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ABSTRACT 

SPECTRAL 3D RECONSTRUCTION 
BASED ON MACROSCOPIC OCT IMAGING 

by 
Xingyu Zhou 

Various optical technologies have been utilized to improve art conservation by art 

conservators, such as laser triangulation, stereophotogrammetry, structured light, laser 

scanner and time of flight sensors. These methods have been deployed to capture the 3D 

or surface topography information of sculptures and architectures. Optical coherence 

tomography (OCT) has introduced new imaging methods to study the surface features and 

subsurface structures of delicate cultural heritage objects. However, despite its higher 

spatial resolution, the field of view (FOV) of OCT severely limits the size of the scanning 

area and does not allow macroscopic examination. To solve this issue, we develop and 

validate a hybrid scanning platform combined with effective algorithm for real-time 

sampling and artifact removal to achieve macroscopic OCT (macro-OCT) imaging and 

generate the spectral 3D reconstruction of impressionist style oil paintings as a digital 

model. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objective 

The objective of this thesis is to develop 3D reconstruction capability based on 

macroscopic OCT imaging with a large field of view (FOV) for oil paintings. The OCT 

images provide the surface and subsurface information that can be used to construct the 

digital model of the artwork in computer. 

 To protect and examine heritage works, art conservators need to determine the state 

of the art works. Many technologies have been applied to this area to improve the 

conservation efforts [1][2]. OCT as a non-invasive imaging method is used in art 

conservation area to find tiny texture or feather on the surface of the objects [3][4][5]. The 

high resolution of OCT allows the researchers to examine detailed structural features of the 

art works [6]. However, OCT has a limited field of view. It remains challenging for 

researchers to have a macro understanding for the whole painting or sculpture in 3D 

according to the information presented by OCT images. Therefore, it is necessary to 

develop an OCT system with a large field of view and improve the presentation of OCT 

data. The thesis is organized as the follows. First, the imaging platform and data acquisition 

method is introduced. Afterwards, the spectral 3D reconstruction of an impressionist style 

oil painting with our stitching algorithm is demonstrated. 
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1.2 Background Information 

Laser triangulation, stereophotogrammetry, structured light, laser scanner and time of 

flight sensors have been used to capture the 3D information of sculptures and architectures. 

Other devices with 3D scanning function have also been used in art conservation efforts. 

For example, 3D data collected based on conoscopic micro-profilometry/holography 

[7][8][9] has been integrated with 2D data to improve the conservation strategy [10][11]. 

A 3D range camera based on optical triangulation with fringe pattern projection was used 

to capture the 3D surface profile of “Adorazione dei Magi” by Da Vinci for conservation 

monitoring [12]. A high-resolution color laser scanner based on trigonometry was used to 

scan the famous painting Mona Lisa and then generated the 3D coordinates, while 

simultaneously capturing the spectral information of the object [13]. More recent research 

has applied terahertz reflectometry to generate the surface profile and the cross-sectional 

information of paintings [14][15], which enables conservators to evaluate the layer 

structure of paintings. Other methods such as x-ray or CT computer tomography and 

magnetic resonance imaging have been applied to acquire cross-sectional images and 

detect the 3D structure of the object. These methods allow macroscopic characterization. 

However, they lack the spatial resolution for microscopic examinations [16][17]. 

The unique features of optical coherence tomography (OCT) have brought this 

imaging methods to the field of cultural heritage conservation by helping researchers build 

3D models in computer [18]. OCT is a non-invasive imaging technique that acquires depth-

resolved signals with micrometer resolution. OCT is highly advantageous in studying the 

surface features and subsurface structures of delicate cultural heritage objects such as 

historical oil paintings and murals. In this field, OCT technology has been applied to 
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capture high-density (HD) cross-sectional information of paintings to reveal the layer 

structure [19][20], which is used to examine varnish layer, structural analysis and varnish 

thickness [21][22]. There are also some other applications such as identifying layer 

structure of ancient murals and non-invasive [23][24] and monitoring the varnish removal 

from easel paintings [25] [26][27].  

Despite these advantages, the small field-of-view (FOV) of OCT imaging severely 

limits its potential to cover a mesoscale or macroscopic region of interest (ROI) on a 

painting. It is difficulty to address the need for both microscopic and macroscopic 

examinations [28][29]. In our previous study on OCT scanning of oil paintings, we 

presented a scanning system which performed raster scanning with a pair of galvanometers 

and extended the range of the lateral FOV by translating the sample painting using a pair 

linear motor. The larger FOV image is then obtained by stitching imagines obtained with 

computer technology. However, galvanometers generally have higher resolution and 

accuracy than linear motors. As a result, the linear motors’ translation error can be easily 

accumulated through each step and leads to overlapping areas in the final stitched image 

[30]. 

In this thesis, to solve the above-mentioned problems and better apply the OCT 

technology in art conservation, we describe a hybrid scanning platform combined with 

effective algorithm for real-time sampling artifact removal to achieve macroscopic OCT 

(macro-OCT) imaging which will better assist researchers to investigate the macro/micro 

structure and construction strategy more directly. The system enables large FOV, HD 

examination and cross-sectional imaging of oil paintings. Data obtained from the imaging 

platform can be used to generate the 3D digital copies for the artwork. 
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CHAPTER 2 

OCT THEORY 

 

2.1 Overview 

Tomography technique indicates the cross-section imaging capability from a three-

dimensional object. Optical coherence tomography (OCT) is a non-invasive method that 

can acquire the cross-sectional images of the sample with microscopic resolution. OCT is 

based on low coherence interferometry and can be used to observe the objects with 

subsurface structural features, particularly for examination of biological tissues. With 

decades of development, OCT technology has been improved significantly in resolution, 

sensitivity and imaging speed. 

 

2.2 History of OCT 

OCT technology is based on optical coherence-domain reflectometry (OCDR). It started 

from 1D OCDR and then became a 2D ranging technique. OCDR was applied to check the 

faults of the optical fiber during manufacture, while OCT was initially used to detect ocular 

tissues and then applied to other tissues. OCT technology is similar to ultrasound imaging. 

It measures the echo of light as it travels into the tissue.  

 Ultrasound biomicroscope (UBM) satisfies this can image the anterior segment 

with high resolution by using higher frequency sound waves. However, due to the rapid 

attenuation of high-frequency sound waves in biological tissues, the depth of its detection 

in the eye is limited. In 1987, Takada et al. developed the optical low coherence 

interferometry, which turned into a high-resolution optical measurement method with the 
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support of fiber optics and photoelectric components; Youngquist et al. developed the 

optical coherence reflectometer, whose light source is a super led directly coupled with 

optical fiber, one arm containing a reference mirror is located inside the instrument while 

the optical fiber in the other arm is connected to a device like a camera. All of these laid a 

theoretical and technical basis for the emergence of OCT.  

In 1991, Dr. Huang et al. form MIT declared the technology named Optical 

Coherence Tomography (OCT). After that, OCT technology was rapidly developed for 

applications in diagnostic ophthalmology, and other biomedical and nonbiomedical fields. 

 
Figure 2.1 OCT developed by Dr. Huang used to measure Retina and coronary artery.  
 
Source: [33]. 

 

2.3 Application of OCT 

The most important application of OCT technology is in medicine and biology fields. As 

mention in last section, when the early stage of OCT technology was developed, Dr. Huang 
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and other scientists used OCT to measure and image the retina, cornea, anterior chamber 

and iris of human eyes in vitro and in vivo. After several years of development, OCT system 

had been further improved and developed into a clinical tool for medicinal workers. OCT 

was made into a commercial instrument, and finally determined its advantages in fundus 

and retina imaging. OCT was officially used in ophthalmology in 1995. 

OCT as a new optical diagnostic technique is widely used in the area of non-contact 

and non-invasive tomographic imaging of the micro-structure of the living eye tissue. OCT 

is an optical analog of ultrasound. Its unique advantage is that its axial resolution depends 

on the coherence characteristics of the light source and can be higher than 10µm. For ocular 

imaging, OCT provides sufficient penetration depth because ocular tissues are transparent 

or semitransparent. OCT can both detect the anterior segment and posterior segment of the 

eye, and show the morphological structures. It has been widely used in the diagnosis, 

follow-up observation and effects evaluation of intraocular diseases, especially retinal 

diseases. 

 
Figure 2.2 OCT B-scan image (left) and en-face image based on B-scan (right). 

Another important application of OCT in medicinal area is to test the early 

canceration of soft tissue. The early diagnosis of cancer is essential to save or extend the 

life of the patient. Currently, the diagnostic gold standard is through biopsy and histology 
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examination. However, the process is time consuming. and the diagnosis is subjective, 

limited by the experience of the clinician. It is also difficult to accurately identify the 

margin of the cancerous area. OCT provides tissue characterization to reveal difference 

between cancerous tissues and healthy tissues. Therefore, OCT allows real-time tissue 

characterization and can lead to accurate, and objective diagnosis with computer analysis 

of OCT signal. As illustrated in Figure 2.3, in the left part of the image, the tissue looks 

porous and there is a clear border between two types of tissues. 

 
Figure 2.3 OCT B-scan of human breast tissue (left: adipose tissue; right: diseased 

tissue). 

 
OCT continues to be applied to other medical fields, while OCT technology is also 

getting into other fields, especially in the field of industrial measurement, such as 

displacement sensor, thickness measurement of thin film, and non-destructive detection of 

substructure, high-density data storage.  OCT is also used to measure the residual porosity, 

fiber structure and structural integrity of high scattering polymer molecules. OCT 

technology can also be used in materials science. M. Bashkansky et al. used the OCT 

system to test ceramic materials, expanding the application of OCT technology. J.P. 

Dunkers and other researchers used OCT technology to detect the composite materials 

without damage [34][35]. 



 
8 

2.4 Low Coherence Interferometry 

The interferometer is one of the key components in an OCT microscope.  This device splits 

the output of a broadband source into two beams entering reference arm and sample arm 

𝐸!. The light incident into the sample arm  is focused to a point and scanned.	𝐸" After 

backscattered by the tissue, the sample light (field 𝐸!) interferes with the reference light 

(field 𝐸") and the interference signal is detected. If we assume that the signal detected by 

the photodetector can be expressed as: 

																									𝐼# = 〈|𝐸#|$〉 = 0.5(𝐼" + 𝐼′!) + 𝑅𝑒{〈𝐸∗"(𝑡 + 𝜏)𝐸′!(𝑡)〉}																											(2.1) 

, where 𝐼" and 𝐼! represent average intensities from the reference and sample arms of the 

interferometer. The second term in this equation depends on the optical time delay t and is 

determined by the spatial location where the signal originates. It encodes the amplitude of 

the interference fringes that contain the information about the tissue structure. The property 

of the interference fringes and wherever the fringes form is all decided by the temporal and 

spatial coherence characteristics of 𝐸′! and 𝐸". Therefore, the interferometer has the same 

function as a cross correlator. It provides a measure of the cross-correlation amplitude. 

Various techniques have been applied to modulate t to realize the separation of the cross-

correlation signal from the dc component of the intensity. 

 

2.5 Different Mechanisms of OCT 

With decades of development, different types of OCT systems have been developed. For 

the time domain OCT system, the detection of different depths is realized by the fast 

scanning the optical path length of the reference arm (Figure 2.4). 
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Figure 2.4 Time-domain OCT system diagram. 

In a frequency-domain OCT system, the spectrum of the interference signal is 

detected. Afterwards, depth resolved sample profile is obtained by fast Fourier inverse 

transform on the interferometric spectrum. In frequency-domain OCT, the reference arm 

is fixed and does not perform mechanical optical path scanning. The interference signal is 

the coherent superposition of the scattered light from different depths of the sample and 

the reference light. The theory of FD-OCT is equivalent to that of the inverse process of 

Fourier spectrometer. The spectral width determines the longitudinal depth resolution. The 

spectral resolution determines the maximum depth of the scattered signal. 
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Figure 2.5 Frequency-domain OCT system diagram. 

The advantage of frequency domain OCT is that it does not need the longitudinal 

scanning of the reference arm and its signal-to-noise ratio is not directly related to the 

bandwidth of the light source. As a result, there is no tradeoff between the signal-to-noise 

ratio and the longitudinal resolution. Experimental results showed that frequency domain 

OCT had a 20dB to 30dB advantage in sensitivity compared to time domain OCT and the 

sensitivity of frequency domain OCT can be higher than 100dB. 
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CHAPTER 3 

CORRELATION COEFFICIENT 

3.1 Introduction 

Three kinds of correlation coefficients are frequently used in Statistics: Pearson correlation 

coefficient, Spearman correlation coefficient and Kendall correlation coefficient. 

Pearson correlation coefficient reflects the degree of linear correlation [31]. 

Consider two variables: X and Y. 

(1) If X and Y have no correlation, the correlation coefficient is 0, 

(2) The two variables X, Y are positively correlated (the correlation coefficient is between 

0.00 and 1.00), if the value of X increases or decreases while the value of Y increases or 

decreases. 

(3) The two variables X, Y are negatively correlated (the correlation coefficient is between 

- 1.00 and 0.00), if the value of X increases or decreases while the value of Y decreases or 

increases. 

When the absolute value of the coefficient is closed to 1, the two variables have 

high correlation. On the other hand, if the coefficient is closed to 0, the two variables have 

low correlation. 

3.2 Pearson Correlation Coefficient 

Pearson correlation coefficient is also called as Pearson product moment correlation 

coefficient and is a linear correlation coefficient. Pearson correlation coefficient is a 

statistic reflection of the linear correlation degree between two variables. 

Pearson correlation coefficient between two variables is defined as the quotient of 

covariance and standard deviation between two variables: 
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																																																													𝜌&,( =
𝑐𝑜𝑣(𝑥, 𝑦)
𝜎&𝜎(

																																																												(3.1) 

																																															𝜌 =
∑ (𝑥) − �̅�)(𝑦) − 𝑦C)*
)+,

D∑ (𝑥) − �̅�)$*
)+, ∑ (𝑦) − 𝑦C)$*

)+,

																																								(3.2) 

 

The Pearson correlation coefficient (𝜌&,( ) of two continuous variables (𝑥, 𝑦) is 

equal to the covariance 𝑐𝑜𝑣(𝑥, 𝑦) between them divided by the product of their respective 

standard deviations (𝜎& , 𝜎(). The value of coefficient is always between - 1.0 and 1.0. As 

discussed previously, variables with Pearson correlation coefficient close to 0 are called 

uncorrelated, and variables with Pearson correlation coefficient close to 1 or - 1 are called 

strongly correlated. 

 When this correlation coefficient is used to determine the relationship between the 

two variables, there are some limitations [32]. Data involved in Pearson correlation 

calculation should be drawn from normal distributions. The statistical difference between 

X and Y cannot be too large. Otherwise, the Pearson correlation coefficient is largely 

affected by outliers. 

 

3.3 Spearman Correlation Coefficient 

Spearman correlation coefficient, also names rank correlation coefficient, is a 

nonparametric statistical method. The calculation of Spearman correlation coefficient uses 

the rank position of two variables for linear correlation analysis. It does not require 

knowing the distribution of the variables involved in correlation calculation. Spearman 
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correlation coefficient is more widely used than Pearson coefficient. However, it requires 

more computation. Spearman rank correlation is a method that studies the correlation 

between two variables based on ranked data. It is calculated according to the difference 

between the two pairs of grades. Hence, it is also called ‘grade difference method’. 

As long as the observation values of two variables are paired grade evaluation data, 

or grade data obtained from continuous variable observation data, regardless of the overall 

distribution form and sample capacity of the two variables, the correlation analysis can be 

conducted by using the Spearman grade correlation. 

For the data subject to Pearson correlation coefficient, Spearman correlation 

coefficient can also be calculated, but at a lower speed. 

 

3.4 The Application of Correlation Coefficient in Image Stitching  

The correlation coefficient is often used to quantify the correlation of two sets of data. 

Images are stored as matrixes in computer. Two images with overlapping area can be 

stitched into one picture with a larger field of view. As shown in Figure 3.1, two images 

(enface OCT images) have an overlapping region. Once the overlapping parts are found, 

these two images can be stitched together seamlessly. The pixels in red box can be 

considered as two matrices sets with the same size. By calculation the Pearson or Spearman 

coefficient, the correlation degree can be determined. As mentioned before in above 

sections, the best match of these two matrices is when the correlation coefficient is 

approximately 1. Hence by identifying the peak of the correlation coefficient will allow 

one to find the overlapping region and stitch two images to extend the field of view. 
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Figure 3.1 en-face original OCT images. 
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CHAPTER 4 

SYSTEM CONFIGURATION AND IMAGE PROCESSING 

 

4.1 System Components 

The macro-OCT imaging system is shown in Figure 4.1. In this study, we use a swept 

source OCT (SS OCT) system for 3D imaging. The SS-OCT system (Axsun) works at 

1.06μm with 100nm bandwidth, 100 kHz Ascan rate. The build-in fiber-optic Michelson 

interferometer is illuminated by the swept source. A lens is fixed at the sample arm 

(Thorlabs LSM04-BB) to focus the probing beam and collect photons backscattered from 

the surface or the subsurface layers of the sample. The photon detector is used to detect the 

interferometric signal. A frame grabber (PCIe-1433, National Instrument) is used to 

acquire the data and stream the data. To augment the capability of the computer in 

processing image data, a GPU (NVIDIA gtx1080) for parallel signal processing.  

The hybrid scanning system consists of two major scanning modules to acquire data 

from a large field of view. The first module is the galvo system with two galvanometers 

(Thorlabs GVS002) steering the incident light beam in x and y directions for lateral 

scanning. The lateral range of galvo scanning is determined by the voltage applied. FOVx 

and FOVy are directly decided by several factors: the focal length of the imaging objective 

(Fobj=54mm), the responsive factor of the galvanometer deflection angle to voltage, and 

the voltage applied to the galvanometer (Vx and Vy): FOVx=2βVxFobj and FOVy=2βVyFobj.  

The second module of scanning is a pair of linear motors with long translation range 

to increase the FOV of OCT imaging by exposing different parts of the sample to the object 

lens without compromising spatial resolution. The model of XYZ linear motor stage is 
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Intellidrives (Intellidrives X1-BEMA-W45-600) assembled by our collaborators. The 

control of X and Y stages is integrated into the OCT imaging system (receives signal from 

the Arduino chip microcomputer). The translation resolution of the X and Y stages is 18.75 

μm. As presented in Figure 4.1, a workstation computer (Dell Precision 5530) is used to 

coordinate and synchronize different modules of the macro-OCT system. The C++ 

program that synchronizes the data acquisition card (DAQ, National Instruments NI 6212) 

with galvo scanning is developed in-house. To establish the connection between the 

workstation and the motor system, the in-house developed software synchronizes the XY 

motion of the linear stage by sending sync signal to the MCU (Arduino UNO REV3) using 

a data acquisition device (DAQ). Once the whole system is synchronized, the OCT images 

captured during each step is saved and processed. The imaging depth of OCT is about 2.5 

mm. This depth allows us to obtain the 3D topology of the sample surface and subsurface 

part. The size of the 3D data cute is quite large (about 250 MB). To generate an image with 

macroscopic FOV, tens of 3D data cubes are acquired. It is challenging to manage such a 

huge volume of data and perform image stitching. To address this issue, we convert 

volumetric OCT data sets (3D) into 2D matrices, and perform analysis to stitch the data 

using the 2D matrices. We average the 3D data along the axial (z) dimension to get an en-

face image of the sample. This effectively converts 3D data to 2D while preserves 

information needed for image stitching. 
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Figure 4.1 The configuration of macro-OCT based on a hybrid scanning platform. 

 

4.2 Lateral Scanning and Data Acquisition Protocol for Macro-OCT Imaging 

Lateral scanning motion path for the macro-OCT imaging is shown in Figure 4.2. First, the 

macro-OCT system performs data acquisition from the sample at lateral coordinate (x1, y1). 

The galvo in the system will be driven by the signal from the workstation computer and 

steer the laser beam to perform area scanning. The image acquisition system obtains 

volumetric OCT data from an area represented by the rectangle shaded in blue, marked as 

ROI1. ROI1 centers at (x1, y1) with x dimension of FOVx and y dimension of FOVy. After 

the OCT system finishes data acquisition in ROI1, the linear motors will receive the 

command from the MCU (triggered by program in computer). Once received the 

command, the MCU drives the motor in x dimension and/or in y dimension to move to a 

new lateral coordinate (x2, y2). At the same time, the image acquisition stops, and unit next 

command arrives. After the linear stage travels to the desired spatial coordinate, the OCT 

engine resumes volumetric data acquisition in the new area (ROI2) centered at (x2, y2). This 

is again followed by linear motor translation. The process of data acquisition and motor 

translation repeats for N times. N sets of volumetric OCT data are obtained at (x1, y1), (x2, 
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y2), (x3, y3), …, and (xN, yN). For Figure 4.2, N = n*p, where n is 10, and p is 9. These lateral 

coordinates are predefined, and the scanning pathway is presented in Figure 4.2. 

 
Figure 4.2 Lateral scanning for macro-OCT imaging. 

 

4.3 Image Stitching Methods 

The scanning strategy scans ROIs with lateral overlap. This ensures that every point 

on the lateral plane of the sample is scanned for OCT imaging. If the step size of the linear 

motor is precisely FOVx or FOVy, some areas between two adjacent ROIs may be missing, 

because the translation accuracy of the linear motor is limited. As shown in Figure 4.2, we 

set the size Dx < FOVx and Dy < FOVy. Dx and Dy are the translation step sizes in the X and 

Y direction for the linear stage. Such a redundant scanning strategy is applied to prevent 

the problem mentioned above because the accuracy of the galvanometers and the linear 

motor are not at the same level (1.5μm scanning resolution for galvanometers and 18.75μm 

for motors). The overlapping width is set to 300 µm due to the step size of the motor. To 

generate an image without redundancy artifact, we need to remove the redundant parts in 

each image and stitch all the images together. The overlapping areas between two adjacent 

images are not always with the same size, because of the inaccuracy in linear motor 

translation. In order to obtain the high quality artifact-free OCT image with large FOV, we 
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introduce the method based on cross-correlation analysis to adaptively stitch S0, S1, …, and 

SN-1, where Sk∈RNx×Ny×Nz are volumetric OCT data sets obtained with the sample located 

at (xk, yk). 

Consider the imaging system acquires two adjacent volumetric OCT data sets 

denoted as Sk and Sk+1. To digitally align the acquired data, we first translate 3D data sets 

Sk and Sk+1 to 2D by the method described above. The resultant data sets are presented as 

Mk and Mk+1 (Mk∈RNx×Ny and Mk+1∈RNx×Ny), as shown in Figure 4.3 (a) and (b). When Sk 

and Sk+1 are directly stitched together as shown in Figure 4.3 (c), the same region (areas 

enclosed by the dashed rectangular boxes) will appear twice as image artifact. To remove 

artifacts due to redundant OCT scanning, we select a submatrix from the bottom of Mk, 

written as mk that contains a few numbers of rows (usually 5 rows in our algorithm,). In 

the second image (Mk+1), we select the matrix at top of the image, and determine a 

submatrix within Mk+1 that best matches mk which is marked as mk+1 that contains h rows 

of data from Mk+1 (Figure 4.3 (b)). We calculate the Pearson correlation coefficient 

between mk and mk+1 using Eq (4.1). In this equation, E( ) represents  the expectation value, 

• represents element-wise product, and σv represents the standard deviation of v. According 

to the principle described in chapter 3, when 𝜌 is closer to 1, mk and mk+1 are extremely 

similar. We use a window sliding along y direction pixel by pixel to select mk+1 that consists 

of wth to (w+h-1) th row of Mk+1, calculate a set of ρ, and determine the w that corresponds 

to the largest ρ. If the biggest ρ appears and is also closed to 1 (if ρ is far away from 1, the 

result may not be used), we will attach data of Mk+1 to Mk, starting from wth Bscan, stitching 

into an artifact free image (Figure 4.3 (d)). The same data stitching strategy applies to every 

set of OCT data.   
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𝜌 =
𝐸[(𝑚- −𝑚H-) ∙ (𝑚-., −𝑚H-.,)]

𝜎/!𝜎/!"#

 
(4.1) 

After data stitching in y direction, a similar approach is utilized to stitch images in 

x direction.  

 
Figure 4.3 Illustration of image stitching strategy (a) An enface OCT image of the oil 
painting; (b) An enface OCT image of the oil painting with the sample translated in y 
direction; (c) Images directly stitched together with redundant artifact; (d) Images stitched 
together through cross-correlation analysis after redundant artifact removal.  
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CHAPTER 5 

RESULTS 

In this experiment, we described a macro-OCT imaging study based on the oil painting 

produced by an artist that mimics the impressionist style. The size of the canvas painting 

is of 10 cm by 10 cm, shown in Figure 5.1. This painting style is suitable to our project 

because of its unique brushstrokes and style to demonstrate the 3D reconstruction 

capability of the optical imaging system. 

 
Figure 5.1 The photo of sample painting. 

Without the hybrid scanning platform, an OCT system acquires volumetric data 

from a region denoted by the red box in Figure 5.1. The Ascan, Bscan, enface image and 

3D rendered volume of this area is shown in Figure 5.2 (a) – (d). The Ascan obtained from 

oil painting (Figure 5.2 (a)) indicates the depth penetration of the OCT signal. The Bscan 

(Figure 5.2 (b)) shows clear visible speckle pattern due to the high-density OCT imaging. 

In addition, it shows the variation of surface profile. The enface image in Figure 5.2 (c) 

was obtained by averaging pixel values along axial dimension z. Figure 5.2 (d) 

demonstrates the rendered surface topography of the paint in this area (solid red box in 

Figure 5.1). 
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Figure 5.2 (a) Ascan (b) Bscan OCT image; (c) Enface image; (d) 3D rendered volume. In 
(b) and (c), scale bar = 0.5 mm. 

We further demonstrated the macro-OCT’s capability for large FOV, HD OCT 

imaging to reconstruct the 3D surface profile of the painting. The sample was translated by 

the motor system to different lateral positions following data acquisition protocol shown 

in Figure 3.2 (n=10 and p=9). OCT images were acquired at 90 transverse coordinates. A 

27mm by 18mm range of FOV was achieved by scanning the ROIs (dotted line in Figure 

4.2). The Pearson and Spearman correlation coefficient methods as we mentioned in 

chapter 3 are used to stitch the images. The stitched en-face image obtained by averaging 

OCT data along axial dimension z is shown Figure 5.2 (a) with the 5mm scale bar. We 

performed peak detection for each Ascan to identify the surface location in axial dimension 

to create the 3D characteristics information for the area we got as Figure 5.2 (a) shows. 

Figure 5.2 (b) represents the surface topography information in grey scale with white part 

presenting high altitude and black for the lower place. 
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Figure 5.3 (a) Stitched enface image of the ROI; (b) Stitched surface topography of ROI.  
Scale bar = 5 mm. 

We found the best match and combine the color photo and the surface topography 

model information with 3D plug-in software (3D map generator) from Adobe Photoshop. 

Frist, according to the grayscale height image shown as Figure 5.3 (b), the program 

generated a 3D black-and-white topography model, and then we captured the colorful 2D 

spectral image of the ROI. The software generated the 3D spectral reconstruction of the 

ROI by overlapping the 2D spectral image and the 3D topography model in one direction. 

The final production contained both spectral and texture information. Figure 5.4 presents 

the spectral 3D reconstruction of the ROI on the painting (white dotted area in Figure 5.1). 

 
Figure 5.4 Spectral and texture of the ROI from the impressionist oil painting. 
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With the digital 3D model, combined with the 3D print technology, we generated a 

3D printed copy of the oil painting (Figure 5.5).  

 

 
Figure 5.5 Reproduced oil painting 3D models. 
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CHAPTER 6 

CONCLUSION 

In conclusion, this thesis describes a macroscopic OCT imaging system with hybrid 

scanning platform. The imaging system allows spectral 3D reconstruction of precious art 

works and potentially other cultural heritage objects. Using a novel image stitching 

technology, the image system performs high-resolution, high-density OCT imaging with 

macro-view. The digital copy generated by OCT scanning can be a backup to preserve 

invaluable artworks with great detail, as war, terrorism, natural disaster, and other 

catastrophes may put art works in a vulnerable position. 
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