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ABSTRACT 

COMPARISON OF LONGITUDINAL CHANGES IN RESTING STATE 

FUNCTIONAL MAGNETIC RESONANCE IMAGING BETWEEN 

ALZHEIMER’S PATIENTS AND HEALTHY CONTROLS 

 

by 

Berk Can Yilmaz 

Resting State Functional Magnetic Resonance Imaging (rs-fMRI) is a technique that is 

widely used for analyzing brain function using different approaches and methods. This 

study involves rs-fMRI analysis of Blood Oxygenation Level Dependent (BOLD) 

signals acquired from Alzheimer’s disease (AD) Patients and Healthy Controls (HC). 

Each subject in the study had both functional and anatomical images with at least one 

rs-fMRI scan with their Anatomical (T1) scans. Previous rs-fMRI studies have 

demonstrated that AD shows differences in Amplitude of Low Frequency (<0.1 Hz) 

Fluctuations (ALFF), and Regional Homogeneity (ReHo) measures according to HCs.  

 The aim of the study is to investigate individual and group level differences 

using ReHo and mALFF related measures in a longitudinal analysis. The hypothesis is 

that with the age and group (AD or HC) of the subject, it is possible to separate AD and 

HC subjects from each other using 3 different ROIs (DMN – MT – MV), These regions 

are known to show abnormalities in AD patients but clinical wise never been identified 

as neuroimaging biomarkers. This study tries to check these ROIs to see if there are 

significant differences between the AD patients and HCs using 3 different features.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Alzheimer’s Disease 

This current study focuses on functional brain activity in Alzheimer’s disease (AD) patients 

and compares against healthy control subjects. AD, discovered and named after German 

psychiatrist Dr. Alois Alzheimer, is a progressive neurodegenerative disease that affects older 

people (>50 years old). His patient, Auguste D., experienced memory loss, paranoia, 

psychological changes, and cognitive impairment. During the autopsy, Dr. Alzheimer found 

abnormalities in the white matter (WM) of the AD patient’s brain (Azeez & Biswal, 2017, 

Hippius & Neundörfer, 2003, Giffard et al., 2008). Figure 1 presents a representation of the 

known risk factors associated with AD. 

 

Figure 1.1 Alzheimer’s disease risk factors. 
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AD patients experience psychiatric symptoms and dementia that gradually progress with age 

(Onyike, 2017), as represented in Figure 1.2. A recent study by Xia-a Bi and colleagues showed 

that the number of AD patients worldwide could potentially reach one hundred million by 2050 

(Bi et al., 2018). This necessitates the importance of having an early detection mechanism. 

Biomarkers in neuroimaging provide the opportunity to improve early detection by identifying 

changes that occur with the progression of psychiatric symptoms and dementia (Onyike, 2017). 

For AD specifically, early detection can be improved by identifying changes in cognitive 

function with neuroimaging. 

 

 

Figure 1.2 Natural history of Alzheimer’s disease. Adapted from Feldman and Gracon, 1996. 

 

Using neuroimaging to compare differences in cognitive function between AD patients and 

healthy individuals provides the opportunity to better understand the progression of the disease. 

Neuroimaging for AD also provides the opportunity to improve early detection based on 

identified differences between AD patients and healthy individuals.  
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Figure 1.3 Three stage progress of Alzheimer’s disease. 

 

Currently, various methods in neuroimaging are being used for the detection of AD. Positron 

emission tomography (PET), magnetic resonance imaging (MRI), and functional MRI (fMRI) 

are common neuroimaging methods that have been widely used to study AD. PET is a 

neuroimaging method used for detecting changes in metabolic activity in the brain. The 

disadvantages of the PET technique include its use of radioactive substances and its low spatial 

and temporal resolution. 

MRI is a neuroimaging method used to generate images of organs in the body. MRI 

uses protons and electromagnetic waves to obtain images with high spatial resolution. MRI 

does not have any known side effects and is therefore widely used in clinical imaging. The 

fMRI method is a dynamic version of MRI and is widely used to study human brain function. 

Some of the advantages of fMRI include the use of non-ionizing radiation, the ability to be non-

invasive, the capacity to efficiently scan a single patient multiple times, and adequate spatial 
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and temporal resolution (Bi et al., 2018, Tepmongkol et al., 2019, Giffard et al., 2008, Li et al., 

2002). 

          Resting-state functional magnetic resonance imaging (rs-fMRI) is becoming more popular 

in the field of neuroimaging. For patients with AD, rs-fMRI is emerging as a standardized 

method which allows for the measurement of functional connectivity in the brain. The use of 

rs-fMRI suggests that data or model-driven methods can enable researchers to discern the 

decline of brain function. More information regarding fMRI is discussed in Chapter 2.  

 

1.2 Biomarkers 

Biomarkers, first created for chronic pain disorders, are measurable parameters that can be used 

to reliably identify disorders. Examples of biomarkers used today include prognostic and 

predictive markers which, as the name suggests, can determine the risk of future pain and 

ascertain the effects of treatment (van der Miesen et al., 2019, Woo & Wagner, 2015). 

Neuroimaging biomarkers have certain features that can classify biomarkers as functional or 

not. In the field of AD, technological advances have been made in identifying biomarkers by 

using neuroimaging approaches to recognize changes that are associated with the progression 

of the disease, especially in the frontal gyrus (FG) and the default mode network (DMN). In 

AD patients, functional connectivity between the FG and other brain regions appear abnormal, 

which may explain memory dysfunction and allow FG to be a potential biomarker for AD (Bi 

et al., 2018). Suitable biomarkers must provide reliable information about the condition of the 

living organism, and effective biomarkers are those that can allow us to better understand a 

condition. This means that a biomarker should have distinguishable parameter(s) that are able 

to identify significant differences and distinct conditions.  A quality biomarker should offer 

accurate diagnostic performance in classification or prediction of the condition, which is 
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accomplished based on the sensitivity of the technique (Damoiseaux, 2012, Woo et al., 2017, 

Woo & Wagner, 2015).  

 

1.3 Objectives 

The objective of this study is to see if the progression of Alzheimer‘s disease can be explained 

by applying a multiple linear regression analysis using the information from ReHo and RSFC 

spatial maps, and determine if this information can be used for early detection for this disease. 

Altered brain regions in AD patients were determined by using several complimentary 

approaches such as independent component analysis (ICA), regional homogeneity (ReHo), and 

amplitude of low-frequency fluctuations (ALFF). Spatial maps, generated from rs-fMRI scans 

of AD patients and HCs and analyzed using a multiple linear regression analysis, are to be used 

to compare the two groups in a longitudinal approach. In this study, three regions were selected 

to be used in multiple analysis techniques using age and condition (HC or AD) to separate the 

two groups and identify the progression of the disease. Chapter 4 explains the various analysis 

methods used for this study in more detail.  

 

1.4 Outline 

The outline of this thesis is presented as follows: Chapter 1 – Introduction, Chapter 2 – Magnetic 

Resonance Imaging and Data Acquisition, Chapter 3 – Image Processing Methods, Chapter 4 

– Functional Connectivity and Statistical Analysis, Chapter 5 – Results, Chapter 6 – Conclusion 

and Discussion. 
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CHAPTER 2 

MAGNETIC RESONANCE IMAGE SCANNING AND DATA ACQUISITION 

 

2.1 Magnetic Resonance Imaging Techniques 

2.1.1 Magnetic Resonance Imaging Review 

Magnetic Resonance Imaging (MRI) uses large magnetic fields with radiofrequency signals in 

conjunction with hydrogen protons in our body to create high resolution structural images of 

soft tissue. MRI has been used to study structural brain differences between healthy controls 

and diseased patients, such as AD patients. fMRI has been used during both stimulus/task 

activation and during the resting state condition to study systems-level human brain function. 

In this section, MRI and functional MRI will be introduced to provide a background for the 

techniques used in this study.  

MRI uses strong magnetic fields in conjunction with radiofrequency signals at preset 

frequencies (Larmor Frequency) to generate images. The generated magnetic field strengths are 

typically represented in tesla (T), where one tesla equals 10,000 gausses. Although 3T machines 

are widely used for human research, there are also 1.5T, 7T, and 11T MRI scanners available. 

An MRI scanner has three main components, each represented by a letter in the MRI acronym. 

The letter M in MRI stands for magnetic fields, which are typically generated by 

superconducting coils within the machine. The magnetic field is responsible for stimulating 

hydrogen protons or spin vectors. Stimulated spin vectors all align in the same direction of the 

magnetic field. The letter R in MRI stands for resonance, which is the delivery of radio 

frequencies (RF) at the Larmor frequency. The Larmor frequency is the frequency value needed 

to stimulate aligned spin vectors in a given region. In other words, the Larmor frequency is the 

frequency value of the atomic nuclei for a hydrogen atom at a particular magnetic amplitude. 

Lastly, the letter I in MRI stands for imaging. Imaging for an MRI scanner requires an alteration 
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of the magnetic field strength over space. This can be done by turning the coils on and off. 

Acquired signals are used within Discrete Signal Processing (DSP) cards to reconstruct the 

incoming signals from the X – Y – Z planes to create a 3D image of the target tissue that is 

being scanned (Huettel et al., 2014). 

MRI scanners use pulse sequences to control the timing of signal excitation and data 

collection and to generate images from biological tissues. The pulse sequence is a feature that 

allows an MRI scanner to acquire images with distinct timing to highlight different tissues with 

different physical properties. By using different pulse sequences, it is possible to create images 

of different biological tissues (bones, tumors, muscles). However, MRI has several limitations, 

such as difficulties in scanning patients with claustrophobia, obesity, and/or metal implants 

(Huettel et al., 2014). In spite of these limitations, MRI is routinely used for clinical imaging 

and remains one of the most popular methods for performing structural imaging.  

T1 and T2 relaxation times are used as a means of generating images for brain mapping. 

T1 relaxation is used for anatomical images and is the most common technique used to generate 

3D structural images of the brain. Anatomical images are also known to be called T1 images if 

T1 relaxation is used during generation. T1 relaxation, or T1 recovery time, is the amount of 

time spent for a spin vector to get its maximum longitudinal magnetization value after an RF 

pulse. In other words, the T1 recovery graph is the longitudinal magnetization value as a 

function of time after an RF pulse.  

T2 or T2 decay graphs are generated similarly. However, T2 uses the transverse 

magnetization value as a function of time. Another value that is important in T2 decay graphs 

is T2*. T2* is the decaying sinusoidal signal used in fMRI. Using the T2-weighted MRI 

technique, manipulations in blood oxygen can be measured (Ogawa et al., 1990). The gradient 

echo approach is often used with different variations to make tissues sensitive to T2* contrast. 

T2* can produce blood origination dependent changes and is always shorter than T2. In 
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summary, the T2* principle is the foundation for a BOLD contrast. It is the main reason that 

fMRI has a high temporal resolution (Huettel et al., 2014).   

 

2.1.2 Functional Magnetic Resonance Imaging Review 

The term fMRI, as the name implies, allows us to investigate human brain function for a short 

time period. The data is typically sampled every 2 seconds, referred as the repetition time (TR). 

fMRI has a high temporal resolution that can measure short-term functional activity changes, 

allowing researchers to localize brain activity on a second-by-second basis. Since fMRI also 

has high spatial resolution capabilities, fMRI is a powerful tool to investigate brain activity. 

Unlike PET, fMRI does not use radiation or isotopes and is non-invasive, allowing patients to 

be scanned multiple times. These features are the main reason that made fMRI a popular 

investigative tool. Currently, fMRI is one of the most essential and standard investigative 

neuroimaging tools that many researchers prefer to use. 

fMRI uses Blood Oxygen Level Dependent (BOLD) signal changes to measure 

functional activity (Huettel et al., 2014). The blood oxygen level dependent (BOLD) signal, 

which is detected with fMRI, shows the changes in deoxyhemoglobin with localized changes 

of brain blood flow and blood oxygenation. This shows the underlying neuronal activity by 

presuming more oxygen will be used in more active parts of the brain in a mechanism known 

as neuro-coupling. There are mainly two kinds of fMRI techniques that are performed: task-

based fMRI (task-fMRI) and resting-state fMRI (rs-fMRI). As the name suggests, task-based 

fMRI uses various tasks during the scanning procedure. In task-based studies, a stimulus/task 

is presented for a short period of time alternating with periods of control conditions. It is 

currently believed that when a subject performs or responds to a task, there is an increase in 

neuronal firing in specific regions of the brain. These increased neuronal firings result in an 

increased consumption of blood oxygenation, leading to vasodilation. The increased blood flow 
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results in more oxygenated red blood cells than is needed, and the difference between 

oxygenated red blood cells and deoxygenated red blood cells results in signal increases in 

regions associated with the task. On the other hand, rs-fMRI checks for functional activity in 

the brain while the subject is resting. In other words, no specific task scans are acquired in rs-

fMRI, and the subjects are simply instructed to rest (Huettel et al., 2014, Purves et al, 2011, 

Heeger & Ress, 2002). 

In terms of rs-fMRI, functional connectivity refers to the synchronization of brain 

regions that can form resting-state networks. In other words, functional connectivity is the 

common activity of spatially separated regions of the brain. These regions that have common 

or synchronized activity create resting state networks such as Default Mode Network, Medical 

Visual, Medial Temporal, etc. With this technique, it is possible to identify linked locations 

within the brain without the need for a physical connection between the brain regions. Usually, 

fMRI images have a 3 mm spatial resolution. This value is lower than T1 images. Furthermore, 

fMRI images are overlaid on the T1 images to help with the identification of brain regions in 

terms of structure (Lee et al., 2013).  

          Although MRI and fMRI both use the same principles and the same scanner, they are not 

the same. The main difference between fMRI and MRI for neuroimaging is that fMRI provides 

information about functional activity in the brain as a function of time. In contrast, MRI 

provides structural information about the brain. In other words, MRI scans provide anatomical 

scans of the brain, while fMRI scans provide information on the metabolic function of the brain 

(Huettel et al., 2014). Furthermore, fMRI provides functional information about the brain as 

well as how, when, and where a particular brain function occurred. It can also link various brain 

networks and their relation, or functional connectivity, with other networks.  
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2.1.3 Blood Oxygen Level Dependent (BOLD) Signals 

Increased metabolic activity in a brain region, as reflected in an fMRI scan, implies that neurons 

in that region are active. Active neurons use more energy to be able to do their work, and more 

energy means more oxygen consumption. For neurons to be able to consume more oxygen for 

energy, there needs to be more oxygen in the area. Therefore, the need for oxygen to be used 

for energy affects neighboring blood vessels in the region to create increased oxygenated blood 

flow to that region. In summary, when there is increased metabolic activity at a brain region, 

the amount of blood flow increases as a result of glucose breakdown (Ogawa et al., 1990, Biswal 

et al., 1997, Huettel et al., 2014). 

Deoxygenated blood is visible with gradient-echo imaging. Gradient echo imaging uses 

free induction decay (FID) signals. FID is a short-lived sinusoidal signal that comes from the 

spin vectors after a 90-degree radiofrequency pulse. Every tissue characteristic of the FID signal 

will be different; thus, the incoming signal will be different. Differences in FID signals allow 

for the separation of different tissue types from each other. In summary, deoxygenated blood is 

a natural contrast that can be visualized with gradient-echo imaging using MRI. The concept 

used in FID signals also led to the creation of the concept of the BOLD signal (Ogawa et al., 

1990, Huettel et al., 2014). The BOLD signal is a metabolic signal, and changes in the ratio of 

oxyhemoglobin to deoxyhemoglobin are measured and can be linked to changes in neural 

activity (Azeez, 2019, Ogawa et al., 1990).  

The response of a neuron is much faster than the BOLD signal itself. Although 

indirectly, the BOLD signal response effect is from the firing of nerve cells. The hemodynamic 

response function (HRF) explains the changes in cerebral blood flow, oxygenation, and volume. 

BOLD signals are defined using HRF with fMRI. In other words, oxygenated blood gets 

converted to deoxygenated blood. Moreover, when neurons become active (when neuronal 

firing occurs), blood flow increases and results in increased oxygenated blood to that location. 
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This process leads to a high-intensity response from the location of the scanned area that can 

be seen with fMRI (Ogawa et al., 1990, Boynton et al., 1996, Cohen, 1997). 

BOLD signal contrast depends on the amount of blood with deoxygenated hemoglobin, 

which will consume the present oxygen, within the brain region. The changes that happen in 

the BOLD signal are called HRF, and the fMRI modality is based on that principle. The BOLD 

signal can be seen with task-based fMRI research. Task-based fMRI (task-fMRI) is where 

subjects perform specific tasks during the fMRI scan, like finger tapping. Resting-State fMRI 

(rs-fMRI) checks for neurologic processes that occur without the need for tasks and, unlike 

task-fMRI, does not limit the experimental design or the number of questions that can be 

answered with the technique (Azeez, 2019, Huettel et al., 2014).  

Furthermore, fMRI has a high temporal resolution, which is around 500 milliseconds to 

3000 milliseconds (ms). Generally, a stimulus takes about 10 seconds, enough to able to see the 

neuronal activation as a function of HRF. A temporal resolution of 500 to 3000 ms (TR value) 

is good enough to answer most research questions. In resting state, frequency characteristics of 

neuronal activity within the BOLD signal can be seen under 0.1 Hz. However, the BOLD signal 

has components both above and below 0.1 Hz. The effects of respiratory and cardiac response 

on the BOLD signal can be seen in frequency values higher than 0.1 Hz. Generally, the 

elimination of these non-neuronal effects from the BOLD signal in rs-fMRI studies is needed. 

Therefore, band pass filtering is typically used. Generally, the low cutoff frequency equals to 

0.01 Hz (to eliminate small frequency noise from various sources) and the high cutoff frequency 

value is 0.1 Hz, as mentioned earlier (Biswal et al., 1995, Glover, 2011). The reduction of noise 

and removal of non-neuronal signals in this study will be explained in more detail within 

Chapter 3.   
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2.1.4 Application of Functional Magnetic Resonance Imaging 

Neuroimaging has had a crucial role in AD studies for the past four decades with different 

modalities such as computed tomography or MRI. More recently, structural and functional MRI 

showed significant changes in the brains of AD patients. No single neuroimaging modality can 

produce every possible image of other neuroimaging techniques, but they all have their uses 

and weaknesses. With AD, it is not always clear to make a clinical diagnosis without the use of 

neuroimaging; for a definitive diagnosis, neuroimaging is needed (Smitha et al., 2017). 

 In terms of structural imaging, MRI can detect progressing atrophy (volume), and the 

brains of AD patients can have vascular damage that will alter incoming MRI signals for the 

T2 images for some sequences. Progression of AD can be identified by checking cerebral 

atrophy in the brain, which starts early in AD. Atrophy first manifests itself in the medial 

temporal lobe, which is the first sign of AD. Because of this, atrophy of the medial temporal 

lobe is considered to be one of the biomarkers in AD that can be detected with structural MRI 

(Johnson et al., 2012, Smitha et al., 2017). 

 In terms of functional imaging, fMRI is a fairly new method when compared to 

structural MRI. Brain networks related with memory and other cognitive functions of AD 

patients are getting increasingly investigated with fMRI. Both task-fMRI and rs-fMRI give 

information about functional connectivity within the brain networks of an AD patient and can 

be useful in early detection of AD. Although fMRI has potential for this, a relatively smaller 

number of studies are published that are made with AD patients. There are some studies that 

reported a decrease in the medial temporal lobe in patients with mild cognitive impairment 

(MCI). Recently there is some increase on studies with BOLD fMRI techniques and 

spontaneous brain activity with rs-fMRI on AD patients. Especially in terms of pharmacology, 

fMRI might be the best way to monitor cognitive function in AD patients. Furthermore, 

longitudinal studies are needed to make sense of the fMRI activation patterns. Currently, the 
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focus is on characterization of vascular and metabolic features in brains of patients with AD 

(Lajoie et al., 2017, Johnson et al., 2012, Smitha et al., 2017). 

 

2.1.5 Limitations of fMRI 

The temporal resolution in fMRI, which can be achieved by the high scanning speed of the 

modality, needs larger voxel sizes to maintain the required level of signal to noise ratio (SNR). 

For this reason, fMRI has increased temporal resolution and decreased spatial resolution from 

the generated images. The limit for temporal resolution in fMRI is set by the BOLD signal. As 

it is not possible to increase the speed of neuronal responses, and BOLD signals are generated 

from the neuronal responses, maximum temporal resolution is dependent on the BOLD signal 

(Huettel et al., 2014, Poldrack et al., 2011).  

One of the significant challenges of fMRI is head motion during the scan. Patients often 

move during scanning, and in most cases the patient’s head motion during the scan cannot be 

avoided. This issue would be a huge problem since AD patients might have conditions that may 

make them less compliant, such as mood swings or short-term memory problems. Because of 

the compliance issues, head motion effects would be problematic for both rs-fMRI and task-

fMRI. However, there are methods to be used during the scan and algorithms in pre-processing 

steps that can eliminate the effects of head motion. In some cases, head motion can be corrected 

for after pre-processing fMRI images, allowing further analysis to be performed (Huettel et al., 

2014, Poldrack et al., 2011).  

In fMRI, like PET, patients with claustrophobia may face challenges, since fMRI 

imaging requires patients to be in a tight and enclosed space during the scanning time. fMRI is 

based on magnetic force, so patients with metal implants or some metal-based tattoos cannot 

be scanned with fMRI, thereby presenting an additional limitation to the use of fMRI as a 

neuroimaging technique. This also applies for some patients with pacemakers (Basil et al., 



 
 

14 
 

2018). Lately, there are productions of MRI compatible pacemakers that will enable patients 

with these pacemakers to be allowed for fMRI scans. Also, patients with obesity may not be 

compatible for fMRI if their measurements are more than what the machine can handle (Huettel 

et al., 2014, Poldrack et al., 2011).  

Lastly, the scan time is another factor that limits fMRI studies. Generally, a fMRI scan 

takes between 2-12 minutes. Individual time points are not independent in terms of statistics in 

BOLD signals. Since they are not statistically independent for each fMRI scan, the correlation 

value must be corrected for degrees of freedom to determine significance. In short scans, 

estimating significance becomes problematic because of a low number of time points available. 

To fix this issue, scanning time higher than 5 minutes is needed to allow detection of most 

studied networks such as the default mode network. Furthermore, increasing the time decreases 

the noise and increases the correlation strength, but may not be necessary. Increasing the 

scanning time might cause more head motion or discomfort to the patient so the optimal 

scanning time of 5-6 minutes appears to be sufficient for most studies (Van Dijk et al., 2010). 

 

2.2 Data Acquisition 

This study was performed on a public dataset from “Alzheimer’s Disease Neuroimaging 

Initiative” (http://adni.loni.usc.edu/). MRI and fMRI techniques were used to acquire 

anatomical and functional images for each subject. The subjects of this study included both 

healthy controls and patients with Alzheimer’s disease. T1-weighted images were acquired 

using both 1.5T and 3T MRI scanners at different sites and the spatial resolutions of the 

anatomical images were 1x1x1.2 mm3. All fMRI images were acquired with 3T Philips MRI 

scanners. Parameters of fMRI scans: TR (repetition time) = 3000 ms, TE (echo time) = 30 ms, 

flip angle = 80o, matrix = 64 x 64, slices =15 and, voxel size = 3.3125x3.3125x3.313 mm3. 

There were 140 time points for each scan and length of the scans were 7 min long. With the 

http://adni.loni.usc.edu/
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fMRI scans date-time of the scan, age of the subject, condition of the subject (Healthy Control 

or Alzheimer’s disease patient), and sex information were available this dataset. As reflected in 

the public data set, there were different numbers of scans for each subject acquired at different 

dates.  
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CHAPTER 3 

 

 

PRE-PROCESSING METHODS 
 

In this section, the pre-processing methods are described with a focus on the methods used in 

the current study. Additionally, the definitions of each of these processes and the importance of 

these functions are presented. fMRI applies a series of set algorithms on the obtained dataset. 

In this model, it is often necessary to eliminate white noise in the data to improve the signal to 

noise ratio. The process of eliminating noise and unnecessary data from CSF and large 

ventricles is regarded as pre-processing. Also, the fMRI data is transformed to a standardized 

space to make the comparison between 2 or more brain scans possible. The pre-processing 

pipeline may differ for each study but is generally initiated with the realignment of the 

functional images.  

During this phase, additional steps are often needed before realignment depending on 

the dataset. These can include reorienting functional and anatomical images. The pre-

processing pipeline of realignment, coregistration, segmentation, normalization, temporal 

regression, and filtration is applied across all the subjects within the dataset. To increase the 

efficiency of pre-processing, scripts are provided in standard software programs, which can be 

run in a batch from the Statistical Parametric Mapping software SPM12 (Friston et al., 1994) 

in MATLAB (Higham & Higham, 2016). AFNI (Cox, 1996) and MATLAB were used in this 

study for both pre-processing and data analysis. To provide a more comprehensive review of 

pre-processing, the following sections will discuss the individual steps.  

 

Pre-processing steps. In this section, the steps taken before statistical analysis is presented. 

Pre-processing is applied to make sure all the data is in the same orientation, corrected for head 

motion-induced signal changes, and transformed into the MNI space for future statistical 
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analysis. These steps are required to achieve statistically significant results. In this study, the 

pre-processing is carried out as follows: 

1. Realignment of functional images, 

2. Coregistration of functional images to anatomical images, 

3. Segmentation of the anatomical images, 

4. Normalization of functional images to the MNI space from subject space, 

5. Creation of tissue masks from segmented files of anatomical images, 

6. Extraction of information from white matter (WM) and cerebral spinal fluid (CSF), 

7. Temporal regression using motion parameters and information form WM and CSF, and 

8. Bandpass filtration of signals to 0.01 – 0.1 Hz band. 

 

 

Figure 3.1 Raw fMRI image of an anonymous subject from the current study in the native space 

(left to right: axial – sagittal – coronal view).  

 
Source: http://adni.loni.usc.edu/. 

 

3.1 Realignment 

 

The first step of pre-processing is realignment. Realignment step is standard step for fMRI 

images to minimize the effects of head motion. This process is necessary as it is not possible to 

ensure complete stillness during the scanning process. However, patient movement can produce 

false-positive results within the fMRI data of that subject. Realignment attempts to align all the 

time points in a fMRI time series. This is necessary because some of the time points in an image 

time-series may not have a proper alignment to a reference image, and the reference image 

http://adni.loni.usc.edu/
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could be any of the time points within a functional scan or the mean of all the time points within 

a scan (Hafiz, 2017).  Thus, all the images must align with each other to ensure all errors are 

corrected for in the final analysis (Friston et al., 1996, Poldrack et al., 2011).  

For this process, the motion correction algorithm uses a least-squares method with a six-

parameter rigid body transformation (Friston et al., 1995) representing three rotational (pitch, 

roll, yaw) and three translation (x, y, z) parameters. In realignment, a file with information on 

these six parameters is generated to further minimize any motion-related artifacts (Hafiz, 2017). 

After realignment, the images are resliced such that they match the first image selected voxel-

for-voxel to deal with signal discrepancies before normalization. The realignment for this study 

has been performed using SPM12. 

 

Figure 3.2 Realignment output of a single fMRI scan from the study 

 

 

 

3.2 Coregistration 

 

The coregistration process consists of aligning and overlaying the fMRI data on the anatomical 

image. To be able to use these images together, they need to have the same coordination with 

each other. Coregistration is used to align the head-motion-corrected fMRI images towards the 

inputted anatomical images to ensure the alignment of anatomical and fMRI images. In other 
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words, the corrected images are aligned with the anatomical image to allow for an accurate 

spatial fit.  

The main reason for registering fMRI images to anatomical images is to allow SPM12 

to identify the regions of the brain since anatomical images have much better spatial resolution. 

Furthermore, the high-resolution quality of anatomical images increases efficacy for assessing 

brain locations of fMRI scans of each brain. Through coregistration, viewing the functional 

information regarding the brain is improved due to the correlation with anatomical and high-

quality spatial data. As such, this model was also employed in this study. 
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Figure 3.3 Coregistration output of a single fMRI scan from the study.  

 
Source: http://adni.loni.usc.edu/. 

 

 

 

 

 

http://adni.loni.usc.edu/


 
 

21 
 

3.3 Segmentation 

After coregistration is complete, the next step in the pre-processing pipeline is segmentation. 

Segmentation is the process that partitions the anatomical (or functional) image into different 

tissue classes. Segmentation is critical due to the integral human brain anatomy. The human 

brain is classified within three different tissue types, (1) gray matter (GM), (2) white matter 

(WM), and (3) cerebrospinal fluid (CSF). Thus, segmentation is critical to ensure that the 

anatomical skull categorizes the separation of the brain tissue. Each anatomical brain image is 

used for each patient. Figures 3.4 and 3.5 illustrate the process of segmentation for this study.  

 In this process, intensity differences in the anatomical MRI images are used. When using 

SPM12, a series of 6 differing tissue types are generated. These tissues are GM, WM, CSF, 

skull, soft tissue, and remaining parts of the scan (the outside region). It is also essential to 

consider the bias information. In this model, bias field estimation and correction is the 

normalization of values for different tissue types in the brain. Correction for the 

inhomogeneities dramatically increases the accuracy of the segmentation process. SPM12 does 

all of this in a single step. WM and CSF tissue classes are used to generate masks for further 

steps along the pre-processing pipeline. 
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Figure 3.4 White matter output of segmentation of a single anatomical scan from the study in 

MNI space (top) & generated mask using 0.98 as the threshold value (bottom). 

 

 

 

 
 

Figure 3.5 Cerebral spinal fluid output of segmentation of a single anatomical scan from the 

study in MNI space (Top) & generated mask using 0.98 as the threshold value (bottom). 
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3.4 Normalization 

The process of normalization includes transforming every image into a generic template, such 

as the MNI template, that can be applied to all fMRI images. In this process, images from each 

of the subjects are transformed into a standardized space so that all images for every subject 

will have the same coordinate system and can be processed for statistical analysis. This step is 

vital for group-level analysis. As mentioned earlier, all functional images are in their 

native space, and every native space is different from that of other native spaces. Thus, each 

patient's brain size and shapes are different, and it is necessary to ensure that these different 

shapes are in a normalized space for future analysis. For batched or group-level analysis, images 

must be in a standard space. The process of normalization warps each patient's brain size and 

shape into a standardized brain model that ensures that the spatial fit of all brains are the same. 

Thus, the coordinates for comparison between brains is possible through this process of 

normalization. The most common standardized space templates are the Montreal Neurological 

Institute (MNI) space and the Talairach Space.    

For this study, the MNI152 space was used for transformation  (figure 3.6). The MNI152 

template was created from 152 brain scans of a young adult. SPM12 requires both anatomical 

images and fMRI images of each patient to perform transformation of images from native space 

to MNI152 space.  
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Figure 3.6 Differences between outputs after coregistration (top) and normalization (bottom) 

of a single scan from the study into MNI space. 

  

3.5 Nuisance Regression and Temporal Filtering 

For this study, PCA was used for assessing correlated components within the fMRI data to 

perform nuisance regression. PCA also assesses voxels synced with each other in specific 

regions within the fMRI data. Thus, the principal components or eigenvectors (e.g., a value 

different than zero) of the covariance matrix of the fMRI data was identified. After the 

normalization step in the pre-processing pipeline, WM and CSF images from segmentation are 

used to create masks. The masks were generated using 0.98 threshold values of the segmented 

images of WM and CSF and resampled to the voxel size of the functional images. A PCA of 

5th degree was run on the fMRI data using the respective WM and CSF mask for each individual 

subject. Doing this allowed synced voxels within WM and CSF in the brain regions to be 

gathered in a single covariance matrix. These generated values include data from the WM and 

CSF regions, and since the point of interest is the data from GM, linear regression of these 

generated WM and CSF values were made in the regression step. This would allow exclusion 
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of the effects of WM and CSF that we would see from the group analysis of the data. PCA had 

been done on the functional scans with MATLAB to be used in the temporal regression step 

(Hafiz, 2017).  

 As noted, regression is used to get rid of effects from WM and CSF. Furthermore, 

motion parameters from the realignment step were also regressed out from the fMRI scans. 

Both extracted values from PCA and 24 motion parameters (six motion parameters, derivatives 

of each motion parameter, forward derivatives of each motion parameter, as well as squared 

forward derivatives of each motion parameter) were used in the regression step. In other words, 

a total of 34 regressors were used in the regression step. To regress out these 34 regressors from 

the fMRI scans, MATLAB was used. First, ten time-points of the time series of the fMRI scans 

were removed to avoid false-positive results, which can be caused by the scanning process's 

adaptation period at the start of the procedure (Azeez & Biswal, 2017, Hafiz, 2017). After 

temporal regression, a bandpass temporal filter in the range of 0.01-0.1Hz was applied to all 

time series, to remove any physiological noise and other artifacts using AFNI. This is a standard 

process for rs-fMRI research (Biswal et al., 1995, Hafiz, 2017). 
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Figure 3.7 Signal differences in the hippocampus between normalized fMRI image (top 9 

graphs) & filtered and regressed fMRI image (bottom 9 Graphs) for a single fMRI scan from 

the study. 

 

 

3.6 Smoothing 

For the last step of pre-processing, spatial smoothing was used to increase the signal to noise to 

noise ratio. A 6mm full width at half maximum (FWHM) filter was used for smoothing. The 6 

mm FWHM was used because the voxel size of the normalized fMRI images was 3mm. For 

best results, twice the voxel size number of the fMRI image must be used as the FWHM value. 

Also, for certain data sets with enough samples, it is crucial to use a minimum FWHM value 

(Poldrack et al., 2011). 
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Figure 3.8 Differences between outputs after filtration (top) and smoothing (bottom) of a 

single scan from the study. 
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CHAPTER 4 

FUNCTIONAL CONNECTIVITY AND STATISTICAL ANALYSIS 

 

Functional connectivity is the temporal correlation of 2 or more neurophysiological signals at 

spatially different locations in the brain. These events can be analyzed either in the time or 

frequency domain. Temporal analysis can provide information about the changes within a given 

time series in an fMRI dataset. Frequency analysis can provide information about the frequency 

content of the events that are happening in a particular fMRI dataset. These techniques can also 

be designated into either a model-driven or a data-driven analysis. Each model can include 

either frequency analysis or temporal analysis methods. Model-driven methods are useful when 

there is some prior information about the current dataset and research topic, while data-based 

methods make no such assumptions and finds the areas of interest according to the fMRI data 

provided. In this study, data-driven methods are mostly used, and the only model-driven 

approach would be the three regions that were identified from the Independent Component 

Analysis (ICA) (Azeez & Biswal, 2017, Buckner et al., 2013, Chen et al., 2020, Friston, 1994). 

 

Table 4.1 Methods Used For This Study 

 

Methods Data-Driven 

Temporal ICA, ReHo 

Frequency ALFF, mALFF, fALFF 

 

 

After the completion of the various analyses, the results were inputted into a multiple 

linear regression model to find their significance in terms of P-values, as explained in section 

4.3. Furthermore, the effects of age and gender were evaluated and explained in Section 4.4. 
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4.1 Temporal Domain Methods 

4.1.1 Independent Component Analysis (ICA) 

ICA is a popular data-driven method in neuroimaging.  ICA is a method like PCA with a crucial 

difference: while the PCA method estimates components that are orthogonal, ICA generates 

components that are independent of each other. PCA cannot accomplish this because it assumes 

a Gaussian distribution (Azeez, 2019, Azeez & Biswal, 2017, Hafiz, 2017).  With ICA, we 

obtain independent components for the fMRI images. This means that for the rs-fMRI data, we 

can see the resting state networks from the analysis. From the spatial maps, there is a challenge 

in linking these spatial maps to neurological function. It is also a way of confirming the quality 

of the data and preprocessing. Generally, after ICA for rs-fMRI data, there is a certain number 

of resting state networks that a researcher expects to see (Azeez & Biswal, 2017, Calhoun et 

al., 2003, Chen et al., 2008, Smitha et al., 2017). 

For this study, a group ICA was applied to the dataset after the pre-processing procedure. 

Group ICA was performed using the MELODIC feature from FSL (the FMRIB Software 

Library) (Jenkinson et al., 2012). Three sessions were made using 20, 25, and 30 component 

ICA. The reason for these choices was to achieve the best ICA components while avoiding a 

mixture of components to form (Beckmann et al., 2005). In the 20 component ICA, some resting 

state networks that needed to be separate were mixed into a single spatial map. With the 30 

component ICA, some resting state networks that needed to be a single spatial map were 

separated into multiple maps. The best results were acquired using a 25 components ICA. From 

the 25 component ICA analysis, 3 probability maps were used to create masks with the SPM12 

image calculator to be used in further steps of the analysis. For the masks, a threshold value of 

0.95 was used. 
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Figure 4.1 Resting state networks generated from group independent component analysis. 

A. aDMN (anterior default mode network), B. CN (cerebellar network), C. DA (dorsal 

attention), D. DMN (default mode network), E. dSM (dorsal sensory motor), F. FC (frontal 

cortical), G. LFP (left frontoparietal), H. LV (lateral visual), I. MT (medial temporal), J. MV 

(medial visual), K. RFP (right frontoparietal), L. VS (ventral stream), M. vSM (ventral 

sensory motor) (sagittal – coronal – axial view). 

 

 

4.1.2 Regional Homogeneity (ReHo) 

Regional Homogeneity, also known as ReHo, is another data-driven approach. This method 

applies a voxel by voxel approach to map underlying connectivity activations within the brain. 

As the name suggests, ReHo finds the average correlation with its neighboring voxels for every 

voxel in the brain. To check for the correlation between voxels, Kendall’s correlation 
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coefficient (KKC) is used in conjunction with the size of the clusters (Zang et al., 2004). ReHo 

is considered to be a robust method against noise but is still susceptible to signal artifacts and 

can cause false positive results. Local functional connectivity is the synchronized response of a 

BOLD time series for the functional activations in a given 10-15 mm region. Based on the 

hypothesis of significant brain function, these 27 voxels or 10-15 mm area are active in a form 

of cluster rather than a single voxel. (Azeez & Biswal, 2017, Bayram et al., 2018, He et al., 

2007, Jiang & Zuo, 2016, Liu et al., 2008).  

 In this study, the masks created from the probability maps acquired from group ICA 

analysis are used on the ReHo maps. The ReHo spatial maps are generated using AFNI. Outputs 

of temporal regression and filtration were used to generate ReHo spatial maps. Using the masks 

on the spatial maps, the mean value for each fMRI scan were calculated using MATLAB to be 

used later in multiple linear regression analysis (Di et al., 2019). Lastly, outputs of ReHo were 

smoothed using SPM12.  

  

 

Figure 4.2 Regional homogeneity of an anonymous subject from the current study overlaid on 

MNI template (axial – sagittal – coronal view). 
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4.2 Frequency Domain Methods 

4.2.1 Amplitude of Low Frequency Fluctuations (ALFF) 

In rs-fMRI, functional connectivity is highly correlated with low frequency fluctuations. ALFF 

presumes that all neurological activity in a BOLD signal from rs-fMRI can be shown with a 

singular parameter. In short, it takes the square root of the power of BOLD signals in 0.01-0.1 

Hz range and sums it up to obtain the ALFF value. This method is sensitive to noise sources; 

hence, quality and preprocessing of the raw data plays an important role in ALFF. Because 

ALFF might have noisy signals, there will be a higher probability of a large ALFF value. An 

alternative method called fractional ALFF (fALFF) can also be used. In fALFF, the ALFF value 

is divided by the spectral power for the entire power spectrum. This method also may produce 

low quality spatial maps caused by low quality in fMRI scans, but it may produce significant 

results when provided with quality rs-fMRI scans (Zou et al., 2008). Another version is the 

global mean ALFF (mALFF). In mALFF, as the name suggests, each voxel in ALFF gets 

divided by the global mean of ALFF (Yang et al., 2019, Fox & Raichle, 2007). 

The masks created from the probability maps acquired from group ICA analysis are 

used on the ALFF, fALFF, and mALFF maps (figure 4.4). These spatial maps are generated 

using AFNI. Outputs of temporal regression were used to generate ReHo spatial maps. Using 

the masks on the spatial maps, the mean value of each fMRI scan and each spatial map were 

calculated using MATLAB to be later used in the multiple linear regression analysis (Di et al., 

2019). Lastly, all ALFF, fALFF, and mALFF outputs were smoothed using SPM12.  
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Figure 4.3 ALFF (top), mALFF (middle), fALFF (bottom) of an anonymous subject from the 

current study overlaid on MNI template (Axial – Sagittal – Coronal view). 

 

4.3 Multiple Linear Regression Analysis 

In this study, all the spatial maps from ALFF, mALFF, fALFF, and ReHo are used with 3 masks 

generated from the probability maps from ICA to get individual mean values for specific 

regions. The regions used are the Default Mode Network (DMN), the Medial Visual Network 

(MV), and the Medial Temporal Network (MT). A value, or score, is generated for each spatial 

map and used within the multiple linear regression analysis. Other than the ALFF, fALFF, 

mALFF, and ReHo score, the age of the subjects and category (AD or HC) of the subjects are 
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also used in the equation. R Commander was used to do these calculations (Fox & Bouchet-

Valat, 2020). 

 

 

Figure 4.4 Formula used for multiple linear regression analysis. 

 

 

As can be seen from the formula (figure 4.5), both predictors X1 and X2 create a third predictor 

by multiplication. In other words, the third coefficient is influenced by the first two predictors. 

Even if the P value of one of the first two predictors is not significant, it may still be significant 

for the third feature. Similarly, if the first two features are significant, there is no guarantee that 

the third feature will be significant. This is called the hierarchical principle, and it basically 

means that two non-significant individual models could have significance when they interact. 

For this study, our predictors are age of the patients and the group they are in (HC or AD). 

 

4.4 Statistical Analysis of the Participants 

In the study, some subjects were removed due to several reasons. These reasons were: high 

motion that cannot be corrected, corrupted/missing rs-fMRI or anatomical images, and 

incompatible number of time points. Following the removal, the Shapiro-Wilk and Shapiro-

Francia Normality Test, the Levene’s Homogeneity Test, and a two-sample t-test had been 

performed for age. For gender, the Chi-squared test had been performed. In the study, there are 

61 individuals (33 are female and 28 are male). The age range of the participants is 56 to 91. 

The mean of these ages is 74.4721 and standard deviation is 7.0408 (figure 4.6). 

 The P value of the Shapiro-Wilk and Shapiro-Francia Normality Test was 0.6663, which 

indicates that normality was met. The P value of the Levene’s Homogeneity Test was 0.6836, 
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which means homogeneity was met. The P value of the Two Sample T-Test was 0.1129, which 

means age should not affect the analysis. Similarly, the P value of the Chi-Square test was 

0.9061, which means gender should not affect the analysis. 

 

 

Figure 4.5 Age distribution of the participants (x – axis: age, y – axis: quantity). 
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CHAPTER 5 

RESULTS 

 

This chapter will focus on the results obtained in this study. After preprocessing, there were 76 

scans for AD and 79 scans for HC, adding up to a total number of 155 scans used within the 

study. Voxel-wise functional connectivity parameters were obtained using several methods, 

including ICA, ReHo, ALFF, mALFF, and fALFF.  Spatial component maps were generated 

using ICA. Voxel wise parameters from each of the spatial maps were obtained using ReHo, 

ALFF, mALFF, and fALFF. Twelve different scores were generated from the dataset using the 

twelve plots made from the score, age, and category of the subjects. From the 12-score set, 6 of 

them (mALFF and ReHo) matched the results of previous studies, and the other 6 (ALFF and 

fALFF) were in low quality caused by low-quality scans (high head motion). Thus, spatial maps 

from ALFF and fALFF were not able to be used for further analysis. The six score sets that 

were acceptable were used to do a multiple linear regression analysis. For the analysis, every 

scan was presumed to be from a different subject even if several scans were taken from the 

same patient.  

 

5.1 Region of Interests 

After preprocessing, a group ICA was performed using data from all 155 individual scans. A 

total of 13 meaningful resting-state networks were determined from ICA, as shown in figure 

4.1 (Calhoun et al., 2003, Beckmann et al., 2005). From the probability maps generated with 

ICA, three maps were chosen to use as ROIs (figure 5.1). These ROIs were created by 

thresholding the probability maps. Selection of ROIs was done according to previously 

published literature.  



 
 

37 
 

 In previous studies, it has been showed that the MT is one of the regions that gets 

affected from AD. Furthermore, it has been shown in functional brain imaging that these 

abnormalities occur before atrophy starts to present itself in the early stages of AD (Grajski & 

Bressler, 2019, Qi et al., 2018). The hippocampus in the MT is involved with memory, and 

memory loss is one of the major symptoms that AD patients suffer from. Subsystems which 

deal with memory are also linked to the DMN, which suggests that the FC of DMN also gets 

affected (Qi et al., 2018).  Because of this dilemma, it is expected to see decreased FC in the 

MT caused by the WM atrophy in AD patients (Berron et al., 2020), which is an easy symptom 

to miss in early stages of the disease with only a physical examination. The MT shows potential 

to be used as a neuroimaging biomarker for early detection of AD, which is also supported by 

metabolic abnormalities that can be seen within the network (Mevel et al., 2011, Greicius et al., 

2004, Ridha et al., 2007). 

 The DMN is a network that is connected to various regions within the brain and is one 

of the regions that has high potential to be used as a neuroimaging biomarker for early detection 

of AD (Badhwar et al., 2017). FC changes in the DMN are highly corelated with AD, especially 

in the precuneus (PCC) (Mevel et al., 2011). Connectivity between the PCC and hippocampus 

suggests that the DMN could also be a potential neuroimaging marker for early AD detection 

(Mevel et al., 2011). Although the DMN is a region that is highly used to separate HCs from 

AD patients, the diagnostic power of the DMN as a neuroimaging biomarker is yet to be seen 

because of high baseline FC of certain regions within the DMN (Koch et al., 2012). Past studies 

also show that though there were no statistical difference between HCs and mild cognitive 

impairment (MCI) patients, there were similarities at the PCC of the DMN (Wu et al., 2011, 

Yu et al., 2016). Furthermore, past studies show that MMSE values of AD patients seem to be 

linked with FC decreases within the DMN in AD patients, possibly strengthening the diagnostic 



 
 

38 
 

power of DMN as a neuroimaging biomarker (Buckner et al., 2008, Sorg et al., 2007, Wu et al., 

2011). 

 Visual performance also decreases with AD, which suggests that the primary visual 

cortex could show FC differences in patients with the disorder (Armstrong,1996, Mendez et al., 

1990, Leuba & Kraftsik, 1994, Yamasaki et al., 2019). Nevertheless, there are some 

controversies about this, since only some clinical studies show visual performance differences 

between AD and MCI patients when compared with HCs (Armstrong, 2009). It is also important 

to consider any other conditions that may impact the patient’s eyesight before using visual 

performance as a parameter to differentiate HCs from AD and MCI patients. Since it is difficult 

to determine the primary reason for an impaired visual performance, FC differences between 

HCs and AD patients in the primary visual or the MV network can be a potential neuroimaging 

biomarker. Previous studies showed markers linked to AD were found not only within the 

primary visual cortex, but also on certain components of the eyes itself (Armstrong, 1996, 

Beach & McGeer, 1992, Ikonomovic et al., 2005, Kusne et al., 2017). While clinical tests show 

abnormalities in terms of visual function in both AD and MCI patients, there are not many rs-

fMRI and FC studies performed about this region (Cerquera-Jaramillo et al., 2018, Kusne et al., 

2017). Overall, the MV network shows potential to be a neuroimaging biomarker for AD, and 

is also one of the ROIs that has been investigated within this study (Bokde et al., 2006). 
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Figure 5.1 ROIs created from probability maps acquired from ICA. DMN (top), MT (middle), 

MV (bottom) (axial – coronal – sagittal). 

 

5.2 Local Activity  

As mentioned earlier, three ROIs were used: DMN, MV, and MT. For each of the three resting 

state networks, we also generated mALFF and ReHo scores on a voxel-wise basis. By doing 

this, six scores were generated for each scan. These scores were: DMN-mALFF, DMN-ReHo, 

MT-mALFF, MT-ReHo, MV-mALFF, MV-ReHo. By using these scores as the y-axis and the 

current age of the subject as the x-axis for every 155 scans, their plots were generated according 
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to their groups (AD or HC). For each graph and each data point in the graphs, linear regression 

was used to determine the relationship between the two parameters in the graph. Scores were 

plotted as a function of age (Di et al., 2019). 

 

5.2.1 Local Activity Differences for DMN 

Figure 5.2 and Figure 5.3 show local activity differences in the DMN region from the mALFF 

and ReHo measures. In various studies, it has been shown that the DMN region has a role in 

AD (Mevel et al., 2011, Koch et al., 2012). The DMN has a major role in rs-fMRI studies and 

is a widely studied brain network in the neuroimaging world. The DMN is known to have high-

level metabolic activity during the passive state. This means that for rs-fMRI scans, the DMN 

should have high local and metabolic activity. Also, previous neuroimaging studies made with 

spontaneous low-frequency fluctuations and regional homogeneity show that it is linked to 

crucial subsystems (Sheline et al., 2010). It links various regions such as the precuneus 

cingulate cortex to these subsystems (Wang et al., 2006). Various studies show that impairment 

of DMN is a result of AD (Bayram et al., 2018, Marchitelli et al., 2018, Qi et al., 2018). 

As can be seen from Figure 5.2 and Figure 5.3, AD patients show decreased local 

activity for mALFF and ReHo measures within the DMN region for the dataset used in this 

study. From Figure 5.2 and Figure 5.3, we can also see that age has a decreasing effect in the 

DMN-mALFF and DMN-ReHo scores. By using the formula from Figure 4.4, a hierarchical 

model was used to perform a multiple linear regression analysis to see the effect of age and 

condition on the DMN-mALFF and DMN-ReHo scores. The purpose of this longitudinal 

analysis is to determine if the decrease in local activity or functional connectivity is different 

between HC and AD, and can be explained using age, condition, or both. 
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Figure 5.2 DMN-mALFF graph. 

 

Table 5.1 P Values From DMN Of mALFF Graph 

P-value of AGE feature 0.000000328 

P-value of GROUP feature 0.0377* 

P-value of AGExGROUP feature 0.1168 

 

Figure 5.2 illustrates a negative relationship between the dependent variable (mALFF) and the 

independent variable (age). The attained P values display a decrease in the dependent variable 

and an increase in the independent variable. Therefore, the P-value highlights that age is not a 

significant determiner, and that this focus hypothesis was not met (Table 5.1). 
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Figure 5.3 DMN-ReHo graph. 

 

Table 5.2 P Values From DMN Of ReHo Graph 

P-value of AGE feature 0.00182* 

P-value of GROUP feature 0.41757 

P-value of AGExGROUP feature 0.73272   

 

In comparison, Figure 5.3 justifies that the DMN-ReHo graph displays a negative relationship 

between the variables. However, the results attained were not significant, as the P-values did 

not exceed 0.05 for the last two features (Table 5.2). As highlighted before, the DMN includes 

the following regions within its boundaries: the posterior cingulate cortex (PCC) or precuneus, 

the ventral and dorsal medial prefrontal, the medial temporal lobes, and the lateral parietal 

cortices. Furthermore, the posterior cingulate cortex and the hippocampus is impaired in AD in 

terms of FC. Other scholarly deductions state that PCC atrophy is a result of long-term effects 
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of brain disconnections that further worsen the progression of AD on the patient. Furthermore, 

when age is factored in as a variable utilizing the two-sample T-test, a 0.1129 P-value affirmed 

that age would not affect the linear regression analysis results.    

 

5.2.2 Local Activity Differences for MT Lobe 

Figure 5.4 and Figure 5.5 show local activity differences in the MT region from mALFF and 

ReHo measures. Previous studies showed that the MT is affected in the brains of AD patients. 

The MT lobe includes the hippocampus and has a vital role in terms of memory. The MT is 

responsible for several cognitive and emotional functions. Atrophy of the MT lobe is a common 

finding in many studies (Ridha et al., 2007). Furthermore, many PET studies also show that 

metabolic activity also differs between HCs and AD patients for the MT lobe (Fischer et al., 

2019, Mevel et al., 2011, Márquez & Yassa, 2019). This suggests that regional brain atrophy 

of the MT lobe has a role in the corresponding resting state activity, and AD patients present 

symptoms like verbal memory decline, episodic memory decline, visual memory decline, 

memory recall delay increase etc. (Mevel et al., 2011, Gilboa et al., 2015, Yamashita et al., 

2019). Also mentioned above, the MT lobe is a subsystem of DMN, which means a local 

activation decrease at DMN would also show itself in a local activity decrease at the MT lobe. 

In other words, sub-regions of the MT lobe that deals with memory are major locations that get 

affected in AD patients. Since MT is a subsystem of DMN, it is logical to presume memory 

decline and decreased local resting activity in DMN means a decreased local activity for the 

MT lobe (Bayram et al., 2018, Berron et al., 2020, Liu et al., 2008, Rombouts et al., 2005). 

          As can be seen from Figure 5.4 and Figure 5.5, AD patients show decreased local activity 

for mALFF and ReHo measures within the MT lobe region for the dataset used in this study. 

However, from Figure 5.4 and Figure 5.5, we can also see that age has a decreasing effect in 

MT-mALFF and MT-ReHo scores, just like in the DMN-mALFF and DMN-ReHo scores. 
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Using the formula from Figure 4.4, a hierarchical model is used to do a multiple linear 

regression analysis to see the effects of age and condition on the MT-mALFF and MT-ReHo 

scores. 

 

 

Figure 5.4 MT-mALFF graph. 

 

Table 5.3 P Values From MT Of mALFF Graph 

P-value of AGE feature 0.0733 

P-value of GROUP feature 0.1530     

P-value of AGExGROUP feature 0.1566     
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Figure 5.5 MT-ReHo graph. 

 

Table 5.4 P Values From MT Of ReHo Graph 

P-value of AGE feature 0.473     

P-value of GROUP feature 0.903     

P-value of AGExGROUP feature 0.1566     

 

Figure 5.4 illustrates the relationships between the MT and mALFF, where the dependent 

variable was the mALFF of MT while the independent variable was age. In contrast, for the AD 

results, the line projects a negative relationship in which when the y-variable increases, the age 

variable correlates towards the reduction plane for AD.  The P values prove significant in the 

context of AD and HC groups, respectively. Studies support that frontotemporal dementia in 

young people is the precipitating factor, which is common in people under 65 years (Rossor et 
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al., 2010, Rombouts et al., 2005, Smitha et al., 2017,  Yetkin et al., 2006). In Figure 5.4 and 

Figure 5.5, the P-value hardly meets a 0.05 threshold to be significant (Table 5.3 & Table 5.4).  

To check for the correlation between the voxels, Kendall’s correlation coefficient 

(KKC) is used. The size of the clusters that are found is around 27 voxels. The method is used 

to describe local functional connectivity at a given voxel and its neighboring voxels. Local 

functional connectivity refers to the synchronized response of the BOLD time series for 

functional activations in each 10-15 mm region. Based on the hypothesis of significant brain 

function, these 27 voxels, or 10-15 mm area, happen in the form of a cluster rather than a single 

voxel. Figure 5.4 and 5.5 illustrate that in the MT during early AD, FC of the hippocampus 

decreases according to HCs.  

 

5.2.3 Local Activity Differences for Primary Visual Network 

Figure 5.6 and Figure 5.7 show local activity differences in the MV region from the mALFF 

and ReHo measures. Unlike the DMN or MT lobe, the visual cortex has not been as widely 

studied in AD patients within the neuroimaging world. It is known that AD also affects the 

visual system. Although AD is mostly known to affect cognitive function, there are also known 

effects on various sensory functions, such as the visual systems. Visual dysfunctions in AD are 

possible neuroimaging biomarkers at the functional level. Nevertheless, there are fairly few 

neuroimaging studies done on the visual cortex in AD. AD is known to cause reduced retinal 

thickness, retinal vasculature, and quantity of optic nerve axons. Furthermore, visual problems 

show themselves in early AD. Some of these are visual acuity, contrast sensitivity, color 

discrimination, visual-special perception, the processing speed of visual information, and 

visual-spatial attention. Because of all these dysfunctions, it is possible and logical that AD 

patients would show decreased local activity in the Medial Visual (MV) network in rs-fMRI 
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(Armstrong, 2009, Cerquera-Jaramillo et al., 2018, Kusne et al., 2017, Leuba & Kraftsik, 1994, 

Zhang et al., 2009). 

          As can be seen from Figures 5.6 and 5.7, AD patients show decreased local activity for 

mALFF and ReHo measures within the MV lobe region for the dataset used in this study. From 

Figure 5.6 and Figure 5.7, we can also see that age has a decreasing effect in MV-mALFF and 

MV-ReHo scores, just like in the DMN-mALFF, DMN-ReHo, MT-mALFF, and MT-ReHo 

scores. Using the formula from Figure 4.4, a Hierarchical model is used to do a multiple linear 

regression analysis to see the effect of age and condition on the MV-mALFF and MV-ReHo 

scores. 

 

 

Figure 5.6 MV-mALFF graph. 
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Table 5.5 P Values From MV Of mALFF Graph 

P-value of AGE feature 0.00000162 * 

P-value of GROUP feature 0.0615 

P-value of AGExGROUP feature 0.1191 

 

To investigate brain activity in people with impaired cognitive activity, changes concerning the 

brain structure as well as function are of vital concern. Figure 5.6 did not meet a 0.05 threshold 

for the last two features (Table 5.5). This implies that the (P<0.0615) value is insignificant.  

 

 

Figure 5.7 MV-ReHo graph. 
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Table 5.6 P Values From MV Of ReHo Graph 

P-value of AGE feature 0.00241* 

P-value of GROUP feature 0.41471 

P-value of AGExGROUP feature 0.56839   

 

ReHo or mALFF of BOLD signals, as delineated in Figure 5.6 and Figure 5.7, have assessed 

changes in the resting state occipital cortex of this study’s respondents. Both effects could exist 

together in either MCI of AD. The diminished FC in the cuneus/precuneus was considered to 

be related to decreased memory execution, and the expanded action could be paying for harm 

by the enlistment of different regions such as MV. It is also a known that AD affects atrophy in 

WM, which includes visual mechanisms that can cause FC changes in GM at MV. Nevertheless, 

the analysis only showed the AGE feature to be statistically relevant.  
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CHAPTER 6 

DISCUSSION AND CONCLUSION  

 

The current study investigated rs-fMRI scans of AD patients and healthy controls to identify 

differences between the two groups. Spatial maps, generated from the rs-fMRI scans of the AD 

patients and the HCs and analyzed using several multiple linear regressions, were used to 

compare the two groups in a longitudinal approach. The discussion section further examines 

the outcomes of this functional connectivity analysis. 

 

6.1 Discussion 

This study, although unable to show statistically significant results with the AGExGROUP 

feature of the equation, does show expected local activity differences between HCs and AD 

patients as a function of age in the patterns within the graphs. The purpose of this study was to 

measure local activity differences with a ROI-based hypothesis using the Hierarchical Principle 

with rs-fMRI scans. In further studies with a similar approach, and with a more controlled 

(stages of the disease) and more quality dataset, it is possible to generate statistically significant 

results. The importance of this approach is to be able to identify biomarkers for AD to be used 

in popular methods such as machine learning and graph theory (Huf et al., 2014, Khazaee et al., 

2015). In other words, finding potential neuroimaging biomarkers from a detailed and high-

quantity rs-fMRI AD dataset has potential to be used as diagnostic tools on future patients to 

start their treatment as soon as possible. This would help with the diagnosis of the disease, since 

it is expected that the number of AD patients will drastically rise in the future. In AD, early 

detection and diagnosis of the disorder are generally not easy to make, and late treatment loses 

its effectiveness. Furthermore, early symptoms are easy to mix with those of becoming elderly. 

This means that symptoms of aging and symptoms of early AD are similar to each other. 
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6.1.1 Functional Connectivity (FC) 

To begin, the standard longitudinal analysis failed to produce any significant outcomes in this 

study. In the current study, the graph displays significance in the DMN and the MV, which 

impacts the age variable inversely instead. In contrast, the inter-network functional activity 

evolves with age, and the anti-correlated activity between the dorsal attention network and the 

DMN also significantly minimizes with age. Past research indicated that reduced FC raised the 

hypothesis that cortical hubs, including PCC, are susceptible to functional deterioration as a 

result of their relatively high metabolism (Qi et al., 2018), which is no longer maintained due 

to amyloid deposition that co-occurs in these hubs (Berron et al., 2020). Despite the consistency 

with the literature of the observed FC outcomes pointing out lower connectivity in AD, the 

research findings did not indicate reductions in the DMN network that were statistically 

significant on a robust level. Some of the main reasons for this could be because: a limited 

number of scans since data-driven methods function better with more data; a limited amount of 

information about the scans could suggest the possibility that the progression of the disease 

might be quite different for each patient; and the quality of the dataset that might have caused 

false negative results. 

 

6.1.2 Impairment of DMN is a Result of AD 

The results of the mALFF of the DMN indicated that AD patients show decreased local activity 

for mALFF as well as ReHo measures within the DMN region for the dataset included in this 

study. The relationship between localized neural activity and dynamic connectivity in the two 

core regions of the DMN was identified through directionally asymmetric and particularly 

specific ROIs: DMN, MV, and MT. AD patients showed decreased local activity for mALFF 

and ReHo measures within the MV region for the dataset applied for the current research study. 
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However, further analysis indicates that age has a considerable impact, since it has a reducing 

impact in MV-mALFF (Page-MV-mALFF =0.00000162) and MV-ReHo (Page- MV-ReHo = 0.00241) 

scores similar to the DMN-mALFF (Page-DMN-mALFF = 0.000000328), DMN-ReHo (Page-DMN-ReHo 

= 0.00182), MT-mALFF (Page-MT-mALFF = 0.0733), and MT-ReHo (Page-MT-ReHo = 0.473) scores. 

As can be seen from the P values in the multiple linear regression analysis of the graphs 

(Chapter 5), 4 out of 6 measures were significant for the age feature. Furthermore, group 

features of the DMN-mALFF also showed significance with a multiple linear regression 

analysis (Pgroup-DMN-mALFF = 0.00377). When investigating rs-fMRI scans of individuals with 

impaired brain cognitive activity from the study, a multiple linear regression analysis with the 

mALFF and ReHo of 3 ROIs did not show significance for the third feature of the equation 

(AGExGROUP). Hence, the p values (P>0.5) are statistically insignificant. Therefore, this 

study shows that the hypothesis was not achieved.  

 

6.1.3 DMN in AD Patients 

From the study, DMN activity among AD patients is consistent with those found using the PET 

measure of resting-state brain metabolism and this shows the significant involvement of the 

PCC region for examinations through rs-fMRI scans for AD (Mevel et al., 2011, Marchitelli et 

al., 2018). Increments in DMN connectivity or activity have likewise been accounted for in 

patients with MCI when contrasted with AD (Gardini et al., 2015, Zhang et al., 2012). Along 

these lines, amnestic mild cognitive impairment (aMCI) patients were described by (i) 

increments in DMN activity situated inside the PCC/precuneus, (pre)frontal, lateral parietal, as 

well as central temporal cortices and (ii) increments in FC between right parietal cortex and left 

insula (Ward et al., 2014). Moreover, in AD, resting state activity decreases were found to 

involve (i) DMN activity inside the PCC/precuneus, frontal, occipital, parietal, and (pre)frontal 

cortices and (ii) DMN activity between left hippocampus – prefrontal, dorsolateral cortex/PCC 
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–  left frontoparietal cortices (Zhong et al., 2014). These outcomes point to the occurrence of 

possible compensatory forms rising in the beginning phases of the infection that are situated in 

a few DMN regions (Mevel et al., 2011).  

On the other hand, aMCI and AD patients with high cognitive reserves demonstrated 

higher movement in task-related brain zones and expanded deactivations inside the DMN 

(PCC/precuneus, front cingulate) contrasted with those with low intellectual reserves (Solé-

Padullés et al., 2009, Yamashita et al., 2019). This more prominent reallocation of handling 

assets from the DMN to cerebrum territories legitimately occupied with the test errand could 

reflect expanded redesign of useful compensatory assets in patients with high psychological 

reserves. To summarize, higher cognitive reserve capacities permit a more-with-less method of 

brain function in normal aging and makes up for neurotic procedures as they show up 

(Rombouts et al., 2005). 

One other objective of the current studies evaluating the impacts of AD on the DMN is 

to disentangle biomarkers that might be valuable for the early diagnosis of the disease. The 

interruption of the hippocampus or PCC availability could be a decent applicant, as it increases 

as the illness progresses. Lower deactivations inside the entire DMN, and particularly inside 

(average) parietal territories, were also seen as related to change from aMCI. Furthermore, Koch 

et al. proposed that the utilization of multivariate investigations joining proportions of the 

movement of explicit DMN zones to proportions of the interconnectivity between these locales 

improved the determination precision. Strikingly, utilizing this methodology, the infection 

design seen in patients with AD could be distinguished in a great extent from that of aMCI 

patients, recommending that such a mix of resting state scans might be appropriate to diagnose 

AD at an early stage.  

Past studies have given an enlarging backing to a preferential alteration of the parts of 

DMN in AD, however. In any case, the purpose behind the prevalent powerlessness of these 
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areas stays indistinct. As per Buckner et al., cortical center points might be mainly influenced 

in AD considering their persistent high standard movement and related metabolism, which may 

prompt expanded helplessness (quite to beta-amyloid testimony). This speculation is backed by 

studies demonstrating a connection between amyloid deposition and impaired DMN function 

in older individuals without dementia. Further multimodal examinations in all-risk subjects and 

AD patients are expected to be even more likely to comprehend this fascinating cover between 

the DMN and the dissemination of beta-amyloid testimony inside the brain (Sheline et al., 

2010).  

Considering that there are similar trends within the graphs and that there are some 

significant results for some of the outcomes of the P-values from the multiple linear regression 

analyses, it is possible to say that this study is a positive step to achieve desired results with the 

current hypothesis with further research. As pointed out earlier, the DMN contains the 

precuneus or PCC. The functional connectivity between the hippocampus (which is in the MT) 

and the PCC appeared to be impaired with AD. Following reduction in visual processing areas, 

AD patients starts exhibiting memory-induced alterations or decrease in resting state activation 

of MT (Golby et al., 2005). The hippocampal atrophy instituted episodic memory and functional 

perturbation impairment due to the disruption of the cingulum bundle (Agosta et al., 2012, Sorg 

et al., 2007, Wu et al., 2011, Yamasaki et al., 2019, Zhang et al., 2009). 

  

6.2 Conclusion 

The results from the current study, although like the results from previous studies, are 

statistically insignificant. In other words, none of the results were able to explain the graphs 

with the AGExGROUP feature, and only the DMN-mALFF results were able to explain the 

GROUP feature. 4 out of 6 measures (DMN-mALFF, DMN-ReHo, MV-mALFF, and MV-

ReHo) were able to explain the graphs with the AGE feature.  
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 This does not necessarily mean these features cannot be used as biomarkers. There are 

multiple reasons why the feature with age and group interaction from the formula was not 

significant for the 6 graphs. One of the main reasons is the quality of the fMRI scans. After 

realignment, six motion parameters were used to calculate frame displacement values for all 

scans. A standard deviation value of 2 was used as a threshold after taking the Z scores of the 

motion parameters. Even with 2 as the standard deviation, more than half of the dataset was 

excluded because of the high motion within the scans. Furthermore, some subjects had 

corrupted fMRI and anatomical scans that had to be removed. Even with the low quality of the 

fMRI scans, expected patterns within the graphs were seen. 

 Total number of 28 scans had to be removed due to following reasons: corrupted 

fMRI/T1 scans, inconsistent number of time points in fMRI scans, too many head motion 

effects after calculating frame displacement using the 6 motion parameters, and normalization 

issues. After the removal of scans, there were a total of 31 HCs and 30 AD patients left after 

pre-processing, which had either had single or multiple scans for each subject (total number of 

79 scans for HC and 76 scans for AD patients). Because of the data's limitations, a presumption 

of accepting each scan as an individual subject was made, but not even this was enough to be 

able to generate significance with the equation in Figure 4.4. 

Also, the scans were acquired at different sites. This could have caused variability in the 

data. Each MRI scanner has a unique noise coming from its components, called the scanner 

noise. Like the effects from head motion, this can cause certain values within the scan to elevate 

and cause false negative results.  

Another reason could be the age range of the groups that might have cause insignificant 

results. Differences in the age ranges for each group might have affected the slopes of the 

graphs, which might have created insignificant results. For AD patients, this range is between 

55 to 88, while for HC it is between 65 to 90. Slopes being affected might have changed the 
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pattern of the line generated by the multiple linear regression analysis, thus affecting the 

significance of the result. 

 The last reason for non-significant statistical results could be the absent information of 

the data. There was no information about the stage of the disease for each AD patient. This 

could have caused variability in the data. This can also be seen in the differences between scores 

for patients with the same age and condition, as shown in the generated graphs (Chapter 5). 

Overall, resting state functional magnetic resonance imaging as a neuroimaging method has 

great potential to increase diagnoses and prognoses of AD. Using the modality and various 

analyses techniques, it is possible to find neuroimaging biomarkers for not only AD, but also 

other cognitive disorders for early detection. Although there is great potential, future research 

needs to be done on the topic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

57 
 

REFERENCES 

 

Agosta F, Pievani M, Geroldi C, Copetti M, Frisoni GB, Filippi M. Resting state fMRI in  

Alzheimer’s disease: Beyond the default mode network. Neurobiol Aging. 

2012;33(8):1564-1578. doi:10.1016/j.neurobiolaging.2011.06.007 

 

Armstrong RA. Visual field defects in Alzheimer’s disease patients may reflect  

differential pathology in the primary visual cortex. Optom Vis Sci. 1996;73(11):677-

682. doi:10.1097/00006324-199611000-00001 

 

Armstrong RA. Alzheimer’s disease and the eye. J Optom. 2009;2(3):103-111.  

doi:10.3921/joptom.2009.103 

 

Azeez A. Developmental and Sex Modulated Neurological Alterations in Autism  

Spectrum Disorder. New Jersey Inst Technol. Published online 2019:129.  

 

Azeez AK, Biswal BB. A Review of Resting-State Analysis Methods. Neuroimaging Clin  

N Am. 2017;27(4):581-592. doi:10.1016/j.nic.2017.06.001 

 

Badhwar AP, Tam A, Dansereau C, Orban P, Hoffstaedter F, Bellec P. Resting-state  

network dysfunction in Alzheimer’s disease: A systematic review and meta-analysis. 

Alzheimer’s Dement Diagnosis, Assess Dis Monit. 2017;8:73-85. 

doi:10.1016/j.dadm.2017.03.007 

 

Bamberg E, Noda K, Läuger P. Single-channel parameters of gramicidin a,b, and c. BBA –  

Biomembr. 1976;419(2):223-228. doi:10.1016/0005-2736(76)90348-5 

 

Basil G, Madhavan K, Komotar RJ, Carrillo R, Levi AD. The Utility of Magnetic  

Resonance Imaging-compatible Pacemakers in Neurosurgical Patients. Cureus. 

2018;10(9). doi:10.7759/cureus.3374 

 

Bayram E, Caldwell JZK, Banks SJ. Current understanding of magnetic resonance  

imaging biomarkers and memory in Alzheimer’s disease. Alzheimer’s Dement Transl 

Res Clin Interv. 2018;4:395-413. doi:10.1016/j.trci.2018.04.007 

 

Beach TG, McGeer EG. Cholinergic fiber loss occurs in the absence of synaptophysin  

depletion in Alzheimer’s disease primary visual cortex. Neurosci Lett. 

1992;142(2):253-256. doi:10.1016/0304-3940(92)90385-K 

 

Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state  

connectivity using independent component analysis. Philos Trans R Soc B Biol Sci. 

2005;360(1457):1001-1013. doi:10.1098/rstb.2005.1634 

 

Berron D, van Westen D, Ossenkoppele R, Strandberg O, Hansson O. Medial temporal  

lobe connectivity and its associations with cognition in early Alzheimer’s disease. 

Brain. 2020;143(4):1233-1248. doi:10.1093/brain/awaa068 

 

Bi XA, Jiang Q, Sun Q, Shu Q, Liu Y. Analysis of Alzheimer’s Disease Based on the  

Random Neural Network Cluster in fMRI. Front Neuroinform. Published online 2018. 

doi:10.3389/fninf.2018.00060 



 
 

58 
 

Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in  

the motor cortex of resting human brain using echo-planar MRI. Magnetic resonance 

in medicine, 34(4), 537–541. https://doi.org/10.1002/mrm.1910340409 

 

Biswal BB, Van Kylen J, Hyde JS. Simultaneous assessment of flow and BOLD signals in  

resting-state functional connectivity maps. NMR Biomed. 1997;10(4-5):165-170. 

doi:10.1002/(sici)1099-1492(199706/08)10:4/5<165::aid-nbm454>3.0.co;2-7 

 

Bokde ALW, Lopez-Bayo P, Meindl T, et al. Functional connectivity of the fusiform  

gyrus during a face-matching task in subjects with mild cognitive impairment. Brain. 

2006;129(5):1113-1124. doi:10.1093/brain/awl051 

 

Boynton GM, Engel SA, Glover GH, Heeger DJ. Linear systems analysis of functional  

magnetic resonance imaging in human V1. J Neurosci. 1996;16(13):4207-4221. 

doi:10.1523/jneurosci.16-13-04207.1996 

 

Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: Anatomy,  

function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1-38. 

doi:10.1196/annals.1440.011 

 

Buckner RL, Krienen FM, Yeo BTT. Opportunities and limitations of intrinsic functional  

connectivity MRI. Nat Neurosci. 2013;16(7):832-837. doi:10.1038/nn.3423 

 

Calhoun VD, Adali T, Hansen LK. ICA of functional MRI data: an overview. Proc ….  

Published online 2003. doi:10.1.1.3.7473 

 

Cerquera-Jaramillo MA, Nava-Mesa MO, González-Reyes RE, Tellez-Conti C, De-La-Torre  

A. Visual features in Alzheimer’s disease: From basic mechanisms to clinical 

overview. Neural Plast. 2018;2018. doi:10.1155/2018/2941783 

 

Chen K, Azeez A, Chen DY, Biswal BB. Resting-State Functional Connectivity: Signal  

Origins and Analytic Methods. Neuroimaging Clin N Am. Published online 2020. 

doi:10.1016/j.nic.2019.09.012 

 

Chen S, Ross TJ, Zhan W, et al. Group independent component analysis reveals consistent  

resting-state networks across multiple sessions. Brain Res. 2008;1239:141-151. 

doi:10.1016/j.brainres.2008.08.028 

 

Cohen MS. Parametric analysis of fMRI data using linear systems methods. Neuroimage.  

1997;6(2):93-103. doi:10.1006/nimg.1997.0278 

 

Cox RW. AFNI: Software for analysis and visualization of functional magnetic resonance  

neuroimages. Comput Biomed Res. 1996;29(3):162-173. doi:10.1006/cbmr.1996.0014 

 

Damoiseaux JS. Resting-state fMRI as a biomarker for Alzheimer’s disease. Alzheimer’s Res  

Ther. Published online 2012. doi:10.1186/alzrt106 

 

Desgranges B, Mevel K, Chételat G, Eustache F. The default mode network in healthy aging  

and Alzheimer’s disease. Int J Alzheimers Dis. 2011;2011. doi:10.4061/2011/535816 

 



 
 

59 
 

Di X, Wölfer M, Amend M, et al. Interregional causal influences of brain metabolic activity  

reveal the spread of aging effects during normal aging. Hum Brain Mapp. 

2019;40(16):4657-4668. doi:10.1002/hbm.24728 

 

Fischer, F. U., Wolf, D., Fellgiebel, A., & Alzheimer’s Disease Neuroimaging Initiative*  

(2019). Connectivity and morphology of hubs of the cerebral structural connectome 

are associated with brain resilience in AD- and age-related pathology. Brain imaging 

and behavior, 13(6), 1650–1664. https://doi.org/10.1007/s11682-019-00090-y 

 

Fox J, Bouchet-Valat M (2020). Rcmdr: R Commander. R package version 2.62,  

http://socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr/. 

 

Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional  

magnetic resonance imaging. Nat Rev Neurosci. 2007;8(9):700-711. 

doi:10.1038/nrn2201 

 

Friston KJ, Frith C, Frackowiak RSJ, Turner R. Characterizing dynamic brain responses with  

fMRI. Neuroimage. 1995;2:166-172. 

 

Friston KJ, Holmes AP, Worsley KJ, Poline J ‐P, Frith CD, Frackowiak RSJ. Statistical  

parametric maps in functional imaging: A general linear approach. Hum Brain Mapp. 

1994;2(4):189-210. doi:10.1002/hbm.460020402 

 

Friston KJ. Functional and effective connectivity in neuroimaging: A synthesis. Hum Brain  

Mapp. 1994;2(1-2):56-78. doi:10.1002/hbm.460020107 

 

Friston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R. Movement-related effects in  

fMRI time-series. Magn Reson Med. 1996;35(3):346-355. 

doi:10.1002/mrm.1910350312 

 

Gardini S, Venneri A, Sambataro F, et al. Increased Functional Connectivity in the Default  

Mode Network in Mild Cognitive Impairment: A Maladaptive Compensatory 

Mechanism Associated with Poor Semantic Memory Performance. J Alzheimer’s Dis. 

2015;45(2):457-470. doi:10.3233/JAD-142547 

 

Giffard B, Laisney M, Mézenge F, de la Sayette V, Eustache F, Desgranges B. The neural  

substrates of semantic memory deficits in early Alzheimer’s disease: Clues from 

semantic priming effects and FDG-PET. Neuropsychologia. Published online 2008. 

doi:10.1016/j.neuropsychologia.2007.12.031 

 

Gilboa A, Ramirez J, Köhler S, Westmacott R, Black SE, Moscovitch M. Retrieval of  

autobiographical memory in Alzheimer’s disease: Relation to volumes of medial 

temporal lobe and other structures. Hippocampus. 2005;15(4):535-550. 

doi:10.1002/hipo.20090 

 

Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am.  

2011;22(2):133-139. doi:10.1016/j.nec.2010.11.001 

 

 

 

http://socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr/


 
 

60 
 

Golby A, Silverberg G, Race E, et al. Memory encoding in Alzheimer’s disease: An fMRI  

study of explicit and implicit memory. Brain. Published online 2005. 

doi:10.1093/brain/awh400 

 

Grajski KA, Bressler SL. Differential medial temporal lobe and default-mode network  

functional connectivity and morphometric changes in Alzheimer’s disease. 

NeuroImage Clin. 2019;23(February 2018):101860. doi:10.1016/j.nicl.2019.101860 

 

Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes  

Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proc Natl 

Acad Sci U S A. 2004;101(13):4637-4642. doi:10.1073/pnas.0308627101 

 

Hafiz R. Subject and group level changes and comparison in functional connectivity under  

low vs . high cognitively demanding naturalistic viewing conditions using fmri New 

Jersey Inst Technol. Published online 2017. https://digitalcommons.njit.edu/theses/34 

 

He Y, Wang L, Zang Y, et al. Regional coherence changes in the early stages of Alzheimer’s  

disease: A combined structural and resting-state functional MRI study. Neuroimage. 

2007;35(2):488-500. doi:10.1016/j.neuroimage.2006.11.042 

 

Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci.  

2002;3(2):142-151. doi:10.1038/nrn730 

 

Higham, D. J., & Higham, N. J. (2016). MATLAB guide (Vol. 150). Siam. 

 

Hippius, H., & Neundörfer, G. (2003). The discovery of Alzheimer's disease. Dialogues in 

clinical neuroscience, 5(1), 101–108. 

 

Huettel SA, Song AW, McCarthy G. Functional Magnetic Resonance Imaging, Third  

Edition.; 2014. doi:10.1088/1475-7516/2003/08/005 

 

Huf W, Kalcher K, Boubela RN, et al. On the generalizability of resting-state fMRI machine  

learning classifiers. Front Hum Neurosci. 2014;8(JULY):1-11. 

doi:10.3389/fnhum.2014.00502 

 

Ikonomovic MD, Mufson EJ, Wuu J, Bennett DA, DeKosky ST. Reduction of choline  

acetyltransferase activity in primary visual cortex in mild to moderate Alzheimer’s 

disease. Arch Neurol. 2005;62(3):425-430. doi:10.1001/archneur.62.3.425 

 

Jiang L, Zuo XN. Regional Homogeneity: A Multimodal, Multiscale Neuroimaging Marker  

of the Human Connectome. Neuroscientist. 2016;22(5):486-505. 

doi:10.1177/1073858415595004 

 

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012).  

FSL. NeuroImage, 62(2), 782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015 

 

Johnson, K. A., Fox, N. C., Sperling, R. A., & Klunk, W. E. (2012). Brain imaging in  

Alzheimer disease. Cold Spring Harbor perspectives in medicine, 2(4), a006213. 

https://doi.org/10.1101/cshperspect.a006213 

  

https://digitalcommons.njit.edu/theses/34
https://psycnet.apa.org/doi/10.1016/j.neuroimage.2011.09.015


 
 

61 
 

Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Identifying patients with Alzheimer’s  

disease using resting-state fMRI and graph theory. Clin Neurophysiol. Published 

online 2015. doi:10.1016/j.clinph.2015.02.060 

 

Koch W, Teipel S, Mueller S, et al. Diagnostic power of default mode network resting state  

fMRI in the detection of Alzheimer’s disease. Neurobiol Aging. 2012;33(3):466-478. 

doi:10.1016/j.neurobiolaging.2010.04.013 

 

Kusne Y, Wolf AB, Townley K, Conway M, Peyman GA. Visual system manifestations of  

Alzheimer’s disease. Acta Ophthalmol. 2017;95(8):e668-e676. doi:10.1111/aos.13319 

 

Lajoie I, Nugent S, Debacker C, et al. Application of calibrated fMRI in Alzheimer’s disease.  

NeuroImage Clin. 2017;15(April):348-358. doi:10.1016/j.nicl.2017.05.009 

 

Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: A review of methods and clinical  

applications. Am J Neuroradiol. Published online 2013. doi:10.3174/ajnr.A3263 

 

Leuba G, Kraftsik R. Visual cortex in Alzheimer’s disease: Occurencee of neuronal death and  

glial proliferation, and correlation with pathological hallmarks. Neurobiol Aging. 

1994;15(1):29-43. doi:10.1016/0197-4580(94)90142-2 

 

Li SJ, Li Z, Wu G, Zhang MJ, Franczak M, Antuono PG. Alzheimer disease: Evaluation of a  

functional MR imaging index as a marker. Radiology. 2002;225(1):253-259. 

doi:10.1148/radiol.2251011301 

 

Liu Y, Wang K, YU C, et al. Regional homogeneity, functional connectivity and imaging  

markers of Alzheimer’s disease: A review of resting-state fMRI studies. 

Neuropsychologia.2008;46(6):1648-1656. 

doi:10.1016/j.neuropsychologia.2008.01.027 

 

Marchitelli R, Aiello M, Cachia A, et al. Simultaneous resting-state FDG-PET/fMRI in  

Alzheimer Disease: Relationship between glucose metabolism and intrinsic activity. 

Neuroimage. 2018;176(April):246-258. doi:10.1016/j.neuroimage.2018.04.048 

 

Márquez F, Yassa MA. Neuroimaging Biomarkers for Alzheimer’s Disease. Mol  

Neurodegener. 2019;14(1):1-14. doi:10.1186/s13024-019-0325-5 

 

Mendez, M. F., Mendez, M. A., Martin, R., Smyth, K. A., & Whitehouse, P. J. (1990).  

Complex visual disturbances in Alzheimer's disease. Neurology, 40(3 Pt 1), 439–443. 

https://doi.org/10.1212/wnl.40.3_part_1.439 

 

Onyike C. U. (2016). Psychiatric Aspects of Dementia. Continuum (Minneapolis,  

Minn.), 22(2 Dementia), 600–614. https://doi.org/10.1212/CON.0000000000000302 

 

Poldrack RA, Nichols T, Mumford J. Handbook of Functional MRI Data Analysis.; 2011.  

doi:10.1017/cbo9780511895029 

 

 

 

 

https://doi.org/10.1212/wnl.40.3_part_1.439


 
 

62 
 

Qi H, Liu H, Hu H, He H, Zhao X. Primary Disruption of the Memory-Related Subsystems of  

the Default Mode Network in Alzheimer’s Disease: Resting-State Functional 

Connectivity MRI Study. Front Aging Neurosci. 2018;10(October):1-10. 

doi:10.3389/fnagi.2018.00344 

 

Dale Purves, George J. Augustine, David Fitzpatrick, William C. Hall, Anthony-Samuel  

LaMantia Richard D. Mooney, Michael L. Platt, Leonard E. White Neuroscience 6th 

edition. Sunderland, Mass: Sinauer Associates Publishers..;2018  

 

Ridha BH, Barnes J, Van De Pol LA, et al. Application of automated medial temporal lobe  

atrophy scale to Alzheimer disease. Arch Neurol. 2007;64(6):849-854. 

doi:10.1001/archneur.64.6.849 

 

Rombouts SARB, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state  

networks in mild cognitive impairment and mild Alzheimer’s disease: An fMRI study. 

Hum Brain Mapp. 2005;26(4):231-239. doi:10.1002/hbm.20160 

 

Rossor MN, Fox NC, Mummery CJ, Schott JM, Warren JD. The diagnosis of young-onset  

dementia. Lancet Neurol. 2010;9(8):793-806. doi:10.1016/S1474-4422(10)70159-9 

 

Sheline YI, Raichle ME, Snyder AZ, et al. Amyloid Plaques Disrupt Resting State Default 

Mode Network Connectivity in Cognitively Normal Elderly. Biol Psychiatry. 

2010;67(6):584-587. doi:10.1016/j.biopsych.2009.08.024 

 

Smitha KA, Akhil Raja K, Arun KM, et al. Resting state fMRI: A review on methods in  

resting state connectivity analysis and resting state networks. Neuroradiol J. 

2017;30(4):305-317. doi:10.1177/1971400917697342 

 

Solé-Padullés C, Bartrés-Faz D, Junqué C, et al. Brain structure and function related to  

cognitive reserve variables in normal aging, mild cognitive impairment and 

Alzheimer’s disease. Neurobiol Aging. Published online 2009. 

doi:10.1016/j.neurobiolaging.2007.10.008 

 

Sorg C, Riedl V, Mühlau M, et al. Selective changes of resting-state networks in individuals  

at risk for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2007;104(47):18760-

18765. doi:10.1073/pnas.0708803104 

 

Tepmongkol S, Hemrungrojn S, Dupont P, et al. Early prediction of donepezil cognitive  

response in Alzheimer’s disease by brain perfusion single photon emission 

tomography. Brain Imaging Behav. Published online 2019. doi:10.1007/s11682-019-

00182-9 

 

van der Miesen M, Lindquist M, Wager T. Neuroimaging-based biomarkers for pain: state of  

the field and current directions. PAIN Reports. 2019;4(4):e751. 

doi:10.1097/PR9.0000000000000751 

 

Van Dijk KRA, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. Intrinsic  

functional connectivity as a tool for human connectomics: Theory, properties, and 

optimization. J Neurophysiol. 2010;103(1):297-321. doi:10.1152/jn.00783.2009 

 



 
 

63 
 

Wang L, Zang Y, He Y, et al. Changes in hippocampal connectivity in the early stages of  

Alzheimer’s disease: Evidence from resting state fMRI. Neuroimage. Published online 

2006. doi:10.1016/j.neuroimage.2005.12.033 

 

Ward AM, Schultz AP, Huijbers W, Van Dijk KRA, Hedden T, Sperling RA. The  

parahippocampal gyrus links the default-mode cortical network with the medial 

temporal lobe memory system. Hum Brain Mapp. 2014;35(3):1061-1073. 

doi:10.1002/hbm.22234 

 

Woo C-W, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in  

translational neuroimaging. Nat Neurosci. 2017;20(3):365-377. doi:10.1038/nn.4478 

 

Woo C-W, Wager TD. Neuroimaging-based biomarker discovery and validation. Pain.  

2015;156(8):1379-1381. doi:10.1097/j.pain.0000000000000223 

 

Wu X, Li R, Fleisher AS, et al. Altered default mode network connectivity in Alzheimer’s  

disease-A resting functional MRI and Bayesian network study. Hum Brain Mapp. 

2011;32(11):1868-1881. doi:10.1002/hbm.21153 

 

Yamasaki T, Aso T, Kaseda Y, et al. Decreased stimulus-driven connectivity of the primary  

visual cortex during visual motion stimulation in amnestic mild cognitive impairment: 

An fMRI study. Neurosci Lett. 2019;711. doi:10.1016/j.neulet.2019.134402 

 

Yamashita K ichiro, Uehara T, Prawiroharjo P, et al. Functional connectivity change between  

posterior cingulate cortex and ventral attention network relates to the impairment of 

orientation for time in Alzheimer’s disease patients. Brain Imaging Behav. 

2019;13(1):154-161. doi:10.1007/s11682-018-9860-x 

 

Yang L, Yan Y, Li Y, et al. Frequency-dependent changes in fractional amplitude of low- 

frequency oscillations in Alzheimer’s disease: a resting-state fMRI study. Brain 

Imaging Behav. Published online 2019. doi:10.1007/s11682-019-00169-6 

 

Yetkin FZ, Rosenberg RN, Weiner MF, Purdy PD, Cullum CM. FMRI of working memory in  

patients with mild cognitive impairment and probable Alzheimer’s disease. Eur 

Radiol. Published online 2006. doi:10.1007/s00330-005-2794-x 

 

Yu E, Liao Z, Mao D, et al. Directed Functional Connectivity of Posterior Cingulate Cortex  

and Whole Brain in Alzheimer’s Disease and Mild Cognitive Impairment. Curr 

Alzheimer Res. 2016;14(6):628-635. doi:10.2174/1567205013666161201201000 

 

Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis.  

Neuroimage. 2004;22(1):394-400. doi:10.1016/j.neuroimage.2003.12.030 

 

Zhang, H. Y., Wang, S. J., Xing, J., Liu, B., Ma, Z. L., Yang, M., Zhang, Z. J., & Teng, G. J.  

(2009). Detection of PCC functional connectivity characteristics in resting-state fMRI 

in mild Alzheimer's disease. Behavioural brain research, 197(1), 103–108. 

https://doi.org/10.1016/j.bbr.2008.08.012 

 

 

 



 
 

64 
 

Zhang Z, Liu Y, Jiang T, et al. Altered spontaneous activity in Alzheimer’s disease and mild  

cognitive impairment revealed by Regional Homogeneity. Neuroimage. 

2012;59(2):1429-1440. doi:10.1016/j.neuroimage.2011.08.049 

 

Zhong Y, Huang L, Cai S, et al. Altered effective connectivity patterns of the default mode  

network in Alzheimer’s disease: An fMRI study. Neurosci Lett. Published online 

2014. doi:10.1016/j.neulet.2014.06.043 

 

Zou QH, Zhu CZ, Yang Y, et al. An improved approach to detection of amplitude of low- 

frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. J Neurosci 

Methods. 2008;172(1):137-141. doi:10.1016/j.jneumeth.2008.04.012 

 

 


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Magnetic Resonance Image Scanning and Data Acquisition
	Chapter 3: Pre-Processing Methods
	Chapter 4: Functional Connectivity and Statistical Analysis
	Chapter 5: Results
	Chapter 6: Discussion and Conclusion
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

	List of Tables



