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ABSTRACT 
Application of Imaging Pyrometry for Remote Temperature 

Measurements 

by 
Michael B. Kaplinsky  

The radiometric model of an IR image sensor has been developed. 

Based on this model, the application of imaging pyrometry to remote 

temperature measurements has been investigated. This analysis provides the 

estimation of temperature accuracy achievable by imaging pyrometry in 

conjunction with a number of radiometric methods. The detection of 

radiation emitted across the full spectral bandwidth of the imager as well as 

utilization of narrow-passband filters was analyzed for a target with known 

emissivity. 

The methods of two-wavelength ratio radiometry and multi-wavelength 

radiometry were considered for the targets with unknown emissivity. The 

optimal selection of the wavelengths for the method of ratio radiometry was 

investigated. It was shown that in the case of a blackbody radiator at 

1000 °C the ratio radiometry yields temperature resolution of 0.5 °C for the 

106  electrons per pixel signal level detected by 320x244 IR imager with PtSi 

Schottky-barrier detectors and operated with 100-nm-wide Gaussian filters 

positioned at 1.5 µm and 3.0 µm. The temperature accuracy achievable by 

least-squares-based multi-wavelength imaging pyrometry (MWIP) was  



analyzed for linear and quadratic emissivity models. The presented results 

have shown that for targets with quadratic spectral emissivity at 1000 °C the 

6-filter MWIP is capable of providing temperature resolution of about 1 °C 

for target temperature of 1000 °C and the maximum signal of 4x106  

electrons per pixel. For targets at 500 °C the corresponding accuracy is equal 

to 0.4 °C.  
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CHAPTER 1 

INTRODUCTION  

The research work reported in this thesis represents theoretical analysis 

performed in support of the effort of the Electronic Imaging Center of the 

NJIT Foundation for Optoelectronics and Solid-State Circuits under DARPA 

contract F33615-92-C-5817 "Multi-Wavelength Imaging Pyrometry for 

Semiconductor Process Monitoring and Control" and under NASA contract 

NAS1-18226 "Radiometric Infrared Focal Plane Array Imaging System for 

Thermographic Applications". This work was done under general direction 

of Professor Walter Kosonocky. The graduate students who contributed the 

experimental results reported in this thesis include Nathaniel McCaffrey, 

Vipulkumar Patel, and Mehul Patel. 

The objectives of this work include the development of a radiometric 

model of an IR image sensor and the estimation of its performance for 

measurement of temperature of remote radiant targets. The thesis also 

provides the comparative study of various radiometric techniques, including 

wide-band, narrow-band, ratio, and multi-wavelength radiometry. For the 

purpose of this analysis the radiometric performance of a 320x244 IR CCD 

image sensor, developed at the David Sarnoff Research Center, was 

investigated in conjunction with each of the above techniques. The analysis 

presented in this work places special emphasis on the accurate description of  

1  



2  

narrow-passband filters used for radiometric temperature measurement, thus 

providing a realistic model of the spectral properties of filter-imager system. 

Chapter 2 gives a brief description of the basic radiometric concepts 

used in this thesis. The concept of the ideal emitter and radiator (blackbody) 

is introduced in the first section of this chapter. This section provides the 

information on the basic characteristics of the blackbody spectral emission. 

The second section of this chapter describes radiation emission by real (non-

idealized) surfaces. 

Chapter 3 provides the description of the radiometric model of the IR 

image sensor. Based on this model the radiometric performance of the 

imager is investigated for the cases of wide-band and narrow-band 

radiometry. The concept of the reference wavelength is introduced in order 

to facilitate the analysis of radiometric performance of an imager viewing 

the radiant target through a narrow-passband infrared filter. The chapter 

concludes with the analysis of the effects of the filter characteristics on the 

temperature accuracy of the radiometric temperature measurements. 

Chapter 4 describes the theory of ratio radiometry. It is shown that this 

radiometric technique allows to perform accurate temperature measurements 

for graybodies with unknown emissivity. The noise equivalent temperature, 

NE∆T1  , resulting from employing this technique is analyzed. This chapter 

1  It should be noted that the concepts of noise equivalent temperature, NE∆T, minimum 
resolvable temperature, and noise-limited temperature accuracy are used 
interchangeably throughout the thesis.  
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concludes with the discussion of various factors affecting the accuracy of 

temperature measurement by the method of ratio radiometry. 

Chapter 5 describes the techniques of multi-wavelength imaging 

pyrometry (MWIP). It is shown that for a wide variety of targets the MWIP 

technique provides the means of radiometric temperature measurement 

without prior knowledge of the emissivity of the target. In this chapter a 

special emphasis is placed on the analysis of noise equivalent temperature 

for linear and quadratic models of spectral emissivity. 

Chapter 6 provides a comparative analysis of the NE∆T achievable by 

the radiometric techniques described in the thesis. The advantages and 

limitations of each approach are analyzed. This chapter concludes with a 

discussion of the calibration procedure of the IR imager which should be 

conducted in order to improve the accuracy of the measurements. 
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CHAPTER 2 

BASIC CONCEPTS OF RADIATION THERMOMETRY  

All matter emits radiant energy as a consequence of its temperature. The 

non-contact measurement of temperature based on the detection of the 

emitted radiation is referred to as Radiation Thermometry or Radiometry. 

	

To obtain a quantitative description of the emitted radiation the 

concept of spectral radiance has been introduced. The spectral radiance, 

is defined as the radiant flux, ϕem , emitted at the wavelength λ, in 

a given direction, per unit of the emitting surface normal to this direction, 

per unit solid angle about this direction, and per unit wavelength interval 

dλ  about λ . The spectral radiance, which has the units of 

[W / m2  • sr • µm may then be expressed as  

If the spectral and directional distributions of the spectral radiance are 

known, the radiant power per unit area of the emitting surface may be 

determined by integration of Eq. (2-1) over finite solid angle and 

wavelength interval. In particular, the radiant power per unit area, emitted 

into the hemispheric space above the surface is defined as the total self-

exitance, Mem  [W / m2 ].  

4  
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It is important to note that, in general, the directional distribution of 

surface emission varies according to the conditions of the surface. 

However, many real surfaces can be reasonably approximated by so-called 

lambertian surface. For a lambertian surface (also known as isotropically 

diffuse emitter) the radiance of the emitted radiation is independent of the 

direction. In this case the following relationship between radiance and 

exitance holds  

where Lem  - is the total radiance of the emitted radiation [ W / m2  • sr-1] 

In this work all considerations will be restricted to emitters which can 

be closely approximated by lambertian surfaces within reasonably small 

solid angles. 

2.1 Black Body Radiation 

2.1.1 Planck Spectral Distribution and Wien's Approximation 

When describing the radiation characteristics of real surfaces, it is useful to 

introduce the concept of the blackbody. The blackbody is an ideal surface 

with the following properties: 

(1) A blackbody absorbs all incident radiation, regardless of wavelength 

and direction.  



6  

(2) For a given temperature and wavelength, no surface can emit more 

thermal radiation than a blackbody. 

(3) The blackbody is an isotropically diffuse (lambertian) emitter. 

Therefore, its radiation is independent of direction. 

As a perfect absorber or emitter, the blackbody serves as the ideal 

radiator against which the properties of actual surfaces may be compared.  

Figure 1  Spectral radiance of a blackbody radiator [1].  
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The spectral distribution of the radiation associated with blackbody 

emission was first derived by Planck from quantum mechanical 

considerations. The spectral radiance of a blackbody has the form  

where 

Lλ,b  (λ ,T) - is the blackbody spectral radiance [ W / m2  • µm], 

T - is the temperature of the blackbody radiator [K], 

λ - is the wavelength [µm], 

C1  =1.1911 x108  —is the first radiation constant [W • µm4  / m • sr], 

C2  = 1. 4388 x 104  — is the sec and radiation constant [µm • K]. 

The spectral radiance of a blackbody is shown in Figure 1 for selected 

temperatures [1]. The following important characteristics of this 

distribution should be noted: 

(1) The emitted radiation varies continuously with wavelength. 

(2) At any wavelength the magnitude of the emitted radiation increases 

with increasing temperature. 

(3) The spectral region in which the radiation is concentrated depends on 

temperature, with comparatively more radiation appearing at shorter 

wavelengths as the temperature increases.  



(2-4) 
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Since the form of Eq. (2-3) is inconvenient for analytical 

manipulations a number of approximations to Planck's law have been 

developed. One of the most useful approximations to Eq. (2-3) is known as 

Wien's approximation and has the form 

	

For λT<2900 µm • K Plank's law and Wien's approximation produce 

almost indistinguishable results. Therefore, Wien's approximation is 

especially useful for short wavelengths or relatively low temperatures. 

2.1.2 Wien's Displacement Law and Stefan-Boltzmann Law  

It can be seen from Figure 1 that the blackbody spectral radiance is 

characterized by a maximum and that the wavelength associated with this 

maximum, λmax  , depends on blackbody temperature. Differentiating the 

Planck distribution given by Eq. (2-3) with respect to wavelength and 

setting the result equal to zero, we obtain 

λmax • T = 2897.7 [µm • K] 	(2-5) 



(2-6) 

(2-7) 

9  

Equation (2-5) is known as Wien's displacement law. According to this 

law, the maximum of spectral radiance is displaced to shorter wavelengths 

with increasing temperature of the radiant surface. Thus, for a blackbody 

at 1000 K peak emission occurs at 2.9 µm, and for 300 K peak 

corresponds to 9.7 µm. 

It can be shown that the value of the blackbody spectral radiance at its 

maximum is proportional to the fifth power of the blackbody temperature. 

Performing the substitution of Eq. (2-5) into Eq. (2-3) and multiplying the 

constants we obtain  

The value of the total radiant power emitted from a unit of blackbody 

surface area over the wavelength range from zero to infinity can be 

obtained by integration of Eq. (2-3) for any given temperature T. The 

result of this integration can be expressed as  

where σ = 1.8049 x10-8  [W / m2 
• 
K4

] is the Boltzmann constant.  
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Equation (2-7), known as the Stefan-Boltzmann law, shows that the 

total radiant power emitted by a blackbody is proportional to the fourth 

power of temperature. 

2.2 Emissivity of Real Surfaces  

Emissivity is a property of the emitting surface and is defined as the ratio 

of the radiation emitted by the surface to the radiation emitted by a 

blackbody at the same temperature and for the same spectral and 

directional conditions. It should be noted that emissivity may assume 

different values according to whether one is interested in emission at a 

given wavelength, in a given direction or in weighted averages over all 

possible wavelengths and directions as shown in Figure 2 [1]. 

Figure 2.  Comparison of blackbody and real body emission: 

(a) spectral distribution and (b) directional distribution of radiance [1]. 
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The spectral-directional emissivity ε(λ, θ, T) of a surface a

t temperature T is defined (assuming azimuthal isotropy for clarity) as the 

ratio of radiance of the radiation emitted at wavelength λ and in the 

direction 0 to the radiance of the radiation emitted by a blackbody at the 

same temperature and wavelength  

It should be recognized that the spectral-directional emissivity is the 

most basic of the radiative properties from which other expressions for 

surface emissivity can be derived. The spectral-hemispherical emissivity 

(later referred to as spectral emissivity) represents a weighted average over 

all directions within the hemispherical space above a surface and is defined 

as  



(2-11) 
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From Eq. (2-9) it follows that for lambertian surfaces the spectral-

directional emissivity is equal to the spectral-hemispherical emissivity 

ε(λ, θ) = ε(λ , 2π ) 	 (2-10) 

Finally, the total-hemispherical emissivity represents an average over 

the entire spectral range and for all possible directions and is defined as 

where Mb  (T) is the total exitance of the blackbody radiator [W/m2] and 

Mem  (T) is the total self-exitance of the radiant surface given by Eq. (2-2). 



CHAPTER 3 

IR IMAGE SENSOR AS RADIOMETER  

In this chapter it will be shown that an IR imager can be used as a imaging 

radiometer, later referred to as radiometer or radiation thermometer. We 

will discuss the methods by which the temperature of the remote radiant 

surface can be inferred from the spectral radiance measured by a 

radiometer. We will also consider the limitations imposed on the accuracy 

of temperature measurements by the presence of the radiation (shot) noise 

and rms detector read-out noise.  

3.1 Basic Principles of Radiation Measurement  

The concept of spectral radiance described by Eq (2-1) is of fundamental 

importance in radiation thermometry for the following reasons: 

(1) The spectral radiance of a blackbody is accurately expressible in terms 

of its temperature and certain radiometric constants, as shown by Eq. 

(2-2). The same is true for non-blackbodies (gray or color bodies), 

but with the additional requirement that spectral emissivity must be 

known. 

(2) An electro-optical system designed to measure spectral radiance 

provides the means for remote sensing of the temperature of a 

radiating surface. 

13  
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(3) Spectral radiance has the very useful property of invariance along a 

beam of radiant flux [1]. Due to this property the radiant flux input to 

an IR imager can be calculated independently of the distance between 

the imager and the emitting surface.  

Figure 3  Imaging radiation thermometer with lens. 

An approximate expression for the radiant flux originating from a 

remote radiant surface and entering the radiation detector can be obtained 

by integrating Eq. (2-1) over the area of the emitting surface within the 

field of view of the detector, solid angle subtended by the detector 

aperture, and the total bandwidth of the radiometer (see Figure 3)  



(3-3)  
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where 

At,n  - is the area of the projection of the emitting surface in the field of 

view to the plane perpendicular to the optical axes; 

ωt  - is the solid angle subtended by the radiation beam leaving the surface 

of the radiant target and reaching the radiation detector; 

For a lambertian emitting surface, radiance is essentially constant over the 

At,n  , and, for sufficiently remote target, dω t  has nearly the same value 

from all points on At,n . In addition to the above assumptions we use the 

concept of optical invariant [2] in the following form 

Ad,nωd = At,nωt 	(3-2) 

where 

Ad,n  - is the area of projection of the detector aperture onto a plane 

perpendicular to the optical axes; 

ωd  - is the solid angular field of view determined by the aperture. 

Therefore, the Eq. (3-1) can be rewritten as  



(3-4) 
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In order to obtain the output signal of the radiometer, we must also 

know its spectral responsivity function which is defined as 

Substituting Eq. (3-4) into Eq. (3-3) and taking into consideration the 

transmission curve τ(λ) of the filter (if applicable) positioned between the 

radiant target and detector, we obtain the following expression for the 

signal detected by the imager viewing the radiant target 

The signal given by Eq. (3-5) represents the output current of the 

radiation detector. For the purpose of this thesis, however, it is more 

convenient to represent the detected signal in terms of the electrical charge 

accumulated in the detector (pixel) during the optical integration time. The 

representation of the output signal of an imager in terms of electrons per 

pixel makes it easier to define radiation (shot) noise and to compare the 

signal under consideration with the maximum charge handling capacity of 

the detector. Therefore, in this thesis we will use the following expression 
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for the signal detected by the imager 

where 

ti  - is the optical integration time [s]; 

Qel  = 1.6 x 10-19  - is the charge of the electron [q]. 

Finally, we note that the spectral radiance Lλ, of the radiation incident 

on the detector can be expressed by the product of the spectral emissivity 

of the emitting surface times the spectral radiance of the blackbody, in 

accordance with the Eq. (2-8). Substitution of Eq. (2-8) into Eq. (3-6) 

leads us to the most general expression for the output signal of the 

radiation detector viewing the radiant target 

3.2 IR Image Sensors 

3.2.1 320x244 IR CCD and 640x480 IR MOS Image Sensors  

The radiometric analysis presented in this thesis is applied to the 320x244 

IR CCD and 640x480 IR MOS image sensors (imagers) developed at the 

David Sarnoff Research Center. The IR detectors used in these imagers are 
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the PtSi Schottky-barrier detectors (SBDs) which are most sensitive to the 

radiation emitted in the SWIR (1 to 3 pm) and MWIR (3 to 5µm) bands. 

The 320x244 IR CCD imager has 40-pm x 40-pm pixels and a fill 

factor of 43%. This imager employs buried-channel CCD (BCCD) readout 

registers and has the pixel layout shown in Figure 4 [3]. The BCCD readout 

registers of this imager provide maximum charge handling capacity of 

1.4x106  electrons per pixel. 

Figure 4  Pixel layout of Sarnoff 320x244 IR imager [3]. 

The 640x480 IR MOS imager has 24-µm x 24-µm pixel size and fill 
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factor of 38%. This imager has a low-noise X-Y addressable readout 

multiplexer with two MOS switches per SBD, and a MOS source follower 

at the output of each row with 8:1 multiplexing to a shared on-chip output 

amplifier. The readout noise of this device is under 300 rms electrons per 

pixel [3]. The readout structure of this imager is shown in Figure 5. Its 

saturation charge level is 1.5x106  electrons per pixel. It should also be 

noted that the Sarnoff 640x480 IR MOS imager can be operated with 

subframe imaging capability for any subframe size and location. In 

addition, this imager provides electronic integration time control down to 

a minimum of 60 µs for operation at 30 frames per second. 

Figure 5  Low-noise MOS readout multiplexer of Sarnoff 640x480 IR MOS imager [3].  
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3.2.2 PtSi Schottky-Barrier Detector  

Both IR imagers described in the previous section employ PtSi Schottky-

barrier photon detectors. The basic construction and operation of PtSi SBD 

is illustrated in Figure 6.  

Figure 6  Operation of Schottky-barrier detector [3].  

The infrared radiation with photon energy less than the bandgap of 

silicon (Eg=1.12 eV) is transmitted through the substrate. The absorption 

of the infrared radiation in the silicide layer results in the excitation of 

photocurrent across the Schottky-barrier (ψms) by internal photoemission.  
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The Schottky-barrier is the barrier that is formed between the silicide 

layer and the p-type silicon substrate. The absorbed IR photons excite the 

valence electrons above the Fermi level, generating hole-electron pairs. 

The holes with energy levels exceeding the Schottky-barrier are injected 

into the silicon substrate. The result of this process is the accumulation of 

negative charge on the silicon electrode. The detection of the optical signal 

is completed by transferring the negative charge from the silicide electrode 

into the readout structure. 

The spectral responsivity R(λ) of the IR imager depends on the 

quantum efficiency of the PtSi Schottky-barrier detectors and can be 

approximated by the Fowler equation [3] as 

The spectral responsivity and quantum efficiency of the PtSi SBD 

array corresponding to C1=0.124 eV-1  and ψms=0.2272 eV is shown in 

Figure 7. 
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Figure 7  Measured responsivity of PtSi Schottky-Barrier detector array [3].  

3.2.3 Radiometric Model of the IR Imager  

In order to adapt the theory of the preceding section to the 

description of the IR CCD imager output signal we note that for targets 

sufficiently remote from the lens of the imager the solid angle given by Eq. 

(3-7) can be approximated as [4] 
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Substituting Eq. (3-9) into Eq. (3-7) we obtain 

Figure 8  Total signal detected by 640x480 IR MOS imager operating at 30 

frames per second with f/1.0 and f/1.4 optics. 

At this point we can apply our analysis to the estimation of 

radiometric performance of the 640x480 IR imager developed at the David 

Sarnoff Research Center. 
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Figure 9  Calculated optical integration time of 640x480 IR MOS imager for detected 

signal of Qmax electrons per pixel.  

The total detected signal for the 640x480 IR imager calculated from 

Eq. (3-10) is shown in Figure 8. These calculations assume that the pixel 

size of the imager is 24-µm x 24-µm, the fill factor is 38%, that it is 

operated at 30 frames per second, and is characterized by the spectral 

responsivity function given above. 

Inspection of Figure 8 shows that for blackbody temperatures in 

excess of 50-75 °C, the signal exceeds the 106  electrons per pixel charge 

handling capacity of the imager (Qmax )•  In order to overcome this  



(3-11) 

25  

limitation the signal should be limited by the control of optical integration 

time. This is illustrated in Figure 9. This Figure shows the integration 

times which should be used in order to maintain a prescribed signal level at 

different temperatures. 

3.3 Accuracy of Wide-Band Temperature Measurements. 

It can be shown from statistical considerations [5] that the process of 

photon emission from a radiant surface, i.e. the number of photons emitted 

per unit time per unit area of emitter surface, can be described by the 

Poisson distribution. The same is equally true for the process of photon 

detection by a photodetector. In other words, the probability of detecting x 

photons in the time interval At is given by  

where µ  is the average number of photons detected in the interval ∆t. 

One of the fundamental properties of Poisson distribution is the fact 

that its standard deviation is equal to the square root of its mean. Applying 

this property to the process of photon detection by the radiation detector 

we conclude that rms radiation (shot) noise in the detected signal is equal to 

the square root of the signal itself.  
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Another source of noise in the output signal of the imager is the rms 

readout noise connected to the mechanism of sensing the accumulated 

charge in the detector by the capacitor. The readout noise is considered to 

be independent of the radiation shot noise and has been estimated to be 300 

electrons per pixel for the IR 640x480 MOS imager. Therefore, the total 

noise in the imager output can be expressed as 

If the emissivity of the target is known, Eq. (3-10) can be solved 

numerically for target temperature, T, as a function of measured imager 

output signal S(T). The accuracy of the temperature measurement in this 

case will be limited by the noise in the output signal, ∆Snoise , and is 

referred to as noise equivalent temperature NE∆T. Using Eq. (3-12) we 

can express NE∆T as 

Considering the first order terms in a Taylor's series expansion of 

S(T) and using Eq. (3-13) we can express 

NE∆

T as 
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In order to obtain the partial derivative of the signal with respect to 

temperature, we note that the only temperature dependent term in Eq. (3-

-10) is the blackbody spectral radiance, Lλ,b, therefore  

Figure 10  Calculated NE∆T of 640x480 IR MOS imager with f/1.4 optics.  
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The derivative of Planck's equation with respect to temperature is  

Figure 11  Calculated NE∆T of 640x480 IR MOS imager with f/1.4 optics for 

detected signal of Qmax electrons per pixel.  
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By the substitution of Eqs. (2-3) and (3-16) into Eq. (3-15) and (3-14) 

and performing the numerical integration we can evaluate 

NE∆

T for any 

given value of the optical integration time and radiant target temperature 

T. The values computed from Eq. (3-14) along with the experimentally 

obtained ones of 

NE∆T 

 for 640x480 IR MOS imager for different optical 

integration times and target temperatures are shown in Figure 10. Each 

curve in this Figure is shown only up to the point where the signal level 

reaches the maximum charge handling capacity of the imager 

(Qmax  = 1.5 x106  electrons per pixel). The values of NE∆T resulting 

from the operation of the IR imager with constant signal level are shown in 

Figure 11. 

3.4 Single Wavelength Radiometry  

The wideband radiometric temperature measurements described in the 

previous section have the advantage of achieving high signal-to-noise ratio 

even for relatively low temperatures of radiant target. However, at the 

elevated target temperatures the signal level has to be limited by decreasing 

the optical integration time in order to keep the signal below the maximum 

charge handling capacity of the detector. Inspection of Figure 10 shows 

that even for the moderate target temperature of 300 °C the integration 

time of the IR imager should be less than 0.5 ms. 
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In addition to the control of the optical integration time the signal 

level can also be limited by the use of the narrow passband filter positioned 

between the target and the detector. This approach (referred to as 

monochromatic or single wavelength radiometry) is especially attractive 

because it does not require the knowledge of total emissivity. Instead, the 

spectral emissivity within the passband of the filter or even just at its center 

wavelength is being used. 

Eq. (3-10) developed in section 3.2 is applicable to the case of single 

wavelength radiometry. The temperature of the radiant target can be 

inferred from the detected signal by solving Eq. (3-10) for temperature, T. 

However, for real time on-line temperature measurements the iterative 

nature of the numerical solution of Eq. (3-10) is undesirable. In fact, for 

sufficiently narrow filters the spectral emissivity of the target and the 

spectral responsivity of the detector can be described within the passband 

of the filter by a continuous smooth function of wavelength. In such cases, 

the analytical solution of Eq. (3-10) can be obtained. 

3.4.1 Reference Wavelength Approach  

A number of methods designed to provide an approximate analytical 

solution of Eq. (3-10) have been described in the radiometric literature 

[6,7] One of these methods, the technique developed by Coates [6] provides 

very high accuracy for the solution when the fractional bandwidth of the 
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filter, ∆λ/λ, is less then 0.1. It should be noted that this technique, known 

as reference wavelength method, in addition to high accuracy and ease of 

interpretation, provides the means to account for the variation of spectral 

emissivity across the passband of the filter. The discussion presented here 

follows the development by Coates [6]. 

This reference wavelength method is based on the description of the 

spectral transmission of a narrow-bandpass filter in terms of the moments 

of its spectral transmittance τ(λ) about the mean wavelength of the filter, 

λo. The nth moment of the transmittance, an, is defined by  

where ∆λ  - is the bandwidth of the filter at half of its peak transmittance. 

At this point it should be noted that the moments reflect the shape of 

the filter and are independent of the peak transmission to  and the filter 

width ∆λ. Since the reference wavelength λo  is taken as the mean 

wavelength of the filter, the first moment, a1 , is zero by definition. 

The output signal of the IR imager viewing radiant target with 

temperature T and spectral emissivity ε(λ) is given by Eq. (3-10) 

reproduced here for convenience  
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This signal can be described to a good first approximation by  

So (T) = Ad,n  • ωd  • ao • τ(λo ) • ∆λ • R(λo) • ε(λo) • Lλ,b(λo,T) (3-18)  

where the factor ao  has been included to make the product aoτ(λo)∆λ 

equal to the area under the τ(λ) curve. We now define the correction factor 

C(T) as  

	

Once the correction factor C(T) has been determined, the signal S(T) 

can be obtained from the computed signal So(T). Each of factors in the 

integrand, except that involving the filter transmission, is now expanded in 

a Taylor series about reference wavelength λo  
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where 

Expressions for L1(T) and L2(T) can be obtained by differentiating 

the Plank's distribution function to find 

where 
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The computations performed for Gaussian filter with fractional 

bandwidth ∆λ/λo =0.05 and target temperatures between 100 °C and 

1000 °C show that L3(T) and L4(T) enter only those terms of C(T) which 

constitute less than 0.49% of its absolute value. Therefore, L3(T) and 

L4(T) can be sufficiently accurately evaluated by using Wien's law  

The Eqs. (3-23) through (3-30) are now substituted into Eqs. (3-20), 

(3-21), and (3-22), and those expressions are substituted in turn into 

Eq. (3-19). After the substitution is performed the coefficients of each 

order of the terms [(λ- λo)/λo] n  are collected. Designating the sum of the 

coefficients of the term of degree n as Σn(T) we can express the correction 

factor as 
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Substituting from Eq. (3-17) into Eq. (3-31) we obtain  

where An=an/ao  and A1=0 since a1=0 by definition. 

	

In most practical cases [6] ε(λ) and R(λ) change relatively slow across 

the passband of the filter and can be accurately represented by the first 

three terms in Eqs. (3-20) and (3-21). Under these conditions the 

expressions for Σn(T) up to Σ4 (T) are found to be as follows  

(3-36) 

	

Moments up to A4  have been computed by numerical integration for 

several transmission curves of interest and are given in Figure 12. It may  
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be noted that in the case of symmetrical filters, An is zero for odd values 

of n. Therefore, for symmetrical filters with moderate bandwidths, the 

third term in Eq. (3-32) is zero. For filters with ∆λ/λo<0.1 the fourth 

term in Eq. (3-32) is at least two orders of magnitude smaller than the 

second term. In this case the correction factor C(T) can be approximated 

by  

Figure 12  Normalized moments of various filters [6].  

Substituting C(T) from Eq. (3-37) into Eq. (3-19) we obtain the 

expression for the output signal of the imager viewing the radiant surface  
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through the narrow-passband filter  

In order to further simplify the expression (3-38) we define the filter shape 

factor K(λo,T) as  

where the geometric factor G is given by 

G = Ad,n  • ωd  • a o  • τ(λo)∆λ 	 (3-40) 

Finally, substituting Eq. (3-39) into Eq.(3-38) we obtain the simplified 

expression for the output signal of the imager 

S(λ,T) = K(λ,T)• ε(λ) • R(λ) • Lλ,b(λ, T) 	(3-41)  
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The accuracy of Eq. (3-38) was verified experimentally by measuring 

the output signal of a 320x244 IR CCD Camera viewing the blackbody 

radiator through the filter with various mean wavelengths. The blackbody 

had the aperture of 0.2 inches in diameter and was positioned 18 inches in 

front of the camera with lens of objective removed. The experimental 

values of the signal along with the theoretical results based on (3-38) are 

shown in Figure 13. Inspection of the Figure 13 shows that there is good 

agreement between theoretical and experimental data. Nevertheless, slight 

discrepancies between model and experiment dictate the need for accurate 

filter and detector calibration which will be discussed in Section 3.4.3.  

Figure 13  Calculated and measured signal of 320x244 IR-CCD imager without lens.  
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The values of the output signal calculated from (3-38) for 320x244 IR 

CCD camera operating with optical integration time of 33 ms, f/2 optics, 

and 500-nm-wide Gaussian filter having 60% peak transmission are shown 

in Figure 14. The output signal of the same imager viewing the blackbody 

radiator through a 20-nm-wide Gaussian filter was calculated for a broad 

range of temperatures and is shown in Figure 15.  

Figure 14  Calculated and measured signal of 320x244 IR-CCD imager operating 

with optical integration time of 33 ms, f/2 optics and 500-nm Gaussian filter with 60% 

peak of transmission. 
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Figure 15  Calculated and measured signal of 320x244 IR-CCD imager operating 

with optical integration time of 33 ms, f/2 optics and 20-nm Gaussian filter with 60% 

peak of transmission. 

3.4.2 Accuracy of Narrow-Band Radiometry  

The general expression for the noise equivalent temperature (NE∆T) 

developed in section 3.3 can also be used in the case of narrow bandwidth 
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radiometry. Moreover, the noise equivalent temperature can be directly 

calculated from Eq. (3-17) provided the integrand of this expression is 

multiplied by the spectral transmittance, τ(λ), of the filter under 

consideration. However, the reference wavelength approach, introduced in 

the previous section, allows us to develop an expression for NE∆T which 

does not require numerical integration. It should be noted that the 

expressions developed in this section will also be used in the accuracy 

analysis of multi wavelength radiometry described in Section 5. 

3.4.2.1 Noise Equivalent Temperature We will start this section with 

the application of the reference wavelength technique to the development of 

the analytical expression for the partial derivative of the IR imager output 

signal with respect to temperature. Similarly to Eqs. (3-23)-(3-25) let us 

define the normalized derivative of the blackbody spectral radiance with 

respect to temperature as  

where x is given by Eq. (3-28). 

We will also define relative derivative of the filter shape factor K(λ,T)  
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with respect to temperature as 

where dK/dT can be evaluated by differentiating Eq. (3-39) as 

In turn, the expression for dΣ2 (T)/dT may be obtained by differentiating 

Eq. (3-34) to find 

where L1, L2 , r1  and ε1  are defined in (3-23)-(3-25). 

The values of d L1/dT and dL2 /dT can be evaluated based on Wien's 

approximation 
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and 

Finally, we note that ε1  defined in Eq. (3-24) is equal to zero for 

blackbody radiator and r1  can be estimated by performing the substitution 

from Eq. (3-8) into Eq. (3-23) as 

At this point we can use Eqs. (3-42) and (3-43) in order to write the 

partial derivative of the signal expression given by Eq. (3-41) with respect 

to temperature as follows 

The expression for NE∆T can now be obtained by substitution of 

Eq. (3-49) into Eq. (3-14). In the case of shot noise limited mode of 
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operation (also referred to as BLIP) we have 

Figure 16  Calculated and measured signal of 320x244 IR-CCD imager operating 

with optical integration time of 33 ms, f/2 optics and 20-nm Gaussian filter with 60% 

peak of transmission.  
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The values of NE∆T calculated from Eq. (3-50) for 320x244 IR CCD 

camera operating with optical integration time of 33 ms, f/2 optics, and 

20-nm-wide Gaussian filter having 60% peak transmission are shown in 

Figure 16. It should be noted, however, that these calculations were 

performed with the assumption of unlimited charge handling capacity. 

Therefore, the values of NE∆T shown in Figure 16 are not realizable in 

practice for elevated temperatures of the radiant target. The values of 

NE∆T achievable by the imager with the maximum charge handling 

capacity of 106  electrons per pixel are shown in Figure 17, discussed in the 

next section. 

3.4.2.2 Effects of an Inaccurate Filter Specification  In 

radiometric measurements the temperature of the target is inferred from 

the signal detected by the photodetector viewing the radiant surface. 

Therefore, any source of uncertainty in the value of the detected signal will 

have an effect on the accuracy of the measured temperature. In the analysis 

given in the preceding sections it was assumed that the only uncertainties in 

the level of the detected signal are those that can be attributed to the 

radiation shot noise and the rms readout noise of the detector. However, in 

the case of the detector viewing the radiant target through the narrow 

passband filter, any inaccuracy in the description of the filter 
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transmittance, τ(λ), will contribute to the uncertainty in the detected signal 

and, therefore, will affect the accuracy of the temperature measurement. 

In this analysis we will assume that the filter can be represented by the 

shape of its transmission curve, the area under the transmission curve, and 

the value of the peak wavelength (considering only single-peak filters for 

clarity). In this section we will consider the consequences of the error in 

the measurement of the effective center wavelength of the filter as well as 

the inaccuracy in the description of its shape. The effect of inaccuracy in 

the specification of the area under the transmission curve is 

indistinguishable from an error in the determination of the spectral 

emissivity of the target and will be treated in Chapter 5. 

The inaccuracy in the detected signal due to the error in specification 

of the peak wavelength of the filter, δλ, can be expressed as 

where the partial derivative is evaluated at peak wavelength. 

In order to evaluate the partial derivative of the detected signal S(λ,T) 

with respect to wavelength we will again employ the reference wavelength 

approach described in Section 3.4.1. Proceeding in much the same way as 

in the previous section we define the relative partial derivative of the filter 
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shape factor K(λ,T) with respect to wavelength as 

where dK/∆λ, can be evaluated by differentiating Eq. (3-39) as 

In turn, expression for dΣ2(T)/dλ can be obtained by differentiating Eq. 

(4-34) 

where L1, L2 , r1, r2  and ε1  are defined in Eqs. (3-23)-(3-25). 

We note that ε1  defined in Eq. (3-24) is equal to zero for a blackbody 

radiator, r1  is given by Eq. (3-48), and r2  can be estimated by performing 

the substitution from Eq. (3-8) into Eq. (3-23) as 
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At this point we can use Eqs. (3-23), (3-26), (3-48) and (3-52) in 

order to obtain the partial derivative of the signal given by Eq. (3-41) with 

respect to wavelength as follows 

Now we can write the expression for NE∆T which would take into 

account not only the radiation shot noise and the rms detector readout noise 

but also the "noise" produced by the error in specification of the effective 

center wavelength of the filter. Substituting Eqs. (3-49), (3-51), and (3-56) 

into Eq. (3-14) and treating all noise sources as being independent of each 

other, we have 

The values of NE∆T computed from Eq. (3-57) for the case of precise 

knowledge of the peak wavelength of the filter as well as for the case 

where 5-nm error has been made are shown in Figure 17. These 

computations were performed for IR CCD MOS imager viewing the 

blackbody radiator through a 100-nm-wide Gaussian filter. It should also 

be pointed out that these computations assume that by adjusting the optical 
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integration time the signal level was kept at 106  electrons per pixel for each 

simulated measurement. It might be interesting to note that each pair of 

curves in Figure 17 has one common point which corresponds to the 

maximum of the spectral density of the detected signal. This effect is due to 

the fact that at the maximum of the spectral density of the signal the value 

of dS(λ,T)/dλ  is equal to zero and, therefore, the small error in the 

spectral positioning of the filter does not have any effect on the outcome of 

the measurement.  

Figure 17  Effect on ∆T of 5-nm error in the estimation of the center wavelength of 100-

nm Gaussian filter.  
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Figure 18  Error in the detected by a 320x244 IR-CCD imager signal resulting from 

modeling Gaussian-shaped filter by the square-shaped filter of the same area.  

As was mentioned at the beginning of this section, another potential 

source of the error in the detected signal is the inaccurate description of 

shape of the transmission curve of the filter. In order to estimate this effect 

the output signal of the IR imager was calculated for both Gaussian and 

square shaped filters having the same area under transmission curve. These 
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computations assume that the optical integration time was adjusted to 

provide 106  electrons per pixel signal for square shaped filter. The 

absolute values of the difference of the signals detected through Gaussian 

and square filters are shown in Figure 18. The inspection of this figure 

shows that for filter width under 40-nm the difference in signal levels does 

not substantially exceed the value of the radiation shot noise. Therefore, 

for sufficiently narrow passband the shape of the filter does not have 

crucial effect on the accuracy of temperature measurement. However, if 

the filters with wider passband are to be used for temperature 

measurements the imager calibration should be performed prior to 

measurements in order to account for inaccuracy of filter specifications. 



CHAPTER 4 

TWO WAVELENGTHS RATIO RADIOMETRY  

The analysis given in the preceding chapter shows that some knowledge 

about the emissivity of the radiant target is essential to the temperature 

measurement techniques based on either wide band or single wavelength 

radiometry. In particular, in order to infer the temperature of the target from 

a wide band measurement of the emitted radiation the value of the total 

emissivity ε(T) should be known. Similarly, the technique based on the 

measurement of the radiation through the narrow filter (single wavelength 

radiometry) requires the knowledge of spectral emissivity, ε(λ,T), of the 

target within the passband of the filter. Therefore, in situations where the 

emissivity of the target is changing rapidly or the conditions of the process 

preclude the independent measurement of target emissivity the methods of 

Chapter 3 will not yield the true temperature of the radiant target. 

The extensive study of the radiometric literature shows that there exists 

a wide variety of methods designed to circumvent the problem of unknown 

emissivity. Some of these methods provide satisfactory results if certain 

usually rather restrictive assumptions about the spectral emissivity of the 

target are met. Other methods require more extensive measurements but 

provide acceptable results without placing substantial restrictions on the 

shape of the spectral emissivity curve. 

52  
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It would appear that most of the suggested methods to date can be 

divided into two general classes. The methods in the first class can be 

described as "interpolation based techniques". In these methods the spectral 

radiance of the target is being measured at n+1 distinct wavelengths and 

these measurements are being used in order to determine the unknown 

temperature of the radiant target and n parameters of the particular 

emissivity model. The methods in the second class are referred to as "least-

square-based techniques". In these methods the radiant measurements are 

made at m wavelengths, such that m>n, where n is the number of unknowns 

in the model. The redundancy in the data obtained here is used to smooth out 

the effects of noise in the data and allow more accurate estimation of the 

spectral emissivity. 

The "interpolation based techniques" can be further separated into two 

distinct approaches. Some of these methods lead to evaluation of both 

temperature and emissivity [8,9], while others provide the target 

temperature by elimination of the emissivity parameters [10] The latter 

methods are referred to as ratio radiometry. One of them will be subject of 

this chapter. It should be noted that the theoretical errors associated with the 

interpolation methods which provide both temperature and emissivity have 

been analyzed by Coates [8]. The analysis given in [8] shows that when the 

number of unknowns n>3 the accuracy of these methods is unacceptable. 
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4.1 Basic Theory of Two Wavelengths Ratio Radiometry  

The two wavelength ratio radiometry (later referred to as ratio radiometry) 

involves measuring the spectral radiance of the target at two different 

wavelengths (see Figure 19) and inferring the temperature from the ratio of 

these two measurements. Although measuring two signals, rather than one, 

introduces the additional uncertainty due to the noise present in both 

measurements, the method of ratio radiometry can successfully circumvent 

the problem of unknown emissivity for graybody radiators.  

Figure 19  Temperature is inferred from the ratio of signals measured at two 

distinct wavelengths.  
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Using Eq. (3-41) and Plank's law we can express the radio of the signals 

detected at two distinct wavelengths λ1  and λ 2  as 

where S1(T) and S2(T) are the signals measured at λ1  and λ

2 

 respectively. 

By solving Eq. (4-1) for temperature, we obtain 

Though Eq. (4-2) has the temperature-dependent term K(λ1)/K(λ

2

) in 

its right-hand side, it can be solved iteratively, because the dependence of 

this term on temperature is very weak. It should also be noted that in the case 

of a graybody radiator with ε(λ1)=ε(λ2 ) equation (4-2) does not include the 

value of the target emissivity. Therefore the method of ratio radiometry can 

be used to determine the temperature of a graybody radiator with unknown 

emissivity. Furthermore, the target need not to be totally gray; it is sufficient 

for the target to have just two spectral regions where the spectral emissivities 

are equal. Moreover, even if the target is occluded by spectrally non-

selective transparent media the results given by the method of ratio 

radiometry will still be correct. 
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4.2 Accuracy of the Temperature Measurement  

It has already been mentioned that ratio radiometry yields the correct 

temperature for the case of graybody radiators. However, if the spectral 

emissivities of the target ε(λ1 ) and ε (λ 2) are not exactly equal, then the 

measured temperature will differ from the true temperature of the target. The 

magnitude of this error can be estimated from Eq. (4-2) and is given by 

However, assuming true graybody radiator, the accuracy of ratio radiometry 

is determined by the noise level of the detected signals. 

In order to estimate the effect of radiation shot noise on the accuracy of 

the ratio radiometry we note that the noise levels of both signals S(λ1) and 

S(λ2 ) have to be taken into account. Since the signal measurements at two 

wavelengths are independent of each other we can express the accuracy of 

the temperature measurement as 

where from Eq. (4-2) 
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and the total noise in the signal, ∆Si  , measured at wavelength λi is 

The values of ∆T corresponding to the positioning of one of the filters 

at 3.5 µm and of the second filter at various positions are shown in Figures 

20 and 21. It should be noted that the computations were performed for a 

320x244 IR CCD camera operating with an optical integration time of 33 ms 

and with f/2 optics. Figure 20 corresponds to the use of 500-nm-wide 

Gaussian filters, whereas the use of 20-nm-wide Gaussian filters for higher 

temperature range is reflected in Figure 21. 

The analysis of Eqs. (4-3) and (4-4) shows that the effects of shot noise 

and emissivity variations on the accuracy of temperature measurement are 

minimized by proper selections of the filters. The optimum selection of the 

filter wavelengths is unique for each target temperature and can be 

determined from the following competing considerations:  



58  

(a) According to Eqs. (4-3) and (4-4) the increase in the separation of the 

filter wavelengths leads to improvement of ∆T. In other words, the 

filters should be positioned far enough from each other so that the 

difference in the detected signal is much larger than the total noise 

levels. It might be noted that the selection of the wavelengths on 

different sides of the maximum of the signal spectral density will tend 

to maximize the accuracy of temperature measurements.  

Figure 20 Calculated NE∆T for 320x244 IR CCD camera operating with optical 

integration time of 33 ms, f/2 optics, and 500 nm Gaussian filter with 60% peak 

transmission. 
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(b) On the other hand, it can be seen from Eqs. (4-3) and (4-4) that for a 

given wavelength separation smaller values of the product λ1  • 

λ2 correspond to better accuracy. 

Figure 21  Calculated NE∆T for 320x244 IR CCD camera operating with optical 

integration time of 33 ms, f/2 optics, and 20 nm Gaussian filter with 60% peak 

transmission.  

The analysis of the above mentioned factors leads to the conclusion that 

control of the optical integration time may be used to improve the accuracy 

of the temperature measurement by the method of ratio radiometry. In 

particular, the shortest wavelength should be chosen as short as the spectral 
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responsivity of the system permits, provided the signal level is kept high by 

setting the optical integration time appropriately. In that case the only factor 

which has to be optimized is the positioning of the filter corresponding to 

the longer wavelength. In order to illustrate this concept the values of ∆T 

computed for the signal level of 106 electrons per pixel and 1000 °C 

temperature are shown in Figure 22. It should be pointed out that these 

computations assume a 320x244 IR CCD Imager operating with f/2 optics 

and viewing the blackbody radiator through the 100 nm-wide Gaussian filter  

Figure 22  Dependence of 

∆ T 

 on the positioning of two Gaussian 100 nm filters. The 

center wavelength of one of the filters is given on horizontal axis.  



CHAPTER 5 

MULTI-WAVELENGTH RADIOMETRY  

The technique of ratio radiometry described in Chapter 4 belongs to the class 

of the radiometric methods which are designed to circumvent the problem of 

the unknown emissivity by eliminating the emissivity factor from the ratios 

of the measured signals. These techniques have not, in general, provided 

adequately accurate temperature estimates for broad industrial usage [11]. 

The often large inaccuracies of ratio techniques have been attributed to the 

fact that they require unrealistic assumption of constant spectral emissivity. 

The multi-wavelength least-squares-based technique presented in this 

chapter is more promissing, since it allows a more realistic assumption of a 

wavelength-dependent emissivity function. 

The method of least-square-based multi-wavelength radiometry also 

referred to as multi-wavelength imaging pyrometry (MWIP) will be 

described in this chapter. Special emphasis will be placed on the analysis of 

the temperature accuracy achievable by MWIP for linear and quadratic 

emissivity models. 

5.1 Basic Principles of MWIP  

The first step in MWIP is to assume certain kind of functional dependency 

of the target spectral emissivity with wavelength. Analysis of the published 

61  



62  

data on spectral emissivity of various materials [13] shows that in most cases 

the spectral emissivity can be adequately represented by the following 

polynomial function of wavelength 

ε(λ) = a1  + a2  • λ + a3 • λ2+...                        (5-1) 

where a1,a2,a3... are the parameters of the emissivity model. 

Substituting the emissivity model expressed by Eq. (5-1) into the 

expression for the detected signal given by Eq. (3-41) we obtain the 

parametric model of the output signal of the imager viewing the target with 

unknown emissivity 

S(λ,a1 ,..., a n ) = K(λ,a1,...,an)  • ε(λ, a1,..,an ) • R(λ) • Lλ,b(λ, T)  (5-2) 

where the temperature of the target T=an  is also an unknown parameter of 

the model. 

The central idea of radiometric temperature measurement by MWIP 

(see Figure 23) is to determine the temperature and the emissivity of the 

radiant target from the fit of the signal model given by Eq. (5-2) to the set of 

experimental values of the signal, S1,...,SN  measured by the IR imager at N 

distinct wavelengths. It should also be noted that in order to obtain 

meaningful results, the number of wavelengths, N, should exceed the 
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number of unknown parameters, n, of the model. 

Figure 23 Least-squares fit to the simulated signal detected by a 320x244 IR CCD 

imager. The fit is based on 8 measurements per filter. The temperature of the 

simulated target is 1073 K.  

Let us assume that the noise present in the experimental measurement 

Si  can be described by a Gaussian distribution with standard deviation σi  

(also referred to as rms noise). In this case the method known in classical 

statistics as the "method of maximum likelihood" can be applied to the 

development of the criteria which will provide the best fit of the parameters 
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of the theoretical model, a1,...,an, to the experimental values S1 ,...,SN . 

According to the method of maximum likelihood the best possible least-

squares fit of the given model to the experimental values is achieved when 

the parameters of the model correspond to the minimum of the following 

function [5] 

It might be noted that in the case of MWIP Eq. (5-3) calls for 

minimization of the weighted sum of squares of differences between the 

theoretical and experimental values of the detected signal, where the points 

with higher values of the rms shot noise are given less weight. 

It is generally not convenient to derive an analytical expression for 

calculating the parameters of a non-linear function S(λ, a1,...,an ). Instead, 

χ2  must be considered to be a continuous function of the n parameters a j 

describing a hypersurface in n-dimensional space which must be searched 

for a minimum. The description of a wide variety of methods designed to 

perform the search for the minimum in an n-dimensional hypersurface is 

given in the literature [see, for example, reference 5] and is beyond the scope 

of the present discussion. For the purpose of performing the least-squares fit 

in this thesis the software package ODRPACK developed in the National 
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Institute of Standards and Technology was utilized1  . 

5.2 Accuracy of Temperature Measurements  

There are two approaches to the estimation of the temperature accuracy 

achievable by MWIP. The first approach involves simulation of the 

"experimental" values of the detected IR imager signal and performing the 

actual least- squares fit on this data. The estimation of the accuracy can then 

be obtained by the comparison of the results of the least-squares fit against 

"true" values of parameters used in the simulation. The second approach to 

the estimation of the temperature accuracy leads to the development of the 

approximate analytical solution to the least-squares problem defined by Eq. 

(5-3). For the sake of completeness and verification both approaches will be 

considered in this chapter. 

5.2.1 Theoretical Estimation of the Accuracy  

The fitting function S(λ, a1,...,an) defined in Eq. (5-2) can be approximated 

in the close proximity of the solution by its expansion in a Taylor's series. 

Neglecting all terms of the second and higher orders we have 

1  This software and its documentation [14] is not copyrighted and can be obtained free of charge through 
the AT&T software distribution system. The text of the user supplied subroutine appropriate to the present 
analysis is given in the Appendix.  
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The approximate solution to the minimization problem given by 

Eq. (5-3) can be obtained by setting the partial derivatives of χ2  with 

respect to each of the parameter increments equal to zero 

(5-5) 

where σi  is the standard deviation of the signal detected at the wavelength 

λi. It should be noted that for the purpose of the present discussion the σi is 

equal to the total rms noise level in the signal and according to the 

development of Chapter 3 can be expressed as 

The Eq. (5-5) can be written in matrix form as 

where 



(5-9) 

The matrix is referred to as "curvature matrix" because of its 

symmetric matrix as the inverse of matrix we can obtain the expression 

(5-10) 

where 
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and 

relationship to the curvature of ꭓ2  in coefficient space. Defining the 

for the approximate solution of the minimization problem (5-3) as 

In order to find the accuracy of the parameter estimation by least-

squares fit we note that each of our experimental data points Si  has been 

used in the determination of the parameters, and each has contributed some 

fraction of its own noise to the uncertainty in the computed parameters. 

Therefore, the accuracy (standard deviation) of any parameter aj  can be 

expressed as the root sum square of the rms noise levels of each data point 

multiplied by the effect which that data point has on the determination of the 
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is 

the inverse of the matrix we obtain the final expression for the standard 

(5-13) 
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parameter aj  

The partial derivatives of the parameters with respect to each 

experimental data point can be obtained by differentiating Eq. (5-10) as 

	

Performing the substitution of the partial derivatives given by 

Eq. (5-12) into Eq. (5-11) and taking into account the fact that matrix 

deviations of the parameters of the theoretical model fitted to the 

experimentally measured values of the detected IR imager signal. 

5.2.2 Linear and Quadratic Emissivity Models  

At this point it should be noted that in order to implement the error analysis 

described in the preceding section we have to obtain analytical expressions 
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for the partial derivatives of the signal model with respect to each of its 

parameter. The expressions of the partial derivatives of the signal model 

with respect to temperature and wavelength were developed in Chapter 3 

and are given by Eqs. (3-49) and (3-56) respectively. We will now derive the 

expressions for the partial derivatives of the signal model with respect to the 

parameters of the emissivity model. For the sake of clarity only a linear 

emissivity model with two unknown parameters a and b will be considered. 

Let us define the relative partial derivatives of the emissivity with respect to 

the coefficients a and b by analogy with Eq. (3-24) as  

and 

(5-15) 

similarly, the relative partial derivatives of the shape coefficient K(a, b, T) 

can be defined by analogy with Eq. (3-43) as 
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and 

where dK/da and dK/db can be obtained by differentiating (3-39) as 

Using the definitions of Eqs. (5-14) through (5-17) we can now obtain 

the expressions for the partial derivatives of the signal with respect to the 

coefficients a and b of the emissivity model 
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Having defined all necessary partial derivatives of the signal model we 

are now ready to proceed with the numerical evaluation of the temperature 

accuracy achievable by the least-squares based MWIP. In order to perform 

these computations we have to assume some values of the coefficients a and 

b which would be realistic and representative of the practical situations. For 

the purpose of this analysis the data on the spectral emissivity of pure 

silicon published by Sato [15] and shown in Figure 24 has been used. The 

coefficients of the linear emissivity model were obtained by performing the 

least-squares fit of the first degree polynomial to the data given in this figure 

for the spectral emissivity of silicon at 1073K and the wavelength range 

from 1.5 to 5.0 µm. 

Figure 24  Spectral emissivity of single crystal n-type silicon disc [15].  
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The coefficients of the non-linear emissivity model were obtained by fitting 

the second degree polynomial to the spectral emissivity data corresponding 

to 793K for wavelength interval given above. The results of this fitting 

procedure show that the spectral emissivity of pure silicon at 1073K can be 

represented by a first degree polynomial as 

ε1073K(λ) = 0.6871+0.0086 • λ 	(5-22) 

whereas for the specimen at 793 K the expression of the spectral emissivity 

requires second degree polynomial 

ε793K(λ) = 0.2253+0.1586 • λ + 0.0148 • λ2 	 (5-23) 

As was mentioned at the beginning of this chapter two different 

methods have been used for the estimation of the temperature accuracy 

achievable by MWIP. The first method is based on the simulation of the 

detected signal using the signal model given by Eq. (3-38) with the spectral 

emissivity model given by Eqs. (5-22) and (5-23). As part of these 

simulations a random number generator was utilized in order to simulate 

normally distributed noise in the signal with the rms value given by Eq. (3-

12). The simulated signal was then used as the input data to the least-squares 

software package [14]. The temperature accuracy (standard deviation of the 

parameter T) was obtained by a comparison of the results of the least- 
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squares fit with the "true" value of the signal used in the simulation 

experiments. The second method is based on the development given in 

Section 5.2.1 and involves direct computation of the standard deviation from 

Eq. (5-13). It should be noted, however, that this method is based on the first 

order approximation of the outcome of the least- squares fit and, as 

illustrated in Figure 25, leads to higher errors in the estimation of the 

temperature accuracy in comparison to what is achievable by MWIP. 

Figure 25  Temperature accuracy of MWIP with linear emissivity model. The 

computations assume 4 independent measurements per filter, 100-nm -wide Gaussian 

filters and Qmax=106  electrons per pixel.  
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Figure 26  Temperature accuracy of MWIP with linear emissivity model and 5-nm 

error in the estimation of the center wavelengths of 100-nm-wide Gaussian filters. 

The computations assume 25 independent measurements per filter and Qmax=106  
electrons/pixel.  

The results obtained by both methods for the case of a linear emissivity 

model and maximum charge handling capacity of the IR imager equal to 

106  electrons per pixel are shown in Figures 25 and 26. It should be pointed 

out that the results shown in these figures were obtained with the filters 

having Gaussian shape and 100-nm effective width of spectral 
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transmittance. It should also be emphasized that these computations are 

based on the assumption that a number of repeated independent 

measurements were performed at each wavelength and their averages were 

used as the input to the least-squares fitting algorithm. The technique of 

taking the average of n independent measurements as a single value has the 

same effect as an n-fold increase in charge handling capacity of the IR 

imager and leads to the decrease of rms noise in the signal by the factor of 

square root of n. 

Inspection of Figure 25 shows that in the case of a linear emissivity 

model with three unknown parameters the amount of filters does not have an 

appreciable effect on the accuracy of the resulting temperature estimation, 

provided that a minimum of four filters are used. The fact that the bold 

simulated curve representing simulation experiment does not show the 

expected smooth behavior is due to the randomness of the simulated 

radiation noise. 

As expected, averaging of repeated independent measurements leads to 

improvement in the effective signal-to-noise ratio. However, this can only 

lead to the reduction of the effects of temporal noise sources, such as 

radiation shot noise and detector readout noise. The uncertainty in the signal 

measurement introduced by such permanent factors as the inaccuracy in the 

description of the filter transmittance can only be reduced by the increase in 

the number of filters and the more accurate estimation of their spectral 
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transmittances. This fact is reflected in the Figure 26 which shows the 

accuracy of least-squares based MWIP in the case of 5-nm errors in the 

specifications of effective center wavelengths of the 100-nm-wide filters. 

Inspection of this figure shows that the increase in the number of filters used 

for MWIP has a much more pronounced effect on the outcome of the 

measurements with appreciable errors in the specification of the filter 

spectral transmittance. 

Figure 27  Temperature accuracy of MWIP vs. total spectral bandwidth of 

measurement for target temperature of 1000 °C.  
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Another factor affecting MWIP accuracy is the total bandwidth of the 

measurements, i.e. the separation between the filters corresponding to the 

shortest and longest wavelengths. This effect is illustrated in Figure 27 

where the horizontal axis corresponds to the center wavelength of the total 

bandwidth used for MWIP measurement. These computations assume 6 

equally spaced filters and target temperature of 1000 °C. The inspection of 

this figure shows that wider bandwidth range of MWIP measurement 

provides better accuracy of temperature estimation. Gardener [12] points out 

that in the case of small spectral bandwidth of MWIP measurement the 

relative dependence of the spectral radiance distribution on temperature is 

reduced. This leads to the greater errors in the estimated temperature, since 

the changes in emissivity are difficult to distinguish from changes in 

temperature.  



CHAPTER 6 

COMPARISON OF RADIOMETRIC METHODS  

In the three previous chapters we have analyzed a number of radiometric 

methods which can be used for non-contact temperature measurement of the 

remote radiant target. The methods described in this thesis include: 

(1) Wideband radiometry, where the full bandwidth of the IR imager is 

being used for the detection of the radiation emitted by the target. The 

application of this method to the temperature measurements of gray and 

color bodies requires the knowledge of the total emissivity of the 

target. 

(2) 

Narrow-band (monochromatic) radiometry which employs narrow 

passband filters in order to detect the radiation emitted by the target 

within small wavelength interval. The temperature estimation by this 

method requires the knowledge of the spectral emissivity of the target 

in the proximity of the center wavelength of the filter transmittance. 

(3) 

Two wavelength radio radiometry, where the temperature of the radiant 

target is inferred from the ratio of emitted radiation measured at two 

distinct wavelengths. This method allows the measurement of the 

temperature of a gray target with unknown emissivity, but does require 

the knowledge of the spectral emissivity in the case of color targets. 
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(4) Multi-wavelength least-squares based radiometry which employs the 

measurement of the emitted radiation at more than two wavelengths. 

This method does not require prior knowledge of spectral emissivity 

and can be applied to the temperature measurement of color targets. In 

order to apply this method some assumption about the dependency of 

the spectral emissivity on wavelength must be made. Therefore, some 

general knowledge about the shape of the spectral emissivity curve is 

desirable. 

In this chapter we will compare the temperature accuracy achievable by 

each of the above radiometric methods. The discussion presented here 

assumes that all methods are used with a 320x244 IR-CCD camera with f/2 

optics. 

6.1 Temperature Accuracy  

The estimated values of the temperature accuracy achievable by the methods 

considered in this thesis are shown in Tables 1-4. It should be noted that the 

data shown in these tables correspond to radiant target with the temperature 

equal to 1000 °C. Table 1 provides the data on the accuracy of the 

temperature measurements of blackbody targets, targets with linear spectral 

emissivity, and targets with quadratic linear emissivity. The data shown in 

The accuracy achievable by wide-band, narrow-band, ratio, and multi- 
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wavelength radiometry is shown for each of the above targets. Table 1 

corresponds to the maximum signal of 106  electrons per pixel. Tables 2-4, 

shown at the end of this chapter, provide the accuracy data for levels of the 

maximum signal of 4x106  electrons per pixel, 2.5x107  electrons per pixel, 

and 1.0x108  electrons per pixel respectively. 

Table 1  NE∆T resulting from 1 measurement per filter.  

Method of Temperature 

Measurement 

Black Body 

ε =1 
(°C) 

Color Body 

ε = a + b • λ 
 (°C) 

Color Body 

ε = a + b • λ + c • λ2  

(°C)  

Wide-Band Radiometry 
(∆λ = 3 µm) 

0.251 

    
Narrow-Band Radiometry 

(λ = 1.5 µm) 

0.169   

 
Ratio Radiometry 

(λ1  = 1.5 µm , λ2  = 3.0 µm) 

0.564 

Multi Wavelength Radiometry 

(linear emissivity model) 

0.407 0.601 56.0 

Multi Wavelength Radiometry 

(quadratic emissivity model) 

1.684 5.655 3.445 

6.1.1 Wide-Band vs. Narrow-Band Radiometry  

The inspection of Table 1 shows that the best accuracy achievable by a 

320x244 IR-CCD imager viewing the blackbody radiator at 1000 °C 

corresponds to the method of a one filter narrow-bandwidth radiometry. In 

order to verify this result it might be useful to obtain an approximate 

analytical expression for the temperature accuracy of narrow-band  
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radiometry. Assuming that for a sufficiently narrow filter the variations in 

spectral radiance and responsivity across the passband are negligible, 

Eq. (3-50) can be approximated as 

where LT  is a normalized partial derivative of the blackbody radiance with 

temperature and is given by Eq. (3-42). 

Using the Wien's approximation to Planck's law we can simplify 

Eq. (3-42) as follows 

where C2=1.4388x104  - is the second radiation constant [µm K] 

Performing the substitution of Eq. (6-2) into Eq. (6-1) and assuming that by 

setting the optical integration time the signal level is kept at the fixed value 

Qmax  for all temperatures, we obtain the approximate expression for NE∆T 
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For a signal level of 106  electrons per pixel, temperature of 1000 °C, 

and peak wavelength of the filter of 1.5 µm the NE∆T computed from Eq. 

(6-3) is equal to 0.1689 which is in very good agreement with the rigorously 

obtained value shown in the Table 1. It should be noted, however, that Eq. 

(6-3) provides an accurate result only for λT<2900 K since the Wien's 

approximation is not as accurate outside of this region. 

At this point a very important implication of Eq. (6-3) should be 

emphasized. It follows from inspection of Eq. (6-3) that in order to achieve 

the best accuracy of narrow-band temperature measurement the peak 

wavelength of the filter should be selected at the shortest possible 

wavelength, provided that the signal level is kept constant by setting the 

optical integration time or by other means. However, if the signal level is not 

controlled during the measurements, the best accuracy is achieved by 

selecting the peak wavelength of the filter as close to the maximum of the 

spectral signal density as the charge handling capacity permits. This point 

may be clarified by inspection of Figure 16. 

We now turn our attention to the noise equivalent temperature of the 

wideband temperature measurement. For the case of signal level fixed at 106  

electrons per pixel and 1000 °C temperature of the blackbody radiator the 

value of NE∆T given in Table 1 is equal to 0.251 °C. This value of NE∆T is 

somewhat worse than the corresponding value for narrow-band 

measurement. In order to explain this fact we have to consider the blackbody 
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spectral radiance shown in Figure 1 and the spectral responsivity of PtSi 

Schottky-Barrier detector (SBD) shown in Figure 7. The inspection of this 

figure shows that for the temperature range approximately between 600 K 

and 1500 K the maximum of blackbody spectral radiance is within the 

bandwidth of PtSi SBD. Moreover, for this range of temperatures the PtSi 

SBD is sensitive to the radiation emitted at wavelengths only within a 

relatively small spectral interval around the maximum of the blackbody 

spectral radiance. Therefore, the detected radiation is approximately 

proportional to the fifth power of the radiator temperature, as given by 

Eq. (2-6). In other words, the spectral responsivity of the PtSi SBD can be 

considered as the spectral transmittance of a wide filter with center 

wavelength being within the proximity of the maximum of the blackbody 

spectral radiance. Substituting Eq. (2-6) into Eq. (3-38) and neglecting the 

correction for the filter shape we obtain the approximation of the signal 

detected by wideband measurement 

Substituting the Eq. (6-4) into the Eq. (3-14) and ignoring the readout 

noise the obtain 
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In the case of signal being kept at the fixed level Qmax  by setting the 

optical integration time or other means Eq. (6-4) can be rewritten as 

Substituting Eq. (6-6) into Eq. (6-5) we obtain an approximate 

expression for NEAT of wideband temperature measurements 

For a signal level of 106  electrons per pixel and temperature of 1000 °C, the 

NE∆T computed from Eq. (6-7) is equal to 0.2546 °C which is in good 

agreement with the rigorously obtained value shown in the Table 1. 

At this point it might be interesting to compare the results obtained for 

wideband and narrow-band temperature measurements. Taking the ratio of 

Eq. (6-3) to Eq. (6-7) we have 
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It should be noted that the approximation given by Eq. (6-4) is only 

valid for the PtSi SBD viewing the target with temperature between 600 K 

and 1500 K since those assumptions were used in the derivation of this 

equation. For temperatures outside of this interval the spectral bandwidth of 

PtSi SBD does not contain the maximum of the blackbody spectral radiance. 

In that case the detected signal is approximately proportional to the fourth 

power of the target temperature as given by Eq. (2-7). 

Concluding this section we note that in cases where enough signal is 

being detected to provide high signal-to-noise ratio the method of narrow 

band radiometry will yield higher temperature accuracy at elevated 

temperatures than wide-band measurement providing the optimum selection 

of the peak wavelength of the narrow-passband filter. 

6.1.2 Ratio and Multi-wavelength Radiometry  

In the method of ratio radiometry two signals are being used in order to infer 

the temperature of the radiant target and, therefore, the noise levels of both 

signals contribute to the uncertainty of the temperature measurement. Hence, 

it is beneficial to independently adjust the optical integration time of the 

imager for signal measurements at the two wavelengths thus achieving the 

highest possible signal-to-noise ratios for beach measurement. Assuming 

that the signal levels are controlled by this procedure and considering the 
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BLIP mode of imager operation we can express the NE∆T given by Eq. (4-

4) as 

Inspection of this equation shows that temperature accuracy is affected 

by two factors: 

(1) The smaller product of two wavelengths λ1 • λ2 leads to the smaller 

NE∆T

. Therefore, the center wavelength of one of the filters should be 

selected as short as the responsivity of the imager permits. 

(2) The higher separation of two filters also leads to smaller 

NE∆

T. 

Therefore, if the signal level is controlled for measurements at both 

wavelengths the filter with longer peak wavelength should be 

positioned as far from the first filter as the spectral responsivity of the 

imager permits. If the signal level is being controlled only for 

measurement at shorter wavelength then the optimum positioning of 

the filter with longer wavelength is unique for each temperature and can 

be determined from the data given in Figure 22. 

Assuming that the signal level is fixed for both measurements at 106  

electrons per pixel and the reasonable for PtSi SBD wavelength selections of 
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1.5 and 4.5 µm we can use Eq. (6-9) in order to develop this simple 

expression for NE∆T 

NE∆T1.5,4.5 = 2.21 x 10-7 • T2 	(6-10) 

The value of 

NE∆

T calculated based on Eq. (6-10) for target 

temperature of 1000 °C is equal to 0.358 °C. However, in order to provide 

meaningful comparison with the temperature accuracy of multi-wavelength 

radiometry the value of 

NE∆T 

 shown in the Table 1 was obtained from 

Eq. (4-4) based on the assumption that only the highest of two signals is kept 

at the fixed level Qmax  by the control of the optical integration time. The 

second signal (at longer wavelength) is measured with the integration time 

set during the first signal measurement. This leads to the higher value of 

resulting NE

∆T 

 because of the lower signal-to-noise ratio for the 

measurement at longer wavelength. However, this result can be 

meaningfully compared with the 

NE∆T 

 of least-squares based techniques 

since in these techniques only a single value of the optical integration time is 

used for the signal measurements at all wavelengths. 

In the case of multi-wavelength radiometry the target temperature is 

inferred from the signal measurements at more than two wavelengths. Each 

measurement used for the calculation of the target temperature has some 

noise level associated with it and some fraction of this noise is contributed to 
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the total uncertainty in the temperature measurement. However, in the case 

of gray or black targets with fixed integration time for measurements at all 

wavelengths the multi-wavelength technique is capable of providing greater 

accuracy than ratio radiometry. This is due to the fact that the extra 

measurements provide redundancy which is used to offset the effects of the 

temporal noise in the signal measurements. It should be noted, however, that 

the high accuracy of multi-wavelength radiometry is only achieved with the 

correct choice of the emissivity model. 

The inspection of Table 1 shows that if the emissivity of the blackbody 

radiator is modeled with the quadratic emissivity model given by Eq. (5-23) 

then the accuracy of the multi-wavelength technique is inferior to that of 

ratio radiometry. This effect is due to the fact that the unnecessary unknown 

parameter in the model introduces an additional degree of freedom to the 

least-squares algorithm leading to a degradation in the quality of the 

solution. 

It is important to recognize the compromise involved in the selection of 

the emissivity model. In order to correctly determine the temperature of the 

target with unknown emissivity it is necessary to provide a sufficiently 

complex and flexible emissivity model capable of accurate approximating of 

target spectral emissivity. On the other hand, too complex, overdetermined 

model will lead to a decrease in the resulting temperature accuracy of the 
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measurement due to the redundant degrees of freedom in the fitting 

algorithm. This point is illustrated in Figure 28. 

Figure 28  Accuracy of MWIP measurements with linear and quadratic 

emissivity models.  

Inspection of Figure 28 shows that the temperature accuracy resulting 

from the application of MWIP to the targets which exhibit linear and 

quadratic characteristics of their spectral emissivity. The inspection of this 
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figure confirms that the best possible accuracy is achieved by employing the 

emissivity model most closely matching the spectral emissivity of the target. 

However, if no prior knowledge of the target emissivity exists, it may be 

beneficial to intentionally use a more complex emissivity model. This will 

result in some loss of accuracy but also provide the guarantee that a 

reasonable estimation of the target temperature can be obtained by MWIP. It 

is shown in Table 1 that selecting the emissivity model with too few 

parameters renders the MWIP algorithm ineffective for targets with 

relatively complex spectral emissivity. 

6.2 Improvement of Temperature Accuracy  

The temperature accuracy achievable by any of the described above 

radiometric methods is limited by the radiation shot noise, rms detector 

readout noise, inaccurate description of the spectral characteristics of the 

system, and other sources not accounted during the measurements. The 

effect of the shot noise and detector readout noise on the measurement 

accuracy can be reduced by increasing the effective signal level by temporal 

or spatial averaging of the detected signal. 
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6.2.1 Independently Repeated Measurements 

All sources of noise present in the measurements of the emitted radiation can 

be classified in  two categories: 

(1) The temporal (time varying) noise sources represented by radiation shot 

noise and rms detector readout noise. The effect of these noise sources 

on the accuracy of the measurement is also time varying and can only 

be described in statistical terms. 

(2) Permanent noise sources represented by the inaccuracies in the 

specifications of the instrument spectral characteristics. This includes 

the inaccurate knowledge of the detector spectral responsivity and 

spectral transmittance of any filters used during the measurement. In 

addition, such factors as scattering and reflection of the radiation can 

also be considered as the source of permanent noise. 

It is well known from classical statistics [5] that the standard deviation 

of any measurement with a normally distributed random noise can be 

decreased by substituting the single measurement with an average of n 

measurements of the same source. In this case the improvement in resulting 

standard deviation of the measurement is proportional to the square root of 

the number of averaged independent measurements. This technique can be 
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applied to the reduction of the effects of temporal radiation and detector 

noise on the accuracy of the radiometric measurements. The resulting values 

of NE∆T for 4, 25 and 100 averaged measurements are shown in Tables 2-4. 

The inspection of Tables 2-4 shows that in the cases of broadband, 

narrow-band, and ratio radiometry the resulting improvement in the 

temperature accuracy is exactly proportional to the square root of the 

number of averaged measurements. The improvement of the accuracy of 

MWIP methods is slightly lower due to the fact that some implicit averaging 

is already built-in in the least-squares fitting procedure. 

Table 2  NE∆T resulting from 4 measurements per filter.  

Method of Temperature 

Measurement 

Black Body 

ε=1 
( °C) 

Color Body 

ε=a+b•λ  
( °C) 

Color Body ε=a+b•λ+c•λ2 

(°C) 

Wide-Band Radiometry 
(∆λ  = 3 µm) 

0.126 
 

Narrow-Band Radiometry 
(λ  = 1.5 µm) 

0.085 

 
Ratio Radiometry 

(λ1  = 1.5 µm , λ2  = 3.0 µm) 
0.282 

Multi Wavelength Radiometry 

(linear emissivity model) 

0.170 0.594 56.0 

Multi Wavelength Radiometry 

(quadratic emissivity model) 

0.588 2.20 1.18 
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Table 3  NE∆T resulting from 25 measurements per filter.  

Method of Temperature 
Measurement 

Black Body 

ε=1 
( °C) 

Color Body 

ε=a+b•λ  
( °C) 

Color Body 

ε=a+b•λ+c•λ2  
(°C) 

Wide-Band Radiometry 
(∆λ = 3 µm) 

0.050 

 
Narrow-Band Radiometry 

(λ = 1.5 µm) 
0.034 

  
 

Ratio Radiometry 
(λ1 = 1.5 µm , λ2 = 3.0 µm) 

0.113 

 
Multi Wavelength Radiometry 

(linear emissivity model) 

0.091 0.290 56.0 

Multi Wavelength Radiometry 
(quadratic emissivity model) 

0.326 1.047 0.677 

Table 4  NE∆T resulting from 100 measurements per filter.  

Method of Temperature 
Measurement 

Black Body 

ε = 1 
(°C) 

Color Body 

ε = a + b • λ  
(°C) 

Color Body 

ε=a+b•λ+c•λ2  
(°C) 

Wide-Band Radiometry 
(∆λ = 3 µm) 

0.025 
  

Narrow-Band Radiometry 
(λ = .5 µm) 

0.017 

Ratio Radiometry 

(λ1  = 1.5 µm , λ2  = 3.0 µm) 
0.056 

 

Multi Wavelength Radiometry 
(linear emissivity model) 

0.049 0.161 56.0 

Multi Wavelength Radiometry 
(quadratic emissivity model) 

0.177 0.585 0.370 

It might be interesting to note that in the case of temperature 

measurements by an IR imager with a large number of closely spaced  
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detectors this noise reduction technique does not necessarily require the 

independent signal measurements to be performed sequentually with the 

same detector. It may be assumed that a relatively small number of adjacent 

detectors measure the radiation emitted from a small surface area with the 

same temperature. Therefore, the signal levels detected by adjacent 

detectors can be considered as independent measurements of the same 

radiation signal. This approach represents the tradeoff between the resulting 

spatial resolution of the imager and the time required to obtain n 

independent signal measurements which can be averaged for the purpose of 

noise reduction. 

6.2.2 Calibration  

The technique of noise reduction effected by taking the average of 

independent measurements does not apply in the case of permanent, time 

independent noise sources, such as reflection, atmospheric absorption, and 

inaccurate specification of the spectral characteristics of the system. The 

primary method of the reduction of the effects of these noise sources on the 

accuracy of radiometric measurement is the calibration of the imager system. 

The properly performed calibration should provide an accurate description 

of the spectral characteristics of the system. An additional purpose of the 

calibration is to develop the correction factors which will allow one to offset 



(3-17) 

95  

the effects of all other noise sources which are not accounted for by the 

system model. 

One way to approach the problem of the calibration is based on the 

reference wavelength method described in Chapter 4. According to this 

method the spectral transmittance of the filter is described by its moments. 

These moments are determined by numerical integration of the Eq. (3-17) 

reproduced here for convenience 

where ∆λ - is the bandwidth of the filter at half of its peak transmittance, 

	λo - is the mean wavelength of the filter corresponding to a1=0. 

	

The spectral transmission of the filter should be first determined by a 

spectroradiometer or other means. Coates [6] points out that better results 

may be obtained by analyzing the spectral characteristics of the entire optical 

system of the imager with an installed filter, rather than measuring the 

individual transmittances of the filter, lens of objective, etc. In other words, 

the commulative effect of the spectral characteristics of each element of the 

optical assembly can be considered as the spectral properties of the filter. 

	

Once the spectral transmittance of the system has been measured, the 

value of each moment can be determined by numerical integration of 



96  

Eq. (3-17). Coates [5] notes that in most practical situations for roughly 

symmetrical filters with fractional bandwidth ∆λ/λo  of 1.5% or less the 

signal accuracy of better than 0.01% can be achieved with measurement of 

filter transmittance to an accuracy of about 10%. Moreover, such accuracy 

of signal modeling is usually achieved with utilization of only the first three 

moments. 

The second step in the calibration process involves the measurement of 

the output signal of the imager viewing the blackbody radiator with known 

temperature. Based on this measurement the actual value of the product 

G•R(λo) can be computed, where the coefficient G represents the 

geometrical characteristics of the system and is given by Eq. (3-40). Finally, 

it must be noted that additional calibration procedures might be needed 

depending on the particular conditions of the measurements. 



CHAPTER 7 

CONCLUSIONS  

This thesis analyzes the limitations on of the accuracy of temperature 

measurements performed by the means of imaging pyrometry. The 

presented analysis is based on the developed radiometric model of an IR 

image sensor. This model places special emphasis on an accurate 

description of the spectral characteristics of the system. The application of 

reference wavelength approach for the description of the spectral 

transmittance of the optical system allowed to perform accuracy analysis 

which to our knowledge has not been published in the radiometric 

literature. 

The analysis presented in this work provides the estimation of the 

temperature measurements accuracy achievable by the methods of wide-

band, narrow-band, ratio, and multi-wavelength pyrometry. 

It was demonstrated that the accuracy of the temperature 

measurements can be improved by controlling the optical integration time 

of the imager. This technique allows to maintain high signal-to-noise ratio, 

limited only by maximum charge handling capacity of the imager, Qmax. It 

was shown that wide-band (∆λ=3 µm) measurements performed by a 

320x244 IR imager with PtSi Schottky-barrier detectors can yield 

temperature resolution of 0.25 °C in the case of a blackbody radiator at 

1000 °C and the signal level of 106  electrons per pixel. For the case of 
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radiation detection through the 100-nm-wide Gaussian filter with peak 

wavelength at 1.5 µm the corresponding accuracy of the temperature 

measurements is 0.17 °C. 

The method of ratio radiometry analyzed in this work provides the 

means of the temperature measurement of the graybody radiator with 

unknown emissivity. It might be interesting to note that for the case of 

blackbody radiator, the accuracy of ratio method is slightly inferior to the 

accuracy achievable by narrow-band radiometry. Furthermore, due to the 

unrealistic requirement of constant spectral emissivity, in many practical 

situations the method of ratio radiometry does not provide accurate 

temperature estimates [11]. 

The analysis presented in this thesis demonstrates, that the temperature 

of the remote radiant target with unknown emissivity can be successfully 

measured most efficiently by the means of multi-wavelength imaging 

pyrometry. In theory, the MWIP technique is capable of providing 

accurate estimation of the temperature of the radiator with arbitrary shape 

of the spectral emissivity. However, due to the practical limitations 

imposed on the spectral bandwidth and amount of measurements, some 

knowledge of the spectral emissivity of the target is desirable. The prior 

knowledge of the spectral characteristics of emissivity, permits to select 

emissivity model with optimum number of parameters, thus minimizing the 

degree of freedom of the least-squares algorithm used in MWIP. 



99  

The temperature accuracy of multi-wavelength pyrometry was 

analyzed for linear and quadratic emissivity models. The presented results 

show that for targets with linear spectral emissivity the MWIP with six 

100-nm-wide filters is capable of providing temperature resolution of 0.6 

°C for 1000 °C target temperature and maximum detected signal of 106  

electrons per pixel. For the targets with quadratic emissivity the 

temperature accuracy of 6-filter MWIP was found to be about 1 °C for 

target temperature of 1000 °C at the maximum detected signal of 4x106  

electrons per pixel. For target temperature of 500 °C the corresponding 

accuracy was found to be 0.28 °C in the case of linear target emissivity and 

0.42 in the case of quadratic target emissivity assuming a maximum 

detected signal of 4x106  electrons per pixel. It should be noted that these 

results apply to the measurements with correctly selected emissivity 

models. The temperature measurements of the targets with linear 

emissivity by 6-filter MWIP using quadratic emissivity model yield the 

accuracy of about 1 °C for target temperature 1000 °C and 25x106  

electrons per pixel maximum signal. The use of linear emissivity model for 

temperature measurement of target with quadratic emissivity leads to 

rather high errors in the estimated temperature. 

Finally, for the purpose of performing practical measurements, an 

accurate calibration of the optical system is necessary. It should also be 

mentioned, that the least-squares algorithm used in this work may not be 
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effective for real-time on-line measurements. The selection of the real-time 

least-squares based algorithm should take advantage of the past history and 

the dynamics of the system. 



APPENDIX 

Program Modeling Detected Signal  

The following program performs the simulation of the signal detected by IR 

imager according to the model presented in Chapter 3. 

# include <stdio.h> 
# include <stdlib.h> 
# include <math.h> 
# define PI 3.141592653589793 
# define A2 0.1803 
# define A4 0.0976 
# define Cl 1.1911E+8 
# define C2 1.4388E+4 
# define AREA 1.6E-9 
# define FILL 0.39 
# define FN 2 
# define FREQUENCY 30 
# define ELECTRON 1.602177E-19 
# define PSIMS 0.2272 

# define CONE 0.12402 
# define WIDTH 0.1 

# define B1 0.225272727 
# define B2 0.158575758 
# define B3 -0.0148484848 
# define ONE 1 
# define NP 4 
FILE *fp1; 

long float HIGH,T; 

int N; 
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/* This program simulates the signal detected by IR imager. 
The signal has the noise level corresponding to shot noise+ 
readout noise of 200 electrons per pixel. The output is 
formatted according to the requirements for the input to 
least-squares routine*/ 
main() { 

long float radiance(); 
long float signal(); 
long float sigma(); 
long float random(); 
long float t,lambda1,lambda2,noise,noisysig,11,12,step,maxsig; 
int i,k,rn0; 

fp1=fopen("SIGNAL.DAT","w"); 

printf("enter temperature"); 
scanf("%1f",&t); 
printf("enter shortest wavelength"); 

scanf("%1f",&11); 
printf("enter longest wavelength"); 
scanf("%1f",&12); 
printf("enter number of filters"); 

scanf("%d",&N); 
printf("enter number of measurements per filter"); 

scanf("%d",&k); 
srand(100); 

lambda1=11; 

step=(12-lambda1)/(N-1); 

/* calculate the HIGHT so that the maximum signal for this 
temperature is equal 1.E+6 */ 

maxsig=-1.; 
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HIGHT=0.1; 
for(lambda2=11; lambda2<=(12+0.1*step); lambda2+=step*0.1) {  

if (signal(lambda2,t) > maxsig ) maxsig=signal(lambda2,t);} 
HIGHT=HIGHT*1.E+6/maxsig; 

fprintf(fp1,"%2d\t%3d\t%3d\t%3d\t%10.5f\t%10.5f\n",k*N,ONE,NP,ONE, 
WIDTH,HIGHT); 

fprintf(fp1,"%5.3f\t%7.3f\t%7.3f\t%7.3f\n",0.1,0.1,0.1,100.0); 

for(lambda2=11; lambda2<=(12+0.1*step); lambda2+=step) 

for (i=1; i<=k; ++i) 
noise=sqrt(200*200+signal(lambda2,t))*random(); 
noisysig=signal(lambda2,t)+noise; 

fprintf(fp1,"%20.15f\t%20.14f\n",lambda2,noisysig); 	} 

} 

fclose(fp1); } 

/* The following subroutine computes the blackbody radiance */ 
long float radiance(lambda, t) 
long float lambda,t; 
{ 

long float x,1; 

x=C2/(lambda*t); 
1=(exp(x)-1.)*lambda*lambda*lambda*lambda*lambda; 

return(C1/1); 
} 

/* The following subroutine computes detected signal without noise */ 
long float signal(lambda , t) 

long float lambda,t; 
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{ 
long float radiance(); 
long float sigma(); 
long float response,s,emiss; 

response=1.-PSIMS*lambda/1.24; 
response*=CONE*response; /* spectral responsivity of the imager */ 

s=1.+(A2*WIDTH*WIDTH/(lambda*lambda))*sigma(lambda,t,response); 

s*=WIDTH*radiance(lambda,t); 
s*=(HIGHT*AREA*FILL*PI/(4.*FN*FN))*response; 
emiss=B1+B2*lambda+B3*lambda*lambda; /* emissivity model */ 

return(s*emiss/(FREQUENCY*ELECTRON)); 

} 

/* The following subroutine computes the filter shape factors */ 

long float sigma(lambda, t,response) 
long float lambda,t,response; 

{ 
long float x,r1,r2,l1,l2,l3,l4,emiss,e1,e2,sigm; 

x=C2/(lambda*t); 
emiss=B1+B2*lambda+B3*lambda*lambda; e1=(B2+2*B3*lambda)/emiss; 

e2=B3/emiss; 
r1=-(2.*CONE*PSIMS/1.24)*(1.-(PSIMS/1.24)*lambda); 

r1=r1/response; 
r2=2*CONE*PSIMS*PSIMS/(1.24*1.24); 

r2=r2/(2*response); 

l1=(x*exp(x))/(exp(x)-1.)-5.; 
l1=11/lambda; 
l2=(x*x*exp(x))/((exp(x)-1.)*(exp(x)-1.)); 

l2-=(((x*x/2.)+6.*x)*exp(x))/(exp(x)-1.); 

l2+=15.; 
l2=l2/(lambda*lambda); 
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sigm=(l2+(r1+e1)*l1+r2+r1*e1+e2)*lambda*lambda;  

return(sigm); 

} 

 

/* The following subroutine represents random number generator. 
The generated random numbers are normally distributed with the 
mean 0 and standard deviation 1. This subroutine is utilized in 
the simulation of the radiation and readout noises */ 
float random() { 

long float u1,u2,r,a; 

u1=rand()*4.656612875E-10; 
u2=rand()*4.656612875E-10; 
r=sqrt(-2*log(u1)); 
a=2*PI*u2; 

return(r*sin(a)); 
} 

Program Performing Temperature Accuracy Estimation  

The following program computes the temperature accuracy achievable by 

the methods of narrow-band, ratio, and multiwavelength radiometry. The 

computations are performed in accordance with the development of Chapters 

3, 4, and 5. 

# include <stdio.h> 

# include <stdlib.h> 
# include <math.h> 
# define PI 3.141592653589793 
# define A2 0.1803 

# define A4 0.0976 
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# define C1 1.1911E+8 
# define C2 1.4388E+4 
# define AREA 1.6E-9 

# define FILL 0.39 
# define FN 2 
# define FREQUENCY 30 
# define ELECTRON 1.602177E-19 
# define PSIMS 0.2272 
# define CONE 0.12402 
# define WIDTH 0.1 
# define B1 0.68714286 
# define B2 0.0085714286 

# define B3 0. 
# define ONE 1 
# define NP 3 

FILE *fp2,*fpl,*fp3; 

long float x,l1,l2,l3,lt,l1t,l2t,e1,e2,ea,eb,r1,r2,ka,kb,k1,kt,kk; 
long float sigmaa,sigmab,sigmal,sigmat; 

/* This program calculates standard deviations of temperature for 

the case of MWIP with the linear emissivity model. For linear model 
the parameter IFIXB(3) should be equal to 0 in mwip.f 
This version takes into account the derivatives of k(a,b,T,lambda) 
The program also computes the temperature accuracy of narrow-band 
and ratio radiometry*/ 

long float HIGHT,step; 
int N; 

main() { 

long float radiance(); 
long float signal(); 
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long float sigma(); 
long float sdt(); 
long float emissivity (); 
long float response (); 
long float derivatives(); 
long float dtll(); 
long float dtl(); 
long float sdx,lambda1,lambda2,lambda,t,maxsig; 
int k; 

fp2=fopen("sdt_mwip.dat","w"); 

printf("enter temperature"); 
scanf("%lf",&t); 
printf("enter shortest wavelength"); 

scanf("%lf",&l1); 
printf("enter longest wavelength"); 

scanf("%lf",&l2); 
printf("enter number of filters"); 
scanf("%d",&N); 
printf("enter number of measurements per filter"); 

scanf("%d",&k); 
printf("Enter procentage of error in positioning the filters"); 

scanf("%lf",&sdx); 

sdx*=WIDTH; 

for(N=4; N<=10; ++N) { 
step=(lambda2-lambda1)/(N-1); 

fprintf(fp2,"%4.2f\t%3d\t%2d\t",WIDTH,k,N); 

for(t=273.0+500.; t<=273.0+1100.; t+=100.0) { 
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/* calculate the HIGHT so that the maximum signal for this 
temperature is equal 1.E+6 */ 

maxsig=-1.; 
HIGHT=0.1; 
for(lambda=lambda1; lambda<=(lambda2+0.01*step); lambda+=0.1*step) { 
if (signal(lambda,t) > maxsig ) maxsig=signal(lambda,t); } 
HIGHT=HIGHT*1.E+6/maxsig;  

	fprintf(fp2,"%4.3f\t",sdt(t,sdx,lambda1,lambda2,k)); 	} 

fprintf(fp2,"\n"); } 

fclose(fp2); 
dtll(k,sdx); 

dtl(k,sdx); }  

/* The following subroutine computes the blackbody radiance */ 
long float radiance(lambda, t) 
long float lambda,t; 
{ 

long float 1; 
1=(exp(x)-1.)*lambda*lambda*lambda*lambda*lambda; 

return(C1/1); 

} 

/* The following program computes the spectral responsivity 
of the imager according to Fowler equation */ 

long float response(lambda) 
long float lambda; 
{ 

long float resp; 
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resp=1.-PSIMS*lambda/1.24; 
resp*=CONE*resp; 

return(resp); 

} 

/* Emissivity model */ 
long float emissivity(lambda) 
long float lambda; 
{ 

return(B1+B2*lambda+B3*lambda*lambda); 

} 

/* The following subroutine computes detected signal without noise */ 
long float signal(lambda , t) 
long float lambda,t; 

{ 
long float radiance(); 
long float sigma(); 
long float emissivity 0; 
long float response 0; 
long float s,sigm,G; 
sigm=sigma(lambda,t); 
G=(HIGHT*AREA*FILL*PI/(4.*FN*FN))*WIDTH; 

kk=G*(1.+(A2*WIDTH*WIDTH/(lambda*lambda))*sigm); 
s=kk*response(lambda)*radiance(lambda,t)*emissivity(lambda); 
k1=G*A2*WIDTH*WIDTH/(lambda*lambda)*(sigmal-

2*sigm/lambda)/kk; 
ka=G*A2*WIDTH*WIDTH/(lambda*lambda)*sigmaa/kk; 
kb=G*A2*WIDTH*WIDTH/(lambda*lambda)*sigmab/kk; 
kt=G*A2*WIDTH*WIDTH/(lambda*lambda)*sigmat/kk; 

return(s/(FREQUENCY*ELECTRON)); 

} 

/* The following program computes the partial derivatives 
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of the signal with respect to temperature, wavelength and 
the parameters of the emissivity model */ 
long float derivatives(lambda,t) 
long float lambda,t; 

long float radiance(); 
long float sigma(); 
long float emissivity 0; 
long float response 0; 

x=C2/(lambda*t); 

e1=(B2+2*B3*lambda)/emissivity(lambda); 

e2=B3/emissivity(lambda); 
ea=1./emissivity(lambda); 
eb=lambda/emissivity(lambda); 

r1=-(2.*CONE*PSIMS/1.24)*(1.-(PSIMS/1.24)*lambda); 

r1=r1/response(lambda); 
r2==CONE*PSIMS*PSIMS/(1.24*1.24); 

r2=r2/(response(lambda)); 

11=(x*exp(x))/(exp(x)-1.)-5.; 

11=11/lambda; 
12=(x*x*exp(x))/((exp(x)-1.)*(exp(x)-1.)); 
12-=(((x*x/2.)+6.*x)*exp(x))/(exp(x)-1.); 

l2+=15.; 

l2=l2/(lambda*lambda); 
13=(x*x*x/6.-7.*x*x/2.+21.*x35.)/(lambda*lambda*lambda); 
lt=(x*exp(x))/(t*(exp(x)-1)); 

l1t=(x*x*exp(x)*(x/(exp(x)-1)-1))/(C2*(exp(x)-1)); 
l2t=x*(6.-x)/(lambda*lambda*t); } 
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/* The following subroutine computes the filter shape factors */ 
long float sigma(lambda, t) 
long float lambda,t; 

{ 
long float sigm; 
long float emissivity 0; 
long float derivatives(); 

derivatives (lambda,t); 

sigm=(l2+(r1+e1)*l1+r2+r1*e1+e2)*lambda*lambda; 
sigmaa=- 

(lambda*lambda*B2)*(r1+l1)/(emissivity(lambda)*emissivity(lambda)); 

sigmab=(lambda*lambda*B1)*(r1+l1)/(emissivity(lambda)*emissivity(lamb 
da)); 

sigmat=lambda*lambda*(l2t+(r1+e1)*l1t); 
sigmal=3*13-11*13+(2*r2-r1*r1-e1*e1)*l1+(r1+e1)*(2*11-12*12); 

sigmal+=(2*r2-r1*r1)*e1-e1*e1*r1; 
sigmal*=lambda*lambda; 

sigmal+=2. *sigm/lambda; 

return(sigm); 

} 

/* The following program computes the resulting from MWIP 
temperature accuracy (standard deviation) */ 

long float sdt(t,sdx,l1,l2,k) 
long float t,sdx,l1,l2; 

int k; 

{ 
long float denom,D,alfa[4][4],der[4]; 

long float lambda; 
long float signal();  
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int j,m; 

for(j=1; j<=NP; ++j) 
for(m=1; m<=NP; ++m) 

alfa[j][m]=0.;} } 

for(lambda=11; lambda<=(12+0.1*step); lambda+=step) { 

denom=l+signal(lambda,t)*sdx*sdx*(e1+k1+r1+l1)*(e1+k1+r1+l1); 
der[1]=ea+ka; 

der[2]=eb+kb; 

der[3]=lt+kt; 
for(j=1; j<=3; j+=l) { 
for(m=1; m<=3; m+=1) { 
alfa[j][m]+=k*signal(lambda,t)*der[j]*der[m]/denom;}} } 

D=alfa[1][1]*(alfa[2][2]*alfa[3][3]-alfa[3][2]*alfa[3][2]); 
D=D-alfa[1][2]*(alfa[1][2]*alfa[3][3]-alfa[1][3]*alfa[2][3]); 
D+=alfa[1][3]*(alfa[1][2]*alfa[2][3]-alfa[1][3]*alfa[2][2]); 
return(sqrt((alfa[1][1]*alfa[2][2]-alfa[1][2]*alfa[1][2])/D)); } 

/* The following program computes the accuracy of the 

ratio radiometry */ 

long float dtll (k,sdx) 

long float sdx; 
int k; 
{ 

long float lambda1,lambda2,lambda,maxsig,t,dt,s1,s2,ds1,ds2,dtds1,dtds2; 
long float signal(); 

fp1=fopen("dtll1000CQmax.dat","w"); 

t=1273.; 
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maxsig=-1 .; 
HIGHT=0.1; 

for(lambda1=1.5 ; lambda1<=4.5; lambda1+=0.05) 

fprintf(fpl,"%4.2f\t%3d\t%4.1f\t%3.2f\t",WIDTH,k,t,lambda1); 

for(lambda2=1.5; lambda2<=4.5; lambda2+=0.5) { 

s1=signal(lambda1,t); 
s2=signal(lambda2,t); 
if (s1>s2) HIGHT=HIGHT*1.E+6/s1; 

else 
HIGHT=HIGHT*1.E+6/s2; 

s1=signal(lambda1,t); 
s2=signal(lambda2,t); 

ds1=s1*(1./k+s1*sdx*sdx*(e1+k1+r1+l1)*(e1+k1+r1+l1)); ds2=s2*(1./k+s2*sdx*sdx*(e1+k1+r1+l1)*(e1+k1+r1+l1)); 

dtds1=lambda1*lambda2*t*t/(C2*lambda2-lambda1)*s1); dtds2=lambda1*lambda2*t*t/(C2*lambda2-lambda1)*s2); 

dt=sqrt(dtds1*dtds1*ds1+dtds2*dtds2*ds2); 
printf("s1=%7.1f\ts2=%7.1f\n",s1,s2); 

fprintf(fpl,"%4.4f\t",dt); 
} 

fprintf(fp1,"\n"); } 

fclose(fp1); } 
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/* The following program computes the accuracy of 
narrow-band radiometry */ 
long float dt1 (k,sdx) 
long float sdx; 
int k; { 

long float lambda,maxsig,sig,t,dt,ds,dsdt; 

long float signal(); 
fp3=fopen("dt1Qmax10E6.dat","w"); 

for(lambda=1.5; lambda<=4.5; lambda+=0.1) { 

fprintf(fp3,"%4.2f\t%3d\t%3.2f\t",WIDTH,k,lambda); 

for(t=500+273.;t<=1100+273.;t+=100.) 

/* calculate the HIGHT so that the maximum signal 

is equal to 1.E+6 */ 

HIGHT=0.1; 
maxsig=signal(lambda,t); 
HIGHT=HIGHT*1.E+6/maxsig; 

sig=signal(lambda,t); 
ds=sig*(1./k+sig*sdx*sdx*(e1+k1+r1+l1)*(e1+k1+r1+l1)); 

dsdt=sig*(lt+kt); 

dt=sqrt(ds)/dsdt; 

fprintf(fp3,"%4.4f\t",dt); { 

fprintf(fp3,"\n"); 
} 

fclose(fp3); } 
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User-Supplied Subroutine for Least-Squares Package ODRPACK 

This subroutine specifies the fitting function and the environment parameters 

for the leas-squares package ODRPACK. 

PROGRAM MWIP 

C ODRPACK ARGUMENT DEFINITIONS 

C 	==> FCN NAME OF THE USER SUPPLIED FUNCTION SUBROUTINE 

C 	==> N NUMBER OF OBSERVATIONS 

C 	==> M COLUMNS OF DATA IN THE EXPLANATORY VARIABLE 

C 	==> NP NUMBER OF PARAMETERS 

C 	==> NQ NUMBER OF RESPONSES PER OBSERVATION 

C   <==> BETA FUNCTION PARAMETERS 

C 	==> Y RESPONSE VARIABLE 

C 	==> LDY LEADING DIMENSION OF ARRAY Y 

C 	==> X EXPLANATORY VARIABLE 

C 	==> LDX LEADING DIMENSION OF ARRAY X 

C 	==> WE "EPSILON" WEIGHTS 

C 	==> LDWE LEADING DIMENSION OF ARRAY WE 

C 	==> LD2WE SECOND DIMENSION OF ARRAY WE 

C 	==> WD "DELTA" WEIGHTS 

C 	==> LDWD LEADING DIMENSION OF ARRAY WD 

C 	==> LD2WD SECOND DIMENSION OF ARRAY WD 

C 	==> IFIXB INDICATORS FOR "FIXING" PARAMETERS (BETA) 

C 	==> IFIXX INDICATORS FOR "FIXING" EXPLANATORY VARIABLE (X) 

C 	==> LDIFX LEADING DIMENSION OF ARRAY IFIXX 

C 	==> JOB TASK TO BE PERFORMED 

C 	==> NDIGIT GOOD DIGITS IN SUBROUTINE FUNCTION RESULTS 

C 	==> TAUFAC TRUST REGION INITIALIZATION FACTOR 

C 	==> SSTOL SUM OF SQUARES CONVERGENCE CRITERION 

C 	==> PARTOL PARAMETER CONVERGENCE CRITERION 

C 	==> MAXIT MAXIMUM NUMBER OF ITERATIONS 
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C 	==> IPRINT PRINT CONTROL 

C 	==> LUNERR LOGICAL UNIT FOR ERROR REPORTS 

C 	==> LUNRPT LOGICAL UNIT FOR COMPUTATION REPORTS 

C 	==> STPB STEP SIZES FOR FINITE DIFFERENCE DERIVATIVES WRT 

BETA 

C 	==> STPD STEP SIZES FOR FINITE DIFFERENCE DERIVATIVES WRT 

DELTA 

C 	==> LDSTPD LEADING DIMENSION OF ARRAY STPD 

C 	==> SCLB SCALE VALUES FOR PARAMETERS BETA 

C 	==> SCLD SCALE VALUES FOR ERRORS DELTA IN EXPLANATORY 

VARIABLE 

C 	==> LDSCLD LEADING DIMENSION OF ARRAY SCLD 

C   <==> WORK DOUBLE PRECISION WORK VECTOR 

C 	==> LWORK DIMENSION OF VECTOR WORK 

C 	<== IWORK INTEGER WORK VECTOR 

C 	==> LIWORK DIMENSION OF VECTOR IWORK 

C 	<== INFO STOPPING CONDITION 

C PARAMETERS SPECIFYING MAXIMUM PROBLEM SIZES HANDLED BY 

THIS DRIVER 

C MAXN 	MAXIMUM NUMBER OF OBSERVATIONS 

C MAXM 	MAXIMUM NUMBER OF COLUMNS IN EXPLANATORY 

VARIABLE 

C MAXNP MAXIMUM NUMBER OF FUNCTION PARAMETERS 

C MAXNQ MAXIMUM NUMBER OF RESPONSES PER OBSERVATION 

C PARAMETER DECLARATIONS AND SPECIFICATIONS 

INTEGER 

LDIFX,LDSCLD,LDSTPD,LDWD,LDWE,LDX,LDY,LD2WD,LD2WE, 

+ 

LIWORK,LWORK,MAXM,MAXN,MAXNP,MAXNQ 

PARAMETER (MAXM=5,MAXN=600,MAXNP=5,MAXNQ=1, 

+ 

LDY=MAXN,LDX=MAXN, 

+ 

LDWE=MAXN,LD2WE=1,LDWD=1,LD2WD=1, 

+ 

LDIFX= 1,LDSTPD=1,LDSCLD =1, 
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+ 

LWORK=18 + 11*MAXNP + MAXNP**2 + MAXM + MAXM**2 + 

+ 

		

4*MAXN*MAXNQ + 6*MAXN*MAXM + 

2*MAXN*MAXNQ*MAXNP + 

+ 

2*MAXN*MAXNQ*MAXM + MAXNQ**2 + 

+ 

5*MAXNQ + MAXNQ*(MAXNP+MAXM) + 

LDWE*LD2WE*MAXNQ, 

+ 

LIWORK=20+MAXNP+MAXNQ*(MAXNP+MAXM)) 

 

 

C VARIABLE DECLARATIONS 

INTEGER 	I,INFO,IPRINT,J,JOB,L,LUNERR,LUNRPT,M,MAXIT,N, 

+ 

NDIGIT,NP,NQ 

INTEGER 	IFIXB(MAXNP),IFIXX(LDIFX,MAXM),IWORK(LIWORK) 

DOUBLE PRECISION PARTOL,SSTOL,TAUFAC 

DOUBLE PRECISION 

BETA(MAXNP),SCLB(MAXNP),SCLD(LDSCLD,MAXM), 

STPB(MAXNP),STPD(LDSTPD,MAXM), 

WD(LDWD,LD2WD,MAXM),WE(LDWE,LD2WE,MAXNQ), 

WORK(LWORK),X(LDX,MAXM),Y(LDY,MAXNQ) 

DOUBLE PRECISION WIDTH,HEIGHT 

COMMON /MINE/ WIDTH,HEIGHT 

EXTERNAL FCN 

C SPECIFY DEFAULT VALUES FOR DODRC ARGUMENTS 

WE(1,1,1) = -1.0D0 

WD(1,1,1) = -1.0D0 

IFIXB(1) = -1 

IFIXX(1,1) = 0 

JOB 	= 12 

NDIGIT = -1 

TAUFAC = -1.0D0 

SSTOL = -1.0D0 

PARTOL = -1.0D0 

MAXIT = 1000 
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IPRINT = -1 

LUNERR = -1 

LUNRPT = -1 

STPB(I) =-1.0D0 

STPD(1,1) = -1.0D0 

SCLB(1) = -1.0D0 

SCLD(1,1) =-1.0D0 

C SET UP ODRPACK REPORT FILES 

LUNERR = 9 

LUNRPT = 9 

OPEN (UNIT=9,FILE='REPORT.mine') 

C READ PROBLEM DATA, AND SET NONDEFAULT VALUE FOR ARGUMENT 

IFIXX 

OPEN (UNIT=5,FILE=SIGNAL.DAT) 

READ (5,FMT=*) N,M,NP,NQ,WIDTH,HEIGHT 

READ (5,FMT=*) (BETA(I),I=1,NP) 

DO 10 I=1,N 

READ (5,FMT=*) (X(I,J),J=1,M),(Y(I,L),L=1,NQ) 

C 	IF (X(I,1).EQ.0.0D0 .OR. X(I,1).EQ.100.0D0) THEN 

C 	IFIXX(I,1) = 0 

C 	ELSE 

C 	IFIXX(I,1) = 1 

C 	END IF 

WE(I,1,1)=1.0D0/(200.0D0*200.0D0+Y(I,1)) 
10 CONTINUE 

C SPECIFY TASK: EXPLICIT ORTHOGONAL DISTANCE REGRESSION 

C 	WITH USER SUPPLIED DERIVATIVES (CHECKED) 

C 	COVARIANCE MATRIX CONSTRUCTED WITH RECOMPUTED 

DERIVATIVES 

C 	DELTA INITIALIZED TO ZERO 

C 	NOT A RESTART 
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C AND INDICATE SHORT INITIAL REPORT 

C 	SHORT ITERATION REPORTS EVERY ITERATION, AND 

C 	LONG FINAL REPORT 

JOB 	= 00012 

IPRINT = 2113 

C COMPUTE SOLUTION 

CALL DODRC(FCN, 

+ 

N,M,NP,NQ, 

+ 

BETA, 

+ 

Y,LDY,X,LDX, 

+ 

WE,LDWE,LD2WE,WD,LDWD,LD2WD, 

+ IFIXB,IFIXX,LDIFX, + 

JOB,NDIGIT,TAUFAC, 

+ 

SSTOL,PARTOL,MAXIT, 

+ 

IPRINT,LUNERR,LUNRPT, 

+ 

STPB,STPD,LDSTPD, 

+ 

SCLB,SCLD,LDSCLD, 

+ 

WORK,LWORK,IWORK,LIWORK, 

+ 

INFO) 

END 

SUBROUTINE FCN(N,M,NP,NQ, 

+ 

LDN,LDM,LDNP, 

+ 

BETA,XPLUSD, 

+ 

IFIXB,IFIXX,LDIFX, 

+ 

IDEVAL,F,FJACB,FJACD, 

+ 

ISTOP) 

C SUBROUTINE ARGUMENTS 

C 	==> N NUMBER OF OBSERVATIONS 

C 	==> M NUMBER OF COLUMNS IN EXPLANATORY VARIABLE 

C 	==> NP NUMBER OF PARAMETERS 

C 	==> NQ NUMBER OF RESPONSES PER OBSERVATION 
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C 	==> LDN LEADING DIMENSION DECLARATOR EQUAL OR 

EXCEEDING N 

C 	==> LDM LEADING DIMENSION DECLARATOR EQUAL OR 

EXCEEDING M 

C 	==> LDNP LEADING DIMENSION DECLARATOR EQUAL OR 

EXCEEDING NP 

C 	==> BETA CURRENT VALUES OF PARAMETERS 

C 	==> XPLUSD CURRENT VALUE OF EXPLANATORY VARIABLE, I.E., X + 

DELTA 

C 	==> IFIXB INDICATORS FOR "FIXING" PARAMETERS (BETA) 

C 	==> IFIXX INDICATORS FOR "FIXING" EXPLANATORY VARIABLE (X) 

C 	==> LDIFX LEADING DIMENSION OF ARRAY IFIXX 

C 	==> IDEVAL INDICATOR FOR SELECTING COMPUTATION TO BE 

PERFORMED 

C 	<== F PREDICTED FUNCTION VALUES 

C 	<== FJACB JACOBIAN WITH RESPECT TO BETA 

C 	<== FJACD JACOBIAN WITH RESPECT TO ERRORS DELTA 

C 	<== ISTOP STOPPING CONDITION, WHERE 

C 	 0 MEANS CURRENT BETA AND X+DELTA WERE 

C 	 ACCEPTABLE AND VALUES WERE COMPUTED 

SUCCESSFULLY 

C 	 1 MEANS CURRENT BETA AND X+DELTA ARE 

C 	 NOT ACCEPTABLE; ODRPACK SHOULD SELECT VALUES 

C 	 CLOSER TO MOST RECENTLY USED VALUES IF POSSIBLE 

C 	-1 MEANS CURRENT BETA AND X+DELTA ARE 

C 	 NOT ACCEPTABLE; ODRPACK SHOULD STOP 

C INPUT ARGUMENTS, NOT TO BE CHANGED BY THIS ROUTINE: 

INTEGER 	I,IDEVAL,ISTOP,L,LDIFX,LDM,LDN,LDNP,M,N,NP,NQ 

DOUBLE PRECISION BETA(NP),XPLUSD(LDN,M) 

INTEGER 	IFIXB(NP),IFIXX(LDIFX,M) 

C OUTPUT ARGUMENTS: 

DOUBLE PRECISION 

F(LDN,NQ),FJACB(LDN,LDNP,NQ),FJACD(LDN,LDM,NQ) 
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C LOCAL VARIABLES 
INTRINSIC DEXP 
DOUBLE PRECISION T,LAMBDA,EMISS,RESP,SIGMA,S,E1,E2,HEIGHT,PI, 

+L1,L2,LB,R1,R2,X,A2,C1,C2,AREA,FILL,FN,CONV,PSIMS,CONE,WIDTH 

C DEFINE COMMON BLOCK FOR PASSING WIDTH AND HEIGHT 
COMMON /MINE/ WIDTH,HEIGHT 

C PARAMETER DECLARATIONS 

PI=3.141592653589793238462643383279D0 
A2=0.1803D0 
C1=1.1911D+8 
C2=1.4388D+4 
AREA=1.6D-9 
FILL=0.39D0 
FN=2.D0 
CONV=2.083D+17 
PSIMS=0.2272D0 
CONE=0.12402D0 

C 
C RENAMING SOME VARIABLES 

T=BETA(4) 
C CHECK FOR UNACCEPTABLE VALUES FOR THIS PROBLEM 

IF (T .LT. 0.0D0) THEN 
ISTOP = 1 
RETURN 

ELSE 

ISTOP = 0 
END IF 

C 
C COMPUTE PREDICTED VALUES 

IF (MOD(IDEVAL,10).GE.1) THEN 

DO 110 L = 1,NQ 
DO 100 I = 1,N 

C COMPUTE SIGNAL C 
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C RADIANCE 
C 

LAMBDA=XPLUSD(I,1) 
X=C2/(LAMBDA*T) 

LB=(DEXP(X)-1.0D0)*LAMBDA*LAMBDA*LAMBDA*LAMBDA*LAMBDA 

LB=C1/LB 
C 
C RESPONSIVITY 
C 

RESP=1.0D0-PSIMS*LAMBDA/1.24D0 
RESP=CONE*RESP*RESP 

C 
C EMISSIVITY 

C 

EMISS=BETA(1)+BETA(2)*LAMBDA+BETA(3)*LAMBDA*LAMBDA 
C 
C VARIOUS DERIVATIVES 
C 

R1=-(2.0D0*CONE*PSIMS/1.24D0)*(1.0D0-(PSIMS/1.24D0)*LAMB DA) 

R1=R1/RESP 

R2=2.0D0*CONE*PSIMS*PSIMS/(1.24D0*1.24D0) 
R2=R2/(2.0D0*RESP) 

L1=(X*DEXP(X))/(DEXP(X)-1.0D0)-5.0D0 

L1=L1/LAMBDA 

L2=(X*X*DEXP(X))/((DEXP(X)-1.0D0)*(DEXP(X)-1.0D0)) 
L2=L2-(((X*X/2.0D0)+6.0D0*X)*DEXP(X))/(DEXP(X)-1.0D0) 
L2=L2+15.0D0 
L2=L2/(LAMBDA*LAMBDA) 

E1=(BETA(2)+2.0D0*BETA(3)*LAMBDA)/EMISS 

E2=(2.0D0*BETA(3))/(2.0D0*EMISS) 
SIGMA=(L2+(R1+E1)*L1+R2+R1*E1+E2)*LAMBDA*LAMBDA 

C 

C SIGNAL 
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S=EMISS*WIDTH*(1.0D0+(A2*WIDTH*WIDTH/(LAMBDA*LAMBDA))*SIGMA*)* 
LB 

S=S*(HEIGHT*AREA*FILL*PI/(4.0D0*FN*FN))*RESP*CONV 

C OUTPUT FUNCTION (CORRECTED FOR INTEGRATION TIME AJUSTMENTS) 
F(I,L)=S 

100 CONTINUE 
110 CONTINUE 
END IF 
RETURN 
END  
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