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DECOMPOSITION OF COMPLETE TRIPARTITE GRAPHS

INTO CYCLES AND PATHS OF LENGTH THREE

SHANMUGASUNDARAM PRIYADARSINI AND APPU MUTHUSAMY

Abstract. Let Ck and Pk denote a cycle and a path on k vertices,
respectively. In this paper, we obtain necessary and sufficient conditions
for the decomposition of Kr,s,t into p copies of C3 and q copies of P4 for
all possible values of p, q ≥ 0.

1. Introduction

We consider only finite undirected simple graphs. Let Kn1,n2,...,nr de-
note a complete r-partite graph with part sizes n1, n2, . . . , nr, where each
ni > 0 is an integer. A partition of a graph G into edge disjoint subgraphs
G1, G2, G3, . . . , Gn such that their union gives G is called a decomposition of
G. Let Ck and Pk respectively denote a cycle and a path on k vertices. They
are also called a k-cycle and k-path, respectively. The problem of finding
necessary and sufficient conditions to decompose complete n-partite graphs
into k-cycles has been considered for many values of n and k. The case n= 2
was completely solved by Sotteau [13]. Smith [12] proved that the necessary
conditions for the decomposition of complete equipartite graphs into cycles
of length 2p (where p ≥ 3 is a prime) are also sufficient. In the case of
complete tripartite graphs, Cavenagh [5] has shown that Km,m,m can be de-
composed into k-cycles if and only if k ≤ 3m and k divides 3m2. Billington
[2] gave necessary and sufficient conditions for the existence of a decom-
position of any complete tripartite graph into specified number of 3-cycles
and 4-cycles. Mahmoodian and Mirzakhani [10] proved the existence of a
C5-decomposition of Kr,s,t whenever the necessary conditions are satisfied
and two of the partite sets have equal size, except when r = s = 0 (mod 5)
and t 6= 0 (mod 5). The authors of [1, 3, 6, 7] also studied this problem.
Billington et al. [4] gave necessary and sufficient conditions for the path
and cycle decomposition of complete equipartite graphs with 3 and 5 parts.
Priyadharsini and Muthusamy [11] gave necessary and sufficient conditions
for the existence of (Gn, Hn)-decomposition of λKn and λKn,n, where Gn,
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Hn ∈ {Cn, Pn, Sn−1}. Jeevadoss and Muthusamy [8] gave necessary and suf-
ficient conditions for the existence of {Pk+1, Ck}p,q-decomposition of Km,n

and Kn, when m ≥ k/2, n ≥ d(k + 1)/2e for k ≡ 0 (mod 4) and when m,
n ≥ 2k for k ≡ 2 (mod 4).

In this paper we give necessary and sufficient conditions for decomposing
Kr,s,t with r ≤ s ≤ t into p copies of C3 and q copies of P4 for all possible
values of p, q ≥ 0. Definitions and notation not defined here can be referred
to in [9].

Lemma 1.1 ([7]). Let r, s, and t be integers such that r ≤ s ≤ t. A Latin
rectangle of order r× s based on t elements is equivalent to the existence of
rs edge-disjoint triangles sitting inside the complete tripartite graph Kr,s,t.

The triangle (i, j, k) in the 3-partite graph Kr,s,t is the subgraph of Kr,s,t

induced by the ith vertex of part 1, jth vertex of part 2, and kth vertex of
part 3.

Definition 1.2 ([7]). Consider a rectangular array of order r×s with entries
from the set T={1, 2, . . . , t}. If each element of T appears at most once in
each row and at most once in each column, we call such an array a Latin
rectangle of order r × s on t elements.

Definition 1.3 ([7]). Let r, s, and t be integers such that r ≤ s ≤ t. A Latin
representation of the complete tripartite graph Kr,s,t is a Latin rectangle of
order r× s on t elements, together with a set of t− s elements at the end of
each row and a set of t − r elements at the bottom of every column so that
each element from the set T = {1, 2, 3, . . . , t} occurs once in each of the r
rows and once in each of the s columns.

Remark: To construct a Latin representation of the complete tripartite graph
Kr,s,t we first take a Latin rectangle of order r × s on t elements. We
then adjoin to the end of each row a set of remaining elements from the
set {1, 2, 3, . . . , t} not already used in that row and to the bottom of each
column we adjoin a set of remaining elements from the set {1, 2, 3, . . . , t}
not already used in that column as in Figure 1.

Each entry k of the set appended at the end of the ith row represents an
edge from the ith element of the partite set of size r to the element k of
the partite set of size t. Similarly, each entry k of the set appended at the
bottom of the jth column represents an edge from the jth element of the
partite set of size s to the element k of the partite set of size t. So a Latin
representation of Kr,s,t is in fact equivalent to a decomposition of Kr,s,t into
rs triangles and rK1,t−s + sK1,t−r.

Here we define trade to be a set of elements in the Latin representa-
tion, corresponding to a set of triangles and edges in Kr,s,t which are P4-
decomposable. We define relabelling of the elements of a trade to be a
bijection φ from the set of elements of T = {1, 2, . . . , t} onto itself. Thus
every occurrence of i ∈ T in the trade is replaced by φ(i). The relabelling of
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Figure 1.

the elements in a trade does not change the structure of the corresponding
set of edges in Kr,s,t.

Construction 1.5. Two copies of C3, with a common vertex, is equivalent
to two copies of P4. Let (a1, b1, c1), (a1, b2, c2) be two copies of C3 with a
common vertex a1; then it can be written as two copies of P4, P (c1, a1, b2, c2),
P (c2, a1, b1, c1). In general, n copies of C3 with a common vertex is equiv-
alent to n copies of P4. Let (a1, b1, c1), (a1, b2, c2), . . . , (a1, b(n−1), c(n−1)),
(a1, bn, cn) be n copies of C3 with a common vertex a1; then it can be written
n copies of P4 as P (c1, a1, b2, c2), P (c2, a1, b3, c3), . . . , P (c(n−1), a1, bn, cn),
P (cn, a1, b1, c1).

Construction 1.6. Here we define two types of trades, in the first type we
use elements from outside the Latin rectangle which are P4-decomposable.
The trades of first type are T1, T2, T3, T4, as shown in Figure 2 from the
elements outside the Latin rectangle in which each copy of trades in Kr,s,t

are all edge-disjoint and P4-decomposable.
The trade T1 can be obtained from the newly adjoined elements on the right

side of the Latin rectangle which can be decomposed into three copies of P4 as
follows: P (c(s+1), ai, c(s+2), aj), P (ai, c(s+3), ak, c(s+5)), P (c(s+3), aj , c(s+4),
ak). Similarly, by relabelling we can obtain the trade T1 from the newly
adjoined elements on the bottom of the Latin rectangle.

The trade T2 can be obtained from the newly adjoined elements on the right
side of the Latin rectangle which can be decomposed into two copies of P4 as
P (c(s+1), ai, c(s+2), aj), P (aj , c(s+3), ak, c(s+4)). Similarly, by relabelling we
can obtain the trade T2 from the newly adjoined elements on the bottom of
the Latin rectangle.
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The trade T3 can be obtained from the newly adjoined elements on the right
side and the bottom of the Latin rectangle which can be decomposed into three
copies of P4 as P (c(r+3), bi, c(r+4), ai), P (c(r+4), bj , c(s+5), aj), P (c(r+5), bk,
c(r+6), ak), where s+ 4, s+ 5, s+ 6 in the right side of the Latin rectangle
are equivalent to r + 4, r + 5, r + 6 respectively.

The trade T4 can be obtained from the newly adjoined elements on the right
side and the bottom of the Latin rectangle which can be decomposed into four
copies of P4 as P (c(r+1), bi, c(r+2), bj), P (bi, c(s+3), bj , c(s+4)), P (c(s+3), bk,
c(s+4), ai), P (bk, c(s+5), ai, c(s+3)) where s + 3, s + 4, s + 5 in the right side
of the Latin rectangle are equivalent to r + 3, r + 4, r + 5 respectively.

In the second type, the elements from both inside and outside of the Latin
rectangle are used. We use these two types of suitable trades untill all the
edges in Kr,s,t are used.

2. Necessary conditions

Theorem 2.1. If the complete tripartite graph Kr,s,t, where r ≤ s ≤ t, has
a decomposition into p copies of C3 and q copies of P4, then the following
holds:

(i) 3|(rs+ st+ tr),
(ii) q 6= 1.

Proof. By a counting argument, we get the required condition (i). We prove
(ii) by a contradiction. Suppose that q = 1. Then the end vertices of the
only path P4 have odd degree in (Kr,s,t − E(P4)). Therefore the resulting
graph (Kr,s,t−E(P4)) cannot be decomposed into C3, a contradiction. Hence
q 6= 1. �
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Corollary 2.2. If the complete tripartite graph Kr,s,t can be decomposed
into pC3 and qP4, where r ≤ s ≤ t, then r, s, and t must satisfy one of the
following:

(a) any two of r, s, t are congruent to 0 (mod 3),
(b) all of r, s, t are congruent to 1 (mod 3),
(c) all of r, s, t are congruent to 2 (mod 3).

Proof. The proof follows from the fact that the number of edges of Kr,s,t is
divisible by 3. �

3. Sufficient conditions

Lemma 3.1. The graph K3,3,3 can be decomposed into p copies of C3 and
q copies of P4, where 0 ≤ p ≤ 9 and 0 ≤ q ≤ 9, q 6= 1.

Proof. Form a Latin square of order 3×3 on 3 elements as shown in Figure 3.
By Lemma 1.1, we have nine edge-disjoint 3-cycles as follows:

(a1, b1, c1), (a1, b2, c2), (a1, b3, c3), (a2, b1, c2), (a2, b2, c3),

(a2, b3, c1), (a3, b1, c3), (a3, b2, c1), (a3, b3, c2).

In fact, this gives the required decomposition when p = 9, q = 0. The
required decomposition for the other choices of p and q can be obtained by
using Construction 1.5. �

Lemma 3.2. The graph K3,3,4 can be decomposed into pC3 and qP4, where
0 ≤ p ≤ 7 and 4 ≤ q ≤ 11.

Proof. We form a Latin rectangle of order 3× 3 on 4 elements. By Lemma
1.1, we have nine copies of C3 as follows:

(a1, b1, c1), (a1, b2, c2), (a1, b3, c3), (a2, b1, c2), (a2, b2, c3),

(a2, b3, c4), (a3, b1, c3), (a3, b2, c4), (a3, b3, c1).

The newly added element to the right side of each row in the Latin rectangle
represents a single edge which cannot be decomposed into P4. Similarly the
newly added element to the bottom of each column of the Latin rectangle
represents a single edge which cannot be decomposed into P4. Here we use
trades of the second type to get required number of copies of P4. The single
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edges outside the Latin rectangle along with the two copies of C3 indicated
by bold letters in Figure 4 give four copies of P4:

P (a1, c4, b2, a3), P (b1, c4, a3, b3), P (a2, c1, a3, c2), P (b2, c1, b3, c2).

Also, when p = 6, q = 5, we have six copies of C3:

(a1, b1, c1), (a1, b2, c2), (a1, b3, c3), (a2, b1, c2), (a2, b2, c3), (a2, b3, c1)

and five copies of P4:

P (c3, b3, c1, a2), P (c1, a3, b1, c3), P (c2, a3, b2, c4),

P (a1, c4, b2, c1), P (b1, c4, a3, b3).

The other choices of p and q can be obtained by using Construction 1.5.
Hence the graph K3,3,4 has the desired decomposition. �

Theorem 3.3. If r ≡ 0 (mod 3), s ≡ 0 (mod 3), and for any t, then the
complete tripartite graph Kr,s,t, r ≤ s ≤ t, can be decomposed into p copies
of C3 and q copies of P4, where q 6= 1.

Proof. The proof is separated into three cases.
Case 1: r ≡ 0 (mod 3) , s ≡ 0 (mod 3) , t ≡ 0 (mod 3).

The Latin rectangle of order r × s on t elements give rs triangles. The
other choices of p and q can be obtained by Construction 1.5. Now
the newly added elements to the right side of the Latin rectangle form
(r/3)[(t− s)/3] copies of 3 × 3 arrays each representing the trade T1.
Similarly the newly added elements to the bottom of the Latin rectangle
form (s/3)[(t− r)/3] copies of 3 × 3 arrays each representing the trade
T1. By Construction 1.6, the copies of trade T1 are all edge-disjoint and
P4-decomposable. Hence we have the required decomposition, where
0 ≤ p ≤ rs,

r

(
t− s

3

)
+ s

(
t− r

3

)
≤ q ≤ rs+ r

(
t− s

3

)
+ s

(
t− r

3

)
.

Case 2: r ≡ 0 (mod 3) , s ≡ 0 (mod 3) , t ≡ 1 (mod 3).
For the graph Kr,r,r+1, the newly added elements to the right side of
Latin rectangle form an r × 1 array which cannot be decomposed into
P4. Similarly the newly added elements to the bottom of Latin rectangle
form a 1 × s array which cannot be decomposed into P4. Therefore we
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use trades of the second type to obtain the required number of copies
of P4. The single edges on the both side of the Latin rectangle along
with 2r/3 copies of C3 give 4r/3 copies of P4. These 4r/3 copies of P4

and the remaining (r2− (2r/3)) copies of C3 give the maximum number
of copies of P4 by Construction 1.5. Hence the graph has the required
decomposition, where 0 ≤ p ≤ (r2 − 2r

3 ),

4r

3
≤ q ≤ r2 +

2r

3
.

For the graph Kr,s,s+1, the newly added elements to the right side of
the Latin rectangle is an r × 1 array. The newly added elements to the
bottom of the Latin rectangle form (s/3)[((t− r)− 4)/3] copies of 3× 3
arrays which represents the trade T1 and the remaining elements form
2s/3 copies of 2× 3 arrays which represents the trade T2. The elements
of r/3 copies of 3× 1 array in the right side of the Latin rectangle along
with the elements of r/3 copies of 2× 3 array at the bottom of the Latin
rectangle which contain the same elements of a 3×1 array form the trade
T3. By Construction 1.6, the edge-disjoint copies of T1, T2, T3 are P4-
decomposable. The remaining possible choices of p and q can be obtained
by using Construction 1.5. Hence we have the required decomposition,
where 0 ≤ p ≤ rs,

s

[
(t− r)− 4

3

]
+

4s

3
− 2r

3
+ r ≤ q

≤ s
[

(t− r)− 4

3

]
+

4s

3
− 2r

3
+ r + rs.

For t > s + 1, the newly added elements to the right side of the Latin
rectangle form (r/3)[((t− s)− 4)/3] copies of 3 × 3 arrays which repre-
sents the trade T1 and the remaining elements form 2r/3 copies of 3× 2
arrays which represents the trade T2. The newly added elements to the
bottom of the Latin rectangle form (s/3)[((t− r)− 4)/3] copies of 3× 3
arrays which represents the trade T1 and 2s/3 copies of 2×3 arrays which
represents the trade T2. By Construction 1.6, the edge-disjoint copies of
T1, T2 are P4-decomposable. The remaining possible choices of p and q
can be obtained by using Construction 1.5. Hence we have the required
decomposition, where 0 ≤ p ≤ rs,

s

[
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]
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(r
3
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)
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(r
3

+
s

3

)
+ rs.

Case 3: r ≡ 0 (mod 3) , s ≡ 0 (mod 3) , t ≡ 2 (mod 3).
In this graph, the newly added elements to the right side of Latin rec-
tangle form (r/3)[((t− s)− 2)/3] copies of 3× 3 arrays which represents
the trade T1 and the remaining elements form r/3 copies of 3× 2 arrays
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which represents the trade T2. Similarly the newly added elements to
the bottom of the Latin rectangle form (s/3)[((t− r)− 2)/3] copies of
3 × 3 arrays which represents the trade T1 and the remaining elements
form s/3 copies of 2× 3 arrays which represents the trade T2. Hence we
have the required decomposition, where 0 ≤ p ≤ rs,

s

[
(t− r)− 2

3

]
+ r

[
(t− s)− 2

3

]
+

2(r + s)

3
≤ q

≤ s
[

(t− r)− 2

3

]
+ r

[
(t− s)− 2

3

]
+

2(r + s)

3
+ rs.

�

Theorem 3.4. If r ≡ 0 (mod 3), s ≡ 1 (mod 3), and t ≡ 0 (mod 3), then
the complete tripartite graph Kr,s,t, r < s < t, can be decomposed into pC3

and qP4, where q 6= 1.

Proof. The Latin rectangle of order r × s on t elements form rs trian-
gles. The other choices of p and q can be obtained by Construction 1.5.
The newly added elements to the right side of the Latin rectangle form
(r/3)[((t− s)− 2)/3] copies of 3 × 3 arrays each representing the trade T1
and the remaining elements form r/3 copies of 3 × 2 arrays which repre-
sents the trade T2. Similarly the newly added elements to the bottom of the
Latin rectangle form [(t− r)/3][(s− 4)/3] copies of 3 × 3 arrays each rep-
resenting the trade T1 and the remaining elements form [2(t− r)/3] copies
of 3 × 2 arrays which represents the trade T2. By Construction 1.6, all the
trades are edge-disjoint and P4-decomposable. Hence we have the required
decomposition, where 0 ≤ p ≤ rs,

r

[
(t− s)− 2

3

]
+

4(t− r)
3

+
2r

3
+

[
(t− r)(s− 4)

3

]
≤ q

≤ rs+ r

[
(t− s)− 2

3

]
+

4(t− r)
3

+
2r

3
+

(t− r)(s− 4)

3
.

�

Theorem 3.5. If r ≡ 0 (mod 3), s ≡ 2 (mod 3), and t ≡ 0 (mod 3), then
the complete tripartite graph Kr,s,t, r < s < t, can be decomposed into pC3

and qP4, where q 6= 1.

Proof. We consider s = r + 2, then the newly added elements to the right
side of the Latin rectangle is an r×1 array which cannot be decomposed into
P4. Therefore, we use trades of the second type. These r single edges along
with 2r/3 triangles give 5r/3 copies of P4. Now the newly added elements
to the bottom of the Latin rectangle have (s− 2)/3 copies of 3 × 3 arrays
and one copy of a 3 × 2 array. Hence we have the required decomposition,
where 0 ≤ p ≤ r(s− (2/3)),

5r

3
+ s ≤ q ≤ 5r

3
+ s+ r

(
s− 2

3

)
.
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For t = s + 1, the newly added elements to the right side of the Latin
rectangle form r/3 copies of 3× 1 arrays which cannot be decomposed into
copies of P4. Now the elements of r/3 copies of 3 × 1 arrays in the right
side of the Latin rectangle along with the elements of r/3 copies of 2 × 3
arrays in the bottom of the Latin rectangle which contain the same elements
of a 3 × 1 array form the trade T3. The newly added elements to the
bottom of the Latin rectangle form ([((t− r)− 6)/3][(s− 2)/3] copies of
3× 3 arrays, (t− r)/3 copies of 3× 2 arrays and 3(s− 2)/3 copies of 2× 3
arrays. Therefore we get [((t− r)− 6)/3][(s− 2)/3] copies of the trade T1,
(t− r)/3, 3(s− 2)/3, and (3s− 6− r)/3 copies of T2 in which all are edge-
disjoint. Hence we have the required decomposition, where 0 ≤ p ≤ rs and
q 6= 1,

(s− 2)

[
(t− r)− 6

3

]
+ r +

2(t− r)
3

+ 2(s− 2) +
2(3s− 6− r)

3
≤ q

≤ (s− 2)

[
(t− r)− 6

3

]
+ r +

2(t− r)
3

+ 2(s− 2) +
2(3s− 6− r)

3
+ rs.

Now for t > s + 1, the newly added elements to the right side of the Latin

rectangle form r
3 [ (t−s)−4

3 ] copies of 3 × 3 arrays and 2r/3 copies of 3 × 2
arrays which represents the trade T1 and T2 respectively. The newly added
elements to the bottom of the Latin rectangle form [(t− r)/3][(s− 2)/3]
copies of 3× 3 arrays and [(t− r)/3] copies of 3× 2 arrays which represents
the trade T1 and T2 respectively. Hence we have the required decomposition,
where 0 ≤ p ≤ rs and q 6= 1,

4r

3
+

2(t− r)
3

+
(t− r)(s− 2)

3
+ r

[
(t− s)− 4

3

]
≤ q

≤ 4r

3
+

2(t− r)
3

+
(t− r)(s− 2)

3
+ r

[
(t− s)− 4

3

]
+ rs.

�

Theorem 3.6. If r ≡ 1 (mod 3), s ≡ 1 (mod 3), and t ≡ 1 (mod 3), then
the complete tripartite graph Kr,s,t, r ≤ s ≤ t, can be decomposed into pC3

and qP4, where q 6= 1.

Proof. We consider three cases:
Case 1: r > 1.

In this case the Latin rectangle of order r × s on t elements give rs
triangles. The newly added elements to the right side of the Latin rec-
tangle form [(t− s)/3][(r − 4)/3] copies of 3× 3 arrays which represents
the trade T1 and the remaining elements form 2(t− s)/3 copies of 2× 3
arrays which represents the trade T2. The newly added elements to the
bottom of the Latin rectangle form [(t− r)/3][(s− 4)/3] copies of 3× 3
arrays each representing the trade T1 and the remaining elements form
2(t− r)/3 copies of 3×2 arrays which represents the trade T2. The other
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choices of p and q can be obtained by Construction 1.5. Hence we have
the required decomposition, where 0 ≤ p ≤ rs,

(t− s)(r − 4)

3
+

(t− r)(s− 4)

3
+

4(t− s)
3

+
4(t− r)

3
≤ q

≤ rs+
(t− s)(r − 4)

3
+

(t− r)(s− 4)

3
+

4(t− s)
3

+
4(t− r)

3
.

Case 2: r = 1, s = 1.
We have one copy of C3 and (t− 1)/3 copies of K2,3 which can be de-
composed into two copies of P4. Therefore in this case we get p = 1 and
q = 2(t− 1)/3.

Case 3: r = 1, s > 1.
In this case we have p = s. The newly added elements to the bottom
of the Latin rectangle form [(t− 1)/3][(s− 4)/3] copies of 3 × 3 arrays
which represents the trade T1 and the remaining elements form 2(t− 1)/3
copies of 3 × 2 arrays which represents the trade T2. The newly added
elements to the right side of the Latin rectangle form (t− s)/3 copies of
1×3 arrays which cannot be decomposed into copies of P4. The elements
of (t− s)/3 copies of 1× 3 arrays in the right side of the Latin rectangle
along with the elements of (t− s)/3 copies of 3× 3 arrays in the bottom
of the Latin rectangle which contain the same elements of 1 × 3 arrays
form the trade T4. Therefore we get ([(t− 1)/3][(s− 4)/3]− [(t− s)/3])
copies of 3× 3 arrays which represents the trade T1. Hence we have the
required decomposition, where 0 ≤ p ≤ rs,

4(t− s)
3

+

[
(t− 1)(s− 4)− 3(t− s)

3

]
+

4(t− 1)

3
≤ q

≤ s+
4(t− s)

3
+

[
(t− 1)(s− 4)− 3(t− s)

3

]
+

4(t− 1)

3
.

�

Theorem 3.7. If r ≡ 1 (mod 3), s ≡ 0 (mod 3), and t ≡ 0 (mod 3), then
the complete tripartite graph Kr,s,t, r < s ≤ t, can be decomposed into pC3

andqP4, where q 6= 1.

Proof. We consider two cases:
Case 1: r = 1.

The Latin rectangle of order 1 × s on t elements give s triangles. The
newly added elements to the bottom of the Latin rectangle have
(s/3)[(t− 3)/3] copies of 3 × 3 arrays and s/3 copies of 2 × 3 arrays.
The newly added elements to the right side of the Latin rectangle have
(t− s)/3 copies of 1× 3 arrays. The elements of (t− s)/3 copies of 1× 3
arrays on the right side of the Latin rectangle along with the elements of
(t− s)/3 copies of 3×3 array in the bottom of the Latin rectangle which
contain the same elements of a 1× 3 array form the trade T4. Therefore
we have ((s/3)[(t− 3)/3]− [(t− s)/3]) copies of T1, (t− s)/3 copies of T4
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and s/3 copies of T2. Hence we have the required decomposition, where
0 ≤ p ≤ s,[

s(t− 3)− 3(t− s)
3

]
+

2s

3
+

4(t− s)
3

≤ q ≤ s+

[
s(t− 3)− 3(t− s)

3

]
+

2s

3
+

4(t− s)
3

.

Case 2: r > 1.
The Latin rectangle of order r × s on t elements give rs triangles. The
newly added elements to the right side of the Latin rectangle form
(t− s)(r − 4)/9 copies of 3 × 3 arrays and 2(t− s)/3copies of 2 × 3 ar-
rays. The newly added elements to the bottom of the Latin rectangle
form [s(t− r − 2)/9] copies of 3×3 arrays and s/3 copies of 2×3 arrays.
Therefore each copy of 3 × 3 arrays and 2 × 3 arrays representing the
trades T1 and T2 respectively. Hence we have the required decomposi-
tion, where 0 ≤ p ≤ rs,

s(t− r − 2)

3
+

(t− s)(r − 4)

3
+

4(t− s)
3

+
2s

3
≤ q

≤ rs+
s(t− r − 2)

3
+

(t− s)(r − 4)

3
+

4(t− s)
3

+
2s

3
.

�

Theorem 3.8. If r ≡ 2 (mod 3) , s ≡ 2 (mod 3), and t ≡ 2 (mod 3), then
the complete tripartite graph Kr,s,t, r ≤ s ≤ t, can be decomposed into pC3

and qP4, q 6= 1.

Proof. The Latin rectangle of order r × s on t elements give rs trian-
gles. The other choices of p and q can be obtained by using Construc-
tion 1.5. The newly added elements to the right side of the Latin rectan-
gle form [(t− s)/3][(r − 2)/3] copies of 3 × 3 arrays and (t− s)/3 copies
of 2 × 3 arrays each representing the trades T1 and T2 respectively. Simi-
larly the newly added elements to the bottom of the Latin rectangle form
[(t− r)/3][(s− 2)/3] copies of 3× 3 arrays and (t− r)/3 copies of 3× 2 ar-
rays each representing the trades T1 and T2 respectively. Hence we have the
required decomposition, where 0 ≤ p ≤ rs,

(t− s)(r − 2)

3
+

2(t− s)
3

+
(t− r)(s− 2)

3
+

2(t− r)
3

≤ q

≤ (t− s)(r − 2)

3
+

2(t− s)
3

+
(t− r)(s− 2)

3
+

2(t− r)
3

+ rs.

�

Theorem 3.9. If r ≡ 2 (mod 3) , s ≡ 0 (mod 3), and t ≡ 0 (mod 3), then
the complete tripartite graph Kr,s ,t, r < s ≤ t, can be decomposed into pC3

and qP4, q 6= 1.
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Proof. We consider two cases:
Case 1: s = t.

The Latin rectangle of order r × s on s elements give rs triangles. The
newly added elements to the bottom of the Latin rectangle is a 1× (s/3)
array which cannot be decomposed into P4. Here we use trades of the
second type to decompose P4. The edges in the bottom of the Latin
rectangle along with 2s/3 triangles give s copies of P4. Therefore we get
0 ≤ p ≤ (rs− (2s/3)) and s ≤ q ≤ (rs+ s/3).

Case 2: s < t.
The newly added elements to the right side of the Latin rectangle form
[(t− s)/3][(r − 2)/3] copies of 3 × 3 arrays and the remaining elements
form [(t− s)/3] copies of 2×3 arrays. Similarly the newly added elements
to the bottom of the Latin rectangle form [(t− r − 4)/3][s/3] copies of
3×3 arrays and the remaining elements form 2s/3 copies of 2×3 arrays.
Therefore each copy of 3× 3 arrays and 2× 3 arrays represent the trades
T1 and T2, respectively. The other choices of p and q can be obtained by
using Construction 1.5. Hence we get the required decomposition, where
0 ≤ p ≤ rs,

(t− s)(r − 2)

3
+

2(t− s)
3

+
s(t− r − 4)

3
+

4s

3
≤ q

≤ (t− s)(r − 2)

3
+

2(t− s)
3

+
s(t− r − 4)

3
+

4s

3
+ rs.

�

4. Conclusion

Main Theorem. Let p and q be nonnegative integers and let r, s, t be
positive integers. There exists a decomposition of Kr,s,t, r ≤ s ≤ t, into pC3

and qP4 if and only if 3(p+ q)= rs+ st+ tr, q 6= 1, where r, s, t satisfy the
following conditions:

(a) any two of r, s, t are congruent to 0 (mod 3),
(b) all of r, s, t are congruent to 1 (mod 3),
(c) all of r, s, t are congruent to 2 (mod 3).

Proof. This follows from the Theorems 2.1, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, and
3.9. �
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