as high critical current 

density (408 kA/cm2). We also discuss the pinning mechanism responsible for the high critical current 

density. 

 

3.2 Experimental 

   Bulk MgB2 is synthesized by an in situ solid state reaction. The precursors used were commercial 

powders (Furu-uchi Chemical Corporation) of Mg metal powder (99.9% purity, 200 meshes), nano 

particle sized amorphous B powder (98.5% purity, ~100 - 300nm). These powders were thoroughly 

mixed and ground in a glove box in the ratio of 1:2 of Mg:B. This mixture is then pressed into 20mm 

diameter, 7mm thick pellets using a uniaxial press with a force of approximately 20 kN. These pellets 

were immediately wrapped by Titanium (Ti) foils and heat treated in a tube furnace in Ar atmosphere. 

All samples were sintered at an optimized temperature of 775 oC in a tubular furnace. The sintering 

soaking time is 3 hours (refer Chapter 2). The temperature is initially increased to 775 oC and finally 

decreased to room temperature (RT) at a rate of 100 oC /h. The constituent phases of the samples were 

identified with a high-resolution automated X-ray powder diffractometer (RINT2200), using Cu-Kα 



35 
 

radiation generated at 40 kV and 30 mA. The microstructure of these samples was studied with a 

scanning electron microscope (SEM) and chemical composition was estimated by SEM using EDX 

analysis. 

   SQUID specimens with dimensions of approximately  1 x 1 x 0.5 mm3 were made from MgB2 bulk 

samples. Critical temperature (Tc) and Critical current density (Jc) are done using SQUID 

Magnetometer (Quantum Design, model MPMS5). Jc is calculated from magnetization hysteresis 

loops (M-H) using extended Bean critical state model formula, as mentioned in chapter 2.  

 

3.3 Results and Discussion 

3.3.1 XRD 

 

Fig. 3.1: X-ray diffraction pattern for MgB2. Very small MgO peaks were visible confirming the 

synthesis of high purity MgB2 single phase material. 
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   To analyze the microstructure dependence on Jc, we have performed several characterization 

techniques. The X-ray diffraction pattern (see Fig. 3.1) explain the crystallographic information of 

the phases in the angular range 15o≤ 2θ ≤ 90o. The crystal structures and constituent phases were 

investigated using X-ray powder diffractometer. The peak structure indicates almost a single phase 

with a minimal amount of MgO as an impurity phase in the samples. In addition, previous research 

studies such as rietveld phase fractions analysis show that the impurity phase MgO is around 7 % in 

MgB2 prepared inside glove box, while it is 37 % when prepared in normal atmosphere [28]. As we 

fabricated the sample in glove box with controlled Ar atmosphere, it can be safely assumed that the 

MgO percentage is very low. After performing the rietveld phase fraction analysis using MAUD 

(Material Analysis Using Diffraction), we found that in this sample, the percentage of MgB2 is 

97.97% and MgO is very low such as 2.02 % (see Fig. 3.2) with an error of 0.05%. The MgB2 and 

MgO crystallographic information used to analyze the phase fraction are P6/mmm [29], Fm-3m [30] 

respectively. 

 

 

Fig. 3.2: Phase fraction calculation using Rietveld analysis (using MAUD software). Depicts the 

low concentration of MgO in the matrix. 
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3.3.2 Morphology 

   SEM micrograph of the bulk MgB2 sample shows the grain morphology, porosity and fine size of 

the powder. SEM analysis at low magnification gives insight on porosity and microstructure of the 

material. The porosity is very high (see Fig. 3.3). 

 

Fig. 3.3: SEM micrographs of MgB2 at Low magnification depicting the high porosity. 

 

   Also, the grains are mostly in round or plate like structure and randomly oriented, which is expected 

in a solid state sintered MgB2. Since there is no weak link issue in MgB2 this grain structure is very 

less likely to negatively effect the Jc values. However, because of the high porosity, the reduction in 

amount of MgB2 for a given dimensions is responsible for lowering Jc. We calculated the density of 

bulks using, density = Mass/ Volume and arrived at a density of approximately 1.27 g/cm3. Which 

accounts to half of theoretical density of MgB2 (2.6 g/cm3), or also explained as 50% porosity. All of 

our samples and in general, bulk MgB2 synthesized by conventional sintering show this behavior. 

This issue can be addressed with high pressure sintering, which has been of utmost interest since 

recent years. 
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Table. 3.1: Atom percentages of elements using EDX analysis. Indicates very minute amount of 

Oxygen contamination. 

Element Atom % (spot A) Atom % (spot B) 

Mg 40.03 47.9 

B 58.31 50.36 

O 1.66 1.74 

 

 

Fig. 3.4: SEM micrograph at higher magnification illustrating the fine grained MgB2. Grain sizes 

ranging from 100-500 nm are observed. 

   On the other hand, lower grain sizes ranging from 100-300 nm can be observed (see Fig. 3.4) which 

is an important factor for high Jc. Since the grain boundaries are the pinning centers in MgB2, lower 

grain size which implies more number of grain boundaries, will aid in enhancing the Jc value. In 

addition, it can be concluded that there is a sharp superconducting transition (see Fig. 3.5). 

 

3.3.3 Superconducting properties 

   High onset Tc such as 37.8 K can be observed, with a ΔT of 0.45 K. As expected from the fine 

microstructure, high Jc is reflected when measured (see Fig. 3.6). Jc as high as 408 kAcm-2 is observed 

at 20 K in self field and 124 kAcm-2 at 20 K when the field is 1Tesla. While MgB2, we produced with 
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commercial boron powder ( ~300 Mesh; bigger particles around few micrometers range) has shown 

a Jc of 270 kAcm-2, which was close to previous reported value, that is around 250 kAcm-2 [31]. This 

critical current density value increment can be attributed to the fine-grained microstructure. Since the 

sintering temperature is higher than the melting point of Mg, the Boron precursor particle size plays 

a big role in tuning the final microstructure of MgB2. 

 

Fig. 3.5: Superconducting transition in the bulk MgB2 material. Note that a sharp superconducting 

transition (onset Tc) is observed close to 37.8K. 

 

Fig. 3.6: Jc vs B plot – High Jc such as 408 kAcm-2 is observed in self field at 20 K and Normalized 

flux pinning curve vs reduced magnetic field (fp vs h), where fp=Fp/ Fp,max and h=Ho/Hirr . fp  = 1 at 

h=0.17 which indicates the grain boundary aided pinning.           
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   In previous studies, it has been reported that the presence of oxide impurities in the matrix are 

helpful in aiding the pinning effect in the MgB2 matrix [17]. However, in this case the pinning 

contribution is primarily due to the grain boundaries and subtly because of the oxide impurities. To 

justify this mechanism we have studied the material using EDX analysis in FE-SEM. Looking at the 

atomic percentages (see Table. 3.1), the probability of the oxide impurities seem to be very low. Two 

different spots are chosen to get a wider view of elemental distribution of Magnesium (Mg), Boron 

(B), and Oxygen (O). The spots chosen for EDX are labeled as A and B, which can be referred from 

the figure (see Fig. 3.7). While it can also be seen that the Mg: B ratio is not exactly 1:2, which might 

be because of the low atomic number of B that makes it difficult to collect the x-rays as the formation 

of Auger electrons are much favored over the x-rays [32].   

 

 

Fig. 3.7: Atomic percentages of elements in the MgB2 matrix using EDX analysis. Details of two 

different spots are chosen to get a broad spectrum of elemental distribution of the matrix. 

 

3.3.4 Flux pinning 

   Using the direct summation of elementary pinning forces, long ago Dew-Hughes proposed the 

following general expression to evaluate the normalized pinning force density for a material using the 

following expression: 𝐹௣ 𝐹௣௠௔௫⁄ ∝ ℎ௣ሺ1 െ ℎሻ௤, where p and q are dimensionless parameters that 
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depend on the specific characteristics of flux pinning. From this evaluation, different types of pinning 

centers as well as mechanisms are described by different values of p and q. In order to understand the 

flux pinning characteristics in our sample, we have plotted and studied the normalized flux pinning 

force curve against reduced magnetic field. In this curve fp=Fp/ Fp,max is plotted against h=Ho/Hirr at 

20 K, where Hirr is the irreversibility field obtained from M-H loops. The peak position is located at 

hmax = 0.17 (see Fig. 3.6), close to 0.2 which indicates that the dominant mechanism for the pinning 

is grain boundary pinning. This result is in accordance with previous studies for which normal and 

surface pinning dominate with in grains [33]. 

 

3.4 Conclusion 

   We have discussed the effect of microstructure on the critical current density of MgB2. Single phase 

MgB2 with fine grain size has been synthesized by a solid state sintering process sintered at 775 oC 

in Ar atmosphere. The XRD indicates that all samples have only a small quantity of MgO phase. SEM 

analysis showed that the samples have a fine grained structure and are highly porous. Grain size of 

100-500 nm are observed which will act as pinning centers and improve Jc. Moderate superconducting 

transition temperature (Tc), and high critical current density (Jc) such as 408 kAcm-2 is observed at 

20K and self-field. Analysis of normalized pinning force vs reduced magnetic field curves indicate 

that the dominant pinning mechanism in this case is grain boundary pinning. This work shows that 

manipulating the grain size and microstructure is definitely a promising method to enhance the 

performance of sintered bulk MgB2 material. 
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Chapter 4 

Optimization of carbon-encapsulated boron 

doping for high-performance bulk sintered 

MgB2 

 

4.1 Introduction 

   Discovery of superconductivity in MgB2 [1] attracted research focus from trendy superconductors 

(intermetallic [2], cuprates etc.). The reason was the specific position of this material among other 

superconductors, being much closer to conventional ones, both by its Tc and other superconducting 

characteristics. As regards physics, it appeared soon that it is a special type of superconductor, a 

two/gap system, never seen before. Concerning technology of preparation, the production easiness, 

light weight, low cost, simple crystal structure, no weak links [3], scalability etc. were extremely 

attractive issues, too. Hence, MgB2 offers various magnetic applications [4]. We are now at a point 

where MgB2 is being studied thoroughly from 3D to 1D structures looking for innovative and 

effective ways to improve the superconducting and mechanical properties. In the endeavor to improve 

critical current density (Jc), the fact is in focus that it mainly depends on the microstructure, which 

can be manipulated on demand. On the other hand, Tc is an intrinsic material property, not easy to 

manipulate. Tc in most cases degrades with increasing concentration of secondary additions [5,6]. So 

far, minute additions of secondary phases in MgB2 have been rigorously studied for sake of improving 

Jc by adding various materials such as carbon [7–14], silver, etc. [6,15–21]. These substituents were 

added to the solid mixture of Mg and B powders, rigorously mixed before sintering. In most cases, 

the amount of substituents was very little from 0 to 10 wt%, due to the inverse relation of Tc with the 

amount of additive/dopant content in the matrix. Another problem is uniform distribution in the 

matrix [22]. Carbon is one such effective substituent, it can replace boron in the MgB2 matrix, due to 

a close atomic radius. It results in creation of strain and distortion in the matrix, which in turn can act 

as a pinning center. Apart from that, these irregularities in the matrix reduce coherence length which 
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leads to inter-band scattering, causing increment in Hc2 (upper critical field) [23,24]. So far, carbon 

was doped into MgB2 via several carbon sources such as carbohydrates [25], carbon allotropes [26], 

graphene oxides [27], SiC [28], Coronene [29], toluene [7] etc. A uniform distribution of carbon in 

the matrix was always a challenge, as the products require stability and reliability over long run. To 

enable a commercial production, we opted carbon encapsulated boron, where carbon uniformly coats 

boron. In our previous works, we reported that low concentration of carbon (less than 3 wt%) results 

in a high critical current density [12]. In opposite, higher concentrations of carbon result in a 

degradation of critical temperature and formation of undesired Mg-C-B phases [30]. So, we need to 

perfectly optimize the carbon content to obtain best performance for commercialization. In this work, 

we tried to vary the carbon wt% from 1 to 1.9 wt% and to tune the product properties. 

 

4.2 Experimental 

   The carbon-encapsulated boron powder was fabricated in collaboration with PAVEZYUM, Turkey. 

We produced amorphous boron powder through pyrolysis of Diborane gas (B2H6) under inert 

conditions i.e. the hydrogen gas was flown in the B2H6 gas stream throughout the whole synthesis. 

To elaborate this hydrogen stream (a reducing agent) acts as protection against oxidation. 

Simultaneously during this pyrolysis technique the thermal conductivity is enhanced. In addition to 

B2H6, a gaseous hydrocarbon (CxHy) is mixed in the stream. This way, the hydrocarbon decomposes 

to form a coating of thin carbon layers around freshly formed circular shaped boron particles. Because 

of the morphology of powder such as carbon surrounding boron, the final product is named Carbon 

Encapsulated Boron (CEB). The wt% of carbon is estimated after the fabrication of final product.  

   To optimize the CEB amount for obtaining the possible highest Jc, a series of bulk MgB2 was 

synthesized by in situ solid state reaction, with concentrations of CEB such as 1 wt%, 1.1 wt%, 1.35 

wt%, 1.5 wt%, and 1.9 wt%. The precursors were commercial powders (Furu-uchi Chemical 

Corporation) of amorphous Mg powder (99.9% purity, 200 meshes) and carbon encapsulated boron 

powder. One gram of MgB2 was synthesized with Mg and CEB components weighing 0.529 g and 

0.471 g, respectively, which was molar ratio of 1:2, as required. These powders were rigorously mixed 

and ground in a glove box to avoid oxide formation. This mixture was then pressed into 20 mm 

diameter, 7 mm thick pellets using a uniaxial hydraulic press with a force of 20 kN. These pellets 

were immediately wrapped in Titanium (Ti) foils and heat treated at 775 oC for 3 hours in a tube 



47 
 

furnace in Ar atmosphere. The constituent phases in the final samples were identified with a high-

resolution automated X-ray powder diffractometer (RINT2200) with a step size of 0.01o from 10o to 

90o, using Cu-Kα radiation generated at 40 kV and 30 mA. Rietveld analysis was done to find out the 

phase fraction of all constituent phases detected from XRD. The microstructure of these samples was 

later studied with a field-emission scanning electron microscope (FE-SEM). To study the carbon 

distribution in the matrix, we used energy dispersive X-ray analysis (EDX).  

   For SQUID measurements, specimens with dimensions of approximately 1.5 x 1.5 x 0.75 mm3 were 

cut from MgB2 bulk samples. Critical temperature (Tc) and critical current density (Jc) were measured 

using SQUID Magnetometer (Quantum Design, model MPMS5). Jc was calculated from 

magnetization hysteresis loops (M-H) using the extended Bean critical state model [31]. 

 

4.3 Results and Discussion 

4.3.1 X-ray Diffraction and Superconducting Performance 

   XRD results in Fig. 4.1 shows a slight shift of the (110) peak towards higher diffraction angles in 

proportion with carbon wt%. This tells us that there is carbon substitution in the lattice and the amount 

of shift is proportional to the amount of carbon substituted [12]. The lattice parameters were 

calculated by using Bragg’s law. The lattice parameter a (equivalent to b) was calculated by using 

(110) peak, parallel to ab-plane, while c was calculated using (002) peak, perpendicular to ab-plane. 

The standard lattice parameters of pure MgB2 are a ~ b ~ 3.086 Å and c ~ 3.524 Å. a drops with 

increasing carbon content, up to 1.5 wt%, but above 1.5 wt% it starts to increase. This is because 

when carbon atoms substitute boron in the lattice, the lattice parameter shrinks as the carbon atoms 

have a lower atomic radius compared to boron. The amount of decrease in the lattice parameter is 

thus proportional to amount of carbon substitution. c stays unchanged, as there is no shift in (002) 

peak. All the changes happen in ab-plane, there is no shift in (00l) diffraction peaks. This is due to 

hexagonal arrangement of Mg and B layers in the MgB2 lattice. More detailed information can be 

found in Table. 4.1. Fig. 4.2 depicts sharp transition, which indicates high quality of the MgB2 bulks. 
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Fig. 4.1: XRD of MgB2 with several wt% CEB based bulks. Shift in [110] peaks can be observed, 

while [002] peaks remain un-changed. 

 

Table. 4.1: Lattice parameters and crystallite size calculations from XRD data. Large reduction and 

smallest crystallite size are observed in cc 1.5 wt% based MgB2 bulk. 

CEB wt % Lattice parameter a (Å) Lattice parameter c (Å) Crystallite size (nm) 

0 3.086 3.524 ~ 27 

1 3.0854 3.524 21 

1.1 3.0849 3.524 21.3 

1.35 3.0826 3.524 21.3 

1.5 3.0798 3.524 17.1 

1.9 3.0830 3.524 19.8 

 

There are also other ways to estimate the carbon doping into the bulk. One way to estimate the actual amount 

of carbon substitution x in Mg(B1-xCx)2, was calculating x using the formula, x = 7.5 x Δ(c/a), where Δ(c/a) is 

the change in c/a compared to an undoped reference sample [32]. The actual carbon contents for the bulks 

made of CEB 1, 1.1, 1.35, 1.5 and 1.9 wt%, in terms of 2x are estimated to be 0.004, 0.0066, 0.02, 0.036 and 

0.018 respectively. These results are comparable with those calculated when large wt% CEB was used [33]. 

Although these values are minute, the amount of carbon substitution was maintaining the trend with Tc and Jc 

results reported in later discussions. 
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Fig. 4.2: Normalized susceptibility plotted against temperature. All samples show ΔTc < 1 K, 

which shows that the synthesized bulks are of high quality. 

  

                       

                        



50 
 

Fig. 4.3: Tc,onset (on the left Y-axis in black) and lattice parameter a (on the right Y-axis in blue)  

plotted against CEB wt%. Both the parameters follow the same trend. 

 

   The onset superconducting temperature results (Fig. 4.3) support the conclusions made from the 

XRD analysis. Tc starts to decrease with increasing CEB wt% till 1.5wt% and starts to raise 

thereafter. Tc reduction with increasing C doping is well known from previous studies. The main 

reasons are carbon substitution into the lattice and the associated lattice strain. This phenomenon 

is observed in almost every case of dopants [5,24,27,34]. From these results we can conclude that 

maximum carbon doping is for 1.5 wt% CEB. 

   The critical current density displayed as a function of the applied magnetic field in the semi-

logarithmic plot exhibited superior Hirr values (Fig. 4.4). All the bulks exhibited superior 

properties when compared to the regular bulk. Especially, the bulk with 1.5 wt% CEB exhibited 

the highest value among all other bulks, 435 kA/cm2 at self-field, 20 K (inset Fig. 4). At low fields 

close to self-field as well as high fields (2-4 T), Jc of the 1.5 wt% CEB based bulk was high. These 

values are higher than in MgB2 doped by carbohydrates [35]. Moreover, the tradeoff between Tc 

reduction and Jc improvement was not as good as in the present case. This behavior can be 

explained from the diffraction data obtained from XRD. We calculated the crystallite sizes for all 

the bulks using Scherrer’s equation 

 

                                                               𝜏 ൌ 𝐾𝜆 𝛽 cos 𝜃⁄       (4.1) 

 

Here, τ is crystallite size, K is dimensionless shape factor (~0.9), λ is X-ray wavelength (Cu-Kα ~ 

1.54 Å), β is FWHM (highest intensity peak – (101) peak), and θ is the Bragg angle. Usually, 

Scherrer’s formula can be used only on grains smaller than micron. In our case, we knew from our 

previous work that crystallite size of sintered MgB2 lies around 27 nm and hence the formula can 

be used without any restrictions. 
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Fig. 4.4: Superconducting critical current density of various CEB wt% based MgB2 bulks. 1.5 

wt% CEB MgB2 bulk shows the best performance. 

 

   In Table. 4.1, we can find the lowest crystallite size ~ 17 nm in MgB2 with1.5 wt% CEB, which 

resulted in a high self-field Jc, as grain boundary pinning is prominent at low fields. Fig. 4.5 plots 

the relation between crystallite size and Jc of bulks. An inverse linear proportionality can be 

observed, which justifies the grain boundary pinning. A lower crystallite size implies finer grains 

and therefore a higher number of grain boundaries that are primary pinning centers in MgB2 bulk 

superconducting system. In high fields, high Jc is observed because of high defect density created 

by high carbon substitution into the lattice, as seen on lattice parameters. In addition, the lattice 

distortion created by maximum doping results in a high impurity scattering, which aids an 

additional pinning. This indicates that 1.5 wt% CEB is the optimal amount for maximum 

substitution of carbon into lattice and most effective in improving the critical current density. Any 

further excess of carbon content is for the performance detrimental [12]. This bulk subjected to 

much lower temperatures, exhibited extremely large critical current densities such as 660 kA/cm2 

at self-field and 10 K, 550 kA/cm2 at self-field and 15 K, and 100 kA/cm2 at 3 T and 10 K (see 

Fig. 4.6).  
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Fig. 4.5: Superconducting critical current density-Jc vs Crystallite size of various CEB based MgB2 

bulks. Plot shows an inverse proportionality.  

 

 

Fig. 4.6: Superconducting critical current density of CEB 1.5 wt% based MgB2 bulk at various 

temperatures. At 10 K, the Jc reached 660 kA/cm2. 
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   In addition, the irreversibility field measured at 10 K was extremely high, up to 20 T 

(extrapolation), which is very interesting for upcoming high-field applications such as particle 

accelerators [36], Axion dark matter experiments [37], and magnetic confinement fusion reactors 

[38] etc. The present irreversibility field values are far above those of conventional Nb3Sn 

superconducting magnets. Some studies of MgB2 report Hc2 at 4.2 K close to 42 T in thin films, 

and 44 T (theoretically) at 0 K [39]. Here we note that relaxation in MgB2 is very weak and 

therefore Hirr can be expected very close to Hc2. Hc2 perpendicular to ab-plane for various thin 

films ranged at 10 K from 7 to 17 T. This shows that the present extrapolated Hc2 value for 1.5 

wt% CEB exceeds or is almost equivalent to that of thin films, which is an extraordinary result. 

Similar speculations were made, when 10 wt% double walled carbon nano-tubes were used to dope 

MgB2 bulk [26], where the authors predicted up to 42 T at 4.2 K. Elsewhere [35], carbon doping 

via addition of 10 - 20 wt% of malic acid, resulted in enhancement of superconducting properties. 

However, Jc was not as good as our present results. Moreover, the Hc2 at 20 K of MgB2 bulk with 

1.5 wt% CEB around 8 T (obtained via extrapolation) is also higher than that of malic acid doped 

MgB2 [33]. Hence, we can conclude that the present results represent a significant milestone in 

improving superconducting performance of bulk MgB2, even among several other techniques of 

carbon doping. 

 

   Further, we constructed flux a pinning diagram based on Dew-Hughes general expression, which is 

a plot of the normalized flux pinning force (fp=Fp/ Fp,max) against reduced magnetic field (h=Ho/Hirr).  

Here, Hirr is the irreversibility field and Fp is flux pinning force calculated as a product of magnetic 

field induction and critical current density. When compared to the reference un-doped MgB2 bulk, 

the fp(h) peak of the MgB2 bulk with 1.5 wt% CEB is slightly shifted towards higher fields, which 

indicates a slight pinning contribution from carbon substitution (Fig. 4.7). In addition, we can also 

observe an increase in FWHM of the peak, which implies an improvement in both low field and high 

field pinning force. Thus, the decrease in crystallite size contributed to pinning improvement at low 

fields, while carbon substitution aided in improving high field pinning. Similar scenarios were seen 

when carbohydrates were doped in bulk MgB2 system. There also the basis hypothesis is carbon 

substitution [35]. We tried to calculate parameters (p and q) pertaining to Dew-Hughes expression 

(3), via curve fitting to get deeper understanding on flux pinning mechanisms. A is a numerical 
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parameter, while p and q are power-law describing parameters which explain the actual pinning 

mechanism. 

𝑓௣ ൌ 𝐴ሺℎሻ௣ሺ1 െ ℎሻ௤      4.2 

We obtained p = 0.5 ± 0.05, q = 2 ± 0.15, and A ~ 3.5 ± 0.4. The fit curve is plotted as blue line in 

Fig.4. 6, labelled as Curve fit. According to the Dew-Hughes, the maximum position (hmax) can be 

estimated by the value p/(p+q), which is equivalent to 0.2 from the curve fit parameters. These 

parameters strongly indicate that the primary pinning mechanism is grain boundary pinning, which is 

expected in bulk MgB2 system. In addition, the FWHM of pure as well as ccb based MgB2 is 

slender/smaller than theoretical one, because of the anisotropy in the system. The theoretical model 

was prepared assuming an isotropic material, while MgB2 is anisotropic [40].  

 

 

Fig. 4.7: Flux pinning diagrams of the 1.5 wt% CEB based MgB2 bulk and a reference normal 

MgB2 bulk. The 1.5 wt% CEB MgB2 bulk shows slight increase in peak position as well as the 

curve width. 

 

   To get deeper insight we also calculated flux pinning diagrams of the best sample at various 

temperatures (ref: Fig. 4.8), the peak positions lie around 0.2. However, if closely observed, the curve 

shifts towards right/ higher values with increase in temperature. This is because of decrease in the 
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magnetic anisotropy with increase in temperature, similar results were observed in spark plasma 

sintered (SPS) MgB2 [41,42]. 

 

 

Fig. 4.8: Flux pinning diagrams of the 1.5 wt% CEB based MgB2 bulk at various temperatures. The 

normalized flux pinning force at high field increases with reduction in operating temperature but the 

peak position doesn’t shift. 

 

4.3.2 Microstructural and Density Studies 

We calculated the density of bulks using, density = Mass/ Volume of cylindrical pellet and 

arrived at a density of approximately 1.12 - 1.22 g/cm3 for all the bulks. Which accounts to almost 

half of theoretical density of MgB2 (2.6 g/cm3), or also explained as 50% porosity. This porosity is 

mainly due to the voids left by reacted Mg. All of our samples and in general, bulk MgB2 synthesized 

by conventional sintering show this behavior. To purport the superconducting performance results, 

we performed SEM and EDX (ref: Fig. 4.9). EDX spectrum reveals that the carbon distribution is 

uniform throughout the matrix, which is what we envisioned.  
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Fig. 4.9: Microstructural analysis (left most) and carbon distribution (center) of 1.5 wt% ccb based 

MgB2 bulk. High magnification image (right most) illustrates the nanometer-sized particles. 

 

While the high magnification images depict fine particles of size range around 50-200 nm. These 

results purport the crystallite size refinement as well as impurity scattering through the matrix. Hence 

this technique aids in synthesizing stable high performance bulk MgB2 and therefore more reliable 

for use in commercial applications. 

 

4.4 Conclusion 

   By optimizing carbon content in CEB, we succeeded to prepare a high performance sintered bulk 

MgB2. 1.5 wt% of carbon in CEB was found to result in the best performance with a tremendous Jc 

of 660 kA/cm2 at 10 K, self-field. Hc2 (calculated by extrapolation) was also substantially improved, 

being almost equivalent to the best records reported so far. XRD results explain the maximum carbon 

substitution in 1.5 wt% CEB based bulk, via (110) peak shift, reflecting a change in the crystallite 

size calculated using Scherrer’s equation. M-T loops showed that the reduction in Tc,onset was 

proportional to the carbon substituted into the lattice. In addition, ΔTc <1 K for all bulks proved high 

quality. Flux pinning diagrams revealed that, while the dominant pinning came from grain boundaries, 

there was a considerable effect from increased electron impurity scattering caused by carbon 

substitution. This resulted in an increase of Hc2, high field Jc, as well as the curve width of flux pinning 

diagrams. Microstructural analysis revealed small MgB2 particles and uniform carbon distribution 

that supported all our assumptions. In summary, the 1.5 wt% carbon concentration in CEB was found 

to be beneficial for fabricating high performance MgB2 bulks, suitable for a wide range of 

applications. 
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Chapter 5 
 

Beneficial Impact of Excess Mg on Flux Pinning 

in Bulk MgB2 Synthesized with Ag Addition 

and Carbon Encapsulated Boron. 
 

 

5.1 Introduction 

   Despite the emerging high temperature superconducting (HTS) materials (Tc > 77K) till recent 

times, Magnesium diboride (Tc ~ 39K) caught immediate attention of many researchers since its 

discovery by Jun akimitsu group in 2001[1]. For example, the superconducting transition 

temperature of MgB2 is significantly lower than that of YBa2Cu3Oy “Y-123”, however, MgB2 

benefits from some BCS-like superconducting features, e.g. a large coherence length and weak 

magnetic relaxation. Apart from that, the other vital reasons for MgB2 being one of the trending 

bulk superconductors because of its attractive physical properties such as simple hexagonal crystal, 

light weight as the elements Mg and B are low atomic numbered, low coherence length, no weak 

link issue [2] and finally the most important advantage which is easy synthesis (solid state 

sintering). Hence mainly focused on working towards high trapped field applications at 20K. 

Extensive research has been carried on its characterization[3] and applications[4] as MgB2 can be 

fabricated in many forms as crystals, powder, thin films, macroscopic wires, nanowires and tapes. 

These multiple forms and various intricate shaped bulks can be fabricated but not only solid state 

sintering but also various approaches such as mechanical alloying, sol-gel and vapor-transport 

process[5]. MgB2 offers the possibility of wide-ranging engineering applications[6] in a 

temperature range of 20-30 K, where traditional superconductors such as Nb3Sn [7] and Nb-Ti 

alloys, cannot play any role due to their low Tc (~ 10 K, operating temperatures are around 4.5 K). 

MgB2 is superior because of its ability to exhibit superconductivity in sintered form unlike most 

of the HTS materials, as it doesn’t have any weak link issues. The main feature of this material is 
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that its superconducting properties will not be deterred because of its grain boundaries; in contrary, 

these hindrances act as pinning centers there by enhancing the superconducting critical current 

density (Jc). This is mainly due to its peculiar inherent feature of the material of not being 

negatively effected by weak links caused by grain boundaries as mentioned earlier. Comparing the 

group of present intermetallic superconductors, the critical temperature of MgB2 is rather high, 

which helps to lower the cooling costs. Because of the above mentioned advantages, MgB2 is a 

promising material for several applications such as in power industry (superconducting wires etc.), 

magnetic resonance imaging (MRI), fault current limiters (FCL), SQUID devices, high energy 

storage, levitation based devices and powerful super-magnets operating at around 20 K [6]. When 

aiming at superconducting super-magnet applications, it is necessary to produce a good quality 

and high performance bulk MgB2 material with high Jc and low production cost. For improving 

superconducting properties such as the trapped field of the superconducting material, one has to 

improve the critical current density as well as the volume parameter as the trapped field is 

proportional to Jc and volume. In case of MgB2 bulk, as the synthesis technique is simple sintering, 

the volume parameter can be manipulated at will and hence improving Jc is the key for improving 

trapped field properties.  In order to improve the critical current density of the MgB2 material, 

various techniques have been employed such as chemical doping[8], ball milling[9], spark plasma 

sintering[10] use of nano-sized precursor powders[11] and irradiation[12]. These techniques are 

responsible for increasing flux pinning centers such as grain boundaries, defects, dislocations etc. 

So far, significant progress has been made concerning the development of processing techniques, 

flux pinning, critical current density (Jc), large size MgB2 bulk growth. So far many dopants have 

been studied to obtain high Jc such as Titanium[13], SiC[8], Carbon and its allotropes etc. Among 

these substitutions, carbon is found much effective as it enters lattice, substituting boron. Although 

the Jc improves, this disorder (carbon substitution) causes reduction in critical temperature. Lately 

Ag addition has become popular as it has no impact on Tc while improving the Jc, especially in 

YBCO system[14][15]. Hence, similar studies have been performed on MgB2 to check if the same 

effect can be observed[16]. Elsewhere, it is also reported that Gibbs energy of the Ag-Mg phase 

formation is negative which tells us the definite formation of Ag-Mg phase. It is also clear that 

above 1200 oC Gibbs energy of MgB2 formation is inferior to that of Ag-Mg formation [17]. This 

implies that little amount of Mg is consumed by the Ag during the sintering. Now that slight 
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amount of Mg is consumed, the stoichiometric ratio of precursors Mg: B is disturbed, Mg being 

deficient. 

   In previous investigations where we, it is found that Ag-Mg based intermetallic secondary phases 

are formed and are acting as flux pinning centers. In this work, we tried to optimize the excess Mg 

required to be added in order to balance the loss when Ag is added and result in optimum Ag-Mg 

phases formation along with high superconducting performance. Changes in superconducting 

properties with excess Mg addition are also discussed. 

 

5.2 Experimental procedure 

   To study the optimum amount of excess Mg precursor required for balancing the loss from Ag-Mg 

phases formation or obtaining best Jc, a series of bulk MgB2 is synthesized by an in situ solid state 

reaction. Several amounts of Mg had been varied such as x = 1.05, 1.075, 1.1, 1.125, 1.15 in MgxB2. 

The precursors used were commercial powders (Furu-uchi Chemical Corporation) of amorphous Mg 

powder (99.9% purity, 200 meshes), carbon encapsulated Boron powder (1.5% carbon) and 4 wt% 

Ag. In general, to make 1 gram of MgB2 without Ag we use 0.529g of Mg powder and 0.471g of 

CCB (1.5% carbon) powder, which is 1: 2 molar ratio of Mg: B. The mixture is further processed into 

bulk as mentioned in chapter 2. Later, the sintered bulk pellets were characterized using XRD, FE-

SEM, EDAX, and SQUID similar to that of in previous chapters. 

The spatial trapped field distribution at 20 K was mapped 20 minutes after cooling the sample 

at the same temperature 10 mm away from a 45 mm diameter permanent magnet using a cryogen-

free cryo-cooler. During these measurements, the temperature was monitored with two sensors. One 

was located on the cold head of the cryo-cooler and the other on the sample surface. The Hall probe 

used for mapping the field was located above the cryostat 10 mm away from the superconductor. 

Levitation force measurements were also carried out at 20 K after cooling down the samples at 35 

mm from the permanent magnet. 

5.3 Results and Discussion 

5.3.1 XRD analysis                            

   The X-ray diffractograms (XRD) (see Fig. 5.1) of the Mg excess samples (best sample and highest 

Mg excess doped) are compared with pure sample. Formation of Ag-Mg phases along with small 
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amounts of MgO, while MgB2 being the main phase can be observed. From this systematic increase 

in Mg, x = 1.075 seems to have the highest Ag-Mg phase fraction which can be seen by peak intensity 

of Ag-Mg phase. However, in other samples where x < 1.075, the excess Mg is forming Ag-Mg phase 

but only minute amount and for sample where x > 1.075, the excess Mg seems to be contributing to 

other phases such as MgO which there by reducing the effecting the amount of Ag-Mg phase as the 

peak intensity of MgO keeps increasing with extra Mg addition. It is also important to note that the 

MgO phase is minute in all the samples, which is similar to our earlier reports[11]. In order to bolster 

the above-mentioned conclusions, we did rietveld refinement followed by phase fraction analysis 

using materials analysis using diffraction (MAUD) software (see Fig. 5.2).  

 

 

Fig. 5.1: XRD of MgxB2-CCB 1.5%- Ag 4wt% which shows the optimum Ag-Mg phase formation 

at x=1.075. 

   Crystallographic information of MgB2, MgO and AgMg used to analyze the phase fraction are 

P6/mmm (CIF ref: 1000026), Fm-3m (CIF ref: 1000053) and Pm-3m (CIF ref: 1509457) respectively. 

We found that the highest AgMg phase fraction percentage of around 2% is observed in the x=1.075 
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sample while in the highest excess Mg added sample showed only 0.3 wt% AgMg phase. In addition, 

it can be noticed from peak intensity as well as phase fraction that when excess Mg beyond x = 1.075 

is added, formation of MgO is favored over AgMg, thereby diminishing the superconducting 

performance. Rietveld phase fraction analysis showed that the MgO phase fraction is around 4.9%, 

6.43%, 6.78%,  6.9% and 7.34% for samples x = 1.05. 1.075, 1.1, 1.125 and 1.15 respectively. 

 

Fig. 5.2: Phase fraction calculation of MgxB2-CCB 1.5%- Ag 4 wt%, Ag-Mg phase fraction is high 

in x = 1.075 sample. (using MAUD software). 
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5.3.2 Magnetic properties 

   To study the effect of this excess Mg addition on the superconducting properties of bulk MgxB2. 

SQUID measurements have been done to determine the superconducting transition temperature (Tc) 

as well as superconducting critical current density (Jc). 

Table. 5.1: Depicts the detailed information on superconducting critical temperature onsets (Tc(onset)) 

and offsets (Tc(zero)). ∆Tc is approximately 1 K. 

Mg precursor 
concentration (x) 

Tc(onset), K Tc(zero), K ∆Tc, K 

1.05 37.3 36.57 0.73 
1.075 37.43 36.42 1.01 

1.1 37.43 36.23 1.2 
1.125 37.52 36.3 1.22 

1.15 37.36 36.03 1.33 

 

    Superconducting critical transition temperatures of all samples in detail can be seen in Table. 5.1, 

But the Tc is slightly lower than 39 K ranging from 37.3 to 37.5 K, which is expected from a doping. 

Coming to the superconducting transition temperature (Tc), for clear understanding, we have plotted 

the first derivative of DC magnetic moment against temperature (see Fig. 5.3, 5.4). 

 

Fig. 5.3: First derivative of DC susceptibility vs temperature profiles of various Mg excess (MgxB2-

CCB 1.5%-Ag 4 wt%) added samples. Tc is around 37.5 K as expected of carbon addition. 
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   All the samples have a sharp superconducting transition, which shows that ∆Tc is approximately 1 

K. However, the ∆Tc is increasing with the increase in excess Mg addition; this is probably because 

of the formation of more MgO. Tc of all samples is near to 37.5 K (slightly lower than 39 K), which 

is expected from a carbon doping in form of carbon encapsulated boron[18]. This reduction is mainly 

due to carbon but not Ag because, Ag substitution is only possible when added in very less wt% and 

given a lot of sintering duration [17][19]. 

 

Fig. 5.4: Temperature dependence of magnetic susceptibility for MgB2 bulk samples with various 

Mg precursor concentrations.  All samples show sharp superconducting transition. 

   Hence, it is difficult for Ag to be substituted in MgB2 lattice in our case. Tc(onset) increases with 

increase in excess Mg concentration which might imply that Mg is sufficient enough to form high 

percentage of MgB2 superconducting phase. The detailed information on superconducting critical 

temperature onsets (Tc(onset)) and ∆Tc can be found elsewhere [20]. 
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Fig. 5.5: Magnetization loops of systematically excess Mg added samples (MgxB2-CCB 1.5%-Ag 4 

wt%). Sample x = 1.075 shows high critical field or Hirr 

   M-H loops are studied to estimate the Hirr (Irreversibility field) and later are used to calculate 

superconducting critical current density (Jc). Hirr is value field strength at Jc equivalent to 100 A/cm2. 

It is surprising to see the Hirr and Jc to be in accordance with the phase fraction of Ag-Mg phase. The 

highest Hirr is for sample x = 1.075 which is 4.76 T at 20 K, while that of a normal pristine sample is 

around 4.3 T[21], additional details for other samples can be found in Fig. 5.5. This indicates that 

addition of excess Mg along with usage of Ag and CCB can ascend the usage of MgB2 up to high 

field applications. Simultaneously, the highest Jc is seen in x = 1.075 sample. 347 kA/cm2 at self-

field, 244 kA/cm2 at 0.5 T and 136 kA/cm2 at 1 T, while the values of pure sample is around 220 

kA/cm2 at self-field. Jc trends for other samples can be seen in Fig. 5.6, 5.7. 
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Fig. 5.6: Superconducting critical current density of various excess Mg added samples (MgxB2-CCB 

1.5%-Ag 4 wt%) at various magnetic fields. At high fields and low fields, x = 1.075 sample shows 

best performance. 

 

Fig. 5.7: Field dependence of critical current densities for MgxB2-CCB 1.5% and 4wt% Ag, at 20 K. 

at x = 1.075 highest Jc can be observed. 

   It can be concluded that the excess Mg addition along with defects and other high field pinning 

centers is a contributing factor for improving the high field Jc. Similar effects have been observed in 

previous research such as optimizing Ag addition in MgB2. It was reported that AgMg3 phases formed 
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acts as flux pinning centers in MgB2 responsible for the improved Jc [16][22][23]. Also, formation of 

tiny MgB2 grains because of Ag addition was shown by AFM studies and the density improvement 

was also observed as the Ag-Mg particles fill in the voids [24]. In addition, mechanical properties are 

also enhanced because of the Ag-Mg alloy particles distribution in the matrix [16]. Later it was also 

considered that Ag addition that results in Ag-Mg alloys phase that has high thermal conductivity and 

will aid in suppressing flux jumps [25], [19]. Furthermore, this scenario of additive reacting with Mg 

in matrix is observed even in SiC doping where Mg2Si, an Mg-Si based compound is formed which 

is responsible for the Jc improvement [26]. These Jc trends are also in congruence with X-ray and 

phase fraction analyzed data. This accordance is as per our assumption that when excess Mg is beyond 

x = 1.075, formation of MgO is favored over AgMg phase, thereby diminishing the superconducting 

performance there by resulting in low Jc. 

 

5.3.3 Flux pinning diagrams 

   To evaluate the normalized pinning force density for a material, we used Dew-Hughes general 

expression 

𝐹௣ 𝐹௣,௠௔௫ ∝  ℎ௣ሺ1 െ ℎሻ௤⁄        5.1   

In the above equation 5.1, p and q are dimensionless parameters that vary with flux pinning 

mechanism. Based on this evaluation, different types of pinning centers as well as mechanisms are 

attributed for different values of p and q. Usually, if the peak position or hmax ~ 0.2 the dominant 

pinning is from grain boundaries, if hmax ~ 0.33 pinning is from normal conducting inclusions and if 

hmax ~ 0.5 the pinning is from weak superconducting areas [27]. In order to understand the flux pinning 

characteristics in our sample, we have plotted and studied the normalized flux pinning force curve 

against reduced magnetic field. In this curve fp=Fp/ Fp,max is plotted against h=Ho/Hirr at 20K, where 

Hirr is the irreversibility field obtained from M-H loops. Here we determined Hirr criterion as field 

where Jc ~ 100 A/cm2 [28], similar to our previous literature [11][16][20][27]. In our system, the peak 

position is located at hmax = 0.2 (see Fig. 5.8), which indicates that the dominant mechanism for the 

pinning is grain boundary pinning (δl pinning). 
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Fig. 5.8: Flux pinning diagrams calculated from the M–H loops using Dew–Hughes model. Peak 

position lies at approximately 0.2 which indicates the primary pinning mechanism is grain 

boundary pinning. 

   This result is in accordance with previous studies for which normal and surface pinning dominate 

within grains. Precisely the grain boundaries within the Ag-Mg nanoparticle layer are contributing 

to the pinning at self-field. In our previous work, the fp vs h peak was at 0.17 when we used nano 

amorphous boron without any additives or dopants used [11]. The fact that peak shifted from 0.17 

to 0.2 means that the contribution of 3D-defect pinning or δTc pinning has improved, although the 

primary pinning is from grain boundaries[21]. Presence of Ag-Mg phases along with lattice 

distortion from CCB addition is responsible for this shift in the flux pinning peak position. 

 

5.3.4 Levitation Force Measurements 

 Levitation force is a parameter reflecting the bulk’s ability to suspend a powerful magnet, 

which is close to trapped field. In order to get an understanding of trapped field properties, we 

carried out levitation force measurement. Fig. 5.9 shows the levitation force measured at 20 K on 
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10 mm diameter MgB2 bulk made of commercial boron and the present best bulk (10 mm 

diameter), 7.5 wt% excess Mg based MgB2 after field cooling.  The bulk samples were field-cooled 

under 45 mm diameter permanent magnet (NdFeB) at distance of 30 mm. Later, levitation force 

between the magnet and superconducting magnet was measured while varying the z-

position/distance of the probe at 20, 30 and 40 mm. As could be expected, the levitation force 

increased as the separation between the superconductors and the magnet decreased. The levitation 

force of 7.5 wt% excess Mg based MgB2 bulk was approximately by 25% higher than that of the 

conventional commercial boron-based MgB2 bulk. This increase is attributed to the improved Jc 

in the 7.5 wt% excess Mg based MgB2. Since both the levitation force as well as Jc (parameters 

directly proportional to trapped field value) improved significantly, it can be assumed that the 7.5 

wt% excess Mg based MgB2 can also exhibit superior trapped field value. 

 

Fig. 5.9: Levitation force measured at 20 K on 10 mm diameter MgB2 bulk made from commercial 

boron and the present best bulk (10 mm diameter), 7.5 wt% excess Mg based MgB2. 

5.3.5 Microstructural Analysis 

   Density calculations on prepared bulks were done using the formula, desnity = Mass/ Volume 

and arrived at a range of density, approximately 1.12-1.16 g/cm3 that accounts to half of theoretical 

density of MgB2 (2.6 g/cm3). All of our samples and in general, bulk MgB2 synthesized by 

conventional sintering show this behavior. To confirm the mechanisms responsible for the Jc 

improvement we have done microstructural analysis by scanning electron microscopy (SEM). It 
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can be observed from low magnification SEM images (left) and back scattered images (right) in 

Fig. 5.10 that secondary phases, mostly Ag-Mg based (white) are formed inside the matrix (black) 

and seem to be contributing for the flux pinning. 

             

Fig. 5.10: Low magnification SEM analysis of Mg rich MgB2 samples. AgMg phase (white) in 

the MgB2 matrix (black); SEI image (left), comp image (right). 

   The white colored secondary phases are most likely Ag-Mg, while the matrix being MgB2. On 

the other hand, high magnification images tell us that Nano-particle layers of Ag-Mg phases are 

formed in grain boundaries (see Fig. 5.11). To confirm the presence of these layers throughout the 

sample, we tried performing elemental mapping using Energy dispersive X-ray spectroscopy 

(EDX) in FE-SEM. The mapping (see Fig. 5.12) shows uniform distribution of Ag, which thereby 

tells us that these Ag-Mg layers are formed throughout the sample. In addition, uniform carbon 

distribution can also be observed since we have used carbon encapsulated boron as precursor. 

 

Fig. 5.11: High magnification SEM images of the layer structure over the big MgB2 grains. Grain 

refinement up to 20–40 nm can be seen. 
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Fig. 5.12: EDX analysis of microstructure using SEM. Microstructure (left-top) indicates a nano-

layer different from matrix. The peaks intensity or counts (left-bottom) show the Ag presence in 

the layer of the matrix. Distribution images (right) shows the uniformity of carbon from CCB (top) 

and Ag (bottom) in the matrix. 

   These results can clarify upon any suspicion over non-uniform distribution of dopants in the 

sample. These layers have Ag-Mg nanoparticles around 20-30 nm, which increase the number of 

grain boundaries that might be contributing to the zero field critical current density. Flux pinning 

diagrams are calculated to determine the dominant pinning mechanism. To deeply study the best 

sample’s behavior we tried to measure the M-H loops at various temperatures (10, 15, 20, 25, 30 

and 35 K) and calculated the Jc and flux pinning diagrams to observe the change in mechanisms 

with temperature. High Jc such as 521 kA/cm2 was observed at 10 K, while it dropped steadily 

with increase in temperature. Jc of 441, 350, 250, 141 and 27 kA/cm2 was noted at 15, 20, 25, 30 

and 35 K respectively (see Fig. 5.13). Flux pinning diagram reveals that at high temperatures the 

peak is at h ~ 0.3, while low temperatures it is at h ~ 0.22 (see Fig. 5.14) which shows that the 
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dominant pinning mechanisms slightly changes with temperature, this is in accordance with 

previous research [27]. 

 

 

Fig. 5.13: Superconducting critical current density vs temperature curves of the beast sample at 

various temperatures. Exceptional value such as 521 kA/cm2 Jc is observed at self-field, 10 K. 

 

Fig. 5.14: Flux pinning diagrams of the best sample at various temperatures. Fp/Fp,max is located 

close to 0.2 indicating the dominant grain boundary pinning does not change with the temperature 

after addition of excess Mg, Ag, and CCB usage. 
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   Therefore, we think that slightly excess Mg addition is necessary and beneficial in obtaining 

optimum pinning effect from Ag addition in solid-state sintered bulk MgB2 system. 

 

5.4 Summary 

   Bulk MgB2 samples with variation in excess Mg precursor has been synthesized in Argon 

atmosphere via solid-state sintering process at 775 oC. XRD analysis shows that peak 

corresponding to Ag-Mg phase is strong when x = 1.075 (in MgxB2), which is also reflected in 

phase fraction analysis. Critical temperatures of all the samples is close to 37.5 K, because of usage 

carbon-encapsulated boron, but have sharp transitions, ∆T~1 K. M-H loops show that the sample 

with  7.5wt% excess Mg or Mg1.075B2 (best sample) has high irreversibility field (Hirr) such as 4.76 

Tesla. In correspondence with XRD, the best sample showed the highest Jc such as 520, 440, and 

347 kA/cm2 at 10, 15 and 20 K respectively. SEM analysis confirmed the presence of secondary 

Ag-Mg phases and improved microstructural changes such as particle refinement, up to 20-40 nm. 

Hence, the results suggest that using 1.075:2 ratio of Mg:B is crucial for development of high 

performance bulk MgB2 material while using CCB and Ag addition. 
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Chapter 6 

High Energy Ultra-sonication of Boron 

Powder for High-Performance Bulk MgB2. 

 

6.1 Size reduction of boron particles by high-power ultrasonication in ethanol media for 

optimization of bulk MgB2 

6.1.1 Introduction 

   MgB2 is a trendy material suitable for several superconductor applications such as bulk magnets 

for compact MRI & NMR, electric motors etc. Although Tc is slightly lower (39 K) [1] compared 

to superconducting cuprates (~90 K), the processing time, easy fabrication and cost parameters 

make it attractive. With liquid helium cooling would be usage of MgB2 difficult and expensive in 

practical applications. However, cryogen-free cryo-coolers [2–4], liquid hydrogen[5] and neon are 

capable of reaching the required cooling temperature without expensive and technically 

complicated use of liquid helium. This promotes a rapid research on MgB2 superconducting 

material. The light weight is another factor improving efficiency of the devices and increasing the 

range of applications [6–11], especially in space. Several research groups have been trying to 

improve trapped field and critical current density in MgB2 bulks. Most of the trials were related to 

optimization of synthesis parameters [12,13], novel synthesis techniques[14–16], refining the raw 

precursors, doping, additions[17,18], and fabrication of films [19].  The primary synthesis method 

for bulk MgB2 is the solid state sintering. This process is highly scalable and by maintaining 

uniformity in synthesis parameters, one can obtain uniformity in product’s properties, such as 

elemental distribution, density, Jc etc. In addition, this sintering method also ensures a uniform 

trapped field, which is crucial for levitation and super-magnet device fabrication. Some researchers 

have tried manipulating the sintering temperature, sintering duration, multi-step heating [13,20–

24] etc. In our previous research we have optimized the sintering process such 775-800 oC for 3 

hours for best performance bulk MgB2 [12]. One small disadvantage is the need of an inert 



79 
 

atmosphere during the sintering, as Mg is highly reactive with oxygen. Anyway, it doesn’t hinder 

massive production of bulk MgB2 material. Different techniques and synthesis methods were also 

practiced such as spark plasma sintering [25–27], diffusion method [16], infiltration growth [28] 

and chemical routes (combustion, pyrolysis, precipitation etc.). All these methods have their 

advantages and disadvantages. One way that can improve superconducting performance is to 

introduce pinning centers to pin vortex lattice motion and thereby reach a high performance up to 

high magnetic fields. The coherence length of MgB2 materials is quite high when compared to 

other HT superconductors. Hence, defects with bigger sizes can thus act as pinning centers. Some 

of the effective pinning centers used are non-superconducting inclusions, defects, grain 

boundaries, voids etc. Such pinning centers can be MgB4 [29,30], MgO [31,32], metals [33,34], 

metal oxides [35,36], grain refiners, rare-earth elements [37], dislocations, defects created by 

irradiation [38], carbon doping [39–46] etc. 

   It has been proven that increase of grain boundary area results in increase of Jc, in particular at 

low magnetic fields. In one of our previous work dealing with MgB2 we used a commercial nano-

amorphous boron [47] to enhance vortex pinning. The results were outstanding, but the powder 

was expensive, making the whole fabrication process costly. Ball milling is a technique proved to 

effectively decrease powder size, however is not scalable and has problems like poor Tc, B2O3 

formation and contamination by other impurities [48,49]. Here, we utilized “High Energy Ultra-

sonication”, a novel technique that is scalable and results in uniformly refined particles [50,51]. It 

generates powerful waves using vibration of a metal probe. The high-energy waves cause 

turbulence in the medium and pass high energy to the particles, which then bombard each other 

and the container walls, resulting in particles breakage. In addition, tiny air bubbles or cavities are 

formed that release destructive forces inside the solution when popped. It results in the particles 

splintering. An important advantage of this method is that the process can be controlled and 

optimized via tuning frequency and power. However this process is new, the interaction between 

dispersant and dispersion is crucial. Optimum conditions for the best results need to be established. 

In the present work, we tried to ultra-sonicate the cheap commercial boron in ethanol medium to 

increase the grain boundary area in the final microstructure to produce high performance bulk 

MgB2 while preserving the Tc. 
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6.1.2 Experimental: 

i) Boron ultra-sonication: In order to develop a cheap, scalable fabrication process, we ultra-

sonicated cheap commercial boron (Furu-uchi chemicals, 300 mesh, 99% purity) using ultra-

sonication (Mitsui ultrasonic Homogenizer). The working principle comprises generation of high 

power waves in the beaker containing boron powder dispersed in ethanol. In this experiment, we 

systematically varied the ultra-sonication time such as 30, 60, 90 and 120 minutes, maintaining 

power constant, at 50% (150 W) and frequency at 20 kHz. The power was switched ON and OFF 

alternatively every 30 seconds. This ensured that the metal tip generating pulses got enough time 

to cool off the entire heat produced by the particles bombardment. Thus the real ultra-sonication 

times were 15, 30, 45, and 60 minutes. Immediately after the ultra-sonication, the powder was 

heated at 100 oC for one hour in a muffle furnace to remove ethanol. Later, the powders were 

characterized by scanning electron microscope (SEM) as well as transmission electron microscope 

(TEM JEOL/ JEM-2100) to confirm the size reduction. 

ii) Synthesis of MgB2: The precursors were commercial powders (Furu-uchi Chemical 

Corporation) of amorphous Mg powder (99.9% purity, 200 meshes) and an ultra-sonicated boron 

powder. One gram of MgB2 was synthesized using 0.529 g of Mg and 0.471 g of B (ultra-

sonicated) in the molar ratio of 1:2. The powders were rigorously mixed and ground in a glove box 

and heat treated after pelletizing as discussed in Chapter 2. The pellets were then removed out 

from thr furnace and the outer surfaces are polished to avoid any surficial MgO formed. From here 

on we address the various MgB2 bulks as B-0, B-15, B-30, B-45 and B-60 corresponding to the 

boron precursor used which is ultrasonicated for 0, 15, 30, 45 and 60 minutes respectively. 

   These bulks were later characterized using XRD, FE-SEM, TEM and SQUID for understanding 

phase purity, microstructure, compositional analysis and superconducting properties respectively. 

 

6.1.3 Results and Discussion 

  Ball milling as a standard technique for boron powder refinement is not suitable for industrial use 

because of the impurities, mainly B2O3 created during this process. XRD analysis revealed that the 

amount of B2O3 raised with increasing milling time, which resulted in a decrease of Tc of the MgB2 

bulk[49]. The ultra-sonication process doesn’t show such a drawback. XRD results proved absence 
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of B2O3 diffraction peaks even after 1 hour of ultra-sonication (100% intensity peak- usually at 

approx. 2θ = 27.8o), as shown in Fig. 6.1. Note that any oxides in the precursor promote formation 

of MgO, which is detrimental to the superconducting properties.  

 

 

 

Fig. 6.1: XRD of the ultra-sonicated Boron (0, 15, 30, 45, 60 minutes). All diffraction patterns 

showed no signs of B2O3 formation. 

 

   The particles size was studied by means of SEM. Figs. 6.2 (a-e) shows the SEM micrographs of 

pure and 15, 30, 45 and 60 minutes ultra-sonicated boron. The particles size was significantly 

reduced with ultrasonication. Transmission electron microscopy revealed particles’ size reduction 

(see Fig. 6.3) upto 20 – 50 nm after 15 min ultra-sonication in ethanol medium. In addition, 

clustering or agglomeration can be observed in boron powder ultrasonicated for longer than 15min, 

especially in 30, 45 and 60 min samples as pointed in the Fig. 6.2 (c), (d) and (e). Refinement upto 

few tens of nanometers can be observed. This implies that although there is size refinement with 

increase in ultrasonication, longer intervals over 15 minutes can result in clustering. This can be 

possible because ultrasonication involves collision between particles. We propose that these 

particles after 15 minutes of bombardment end up with irregular surfaces and smaller sizes which 

when subjected to further collisions can result in interlocking of particles.  
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Fig. 6.2: SEM micrographs of a) Pristine cheap commercial boron, b) 15 min ultra-sonicated 

boron, c) 30 min ultra-sonicated boron, d) 45 min ultra-sonicated boron, and e) 60 min ultra-

sonicated boron. Fine particles around few nano meters can be seen after ultrasonication. In higher 

ultrasonicated powders, clustering can be observed. 
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Fig. 6.3: TEM micrograph of 15 min ultra-sonicated boron powder. Tiny particles around 20 -50 nm can 

be seen. 

 

   Another possible explanation can be agglomeration, which is mainly due to the tendency of the 

system to minimize surface energy [52]. Similar phenomenon was reported recently, when boron 

was subjected to ball milling for size reduction [49]. The authors concluded that after 2 hours of 

ball milling, the performance goes down because of volume reduction in MgB2 phase. They also 

observed formation of unreacted Mg and B2O3. In the case of ultrasonication, very minute amount 

of MgO was observed and Tc was close to pure MgB2. Ultra-sonication occurs to be better than 

ball milling in terms of balanced quality, performance, and processing time. 

   From the XRD of MgB2 bulks shown in Fig. 6.4 it is evident that there are no contaminants 

present in the matrix apart from a scare quantity of MgO, which is formed during the transfer from 

glove box to furnace and the pressing step. The intensity of MgO [220] peak (2θ~62.3o) can be 

seen in the inset figure, which is very small when compared to other peaks. In addition, we 

compared the [110] MgB2 peak (2θ~60o), to check if there was any influence of ethanol such as 

carbon impartation during ultrasonication. In general, carbon substitutes into boron atoms on boron 

atomic place which is parallel to c-axis. Hence we choose the [110] plane to determine if there is 

any carbon substitution. As can be seen from the inset figure of Fig. 6.4, there is no shift in the 

[110] peak, which confirms that there was no carbon substitution. 
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Fig. 6.4: XRD of the ultra-sonicated samples (0, 15, 30, 45, 60 minutes). All diffraction patterns 

are similar to conventional sintered MgB2 pattern with scarce MgO impurities. 

 

   In accordance with XRD, M-T or superconducting critical temperature studies also show a sharp 

transition, which depicts the high quality bulk MgB2 synthesis. All the samples show high Tc,onset 

such as 38.5 K and ΔTc around  0.7 K, more details can be found in Table. 6.1 and Fig. 6.5. These 

results also point to a high purity, as most of the secondary phases present in a superconducting 

material result in degradation of critical temperature. Additives and dopants such as carbon in 

various forms, Ti, Cu, Fe, SiC and others resulted in great decrease in Tc [46,53–57].  
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Fig. 6.5: Superconducting transition temperature of ultra-sonicated samples (0, 15, 30, 45, 60 min). 

All samples show sharp Tc indicating high quality superconducting MgB2. 

 

Table. 6.1: Critical onset and offset temperatures of bulk MgB2 samples prepared with ultra-

sonicated boron. 

Bulk Tc,onset (K) Tc,zero (K) ΔTc (K) 

MgB2-0 min Ultra-B 38.7 38 0.7 

MgB2-15 min Ultra-B 38.5 37.8 0.7 

MgB2-30 min Ultra-B 38.5 37.6 0.9 

MgB2-45 min Ultra-B 38.4 37.7 0.7 

MgB2-60 min Ultra-B 38.5 37.8 0.7 

 

Critical current density was plotted in log plots, along with regular curves in the inset. One can see 

in detail from Fig. 6.6 that B-15 shows high performance, along with improved Hc2. Self-field Jc 

at 20 K raised up to 300 kA/cm2 in B-15 bulk, while other samples based on boron ultra-sonicated 

for different other times exhibited constant self-field Jc close to 270 kA/cm2. Thus, there is about 

36% improvement in B-15 and 22 % improvement for B-30, B-45, and B-60 when compared to 

B-0 (220 kA/cm2).  
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Fig. 6.6: Superconducting critical current density of ultra-sonicated samples (0, 15, 30, 45, 60 

min). All samples show improvement in Jc. Especially, the 15 min ultra-sonicated sample shows 

superior improvement. 

 

   In order to understand this improvement, we carried out several microstructural studies using 

FE-SEM. In general, during the liquid-solid reaction of Mg and B, fine MgB2 particles dissolve in 

the Mg melt and contribute to growth of bigger crystals [58]. From Fig. 6.7 (a-d), we can observe 

that the particles in microstructure B-15 bulk are much finer than other bulks. This is because the 

clustered boron particles merged to form larger MgB2 grains in B-30, B-45 and B-60 bulks, which 

in turn reduced the grain boundary area. As we know, grain boundaries are primary pinning centres 

in bulk MgB2 superconducting system. Hence the Jc reduction with the longer durations of ultra-

sonication is a result of agglomeration or clustering of nano-B particles. While this also tells us 

that the grain boundary area is large in B-15 that aided in improving Hc2. From these results we 

can comprehend that this system reaches optimum at 15 minutes, from the current analysis. This 

is also evident from the decrease Jc values of B-30, B-45 and B-60. It can also be said that further 

ultrasonication might lead to an increase in boron cluster size and number, which will imply that 

the bulk microstructure consists larger grains, reducing the number of grain boundaries and 

therefore Jc. To justify this scenario, we measured the MgB2 particle sizes using ImageJ. Fig. 6.8 

reveals the average particle sizes of these bulks’ microstructures. B-15 bulk has an average particle size of 

260 nm, while B-30, B-45 and B-60 have 320, 350 and 370 nm respectively. The Jc observed was in 
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proportion with the measured average particle sizes for various bulks. This technique can be added to 

wires and tapes system, to harvest high performance at cheap means. Prior research on wires (Ag 

sheathed MgB2
 – 750oC/5 hrs) showed a critical current densities of around 2 x104 A/cm2, which 

is very less when compared to our present bulk Jc values [59]. Hence we can see prospects of 

improving performance of wires also with employing ultrasonication treatment. 

 

 

Fig. 6.7: FE-SEM images of a) 15 min ultra-sonicated MgB2 bulk sample, b) 30 min ultra-

sonicated MgB2 bulk sample, c) 45 min ultra-sonicated MgB2 bulk sample and d) 60 min ultra-

sonicated MgB2 bulk sample. The agglomerated tiny B particles grow into large grains in longer 

ultra-sonicated boron based bulk MgB2. 
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Fig. 6.8: Partcile-size distributions obtained from the analysis of the surface morphology by SEM, for the 

samples a) 15 min ultra-sonicated MgB2 bulk sample, b) 30 min ultra-sonicated MgB2 bulk sample, c) 45 

min ultra-sonicated MgB2 bulk sample, and d) 60 min ultra-sonicated MgB2 bulk sample. 

 

    We calculated the density of bulks using, density = Mass/ Volume and arrived at a density of 

approximately 1.23-1.3 g/cm3, which accounts to half of theoretical density of MgB2 (2.6 g/cm3), 

or also explained as 50% porosity. All of our samples and in general, bulk MgB2 synthesized by 

conventional sintering show this behavior. To observe the effect of ultra-sonication on pinning 

mechanism, we calculated flux pinning diagrams. The results were evaluated in terms of Dew-

Hughes general expression [60]. 

 

𝑓௣ ൌ 𝐴ሺℎሻ௣ሺ1 െ ℎሻ௤      (6.1) 

 

where fp is normalized flux pinning force, fp=Fp/ Fp,max, and h is reduced magnetic field, h=H/Hirr, 

where the irreversibility field, Hirr, was determined as the field, where Jc in the Jc(H) dependence 
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fell down to 100 A/cm2, a standard practice in our works. The fp(h) dependence was analysed at 

20 K. The dependence of equation 6.1 exhibits one peak at the field Hmax. Dew-Hughes correlated 

the peak positions with different types of pinning in the material. In our case, the peak position 

was located at 0.22 (see Fig. 6.9), which is close to the position 0.2 predicted by Dew Hughes to 

grain boundary pinning (δl pinning). This result was expected because we only reduced the size of 

raw material (boron), increasing the grain boundary area. In fact, grain boundary pinning is a 

standard pinning mechanism observed in sintered bulk MgB2 superconductor systems to which 

our samples belong. We tried to calculate p and q of Dew Hughes expression by fitting Eq. (6.1) 

and obtained at p ~ 0.7, q ~ 2.7, and A ~ 5.6 ± 0.11. The fit curve is the displayed as a wine coloured 

line in Fig.6.8, labelled as Fit Curve-Eq(6.1). The fitted curve perfectly imitates flux pinning 

diagrams of all the bulk samples. However these curves have slender FWHM when compared to 

theoretical grain boundary pinning diagram, p=0.5 and q=2 (the dark cyan coloured curve, labelled 

as Ref in Fig.6.9). From the figure it is clear that the classical model was broad, as it is established 

for isotropic materials. However, in case of the polycrystalline bulk MgB2, factors such as 

anisotropy and current percolation play important roles that can significantly slenderize the curve. 

In addition, there might be an effect of magnetic relaxation resulting in a difference between Hc2, 

to which magnetic fields in the original model were reduced, and Hirr determined by equilibrium 

between flux pinning and relaxation.  

Table. 6.2: Curve fit parameter estimations using Dew Hughes expression on flux pinning 

diagrams. 

Parameter Value Standard error 

p 0.7 - 

q 2.7 - 

A 5.6 0.11 

 

   It is possible to estimate contributions of various pinning mechanisms by modifying Dew-

Hughes general expression [60]. We tried to calculate the contributions from grain boundary 

pinning and point pinning. The reason for choosing point pinning among various pinning 

mechanisms [61,62] is that there is no scope for volume pinning (p = 0 & q = 2) as no secondary 

phase particles or dopants or δTc pinning phases were added or formed during MgB2 synthesis. 
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We used equation (6.2), with p1 = 0.5 & q1 = 2 (grain boundary pinning), and p2 = 1 & q2 = 2 

(point pinning), A1 & A2 being constants and w is a weight factor.   

 

𝑓௣ ൌ 𝑤 ൈ ሾ𝐴ଵሺℎሻ௣ଵሺ1 െ ℎሻ௤ଵሿ ൅ ሺ1 െ 𝑤ሻ ൈ ሾ𝐴ଶሺℎሻ௣ଶሺ1 െ ℎሻ௤ଶሿ          (6.2)   

 

By fitting Eq. (6.2) we arrived at A1 ~ 3.6, A2 ~ 3.2, and w ~ 0.9545, that indicates that nearly 95.5 

% of pinning comes from grain boundaries, while the rest (5.5%) being point pinning. 

 

 

Fig. 6.9: Flux Pinning diagram of ultra-sonicated samples (0, 15, 30, 45, 60 min) with curve fitting 

of equation 6.1 & equation 6.2. Peak position ~ 0.22 indicating the dominance of grain boundary 

pinning. 

 

   In the previous research by Zongqing Ma et.al [63], where MgB2 was doped by Cu, and 

synthesized at various temperatures, it was shown that tiny MgCu2 nano-inclusions serve as point 
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pinning centres most effective at high fields. Depending on the working temperature, the Cu 

addition effect differed and the primary pinning mechanism also changed. The nano-scale MgB2 

particles formed in our work might function in a similar fashion. But, as mentioned earlier, these 

particles exist only on pore surfaces and hence have very little contribution to flux pinning. 

   We also measured pinning properties of the best sample (15 min ultra-sonicated boron based 

MgB2) at various temperatures ranging from 10-35 K, giving insight into potential use in 

applications. High self-field Jc such as 434 and 382 kA/cm2 was observed at 10 and 15 K, 

respectively (see Fig. 6.10). Hirr was higher than 5 T at 10 K, which indicated applicability up to 

high magnetic fields.  

 

 

Fig. 6.10: Superconducting critical current density of 15 min ultra-sonicated sample at various 

temperatures. High self-field Jc such as 434 and 382 kA/cm2 was observed. 

 

   Flux pinning studies revealed that the fp(h) peak position slightly shifted towards lower fields 

with decreasing temperature, but stood in the range of 0.18 to 0.25 (see Fig. 6.11). This increase 

is because of decrease in the magnetic anisotropy with increase in temperature. Overall these 

results point that grain boundary pinning is still dominant, even at low temperature. 
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Fig. 6.11: Flux pinning diagram of 15 min ultra-sonicated sample at various temperatures (10 to 

35 K). Peak position = 0.18 ~ 0.25, indicating the dominance of grain boundary pinning. 

 

6.1.4 Conclusion 

   A novel high energy ultra-sonication technique was applied on cheap commercial boron 

precursor to improve superconducting performance of sintered bulk MgB2. We successfully 

refined boron up to nanometer size without formation of B2O3. Longer ultrasonication resulted in 

clustering of boron particles. XRD and magnetic studies of bulk MgB2 fabricated with this powder 

showed no impurities and high quality (Tc ~ 38.5 K; ΔTc ~ 0.7 K). Fine nanometer sized particles 

were observed via FE-SEM responsible for Jc improvement (by about 36 %). Our study revealed 

that 15 minutes of ultra-sonication in ethanol is optimal for the best performance and reaches 

saturation thereafter because of the larger grains in the matrix. Jc as high as 434, 382, and 280 

kA/cm2 was observed in MgB2 bulk based on for 15 minutes ultra-sonicated boron at 10, 15, and 

20 K, respectively. Flux pinning studies indicated that dominant pinning was grain boundary 

pinning. The ultra-sonication technique is highly cost effective, impurity free, and scalable and 

thus suitable for transfer of bulk MgB2 material to practice. 
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6.2 Influence of hexane dispersant on superconducting properties of high-energy ultra-

sonicated boron based sintered bulk MgB2 

6.2.1 Experimental procedure 

   This section is fragmented into two parts such as; i) preparing refined boron precursor from 

cheap commercial crystalline boron (Furu-uchi chemicals, 300 mesh) using ultra-sonic 

homogenizer, ii) fabrication of bulk MgB2 from the precursors-Mg powder and Refined boron 

powder obtained from part i). 

 i) In search of optimum conditions in hexane medium, the ultra-sonication time was varied, while 

maintaining power constant, at 50% (150 W) and frequency at 20 Hz. Continuous ultrasonication 

results in temperature rise of solution, hence we employed alternative intervals of 30 seconds run 

and pause. Effectively 15, 30, 45, and 60 minutes of ultasonication was carried out. The powder 

soon was heated around 100oC in a muffle furnace for an hour to get rid of residual hexane.  

ii)  The precursors used were commercial powders (Furu-uchi Chemical Corporation) of 

amorphous Mg powder (99.9% purity, 200 meshes), ultra-sonicated boron powder. The rest of the 

processing was similar to Chapter 6.1. From here on MgB2 bulks made from 15, 30, 45 and 60 

hexane ultrasonicated boron will be addressed as H15, H30, H45 and H60 respectively. 

   These bulks were later characterized using XRD, FE-SEM, EDAX and SQUID for 

understanding phase purity, microstructure, compositional analysis and superconducting 

properties respectively. 

 

6.2.2 Results and Discussion 

   In the novel technique –‘High Energy Ultrasonication’, the medium used to disperse boron 

powder is an important factor, in similar fashion to ball milling. Hence various medium result in 

different result, and in this work we used hexane. Hexane is a common lab chemical which has 

low boiling point (hexane boiling point - 68oC) and is cheap. As soon as boron is ultrasonicated, 

the powder is separated and heated 100oC for an hour, to ensure complete hexane evaporation. To 

check for any unwanted carbon incorporation from dispersant, we analyzed the powder using XRD 

(Fig. 6.12). XRD scanning from 2θ (10-60o) points out that there is no considerable change with 
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duration of ultrasonication as well as nature of dispersant. These powders were used to make MgB2 

bulk which were then studied for their superconducting performance. 

 

 

Fig. 6.12: XRD of the Boron ultra-sonicated for 15, 30, 45 and 60 minutes in hexane medium. 

 

   XRD of MgB2 bulks prepared from ultrasonicated boron precursors (shown in Fig. 6.13) reveals 

that usage of boron ultrasonicated in hexane over 45 min (H45 and H60) started showing unreacted 

Mg in the final matrix. Apart from that scarce amount of MgO is also formed which is a common 

impurity. Furthermore the intensity of Mg peak (proportional to Mg wt%) increased with increase 

in ultrasonication duration. This most likely due lack of exposure of boron because of 

agglomeration, thereby leaving unreacted Mg. As discussed in Chapter 6.1, agglomeration in this 

system happens quite early. 
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Fig. 6.13: XRD of the bulk MgB2 fabricated with hexane ultra-sonicated boron (15, 30, 45, 60 

minutes). 

Table. 6.3: Critical onset and offset temperatures of bulk MgB2 samples prepared with hexane 

ultra-sonicated boron. 

Bulk Tc,onset (K)  Tc,zero (K)  ΔTc (K) 

MgB2-15 min Hex-B  38.5 37.9 0.6 

MgB2-30 min Hex -B  38.5 37.8 0.7 

MgB2-45 min Hex-B  38.5 37.8 0.7 

MgB2-60 min Hex-B  38.3 37.3 1 

 

   While SQUID magneto metric measurements reveal that all the samples show high Tc,onset close 

to 38.5 K and ΔTc around 0.7 K, which show that the bulks fabricated are of high quality. Table. 

6.3 presents the detailed transition temperatures of all specimens. ΔTc of bulk H60 is highest of all 

bulk, as the unreacted Mg is maximum. Fig. 6.14 shows the M-T curves of all bulks, while the 

inset figure shows the variance of ΔTc of various bulks. Unreacted Mg akin to dopants is a non-

superconducting phase that deteriorates Tc  [64-69]. Examples of such scenarios comprise of 
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dopants like carbon sources, Ti, Cu, Fe, SiC and others resulted in decrease in Tc. Furthermore, the 

Tc drop increases with increase in amount of dopants added. 

 

 

Fig. 6.14: Superconducting transition temperature of MgB2 bulk made from Hexane ultra-

sonicated boron powder (15, 30, 45, 60 min). 

 

   On the other hand, Jc has increased for all the bulks when compared to non-ultrasonicated system 

(220 kA/cm2). However follows a trend of peak behavior with maximum in H30 bulk. Fig. 6.15 

provides the Jc – B curves. Self-field Jc of H30 has raised up to 260 kA/cm2, at 20 K (approximately 

20 % increment), H15 and H45 has raised up to 250 kA/cm2, at 20 K (approximately 15 % 

increment), and H60 has raised up to 230 kA/cm2, at 20 K (approximately 5 % increment). 

Simultaneously, flux pinning diagrams are calculated using Dew-Hughes expression [60]. In brief, 

normalized flux pinning force (fp=Fp/ Fp,max) was plotted against reduced magnetic field 

(h=Ho/Hirr) at 20 K for various bulks, where Hirr is the irreversibility field taken as the field, where 

Jc fell down to 100 A/ cm2 (see Fig. 6.16). The peak position is located to 0.18 (~0.2), which depicts 

the grain boundary pinning (δl pinning) behaviour which is expected because the ultrasonication 

helped in increasing grain boundaries in final microstructure. 
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Fig. 6.15: Superconducting critical current density of MgB2  bulk made from Hexane ultra-

sonicated boron powder (15, 30, 45, 60 min). All samples show improvement in Jc. Especially, the 

30 min ultra-sonicated sample shows superior improvement. 

 

 

Fig. 6.16: Flux pinning diagrams of MgB2 bulk made from Hexane ultra-sonicated boron powder 

(15, 30, 45, 60 min). Peak position ~ 0.2 indicating the dominance of grain boundary pinning. 
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   FE-SEM images (see Fig. 6.17) show a peculiar layered structures in all bulks, which is one of 

the important reasons from increment in Jc. However, the primary reason is due to the particle size 

refinement, similar to what we have observed in the ethanol medium scenario from chapter 6.1. 

Later Energy dispersive –X-ray analysis revealed that the layered structure contains more oxygen 

than regular matrix, likely an Mg-B-O phase (Fig. 6.18). From the quantitative analysis, it is found 

that oxygen is 4.5 wt% in layered structure and 2.2 wt% in the regular matrix. In the beginning we 

assumed that the phase might be regular MgO, however boron wt% was also significantly observed 

in layered structure. In previous studies such phases were observed in this system, popularly 

known as oxygen rich MgB2 [70, 71].  

 

 

Fig. 6.17: FE-SEM images of a) MgB2 bulk made from 15 min hexane ultra-sonicated boron 

powder, b) MgB2 bulk made from 30 min hexane ultra-sonicated boron powder, c) MgB2 bulk 

made from 45 min hexane ultra-sonicated boron powder and d) MgB2 bulk made from 60 min 

hexane ultra-sonicated boron powder. 
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Fig. 6.18: Oxygen weight percentage in MgB2 bulk made from 30 min hexane ultra-sonicated 

boron powder. 

 

Fig. 6.19: FE-SEM images of fractured surfaces of a) MgB2 bulk made from 15 min hexane ultra-

sonicated boron powder, b) MgB2 bulk made from 30 min hexane ultra-sonicated boron powder, 

c) MgB2 bulk made from 45 min hexane ultra-sonicated boron powder and d) MgB2 bulk made 

from 60 min hexane ultra-sonicated boron powder. 
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   On the other hand, the Jc values of the present bulk are below those of MgB2 made of in ethanol 

ultra-sonicated boron. FE-SEM images of fractured surfaces (Fig. 6.18) show that grains are much 

larger in the present bulks compared to MgB2 made of in ethanol ultra-sonicated boron. The 

particles/grains in H30 are the finest, followed by comparable H15 and H45 and largest are in H60. 

These trends reflect what we observed in Jc. The bigger particles are most likely due to the low 

refinement of boron precursor powder due to a low viscosity of hexane. 

   To estimate the limits of H30 bulk for practical applications, we performed M-H measurements 

at various temperatures such as 10 to 35 K with 5 K intervals. High self-field Jc such as 370, 330, 

260, 200, 125 and 50 kA/cm2 was observed at 10, 15, 20, 25, 30, and 35 K, respectively (see Fig. 

6.20). Flux pinning studies revealed that the fp(h) peak position was static at 0.2 (see Fig. 6.21). 

This shows that grain boundary pinning is still dominant, irrespective of temperature below Tc. 

 

 

Fig. 6.20: Superconducting critical current density of MgB2 bulk made from 30 min hexane ultra-

sonicated boron powder, at various temperatures. High self-field Jc such as 375 and 330 kA/cm2 

was observed at 10 and 15 K respectively. 
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Fig. 6.21: Flux pinning diagram of MgB2 bulk made from 30 min hexane ultra-sonicated boron 

powder, at various temperatures (10 to 35 K). Peak position ~ 0.2, indicating the dominance of 

grain boundary pinning. 

 

6.2.3 Conclusion 

   Ultrasonicated boron powder was free of boric oxide and carbon contamination, which was 

confirmed by XRD. However XRD of bulk MgB2 fabricated with the long duration (> 45 min) 

ultrasonicated powder showed signs of unreacted Mg in the final matrix. M-T curves revealed that 

longer ultrasonication of boron in the hexane medium can result in large ΔTc (~1K). Because of 

the peculiar microstructure such as Mg-B-O layers and refined grains, Jc performance improved 

by about 20%. The present work reveals that 30 minutes of B ultra-sonication in hexane is optimal 

for the best performance. Jc as high as 370, 330, and 260 kA/cm2 was observed in the best bulk at 

10, 15, and 20 K, respectively. Flux pinning studies indicated that dominant pinning was grain 

boundary pinning. The performance was poor compared to ethanol medium ultrasonicated 

samples. However, other parameters such as oscillating frequency and power etc. are yet to be 

studied for obtaining best condition.  
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6.3 Effect of distilled water high-energy ultra-sonicated boron on sintered bulk MgB2 

6.3.1 Experimental 

   Like in prior chapters (6.1 and 6.2), in this work we tried to investigate optimum ultrasonication 

time in distilled water medium for refining cheap commercial boron (Furu-uchi chemicals, 300 

mesh). The ultra-sonication time was varied from 15 to 60 minutes with an interval of 15 minutes, 

under constant power (50% of maximum limit - 150 W) and frequency (20 Hz). The powder soon 

was heated around 125 oC in a muffle furnace for an hour to get rid of residual water. These refined 

powders are mixed with amorphous Mg powder (99.9% purity, 200 meshes) in a molar ratio of 

1:2 and ground rigorously for 30-40 minutes in a glove box containing Argon atmosphere. Pellets 

of 20 mm diameter, 7 mm thickness were pressed using a uniaxial hydraulic press with a force of 

approximately 20 kN. These pellets were wrapped in Titanium (Ti) foils and sintered in a tube 

furnace at 775oC for 3 hours with continuous Ar flow. From here on MgB2 bulks made from 15, 

30, 45 and 60 distilled water ultrasonicated boron will be addressed as W15, W30, W45 and W60 

respectively. 

   The bulks after sintering are characterized by High-resolution automated Rigaku smart-lab X-

ray powder diffractometer (RINT2200) with a step size of 0.01o over 20o to 90o, using Cu-Kα 

radiation generated at 40 kV and 30 mA was used to identify the phase information. Followed by 

M-H and M-T curves measurements using a SQUID magnetometer. Special specimens with 

dimensions around 1x1x0.5 mm3 were made from bulk MgB2 pellets which are subjected to varied 

magnetic field (0 – 5 T) and temperature (10 – 50 K). Later Jc and flux pinning are estimated using 

Extended Bean’s Critical state model and Dew Hughes equation respectively. 

 

6.3.2 Results and Discussion 

   From the XRD shown in Fig. 6.22, it is evident that there are no contaminants present in the matrix apart 

from scarce quantities of MgO, which is formed during the transfer from glove box to furnace and the 

pressing step. 
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Fig. 6.22: XRD of the bulk MgB2 fabricated with distilled water ultra-sonicated boron (15, 30, 45, 

60 minutes). 

 

   From Fig. 6.23 (a-e), we can observe that the particles in microstructure of W0 are big and 

agglomerated, while W15 and W30 bulk are much finer. And the microstructure of W45 and W60 

are finer, but not as fine as in W30. Slight hints of agglomeration can also be observed. This 

scenario looks very similar to of the ethanol medium, where the maximum performance was 

observed in B-15 bulk. In a similar hypothesis, based on microstructure it is expected to have 

highest Jc in W30 bulk followed by W15 and then others. This is because of the increase in number 

of grains helps in increased flux pinning. In case of W45 and W60, the grains look bigger and 

collated to form large grains and hence we can expect decrease in Jc. 
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Fig. 6.23: FE-SEM images of various MgB2 bulks; a) non ultrasonicated, b) made from 15 min 

distilled water ultra-sonicated boron powder (W15), c) MgB2 bulk made from 30 min distilled 

water ultra-sonicated boron powder (W30), d) MgB2 bulk made from 45 min distilled water ultra-

sonicated boron powder (W45) and e) MgB2 bulk made from 60 min distilled water ultra-sonicated 

boron powder (W60). 
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Fig. 6.24: Normalized Susceptibility vs Temperature curves of MgB2 bulks made from distilled 

water ultrasonicated boron (15, 30 min). 

   M-T or superconducting critical temperature studies were performed on W15 and W30 (see Fig 

6.24). Tc,onset of the both bulks was around 38.5 K, similar to that of bulks made for other media 

ultrasonicated boron. ΔTc of both the bulks was around 0.5 K which implies a sharp transition that 

depicts high quality bulk MgB2. While critical current density plotted (Fig. 6.25) using M-H 

curves, reveal that as anticipated the W30 bulk showed the highest Jc. Self-field Jc at 20 K was 

295, 303, 260 and 240 kA/cm2 in W15, W30, W45 and W60 bulks respectively, which amounts 

upto 34, 36, 18 and 9% improvement. The Jc values followed the predicted trend and was 

consistent with all media. Much clear details can be found from Table. 6.4 
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Fig. 6.25: Jc- H curves of MgB2 bulks made from distilled water ultrasonicated boron (15, 30, 45 

and 60 min minutes). 

Table. 6.4: Superconducting properties of MgB2 bulks made from distilled water ultrasonicated 

boron (15, 30, 45 and 60 min). 

Bulk Tc,onset (K)  ΔTc (K)  Self-field Jc (kA/cm2), at 20K  % increase in Jc 

MgB2-15 min Ultra-B  38.5 0.6 295 34 % 

MgB2-30 min Ultra-B  38.4 0.5 303 36 % 

MgB2-45 min Ultra-B - - 260 18 % 

MgB2-60 min Ultra-B - - 240 9 % 

 

6.3.3 Conclusion: 

   High energy ultra-sonication technique using distilled water medium was applied on cheap 

commercial boron precursor to improve superconducting performance of sintered bulk MgB2. 

XRD shows that single bulk MgB2 was fabricated with very scarce MgO impurities. While critical 
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transition temperature results (Tc ~ 38.5 K; ΔTc ~ 0.5 K) revealed high quality bulk. Refined grain 

structure was observed via FE-SEM in final bulks that are made up of ultrasonicated boron. This 

microstructure is responsible for Jc improvement (by about 35 %) in both MgB2 bulks made out 

of boron ultra-sonicated in distilled water for 15 and 30 minutes. Self-field Jc as high as 303 and 

295 kA/cm2 was observed in W15 and W30 at 20K. The present results show that the performance 

of bulk is similar to that of what we observed in ethanol medium, however better than hexane 

medium. Furthermore, it is evident from all the systems ethanol, hexane and water media that 15-

30 minutes of pre ultrasonic treatment to boron powder is optimum for best Jc. 
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Chapter 7 

Summary and Conclusions 

 

   Bulk MgB2 shows great potential for commercial applications under the conditions of good flux 

pinning, high Hirr & Hc2 and Jc. In this work, we tried to address these issues via thorough 

understanding of the processing, microstructure control, magnetic performance and their intrinsic 

relationship. In addition, ways to attain high performance in a cheap way was also explored. 

   First, we tried to improve critical current density (Jc). From prior research we know that grain-

boundaries are effective pinning centers in this material. Further, boron precursor particle size 

plays a vital role in optimizing Jc. To achieve this effect, we used a commercial nano-amorphous 

boron. The results were astonishing and Jc of 408 kAcm-2 was observed at 20K, self-field. These 

results were justified by SEM micrographs, which revealed nano-sized grains in final 

microstructure and supported by flux pinning diagrams. However, the high field Jc and upper 

critical field Hc2 was not improved much.  

   Second, carbon is considered the best dopant for Hc2 and high-field pinning. However, there was 

a serious issue of inhomogeneous distribution of carbon in the matrix. To solve this issue, we used 

a carbon-encapsulated boron prepared by a special pyrolysis technique applied on nano-amorphous 

boron. Several wt% of carbon were applied and systematically studied. It was found that a low 

amount of carbon gives the best results. We further tested the carbon concentration and dispersion 

to find the precise optimum. As expected, both the high-field Jc and Hc2 were improved and showed 

optimum values for 1.5 wt% carbon. Tremendous self-field Jc of 660 kA/cm2 was observed at 10 

K, and in high fields Jc also significantly increased. Hc2 (calculated by extrapolation) was also 

substantially improved, being almost equivalent to the best records reported so far. To further 

improve this result, our group tried to add Ag. Microstructural analysis showed Ag-Mg phases 

formed in the matrix and optimum performance was observed for 4 wt% Ag. To compensate for 

loss of Mg entering reaction with Ag, as well as to increase the Ag-Mg phase fraction, we then 

added excess Mg to the precursor. 7.5 wt% excess of Mg resulted in the best result, with highest 
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Ag-Mg phase (2 wt%), high irreversibility field (Hirr) of 4.76 Tesla and large Jc such as 440 kA/cm2 

at 20 K, self-field. SEM analysis confirmed presence of secondary Ag-Mg phases and improved 

microstructural changes such as Ag-Mg particle refinement, up to 20-40 nm which acted as pinning 

centers. Although these values were remarkable, the commercial precursors were expensive, which 

might make the final product costly. In order to reach this level of performance with cheap inputs, 

we introduced a novel technique of high-energy ultra-sonication and explored the possibilities. 

The main aim in this work was to create nano-sized boron via ultra-sonication, and arrive at high 

Jc in the final bulk. Various dispersants, like ethanol, hexane and distilled water, were used to 

suspend the boron particles during ultra-sonication. Beside size refinement, the obtained fine boron 

powder was free of B2O3, due to which the MgB2 bulks were of good quality. TEM and SEM 

analysis on ultrasonicated boron revealed nano-sized particles. Among all attempts, ultra-

sonication in ethanol and water resulted in the highest Jc of 300 kA/cm2 at 20 K, self-field (35% 

improvement compared to bulk MgB2 produced by normal commercial boron powder). Low 

duration ultra-sonication for 15 min and 30 min in ethanol and distilled water was enough to reach 

the best performance. Further ultra-sonication caused boron powder to get agglomerated, which 

resulted in large grains in the final microstructure.  

   In conclusion, the present work checks ways to tackle the current trending issues in bulk MgB2 

and make it suitable for use in practical applications. 



115 
 

List of Figures 

 

1.1   a) H K Onnes portrait, b) Discovery of superconductivity in Hg at 4.2 K………………...…1 

1.2   Critical volume made from Jc, Tc and Hc as axes for maintaining superconducting state…....2 

1.3   Magnetic behavior of a) Type I superconductors and b) Type II superconductors…………..4 

1.4   Crystal structure of MgB2……………………………………………………………………..8 

1.5   Electronic band structure of MgB2 superconductor…………………………………………..9 

1.6   Fermi surface of MgB2 superconductor……………………………………………………...10 

1.7   Low magnification SEM image of bulk MgB2 (almost 50% porous)……………………….14 

1.8   Mg-B phase diagram………………………………………………………………………..15 

2.1   Heat pattern for sintering bulk MgB2 superconductor………………………………………24 

2.2   Schematic of the particle refinement using high energy ultrasonication……………………25 

2.3   Schematic of x-ray diffraction illustrating the constructive interference for Bragg 

diffraction...………………………………………………………………………………………26 

2.4   Cross-section of electron beam-specimen interaction; Scanning Electron Microscope……..27 

2.5   TEM, beam interaction with thin specimen…………………………………………………28 

2.6   Illustration of a typical M-H curve used for estimating Jc…………………………………..30 

3.1   X-ray diffraction pattern for MgB2. Very small MgO peaks were visible confirming the 

synthesis of high purity MgB2 single phase material……………………………………………..35 

3.2   Phase fraction calculation using Rietveld analysis (using MAUD software). Depicts the low 

concentration of MgO in the matrix………………………………………………………………36 

3.3   SEM micrographs of MgB2 at Low magnification depicting the high porosity………….…37 



116 
 

3.4   SEM micrograph at higher magnification illustrating the fine grained MgB2. Grain sizes 

ranging from 100-500 nm are observed…………………………………………………………..38 

3.5   Superconducting transition in the bulk MgB2 material. Note that a sharp superconducting 

transition (onset Tc) is observed close to 37.8K…………………………………………………..39 

3.6   Jc vs H plot – High Jc such as 408 kAcm-2 is observed in self field at 20 K and Normalized 

flux pinning curve vs reduced magnetic field (fp vs h), where fp=Fp/ Fp,max and h=Ho/Hirr . fp  = 1 

at h=0.17 which indicates the grain boundary aided pinning……………………………………..39 

3.7   Atomic percentages of elements in the MgB2 matrix using EDX analysis. Details of two 

differently spots are chosen to get a broad spectrum of elemental distribution of the matrix…….40 

4.1   XRD of MgB2 with several wt% CEB based bulks ………………………………………..48 

4.2   Normalized susceptibility plotted against temperature ……………………………………..49 

4.3   Tc,onset (on the left Y-axis in black) and lattice parameter a (on the right Y-axis in blue) plotted 

against CEB wt%…………………………………………………………………………………49 

4.4    Superconducting critical current density of various CEB wt% based MgB2 bulks. 1.5 wt% 

CEB MgB2 bulk shows the best performance…………………………………………………….51 

4.5    Superconducting critical current density-Jc vs Crystallite size of various CEB based MgB2 

bulk. Plot shows an inverse proportionality..……… ………………………………………...…52 

4.6  Superconducting critical current density of CEB 1.5 wt% based MgB2 bulk at various 

temperatures. At 10 K, the Jc reached 660 kA/cm2……………………………………………….52 

4.7   Flux pinning diagrams of the 1.5 wt% CEB based MgB2 bulk and a reference normal MgB2 

bulk. The 1.5 wt% CEB MgB2 bulk shows slight increase in peak position as well as the curve 

width..……………………………………………………………………………………………54 

4.8   Flux pinning diagrams of the 1.5 wt% CEB based MgB2 bulk at various temperatures. The 

normalized flux pinning force at high fields increases with reduction in operating temperature but 

the peak position doesn’t shift……………………………………………………………………55 

4.9   Microstructural analysis (left most) and carbon distribution (center) of 1.5 wt% ccb based 

MgB2 bulk. High magnification image (right most) illustrates the nanometer sized particles…..56 



117 
 

5.1   XRD of MgxB2-CCB 1.5%- Ag 4wt% which shows the optimum Ag-Mg phase formation at 

x=1.075…………………………………………………………………………………………63 

5.2   Phase fraction calculation of MgxB2-CCB 1.5%- Ag 4 wt%, Ag-Mg phase fraction is high in 

x = 1.075 sample. (using MAUD software)………………..……………………………………64 

5.3   First derivative of DC susceptibility vs temperature profiles of various Mg excess (MgxB2-

CCB 1.5%-Ag 4 wt%) added samples. Tc is around 37.5 K as expected of carbon addition.……65 

5.4   Temperature dependence of magnetic susceptibility for MgB2 bulk samples with various Mg 

precursor concentrations.  All samples show sharp superconducting transition……………...…66 

5.5   Magnetization loops of systematically excess Mg added samples (MgxB2-CCB 1.5%-Ag 4 

wt%). Sample x = 1.075 shows high critical field or Hirr………………..………………………..67 

5.6   Superconducting critical current density of various excess Mg added samples (MgxB2-CCB 

1.5%-Ag 4 wt%) at various magnetic fields. At high fields and low fields, x = 1.075 sample shows 

best performance…………………………………………………………………………………68 

5.7   Field dependence of critical current densities for MgxB2-CCB 1.5% and 4wt% Ag, at 20 K. 

at x = 1.075 highest Jc can be observed…………………………………………………………68 

5.8     Flux pinning diagrams calculated from the M–H loops using Dew–Hughes model. Peak 

position lies at approximately 0.2 which indicates the primary pinning mechanism is grain 

boundary pinning...………………………………………………………………………………70 

5.9   Levitation force measured at 20 K on 10 mm diameter MgB2 bulk made from commercial 

boron and the present best bulk (10 mm diameter), 7.5 wt% excess Mg based MgB2…….……71 

5.10   Low magnification SEM analysis of Mg rich MgB2 samples. AgMg phase (white) in the 

MgB2 matrix (black); SEI image (left), comp image (right)…………………………………….72 

5.11  High magnification SEM images of the layer structure over the big MgB2 grains. Grain 

refinement up to 20–40 nm can be seen…………………………...…………………………….72 

5.12  EDX analysis of microstructure using SEM. Microstructure (left-top) indicates a nano-layer 

different from matrix. The peaks intensity or counts (left-bottom) show the Ag presence in the 



118 
 

layer of the matrix. Distribution images (right) shows the uniformity of carbon from CCB (top) 

and Ag (bottom) in the matrix………………………………………………..………………….73 

5.13   Superconducting critical current density vs temperature curves of the beast sample at various 

temperatures. Exceptional value such as 521 kA/cm2 Jc is observed at self-field, 10 K…………74 

5.14   Flux pinning diagrams of the best sample at various temperatures. Fp/Fp,max is located close 

to 0.2 indicating the dominant grain boundary pinning does not change with the temperature after 

addition of excess Mg, Ag, and CCB usage………………………………………………………74 

6.1   XRD of the ultra-sonicated Boron (0, 15, 30, 45, 60 minutes). All diffraction patterns shown 

no signs of B2O3 formation………………………………………………….……………………81 

6.2   SEM micrographs of a) Pristine cheap commercial boron, b) 15 min ultra-sonicated boron, c) 

30 min ultra-sonicated boron, d) 45 min ultra-sonicated boron, and e) 60 min ultra-sonicated boron. 

Fine particles around few nano meters can be seen after ultrasonication. In higher ultrasonicated 

powders, clustering can be observed……………………………………………………………..82 

6.3  TEM micrograph of 15 min ultra-sonicated boron powder. Tiny particles around 20 -50 nm can be 

seen...…………………………………………………………………………..………….………………83 

6.4   XRD of the ultra-sonicated samples (0, 15, 30, 45, 60 minutes). All diffraction patterns are 

similar to conventional sintered MgB2 pattern with scarce MgO impurities…….………..…….84 

6.5   Superconducting transition temperature of ultra-sonicated samples (0, 15, 30, 45, 60 min). 

All samples show sharp Tc indicating high quality superconducting MgB2……………………..85 

6.6   Superconducting critical current density of ultra-sonicated samples (0, 15, 30, 45, 60 min). 

All samples show improvement in Jc. Especially, 15 min ultra-sonicated sample shows superior 

improvement…………………………..…………………………………………….…………..86 

6.7   FE-SEM images of a) 15 min ultra-sonicated MgB2 bulk sample, b) 30 min ultra-sonicated 

MgB2 bulk sample, c) 45 min ultra-sonicated MgB2 bulk sample and d) 60 min ultra-sonicated 

MgB2 bulk sample. The agglomerated tiny B particles grown into large grains in longer ultra-

sonicated boron based bulk MgB2……………………………………………………………….87 

6.8   Partcile-size distributions obtained from the analysis of the surface morphology by SEM, for the 



119 
 

samples a) 15 min ultra-sonicated MgB2 bulk sample, b) 30 min ultra-sonicated MgB2 bulk sample, c) 45 

min ultra-sonicated MgB2 bulk sample, and d) 60 min ultra-sonicated MgB2 bulk sample………………88 

6.9   Flux Pinning diagrams of ultra-sonicated samples (0, 15, 30, 45, 60 min) with curve fitting of 

equation 6.1 & equation 6.2. Peak position ~ 0.22 indicating the dominance of grain boundary 

pinning………...……………………………………………………………………….……...…90 

6.10   Superconducting critical current density of 15 min ultrasonicated sample at various tempera-

tures. High self-field Jc such as 434 and 382 kA/cm2 was observed………………….………….91 

6.11   Flux Pinning diagram of of 15 min ultra-sonicated sample at various temperatures (10 to 35 

K). Peak position = 0.18 ~ 0.25, indicating the dominance of grain boundary pinning……….….92 

6.12   XRD of the Boron ultra-sonicated for 15, 30, 45 and 60 minutes in hexane medium……..94 

6.13  XRD of the bulk MgB2 fabricated with hexane ultra-sonicated boron (15, 30, 45, 60 

minutes)………………………………………………………………………………………..…95 

6.14   Superconducting transition temperature of MgB2 bulk made from Hexane ultra-sonicated 

boron powder (15, 30, 45, 60 min)………………………………..……………………….……..96 

6.15   Superconducting critical current density of MgB2 bulk made from Hexane ultra-sonicated 

boron powder (15, 30, 45, 60 min). All samples show improvement in Jc. Especially, 30 min ultra-

sonicated sample shows superior improvement………………………………………………….97 

6.16   Flux pinning diagrams of MgB2 bulk made from Hexane ultra-sonicated boron powder (15, 

30, 45, 60 min). Peak position ~ 0.2 indicating the dominance of grain boundary pinning…..…..97 

6.17   FE-SEM images of a) MgB2 bulk made from 15 min hexane ultra-sonicated boron powder, 

b) MgB2 bulk made from 30 min hexane ultra-sonicated boron powder, c) MgB2 bulk made from 

45 min hexane ultra-sonicated boron powder and d) MgB2 bulk made from 60 min hexane ultra-

sonicated boron powder…………………………………………………………………….…….98 

6.18   Oxygen weight percentage in MgB2 bulk made from 30 min hexane ultra-sonicated boron 

powder……………………………………………………………………………………………99 

6.19   FE-SEM images of fractured surfaces of a) MgB2 bulk made from 15 min hexane ultra-

sonicated boron powder, b) MgB2 bulk made from 30 min hexane ultra-sonicated boron powder, 



120 
 

c) MgB2 bulk made from 45 min hexane ultra-sonicated boron powder and d) MgB2 bulk made 

from 60 min hexane ultra-sonicated boron powder..……………………………………….……99 

6.20   Superconducting critical current density of MgB2 bulk made from 30 min hexane ultra-

sonicated boron powder, at various temperatures. High self-field Jc such as 375 and 330 kA/cm2 

was observed at 10 and 15 K respectively……………………………………………………….100 

6.21   Flux pinning diagram of MgB2 bulk made from 30 min hexane ultra-sonicated boron powder, 

at various temperatures (10 to 35 K). Peak position ~ 0.2, indicating the dominance of grain 

boundary pinning…………………………………...…………………………………………..101 

6.22   XRD of the bulk MgB2 fabricated with distilled water ultra-sonicated boron (15, 30, 45, 60 

minutes)…………………………………………………………………………………………103 

6.23   FE-SEM images of various MgB2 bulks; a) non ultrasonicated, b) made from 15 min distilled 

water ultra-sonicated boron powder (W15), c) MgB2 bulk made from 30 min distilled water ultra-

sonicated boron powder (W30), d) MgB2 bulk made from 45 min distilled water ultra-sonicated 

boron powder (W45) and e) MgB2 bulk made from 60 min distilled water ultra-sonicated boron 

powder 

(W60)…………………………………………………………………………………………...104 

6.24   Normalized Susceptibility vs Temperature curves of MgB2 bulks made from distilled water 

ultrasonicated boron (15, 30 min)……………………………………………………….………105 

6.25   Jc-H curves of MgB2 bulks made from distilled water ultrasonicated boron (15, 30, 45 and   

60 minutes)……………………...……………… …………………..……………………...…..106 

 



121 
 

List of Tables 

3.1   Atom percentages of elements using EDX analysis. Indicates very minute amount of Oxygen 

contamination…………………………………………………………………………………….38 

4.1   Lattice parameters and crystallite size calculations from XRD data. Large reduction and 

smallest crystallite size are observed in cc 1.5 wt% based MgB2 bulk…………………………..48 

5.1   Depicts the detailed information on superconducting critical temperature onsets (Tc(onset)) and 

offsets (Tc(zero)). ∆Tc is approximately 1 K…………………………………………………………64 

6.1   Critical onset and offset temperatures of bulk MgB2 samples prepared with ultra-sonicated 

boron……………………………………………………………………………………………..85 

6.2   Curve fit parameter estimations using Dew Hughes expression on flux pinning diagrams..89 

6.3  Critical onset and offset temperatures of bulk MgB2  samples prepared with hexane 

ultrasonicated boron……………………………………………………………………………..95 

6.4  Superconducting properties of MgB2 bulks made from distilled water ultrasonicated boron 

(15, 30, 45 and 60 min)…………………………………….………………… ………………..106 

 


