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BOUNDS OF CHARACTERISTIC POLYNOMIALS OF

REGULAR MATROIDS

MARTIN KOCHOL

Abstract. A regular chain group N is the set of integral vectors or-
thogonal to rows of a matrix representing a regular matroid, i.e., a to-
tally unimodular matrix. Introducing canonical forms of an equivalence
relation generated by N and a special basis of N , we improve several
results about polynomials counting elements of N and find new bounds
and formulas for these polynomials.

1. Introduction

Regular matroids are representable by totally unimodular matrices. Other
equivalent characterizations are in [22, Chapter 13] or [8, 23, 28, 27]. A
regular chain group N on a finite set E consists of integral vectors (called
chains) indexed by E and orthogonal to rows of a totally unimodular matrix
(i.e., a representative matrix of a regular matroid). Suppose that Q(N ; k)
denotes the number of chains from N with values from {±1, . . . ,±(k−1)}.
Moreover, if the coordinates with negative values are indexed by elements
of X ⊆ E (resp. are considered mod k), denote this number by Q(N,X; k)
(resp. P (N ; k)). It is known that Q(N ; k) and P (N ; k) are polynomials
in variable k and are sums of Q(N,X; k) where X runs through different
subsets of E (determined by an equivalence relation ∼ on the powerset of E).
Furthermore Q(N,X; k) is an Ehrhard polynomial of an integral polytope
and P (N ; k) is the characteristic polynomial of the dual of the matroid
accompanied with N .

Basic properties of regular chain groups are surveyed in the second section.
In the last section we introduce a canonical representation of equivalence
classes of the relation ∼, characterize k for which all nontrivial Q(N,X; k)
are nonzero and find a basis satisfying a triangular condition and consisting
of chains such that all coordinates with negative values are covered by a
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fixed set. Using these results we establish inequalities between polynomials
Q(N ; k) and P (N ; k) and introduce formulas expressing growth of Q(N ; k),
P (N ; k), and the Tutte polynomial of regular matroids.

2. Preliminaries

In this section we recall some basic properties of regular matroids and
regular chain groups presented in [2, 22, 24, 25, 26, 28].

Throughout this paper, E denotes a finite nonempty set. The collection
of mappings from E to a set S is denoted by SE . If R is a ring, the elements
of RE are considered as vectors indexed by E and we will use the notation
f +g, −f , and sf for f, g ∈ RE and s ∈ R. A chain on E (over R, or simply
an R-chain) is f ∈ RE and the support of f is σ(f) = {e ∈ E; f(e) 6= 0}.
We say that f is proper if σ(f) = E. The zero chain (denoted by 0) has null
support. Given X ⊆ E and f ∈ RE , let ρX(f) ∈ RE be defined so that for
each e ∈ E,

[ρX(f)](e) =

{
−f(e) if e ∈ X,
f(e) if e /∈ X,

and let ρX(Y ) = {ρX(f), f ∈ Y } for any Y ⊆ RE . Furthermore, define by

f\X ∈ RE\X such that f\X(e) = f(e) for each e ∈ E \X.
A matroid M on E of rank r(M) is regular if there exists an r × n (r =

r(M), n = |E|) totally unimodular matrix D (called a representative matrix
of M) such that independent sets of M correspond to independent sets of
columns of D. For any basis B of M , D can be transformed to a form (Ir|U)
such that Ir corresponds to B and U is totally unimodular. The dual of M
is a regular matroid M∗ with a representative matrix (−UT |In−r) (where
In−r corresponds to E \B).

By a regular chain group N on E (associated with D) we mean a set of
chains on E over Z that are orthogonal to each row of D (i.e., are integral
combinations of rows of a representative matrix of M∗). The set of chains
orthogonal to every chain of N is a chain group called orthogonal to N and
denoted by N⊥ (clearly, N⊥ is the set of integral combinations of rows of
D). By rank of N we mean r(N) = n − r(M) = r∗(M). Then r(N⊥) =
n− r(N) = r(M).

Throughout this paper, we always assume that a regular chain group N
is associated with a matrix D = D(N) representing a matroid M = M(N).

For any X ⊆ E, define by

(2.1)
N−X =

{
f\X ; f ∈ N, σ(f) ∩X = ∅

}
,

N/X =
{
f\X ; f ∈ N

}
.

Clearly, M(N−X) = M − X and D(N−X) arises from D(N) after delet-
ing the columns corresponding to X. Furthermore (N−X)⊥ = N⊥/X,
(N/X)⊥ = N⊥−X, and M(N/X) = M/X.
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A chain f of N is elementary if there is no nonzero g of N such that
σ(g) ⊂ σ(f). An elementary chain f is called a primitive chain of N if the
coefficients of f are restricted to the values 0, 1, and −1. (Notice that the
set of supports of primitive chains of N is the set of circuits of M(N).) We
say that a chain g conforms to a chain f , if g(e) and f(e) are nonzero and
have the same sign for each e ∈ E such that g(e) 6= 0. By [25, Section 6.1]),

every chain f of N can be expressed as a sum of
primitive chains in N that conform to f .

(2.2)

Let A be an Abelian group with additive notation. We shall consider A
as a (right) Z-module such that the scalar multiplication a · z of a ∈ A by
z ∈ Z is equal to 0 if z = 0,

∑z
1 a if z > 0, and

∑−z
1 (−a) if z < 0. Similarly

if a ∈ A and f ∈ ZE then define a · f ∈ AE so that (a · f)(e) = a · f(e) for
each e ∈ E. If N is a regular chain group on E, define by

A(N) =

{
m∑
i=1

ai · fi; ai ∈ A, fi ∈ N,m ≥ 1

}
,

A[N ] = {f ∈ A(N); σ(f) = E} .

Notice that A(N) = N if A = Z. By [2, Proposition 1],

g ∈ AE is from A(N) if and only if for each f ∈ N⊥,∑
e∈E g(e) · f(e) = 0.

(2.3)

Let P (N,A) = |A[N ]| and denote by P (N ; k) = P (N,Zk) = |Zk[N ]|.
We will denote by Z+ the set of positive integers. Define by

Nk = {f ∈ N ; 1 ≤ |f(e)| ≤ k − 1 for each e ∈ E},
Nk(X) = {f ∈ Nk; ρX(f) ∈ ZE

+}, X ⊆ E.

Let Q(N ; k) = |Nk| and Q(N,X; k) = |Nk(X)|, X ⊆ E. Clearly, Nk is equal
to the (disjoint) union of Nk(X) where X runs through all subsets of E.

We denote by P(E) the set of subsets of E. For any X ⊆ E denote by
χX ∈ ZE such that χX(e) = 1 (resp. χX(e) = 0) for each e ∈ E (resp.
e ∈ E \X).

Define the equivalence relation ∼ on P(E) by: X,X ′ ∈ P(E) satisfies
X ∼ X ′ if and only if χX −χX′ ∈ N . The set of the equivalence classes will
be denoted by P(E)/ ∼. By [2, Proposition 3(a)],

for each X ∈ P(E)/ ∼ and X,X ′ ∈ X , Q(N,X; k) = Q(N,X ′; k).(2.4)

Thus we can define Q(N,X ; k) to be equal Q(N,X; k) for some X ∈ X .
We say that X ⊆ E is positive if ρX(N) ∩ ZE

+ 6= ∅. We say X ∈ P(E)/ ∼
is positive whenever some element of X is positive (because by (2.4) ev-
ery element of X will be positive). We shall denote the set of positive
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elements of P(E) (resp. of P(E)/ ∼) by O(N)+ (resp. O(N)+). By Propo-
sitions 3, 7, 10, and 15 from [2] we have
(2.5)

if X ∈ O(N)+, then Q(N,X; k) is a polynomial in k of degree r(N),

|O(N)+| = (−1)r(N)P (N ;−1),

|O(N)+| = (−1)r(N)P (N ; 0),

P (N ; k) =
∑

X∈P(E)/∼

Q(N,X ; k) =
∑

X∈O(N)+

Q(N,X ; k).

For a chain f of N we shall call it a k-chain if 0 ≤ f(e) ≤ k − 1 for each
e ∈ E. For any X ⊆ E, denote by Nk(X) the set of all k-chains of ρX(N)
and define Q(N,X; k) = |Nk(X)|. Furthermore, Q(N,X; k) = Q(N,X ′; k)
if X,X ′ ∈ X ∈ P(E)/ ∼, and we can define Q(N,X ; k) = Q(N,X; k) for
some X ∈ X . By Propositions 9 and 12–14 from [2] we have

(2.6)

Q(N,X;−k) = (−1)r(N)Q(N,X; k + 1), for each X ∈ O(N)+,

|X | = Q(N,X ; 2), for each X ∈ O(N)+,

P (N ; k) =
∑

X∈O(N)+

Q(N,X; k)

Q(N,X; 2)
,

P (N ;−k) = (−1)r(N)
∑

X∈O(N)+

Q(N,X; k + 1)

Q(N,X; 2)

= (−1)r(N)
∑

X∈O(N)+

Q(N,X ; k + 1).

The reciprocity law expressed in the first row of (2.6) follows from the fact
that Q(N,X; k) is an Ehrhart polynomial of an integral polytope (for more
details see [2, Section III.2] and [12, Theorem 5.1, Corollary B.1, p.23]).
From definition of Q(N ; k), (2.4), and (2.6) we have

(2.7)

Q(N ; k) =
∑

X∈O(N)+

Q(N,X; k) =
∑

X∈O(N)+

Q(N,X ; k)Q(N,X ; 2),

Q(N ;−k) = (−1)r(N)
∑

X∈O(N)+

Q(N,X; k + 1)

= (−1)r(N)
∑

X∈O(N)+

Q(N,X ; k + 1)Q(N,X ; 2).

3. Properties of chain polynomials

Let N be a regular chain group on E. Then e is called a loop (resp.
isthmus) of N if χe ∈ N (resp. χe ∈ N⊥), i.e., if e is a loop (resp. isthmus)
of M(N).
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Lemma 3.1. P (N ; k) = P (N,A) for any Abelian group of order k. If N
has an isthmus, then P (N ; k) = 0 and P (N ; k) has degree r(N) otherwise.
Furthermore,

P (N ; k) = (k−1)P (N−e; k) if e ∈ E is a loop in N ,
P (N ; k) = P (N/e; k)− P (N−e; k) if e ∈ E is not a loop in N .

Proof. We use induction on |E|. Formally we allow E = ∅ and define
P (N ; k) = P (N,A) = 1 in this case. If e is a loop (resp. isthmus) of N
then from (2.3), P (N,A) = (k−1)P (N−e,A) (resp. P (N,A) = P (N/e,A)−
P (N−e,A)), N−e = N/e, r(N−e) = r(N/e) = r(N)−1, and the statement
holds true by the induction hypothesis.

If e is neither an isthmus nor a loop of N , then there exists f ∈ N⊥ such
that f(e) 6= 0 and f 6= χe. Given g ∈ AE\e and x ∈ A let gx ∈ AE be defined

so that g
\e
x = g and gx(e) = x. If g ∈ A[N/e], then by (2.1) there exists

a ∈ A such that ga ∈ A(N). By (2.3), ga must be orthogonal to f , whence
a is unique. Furthermore, if a = 0 (resp. a 6= 0) then by (2.1), g ∈ A[N−e]
(resp. ga ∈ A[N ]), i.e., g 7→ ga is a bijection from A[N/e] to the disjoint
union of A[N ] and A[N−e]. Thus P (N/e,A) = P (N,A) + P (N−e,A),
r(N/e) = r(N) = r(N−e)+1, and the statement holds true by the induction
hypothesis. �

By Lemma 3.1, P (N ; k) is the characteristic polynomial of M(N)∗ (see [1,
29]). Thus the characteristic polynomial of regular matroid M(N)∗ counts
the number of proper A-chains for any Abelian group A of order k.

Let H ⊆ E and ` be a labeling of elements of E by pairwise different
integers. For any f ∈ N denote by ef ∈ E such that

`(ef ) = min{`(e); e ∈ σ(f)}.

We say that f is (H, `)-compatible if f(ef ) and (χH − χE\H)(ef ) have the

same sign. Denote by OH,`(N) the subset of O(N)+ consisting of sets X

such that each c ∈ N2(X) is (H, `)-compatible.

Lemma 3.2. |OH,`(N) ∩ X | = 1 for each X ∈ O(N)+.

Proof. For each X ∈ O(N+) define

`X = min{`(ec); c ∈ N2(X), c(ec) 6= (χH − χE\H)(ec)}

and write `X = ∞ if each c ∈ N2(X) is (H, `)-compatible. If X ∈ O(N)+,
choose X ∈ X with the maximal `X . If `X <∞, there exists c ∈ N2(X) such
that `(ec) = `X and (applying the definition of ∼) choose X ′ ∈ X such that
χX′ − χX = c. Thus −c ∈ N2(X

′) is (H, `)-compatible, whence `X′ > `X , a
contradiction with the choice of X. Therefore `X = ∞, i.e., X ∈ OH,`(G).

On the other hand if X ′′ ∈ X and X ′′ 6= X, then c′′ = χX′′ − χX ∈ N2(X)
is (H, `)-compatible and −c ∈ N2(X

′′) is not (H, `)-compatible. Therefore
OH,`(G) ∩ X = {X}. �
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Notice that Zk[N,X] 6= ∅ for each X ∈ OH,`(N) if and only if k ≥ |σ(g̃)|
where g̃ is a primitive chain in N⊥ with the maximal |σ(g̃)|. This follows
from the following statement.

Proposition 3.3. Q(N,X; k) 6= 0 for each X ∈ O(N)+ if and only if
k ≥ |σ(g)| for each primitive chain g of N⊥.

Proof. The proof is trivial if O(N)+ = ∅. Assume that O(N)+ 6= ∅.
For f ∈ ZE , denote by σ+(f) (σ−(f)) the number of positive (negative)

coefficients of f , i.e., σ+(f) + σ−(f) = |σ(f)|. Assume that D(N) has the
form (Ir|U) and let DX be the matrix arising from (Ir|U) after changing the
signs of all entries from the columns corresponding to X. Then ρX(Nk(X))
is the set of chains on E that are orthogonal to all rows of DX and have
coordinates from 1 to k − 1. In other words, |Nk(X)| = |ρX(Nk(X))| 6= 0 if
and only if the integral polyhedron

Pk = {y;1 ≤ y ≤ k−1, DXy = 0}
is nonempty. With respect to the construction of DX , (arising from (Ir|U)
after changing the signs of all entries from the columns corresponding to X),
u, v are {0,±1}-vectors satisfying uDX = v if and only if v is from the set

C1 = {ρX(f); f ∈ N⊥, |f(e)| ≤ 1 for each e ∈ E}.
Thus by [24, Corollary 21.3a] (see also [14, Section 3]), Pk 6= ∅ if and only if
σ−(c) ≤ (k−1)σ+(c) for every c ∈ C1. Hence by (2.2), Pk 6= ∅ if and only if
σ−(ρX(g)) ≤ (k−1)σ+(ρX(g)) for each primitive chain g in N⊥ (notice that
by (2.3), σ+(ρX(g)), σ−(ρX(g)) must be nonzero for X ∈ O(N)+). Thus if
g̃ is a primitive chain in N⊥ with the maximal |σ(g̃)|, then Nk(X) 6= ∅ for
each k ≥ |σ(g̃)| and X ∈ O(N)+.

Denote by Ẽ = σ(g̃), E′ = E \ Ẽ, Y = {e ∈ E; g̃(e) < 0}, and Ñ = N/E′.

Then Ñ⊥ = N⊥−E′, whence by (2.1), g̃\E
′

is the unique primitive chain in

Ñ⊥ and thus by (2.3), {(ρY (χe−χe′))
\E′

; e, e′ ∈ Ẽ, e 6= e′)} ⊆ Ñ . Choose

ẽ ∈ Ẽ and define by X̃ = Y \ẽ ∪ ẽ\Y . Then (ρX̃(g̃))\E
′

= (χẼ\ẽ−χẽ)
\E′

,

{(ρX̃(χ{ẽ,e}))
\E′

; e ∈ Ẽ\ẽ} ⊆ Ñ ,

and f̃ = ρX̃

(∑
e∈Ẽ\ẽ χ{ẽ,e}

)
satisfies σ(f̃) = Ẽ and f̃\E

′ ∈ Ñ . Hence X̃ ∈
O(Ñ)+. Consider a proper chain f̄ ∈ N (that exists because O(N)+ 6= ∅).
Then f ′ = f̄ +

(
1+
∑

e∈E |f̄(e)|
)
f̃ is proper and (ρX̃(f ′))\E

′ ∈ ZẼ
+, whence

X ′ = {e ∈ E; f ′(e) < 0} ∈ O(N)+ and X ′ ∩ Ẽ = X̃. If f ∈ Nk(X ′),
then ρX′(f) ∈ ZE

+ and by (2.3), ρX′(f) is orthogonal to ρX′(g̃) = χẼ\ẽ−χẽ,

i.e., |f(ẽ)| ≥ |Ẽ\ẽ| = |σ(g̃)|−1. Thus Nk(X ′) = ∅ for each k ≤ |σ(g̃)| − 1,
concluding the proof. �

We say that a sequence of primitive chains c1, . . . , cr ∈ N2(X) (r = r(N),
X ∈ O(N)+) is a triangular X-basis of N if there exist e1, . . . , er ∈ E
such that ei ∈ σ(ci), ei /∈ σ(cj) for each i, j ∈ {1, . . . , r}, i < j. Clearly, any
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triangular X-basis is a basis of the linear hull of N . Therefore for each f ∈ N
there are numbers z1, . . . , zr such that f =

∑r
i=1 zici and thus z1 = f(e1),

z2 = f(e2)−z1, . . . , zr = f(er)−z1− · · ·−zr−1 are integral.

Lemma 3.4. For each regular chain group N on E and X ∈ O(N)+ there
exists a triangular X-basis of N .

Proof. Choose a primitive chain c1 ∈ N2(X) and e1 ∈ E such that c1(e1) =
1. Let E′ ⊆ E be defined so that e1 ∈ E′ and E′ \ e1 is the set of isthmuses
in N − e1. Notice that N has no isthmus because O(N)+ 6= ∅. Thus by
(2.1), N⊥ must contain a chain of form χe1±χe for each e ∈ E′\e1. Since
each chain from N⊥ is orthogonal to c1, we have ρX(χe1−χe) ∈ N⊥. Then
by (2.3), [ρX(f)](e1) = [ρX(f)](e) for every e∈E′\e1 and f ∈ N , whence
r(N−E′) = r(N)−1. Thus applying the induction hypothesis on N−E′
and X\E′ ∈ O(N−E′)+ we can extend c1 and e1 into a triangular X-basis
of N (considering chains from N−E′ as chains from N after setting the
undefined coordinates to be 0). �

We claim that for each regular chain group N and X ∈ O(N)+,

r(N) + 1 ≤ Q(N,X; 2) ≤ 2r(N).(3.1)

Clearly, N2(X) contains the zero chain and at least r(N) nonzero chains by
Lemma 3.4. This implies the left hand side. The right hand side follows from
the fact that each c ∈ N2(X) is a linear combination of rows of a representa-
tive matrix of M(N)∗ having form (−UT |Ir(N)) such that Ir(N) corresponds
to a base B∗ of M(N)∗, |B∗| = r(N), and that c(e) ∈ {0, [ρX(χE)](e)} for
every e ∈ B∗.

For example let g be a chain on E such that g(ẽ) = −1 for a fixed ẽ ∈ E
and g(e) = 1 for e ∈ E, e 6= ẽ. Consider N so that g is the unique primitive
chain of N⊥. By (2.3), {±ρẽ(χe − χe′), e, e

′ ∈ E, e 6= e′} is the set of
primitive chains of N , whence N2({ẽ}) = {χ∅} ∪ {χe,ẽ; e ∈ E, e 6= ẽ}. Thus

Q(N, {ẽ}; 2) = |E| = r(N) + 1, i.e., the left hand side of (3.1) is tense.
IfN has |E| loops, thenN2(X) = {ρX(χY );Y ⊆ E}, whenceQ(N,X; 2) =

2|E| = 2r(N) for each X ⊆ E. Thus the right hand side of (3.1) is tense.

Lemma 3.5. For each regular chain group N and each integer k > 0,

(r(N) + 1)P (N ; k) ≤ Q(N ; k) ≤ 2r(N)P (N ; k).

Proof. The proof follows from the third row of (2.6), the first row of (2.7),
and (3.1). �

Proposition 3.6. For each regular chain group N on E and k ≥ 2,

Q(N,X; k + 1) ≥ Q(N,X; k) k(k−1)−1,
P (N ; k + 1) ≥ P (N ; k) k(k−1)−1,
Q(N ; k + 1) ≥ Q(N ; k) k(k−1)−1.

Proof. Let X ∈ O(N)+. For each f ∈ Nk(X) and each c ∈ N2(X), c not
equal to the zero chain, there exists a unique integer r > 0 such that f+rc ∈
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Nk+1(X)\Nk(X). We shall call this chain an (f, c)-lift (shortly a lift). In this
way we can construct sX = Q(N,X; k)Q(N,X; 2) (not necessary different)
lifts. On the other hand each f ′ ∈ Nk+1(X) \Nk(X) could be an (f ′−ic, c)-
lift for i = 1, . . . , s, 0 ≤ s ≤ k−1 (s = 0 if f ′−ic /∈ Nk(X) for each i ≥ 1).
Thus f ′ can be constructed as a lift at most s′X = (k−1)Q(N,X; 2) times.
Hence

Q(N,X; k+1)−Q(N,X; k) = |Nk+1(X) \Nk(X)|
≥ sX/s′X = Q(N,X; k)(k−1)−1

This implies the first row of the formula for X ∈ O(N)+. If X /∈ O(N)+, the
first row of the formula is trivial because then Q(N,X; k+1) = Q(N,X; k) =
0. Hence the second and the third rows follow from the third row of (2.6)
and the first row of (2.7), respectively. �

Proposition 3.7. For each regular chain group N on E and k ≥ 2,

Q(N,X; k + 1) > Q(N,X; k) if Q(N,X; k + 1) > 0,
P (N ; k + 1) > P (N ; k) if P (N ; k + 1) > 0,
Q(N ; k + 1) > Q(N ; k) + r(N) if Q(N ; k + 1) > 0.

Proof. The first two rows follows from Proposition 3.6 and the fact that
k(k − 1)−1 > 1. The last row follows from the first one, the third row of
(2.6), and (3.1). �

Propositions 3.6 and 3.7 generalize [2, Proposition 6]. Polynomial P (N ; k)
(resp. Q(N ; k)) corresponds to a flow (resp. integral flow) polynomial if
N(M) is a graphic matroid and corresponds to a tension (resp. integral
tension) polynomial if N(M) is a congraphic matroid. Flow and tension
polynomials (and their integral variants) were studied in [15, 16] where we
proved Lemmas 3.1, 3.5, and Propositions 3.6, 3.7 for flows and tensions
on graphs. Similar versions of Lemmas 3.2, 3.4, and Proposition 3.3 were
proved in [16, 17, 18, 20]. Several other generalizations of flow and tension
polynomials are presented in [3, 4, 5, 6, 7, 9, 10, 11, 13].

We can generalize Propositions 3.6 and 3.7 for Q(N,X; k) and the Tutte
polynomial of regular matroids. Assume that N is a regular chain group
on E and X ⊆ E. Using (2.1) and the definitions of Nk(X) and Nk(X),
it is easy to check that Nk(X) equals the disjoint union of [N−Y ]k(X\Y )
where Y runs through the powerset of E. Therefore by the definitions of
Q(N,X; k) and Q(N,X; k),

Q(N,X; k) =
∑
Y⊆E

Q(N−Y,X\Y ; k).(3.2)

By Proposition 3.6, for each k ≥ 2 we have∑
Y⊆E

Q(N−Y,X\Y ; k + 1) ≥
∑
Y⊆E

Q(N−Y,X\Y ; k) k(k−1)−1,
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whence by (3.2)

Q(N,X; k + 1) ≥ Q(N,X; k) k(k−1)−1,(3.3)

and thus

Q(N,X; k + 1) > Q(N,X; k) if Q(N,X; k + 1) > 0.(3.4)

The Tutte polynomial T (M ;x, y) of a matroid M on E is (see cf. [9, 21])

T (M ;x, y) =
∑
X⊆E

(x− 1)r(E)−r(X)(y − 1)|X|−r(X).

If M = M(N) is regular, ` is a labeling of elements of E by the numbers
1, . . . , |E|, H ⊆ E, and x, y ≥ 2 are integers, then by [21, Equation 16],

T (M(N);x, y) =
∑
X⊆E

 ∑
Y ∈OH\X,`(N

⊥−X)

Q(N⊥−X,Y ;x)


 ∑

Y ′∈OH∩X,`(N |X)

Q(N |X,Y ′; y)

 .

Applying (3.3) on the right hand side of this equation we get that

(3.5)

T (M(N);x+ 1, y) ≥ T (M(N);x, y)x(x−1)−1,

T (M(N);x, y + 1) ≥ T (M(N);x, y) y(y−1)−1,

T (M(N);x+ 1, y) > T (M(N);x, y) if T (M(N);x+ 1, y) > 0,

T (M(N);x, y + 1) > T (M(N);x, y) if T (M(N);x, y + 1) > 0,

for any regular chain group N and any pair of integers x, y ≥ 2.
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