Termite mal es enhance mating encounters by changi ng speed accor di ng to density

Aut hor	Nobuaki M zundt o，Artur o Ri zo，Stephen C． Pr att，Thonas Chouvenc
j ournal or publ i cat i on titl e	Jour nal of Ani mal Ecol ogy
vol une	89
nunber	11
page r ange	$2542-2552$
year	$2020-09-20$
Publ i sher	W l ey
Aut hor＇s flag	aut hor
URL	ht t p：／／i d．ni i．ac．j p／1394／00001726／

Termite males enhance mating encounters by changing speed according to density

Authors:

Mizumoto N. ${ }^{* 1,2}$, Rizo A. ${ }^{1}$, Pratt S. C. ${ }^{1}$, Chouvenc T. ${ }^{3}$

Affiliations:

1. School of Life Science, Arizona State University, Tempe, AZ, USA 85287
2. Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan, 904-0495
3. Entomology and Nematology Department, Institute of Food and Agricultural Sciences, Ft. Lauderdale Research and Education Center, University of Florida, Ft. Lauderdale, FL, USA 33314

* Correspondence:

Nobuaki Mizumoto; Okinawa Institute of Science and Technology Graduate University, 1919-1
Tancha, Onna-son, Okinawa, Japan, 904-0495; nobuaki.mzmt@gmail.com

E-mail:

NM: nobuaki.mzmt@gmail.com, AR: arizo1@asu.edu, SCP: Stephen.Pratt@asu.edu, T.C.: tomchouv@ufl.edu

ORCID

N.M.: 0000-0002-6731-8684, S.C.P.: 0000-0002-1086-4019, T.C.: 0000-0003-3154-2489

Keywords

Mate search; Movement ecology; Random search; Sexual selection; Social insects; Tandem runs

Abstract (< 350 words)

1. Search theory predicts that animals evolve efficient movement patterns to enhance encounter rates with specific targets. The optimal movements vary with the surrounding environments, which may explain the observation that animals often switch their movement patterns depending on conditions. However, the effectiveness of behavioral change during search is rarely evaluated because it is difficult to examine the actual encounter dynamics.
2. Here we studied how partner-seeking termites update their search strategies depending on the local densities of potential mates. After a dispersal flight, termites drop their wings and walk to search for a mate; when a female and a male meet, they form a female-led tandem pair and search for a favorable nesting site. If a pair is separated, they have two search options: reunite with their stray partner, or seek a new partner. We hypothesized that the density of individuals affects separation-reunion dynamics and thus the optimal search strategy.
3. We observed the searching process across different densities and found that termite pairs were often separated but obtained a new partner quickly at high mate density. After separation, while females consistently slowed down, males increased their speed according to the density. Under high mate density, separated males obtained a partner earlier than females, who do not change movement with density.
4. Our data-based simulations confirmed that the observed behavioral change by males contributes to enhancing encounters. Males at very low mate densities did best to move slowly and thereby reduce the risk of missing their stray partner, who is the only available mate. On the other hand, males that experienced high mate densities did better in mating encounters by moving fast because the risk of isolation is low, and they must compete with other males to find a partner.
5. These results demonstrate that termite males adaptively update their search strategy depending on conditions. Understanding the encounter dynamics experienced by animals is key to connecting empirical work to the idealized search processes of theoretical studies.

Introduction
Animals move to search for food, nest sites, and mates, which is essential for their survival and reproduction (Bell, 1990; Nathan et al., 2008). Search theory predicts that animals engage in random search when locations of targets are uncertain, and they evolve efficient movement patterns to enhance encounter rates with specific targets (Bartumeus, Da Luz, Viswanathan, \& Catalan, 2005; Viswanathan, Luz, Raposo, \& Stanley, 2011). Simulation studies of random search have proved that there is no universal solution to any search problems; instead, search efficiency of movement patterns strongly depends on the information available to searchers and on environmental conditions (Abe \& Shimada, 2015; Ferreira, Raposo, Viswanathan, \& Da Luz, 2012; Reynolds \& Bartumeus, 2009). Supporting this idea, animals often change their movement patterns according to conditions. Studies analyzing GPS data of wildlife suggest that animals do not use a single search strategy but alternate between different movement patterns (e.g., Brownian walk and Lévy walk) in areas with different resource distributions (Auger-Méthé et al., 2016; Humphries et al., 2010; Sims, Humphries, Bradford, \& Bruce, 2012). Laboratory experiments manipulating the availability of targets have also demonstrated that animals change their movement patterns according to their situation (Bartumeus, Peters, Pueyo, Marrase, \& Catalan, 2003; Cloyed \& Dell, 2019; Mizumoto \& Dobata, 2019). Thus, condition-dependent behavioral change is critical to connecting search theory to empirical animal movements.

Among factors that affect the searching process, the density of targets is fundamental. For example, predators searching for food commonly increase search effort by moving slowly and sinuously within patches with high resource densities, a behavior referred to as area-restricted search (Banks, 1957; Murdie \& Hassell, 1973; Weimerskirch, Pinaud, Pawlowski, \& Bost, 2007). In mate search, the density of females and males will change both the availability of targets and the abundance of competitors, which can substantially affect the selective pressure on searching strategies (Berec, Kramer, Bernhauerová, \& Drake, 2018; Kokko \& Rankin, 2006; Mizumoto, Abe, \& Dobata, 2017). Some studies have found that mate searchers move faster and more actively in high densities of conspecifics than in low densities (DeRivera, Backwell, Christy, \& Vehrencamp, 2003; Holwell, Allen, Goudie, Duckett, \& Painting, 2016; Jirotkul, 1999). Moreover, in some species, it has been demonstrated that sexual selection favors high male locomotion activity during mate search (Able, 1999). This behavioral change can be adaptive by overcoming competitors when multiple potential mates are available. However, behavioral change during mate search is rarely evaluated in terms of encounter efficiency, because of the difficulty of examining the actual encounter dynamics.

Here we study the encounter dynamics of partner-seeking termites across different densities. During swarming season, mature termite colonies synchronously produce large quantities of alates (winged imagos) that fly off in a large swarm and disperse (Mullins et al., 2015). Dispersed alates shed their wings and walk in search of a mating partner (Nutting, 1969; Vargo \& Husseneder, 2009). Both females and males are poorly informed because they search in a completely unfamiliar environment, and pairing pheromones emitted by females work only within short distances or on contact in some species (Bordereau \& Pasteels, 2011; Sillam-Dussès, 2011). Successfully encountered couples perform tandem runs to seek a suitable nest site and found a colony. In tandem runs, a leading female decides the course of movement, and a male follows the female by maintaining almost contact with her back (Valentini, Mizumoto, Pratt, Pavlic, \& Walker, 2020). As the pairing process is extremely limited in time, termites should optimize their search patterns to increase the chance of encounter before all potential mates progressively become unavailable. Both females and males explore wide areas to enhance random encounters before pairing, while if the pair gets separated, the leading female pauses and the following male moves, which enhances reunion rates (Mizumoto \& Dobata, 2019). We hypothesize that this reunion process will be profoundly affected by the density of individuals (Fig. 1). In low-density conditions, the lost partner is the only likely nearby mate, hence each termite should move in a way that facilitates reunion. Under high densities, separated individuals can search either for the stray partner or for a new partner, which will change their optimal movement pattern.

The termite, Coptotermes gestroi (Wasmann, 1896) (Blattodea, Rhinotermitidae), experiences a variety of densities in natural conditions. In this species, newly dispersed females and males often gather on a tree trunk (Fig. 1), where the abundance of individuals can widely change depending on the day, ranging from ~ 1 to $\sim 10,000$ individuals $/ \mathrm{m}^{2}$ (Chouvenc, Helmick, \& Su, 2015; Chouvenc, Scheffrahn, Mullins, \& $\mathrm{Su}, 2017$). Because of this life-history trait, we expect that they have evolved to change their search behavior with density. Furthermore, as the pairing pheromone of Coptotermes termites has low volatility and primarily works upon contact (Chouvenc, Sillam-Dussès, \& Robert, 2020; Raina et al., 2003), C. gestroi is expected to rely on random search rather than long-distance navigation during mate search. In this study, we test how density affects pair-forming dynamics and individual searching behavior in C. gestroi. We found that males change their walking speed when a pair gets separated, depending on the potential mate density they experience. Using data-based simulations, we confirm that termite males update movement patterns adaptively during mate search.

Figure 1. Mate search scheme of a termite, Coptotermes gestroi. In the mating season, alates fly off in large swarms at dusk and then land to aggregate on a tree trunk. They shed their wings and walk to search for a mating partner. Encountered pairs perform tandem running, but pairs are often accidentally separated. A separated female temporarily pauses while a male moves to facilitate re-encounters. At the same time, they also have the option to encounter a new partner to initiate another tandem pair, especially under high-density conditions.

1. Materials and Methods

2.1 Termites and experimental setup

C. gestroi is a critical structural pest species with a substantial economic impact. This species is native to South East Asia and has been introduced in various parts of the neotropics and subtropics, including Florida, the Antilles and South America (Chouvenc et al., 2016). We collected alates of C. gestroi using a light-trapping system at dusk between March 5th and March 18th in 2019 in Broward County (Florida, USA). All collected individuals were brought back to the laboratory and maintained on wet cardboard at $28^{\circ} \mathrm{C}$. We used individuals that shed their wings by themselves and observed their behaviors within 24 hours after the flight.

To observe mate search behavior of termite dealates, we prepared an experimental arena by filling a petri dish ($\varnothing=140 \mathrm{~mm}$) with moistened plaster so that the surface of the arena could be cleaned by scraping off plaster before each trial. The petri dish was covered with a clear lid during
observations. A video camera was mounted vertically above the arena, and the camera system was adjusted so that the arena filled the camera frame. We placed different numbers of termites (1, 2, 4, or 8 females and the same number of males) in the experimental arena and recorded their behavior using cameras. We allowed termites to gather information about local density for the first 10 minutes, and then extracted the coordinates of termite movements from each video for the next 10 minutes for data analysis, using the video-tracking system UMATracker (Yamanaka \& Takeuchi, 2018). All videos were downsampled to a rate of five frames per second. To help visual identification, we marked females and males with one dot on the abdomen using paint markers of different colors (PX-20; Mitsubishi). We discarded 14 videos of 1 pair because no tandem was observed. We obtained data for $27,9,9$, and 13 replicates for $1,2,4$, and 8 pairs, respectively. The number of replicates varied depending on alate availability and time availability. Each individual was used only once within 12 hours after collection. All data analyses were performed using R v3.6.1 (R Core Team, 2019).

2.2 Analysis of termite movements across different densities

During observations, each termite was in one of three states: (i) tandem running, (ii) interacting but not tandem running, and (iii) searching. We automatically classified the states of termites based on a time sequence of coordination of each individual, as follows. We defined a female and a male as interacting (or tandem running) when the distance between their centroids was less than 9.75 mm ($1.3 \times$ mean body length). This distance was chosen to slightly exceed the body length of termites including antennae, because termites in a tandem run are nearly in physical contact (Mizumoto \& Dobata, 2019). An interacting pair was considered to be performing a tandem run only if they met the following criteria. First, the interaction needed to last for more than 5 seconds; a very short separation (< 2 seconds) was not regarded as a separation event unless the distance between individuals was greater than 20 mm . Second, both termites needed to move more than 30 mm while interacting. After separation, we considered that individuals engage in separation search until they interact with an individual again for more than 1 second.

We obtained the following numbers of observations for the $1-, 2-, 4-$, and 8 -pair treatments, respectively: 95, 70, 146, and 714 complete tandem events for females (and 95, 68, 130, and 621 for males); 112, 72,142 , and 595 separation events for females (and 112, 68, 146, 668 for males). In multiple pair conditions, the number of tandem and separation events was different between sexes, because interactions with more than two individuals sometimes happened. We first compared the duration of tandem running among treatments. We used the Cox proportional hazard model, with the number of termites, sex, and their interaction treated as fixed effects. The likelihood ratio test was used to determine the statistical significance of each explanatory variable (type II test). Then we used a similar Cox proportional hazard model to examine the duration to find a partner after a separation event. As we found a significant effect of sex $\left(\chi^{2}{ }_{1}=37.77, P<0.001\right)$ and no significant effect of the interaction of sex and density $\left(\chi^{2}{ }_{1}=1.143, P=0.285\right)$, we compared the duration of separation search between sexes for each density, using log-rank tests after generating Kaplan-Meier survival curves. For these analyses, we removed observations censored by the beginning or the end of the observation period. Note that including censored data in our analysis did not affect the conclusion. We present the analysis without censored data for better visibility of the results.

We examined the heading directions of females and males when they separated from their partners, because their relative orientation can significantly affect the chances of reunion (Franks et al., 2010). We measured each termite's orientation as the motion direction from the frame just before the separation to the frame in which separation was detected. Then, for each termite, we measured the angle between its orientation and a straight line connecting the two termites' positions. These angles gave each termite's orientation relative to the location of its former partner. For each sex and density condition, we performed a Rayleigh test to check if the relative orientation is biased.

Next, we measured the termites' movement patterns, focusing on a time window that started 5 seconds before separation and ended 10 seconds after separation. We used correlated random walks (CRWs) as a framework to measure differences in movement patterns. CRWs account for the angular
correlations in animal trajectories coming from local scanning behavior and are widely used to describe insect movements (Bartumeus \& Levin, 2008; Kareiva \& Shigesada, 1983). CRWs can be described by two parameters: speed and sinuosity. We first examined speed, comparing the mean moving speed among treatments with different numbers of pairs. We arbitrarily restricted measurements to the first 2 seconds after separation, but our conclusions did not change for longer focal durations, at least within 10 seconds. We used linear mixed models (LMM), with the number of pairs (as factorial data) treated as a fixed effect and individual identity included as a random intercept. The likelihood ratio test was used to determine the statistical significance of each explanatory variable (type II test). In cases of significant effects of time, we ran Tukey's post hoc tests. We then investigated the time development of sinuosity (turning patterns) of termite movements within the same time window. We computed the turning angles as the magnitude of changes in the direction of motion from one frame to the next frame. Then, we fit wrapped Cauchy distributions to turning angle data using maximum likelihood estimation methods and took the distribution's scale parameter as the sinuosity (Bartumeus \& Levin, 2008; Mizumoto \& Dobata, 2019). Depending on the value of the scale parameter, the wrapped Cauchy distribution varies from a uniform distribution (scale parameter $=0$, maximum sinuosity Brownian walk) to a delta distribution (scale parameter $=1$, minimum sinuosity straight walk). We obtained a 95% confidence interval for each sinuosity value by resampling the permutated turning angle data set 1,000 times.

2. Results

Termites experienced different dynamics of pair formation across densities (Fig. 2A). As density increased, tandem runs were more frequently interrupted and separated (Fig. 2B; Cox hazard; Pair: LRT, $\chi^{2}{ }_{1}=81.772, P<0.001$), while the duration of tandem runs was not different between sexes and no interactions were found between density and sex (Cox hazard; Sex: LRT, $\chi^{2}{ }_{1}=1.098, P=0.295$; Pair:Sex: $\chi^{2}{ }_{1}=0.093, P=0.76$). The median values for tandem running time were $62.0,48.8,30.3$, and 22.4 seconds for the $1,2,4$, and 8 pair treatments, respectively. There were two different causes for separation; spontaneous separation and interruption by other termites (Fig. 2C, Video S1, S2). In the case of 1 pair, all separations were spontaneous and presumably accidental as the male lost contact with the female (Video S1). With more termites present, the probability of interruption by a third party increased, explaining the high separation probability at high densities (Video S2). At high density, separated pairs changed partners more frequently (Fig. 2D), and it took longer for separated females to find a partner than for separated males (Fig. 2E; Log-rank tests; 1 pair: $\chi^{2}{ }_{1}=0, P=1.0 ; 2$ pairs: $\chi^{2}{ }_{1}=0, P=0.9 ; 4$ pairs: $\chi^{2}{ }_{1}=11.7, P<0.001 ; 8$ pairs: $\left.\chi^{2}{ }_{1}=19.3, P<0.001\right)$.

When termites separated, their headings relative to their separated partner were not uniformly distributed (Rayleigh test; Males, 1 pair: $\bar{R}=0.191, P=0.017 ; 2$ pair: $\bar{R}=0.562, P<0.001 ; 4$ pair: \bar{R} $=0.468, P<0.001$; 8 pair: $\bar{R}=0.480, P<0.001$, Females, 1 pair: $\bar{R}=0.586, P<0.001 ; 2$ pair: $\bar{R}=$ $0.519, P<0.001 ; 4$ pair: $\bar{R}=0.435, P<0.001$; 8 pair: $\bar{R}=0.440, P<0.001$). The peak of the distribution was near the opposite direction from the separated partner's location, indicating that in most case females and males moved away from each other just after a separation event (Fig. 3).

Figure 2. The dynamics of termite pair formation across different densities. (A) Experimental arena with different numbers of termites. (B) Duration of tandem running until separation across different densities. Tandem pairs were separated sooner with increasing density. Shaded regions indicate 95% confidence intervals. (C) Two types of separation events: spontaneous separation (above) and interruption by another individual (below). In the 1 pair condition, all separations were necessarily spontaneous, while interruption by the third party was common in high-density conditions (Video S1, S2). (D) The probability of changing to a new tandem partner after each separation event. In the 1 pair condition, there was no chance to change partner. (E) Comparison of the time to find a partner after separation. At high density, males found a partner faster than females. Asterisks indicate significant differences between sexes ($P<0.05, \log$-rank test).

Figure 3. The distributions of relative orientation to the stray partner after separation. Zero radians indicates movement toward the stray partner, π radians indicates movement in the opposite direction.

After separation, males sped up their movement, while females slowed down (Fig. 4A, Fig. S1), as reported in two other termite species, Coptotermes formosanus and Reticulitermes speratus (Mizumoto and Dobata 2019). However, the acceleration was slower when only a single female and a male were present (Fig. 4AB, Fig. S1). When we compared the movement speed just after separation, the speed of males in the 1-pair condition was lower than in the other conditions (Fig. 4B; LMM; $\chi^{2}{ }_{3}=$ $14.585, P=0.002$). On the other hand, the speed of females just after separation was not different between conditions (Fig. 4B; LMM; $\chi^{2}{ }_{3}=0.066 P=0.996$). Also, male movement became more sinuous just after separation, but soon returned to the lower sinuosity seen before separation (Fig. 5AB, Fig. S2). When we compared the period just after the separation among different densities, we found that sinuosity decreased as the density increased from 2 to 8 pairs. However, males in the 1-pair condition also showed less sinuosity (Fig. 5B).

Figure 4. Movement speed of termite dealates after separation across different densities. (A) The time development of speed in the 1 -pair condition and in the multiple-pair $(2,4$, and 8$)$ conditions. Speed was calculated from the distance traveled in 0.2 seconds. Separation timing was determined from the distance to the closest individual, hence termites could change their speed before the separation event was detected. Shaded regions indicate mean ± 2 S.E. (B) Comparison of moving speed during the 2 seconds just after separation. Bars indicate mean ± 2.E. Statistical analysis was performed for each sex separately, where different letters indicate a significant difference ($P<$ 0.05; LMM with Tukey’s test).

Figure 5. The sinuosity of termite movements across different densities. (A) The time development of sinuosity in the 1-pair and 8-pair conditions. To obtain the sinuosity, we fit wrapped Cauchy distributions to turning angle data and estimated the scale parameter. Shaded regions indicate 95% confidence intervals obtained by resampling the permutated data set. (B) Comparison of sinuosity across different density conditions and time windows. Bars indicate 95% confidence intervals obtained by resampling the permutated data set.

3. Simulations

4.1 Methods

We developed an individual-based model to examine how the behavioral changes observed in males can contribute to mating success. We considered a focal male that has just been separated from a female, either when no other individuals are available (Fig. 6A), or when additional potential partners are available (Fig. 6D). Based on our observations of the body orientations of separated individuals, we assumed that the male and female were heading away from each other in opposite directions (Fig. 6A, D: arrows). The focal male starts at a distance d ($=20 \mathrm{~mm}$) from the separated female, in a periodic boundary condition of size $=L \times L$. For the condition without other individuals, we set L as a large value ($=10,000 \mathrm{~mm}$) to represent a virtually unbounded surrounding area without other potential mates. For the high-density condition (corresponding to the 2 -, 4 -, and 8 -pair conditions), we randomly placed additional females and males ($n=1,3$, and 7), and we set L to 124 to achieve the same density as the experimental treatment. Two individuals were considered to encounter each other when the distance between their centers fell below φ, which was set to the value used above to define tandem running (9.75 mm).

Individuals performed a CRW with speed v and sinuosity ρ, which could vary according to sex, density, and time since separation (Table 1). The value of v was set to the empirically measured mean speed for the corresponding sex and density. For males, we also assumed that speed depended on time since separation ($<2 \mathrm{sec}$ or $>2 \mathrm{sec}$), reflecting empirical observations (Fig. 4A, Table 1). Based on our behavioral analysis, the length of a time step was set to 0.2 seconds. Thus, each individual moved $0.2 v \mathrm{~mm}$ in each time step. Values of ρ for different sexes and time windows were set to the scale parameter of a wrapped Cauchy distribution fitted to corresponding turning angle data (Table 1). We then simulated turning angles by drawing them from a wrapped Cauchy distribution with the
appropriate value of ρ. Specifically, we applied the inversion method (Bartumeus \& Levin, 2008), first generating a uniform random number $u(0<u \leqslant 1)$ and then deriving the turning angles θ from the following equation:

$$
\theta=2 \arctan \left(\frac{1-\rho}{1+\rho} \tan (\pi(u-0.5))\right)
$$

We initiated the simulation with a random bearing angle that fluctuated according to θ. At each step, the bearing angle was equal to the previous bearing angle plus the deviation θ such that the moving object takes on a new direction correlated with the previous direction, forming a CRW.

We compared the searching efficiency between two different moving speeds observed in the 1-pair (slow at the beginning) and multiple-pair conditions (fast at the beginning) (Fig. 4). In the high-density condition, non-focal individuals moved with the speed of tandem runs. Each simulation ran for 300 seconds ($=1500$ time steps). We ran 10,000 simulations and measured search efficiency as the probability for focal individuals to encounter a mating partner. We also measured the time until encounter. The simulation was implemented in Microsoft Visual Studio C++ 2017.

Table 1. Parameters used in the simulations.

Symbol	Definition	Value(s)	Unit
Environmental parameters			
\boldsymbol{d}	Distance between separated pair	20	mm
\boldsymbol{L}	Size of the searching area	10,000 or 124	mm
$\boldsymbol{\varphi}$	Range of encounters	9.75	mm
\boldsymbol{n}	The number of additional females and males	$0,1,3,7$	
Speed parameters		$17.05^{* 1}, 27.02^{* 2}$	$\mathrm{~mm} / \mathrm{sec}$
$\boldsymbol{v}_{\mathbf{m} \mathbf{1}}$	Males after separation (<2sec)	29.38	$\mathrm{~mm} / \mathrm{sec}$
$\boldsymbol{v}_{\mathbf{m} 2}$	Males after separation (>2sec)	6.77	$\mathrm{~mm} / \mathrm{sec}$
$\boldsymbol{v}_{\mathbf{f}}$	Females after separation	12.88	$\mathrm{~mm} / \mathrm{sec}$

Sinusousity parameters

$\boldsymbol{\rho}_{\mathbf{m} \mathbf{1}}$	Males after separation $(<2 \mathrm{sec})$	0.64
$\boldsymbol{\rho}_{\mathbf{m} \mathbf{2}}$	Males after separation $(>2 \mathrm{sec})$	0.73
$\boldsymbol{\rho}_{\mathbf{1}}$	Females after separation $(<2 \mathrm{sec})$	0.72
$\boldsymbol{\rho f}_{\mathbf{2}}$	Females after separation $(>2 \mathrm{sec})$	0.69
$\boldsymbol{\rho}_{\mathbf{o}}$	Other individuals for multiple pair conditions	0.78

${ }^{* 1} 1$-pair condition; ${ }^{* 2}$ Multiple-pair condition. Parameter values for $<2 \mathrm{sec}$ and $>2 \mathrm{sec}$ were obtained from empirical observations $0-2$ seconds after separation and 2-10 seconds after separation, respectively.

4.2 Results

In the condition without any other individuals, males that moved slowly, like those in the 1-pair experimental condition, achieved higher encounter rates (Fig. 6B). Here, because a male had no other option than reunion with the stray partner, the time to find a partner was not different between a separated female and a male (Fig. 6C). Interestingly, there was a time lag for males to enjoy the advantage of slow movement. When we look at the period just after the separation ($0-2 \mathrm{sec}$), fast-moving males have slightly higher encounter rates than slow-moving males (Fig. 6B). However,
after 2 sec , slow-start males exceed fast-start males even though both move at the same speed (Fig. 6 B). This can be interpreted as follows. A fast-start male may quickly encounter the separated female, but if he does not, he risks moving further away from her. Thus, after 2 seconds, he is likely too far from the female to have much chance of encountering her. In contrast, a slow-start male can stay close to the female during the first 2 seconds; when he speeds up after 2 seconds, he can find the female more efficiently than a fast-start male.

On the other hand, under high-density conditions, fast-start males, like those in the multiple-pairs experimental conditions, achieved higher encounter rates than slow-start males (Fig. 6 E). Although the advantage of fast males is more substantial at higher density, this result was consistent across the different densities tested in the experiments (Fig. S3). In this scenario, there were two different encounter patterns: reunion with the stray partner and changing to a new partner. Consistent with the 1 -pair case, the reunion rate was higher in slower-moving males (Fig. 6E). However, faster-moving males obtained a different partner more efficiently, which led to higher overall encounter rates (Fig. 6E). The simulation also found that males in the high-density condition obtained a partner faster than females, similar to our experimental results (Fig. 6F).

A Only reunion

B

C

D Can change partner

F

Figure 6. Simulated searching efficiency of male movements in two different situations. (A, D) At low density (A), only a single pair is present, hence reunion is the only way to find a partner after separation. At high density (D), termites can also change to a new partner. Right after separation, the female and male are at a short distance (d); in the high-density condition, there are also other individuals randomly located around them. Dotted squares indicate the periodic boundary conditions (size $L \times L$). Filled circles indicate males, while open circles indicate females. Focal individuals are black, while others are grey. Arrows indicate the heading direction at the start of the simulation. (B, E) Searching efficiency under the respective conditions. Slow-start and fast-start males move at different speeds in the first 2 sec and then use the same high speed. When no other pairs are present, slow-start males like those observed in the 1-pair condition achieved higher encounter rates than fast-start males (B); under high-density conditions, fast-start males like those observed in the multiple-pair conditions achieved higher encounter rates than slow-start males (E). (C, F) Time to find a partner for each sex. Without other pairs, there is no sexual difference (C), while under high density, males obtain a partner faster than females (F). Model parameters are given in Table 1.

4. Discussion

In mate search by C. gestroi, which aggregate on a tree trunk and search locally, densities of potential mates can vary drastically over time. Within the swarming season, different flight events result in various population densities according to weather conditions and colony readiness (Chouvenc et al., 2017). Even within the same day, the density of potential mate changes according to time. The density is the highest just after the dispersal flight and then decreases as successful tandem pairs isolate themselves for colony foundation. Therefore, density-dependent behavioral change is crucial for mating success. In particular, when a male termite gets separated from his paired female, he needs to adjust search strategy because of a kind of speed/accuracy tradeoff in efforts to find the stray female (Zimmerman, 2011); high speeds may lead to a quick encounter with the stray partner, but they also increase the risk of moving further away from her (Mizumoto \& Dobata, 2019). At very low densities of individuals, this risk is so high that males move slower to increase the likelihood of re-encounter with the stray partner. On the other hand, under higher densities, the risk of isolation is diluted because another potential partner may be available even if reunion fails. Our results show that this tradeoff shapes mate search behavior in termites. Our experiments found that males searching when no other potential mates were present moved slower, while males searching at higher densities moved faster (Fig. 4). Data-based simulations confirm that this behavioral change is adaptive; the observed slow movement facilitates reunion, while fast movement leads to higher rates of obtaining a new partner (Fig. 6). Thus, the availability of targets strongly affects mate search strategy and encounter dynamics.

In addition to speed, turning patterns may lead to similar effects on encounter dynamics. For example, CRWs with high ρ values lead to straighter movements and should have high search efficiency for new partners (Bartumeus et al., 2005), which is similar to fast movement. Thus, parallel to speed differences, one can expect that males show less sinuous movements at high density. This prediction is partly supported; sinuosity decreased as the density increased among $2-$, 4 -, and 8 -pair conditions (Fig. 5B). On the other hand, males in the 1-pair condition also showed low sinuosity, similar to males at the highest densities. This finding can be interpreted as follows. First, separated females are sometimes found in the heading direction of males in the 1-pair condition, while they are usually in the opposite direction in multiple-pair conditions (Fig. 3). Thus, excessive sinuosity of male movements may decrease encounter efficiency in the 1-pair condition. Second, directional memory (i.e., persistence) may prevent individuals from moving very sinuously after separation (Bardunias \& Su, 2009; Turchin, 1998). In the 1-pair condition, individuals showed less sinuous movements even during tandem runs, probably because there are no obstacles in the arena (Fig. 5). Thus, even though males in the 1-pair condition increased their turning angles after separation, their sinuosity can still be smaller than in the 2 -pair condition. In fact, males in the 1-pair condition decreased ρ to the same extent as in the 2 -pair condition, while decreases in the 4 - and 8 - pair conditions were smaller.

The observation that termite males increase their moving speed at high density after separation also implies a mate competition process. During mate search, the high density of different-sex individuals usually means a high density of same-sex individuals as well. After a tandem run pair get separated, these same-sex individuals may snatch the stray partner before reunion. Thus, males need to find a female sooner than competitors for a successful pairing, which may be another reason why males at high density increased speed at the expense of the likelihood of reunion. Our simulations also demonstrated that the fate of the separated female is affected by the male's movement after separation. If the stray male moved more slowly in the high-density condition, this increased the probability of the female encountering a different male before the stray male found a partner (i.e., 24.16% with a slow-moving male; 22.40% with a fast-moving male). Thus, vigorous males should have an advantage in obtaining a partner when they get separated. This is consistent with previous observations that larger males have a higher chance to obtain a partner when multiple males are present (Husseneder \& Simms, 2008; Li, Zou, Lei, \& Huang, 2013; Matsuura, Kuno, \& Nishida, 2002), although it should be noted that various selective pressures can influence the body size of termite alates other than mate competition (Chouvenc, 2019; Nalepa, 2011). From the mate
competition perspective, our results demonstrate that movement pattern is a sexually selected trait in termite mate search (Hartke \& Baer, 2011), and vigor of the searching sex reflects both efficient search strategy and effective domination of same-sex competitors.

In contrast, females did not change their movement patterns across different densities of individuals and thus achieved lower re-encounter rates compared to males at higher densities (Fig. 2E). In additional simulations focusing on females, we predicted that females should also move faster at high mate density to obtain a new partner (Fig. S4). There are two non-exclusive explanations for these contradicting results. First, females of most termite species use pair-bonding pheromones to help males detect them (Bordereau \& Pasteels, 2011), where fast movement by females may be disfavored as it decreases detection rate by males (Mizumoto \& Dobata, 2018). In C. gestroi, which search for a mate at high density (Fig. 1), the importance of attraction pheromone is relatively low compared to other termite species. Actually, the quantity of pheromones produced in the tergal and sternal gland of females is too small for males to locate females even from a short distance (e.g., 75 mm) (Chouvenc et al., 2020; Sillam-Dussès, 2011). However, such a chemical signal may still provide some level of information to a searching male, given that a recently-separated female expects to be very close to a male (e.g., < 20 mm). Second, searching animals suffer a fundamental speed-perception tradeoff, where high speeds improve their spreading capacity but reduce perceptual capabilities (Bartumeus et al., 2016; Benhamou, 1992). Because of this tradeoff, individuals moving at high speeds may miss the target upon encounter and require multiple passages before detection. In the case of the termite searching process, not every encounter results in tandem running; sometimes a female and male just pass by each other. Pausing behavior, which is often observed in partner-searchers (Alpern, 1995; Franks et al., 2010; Mizumoto \& Dobata, 2019) and ambush predators (Scharf \& Ovadia, 2006; Wearmouth et al., 2014), can function to ensure successful encounters.

Males in the multiple-pair conditions increase their speed even before separation, while males in the one-pair condition increase speed only after separation (Fig. 3A). This difference may reflect our criterion for separation, which we judged to occur when the distance between the male and female exceeded a threshold ($9.75 \mathrm{~mm}=1.3 \times$ body length). Thus, males in multiple-pair conditions may be more sensitive to separation and change their behavior even when the distance to the partner is smaller than the threshold. The proximate mechanisms for this behavioral change can be related to the tandem pair's encounters with other individuals, which are more common at high densities and often lead to separation (Fig. 2B, Video S2). First, males may detect the interrupting male upon separation, and the presence of this competitor may be the cue to change their behavior. Second, males can estimate the density of surrounding individuals from the number of separation events they experience. In multiple-pair conditions, frequent interruptions lead males to experience many separation events, which can inform them that conspecific density is high. Thus they become ready to move fast as soon as they detect separation, which they do with greater sensitivity than is captured by our threshold. Similar density estimation mechanisms are also used in other animals. For example, ants use encounter rates to estimate the density of individuals in the nest, an important cue for collective decision making (Pratt, 2005). Given that there is no clear difference in males' moving speed among the 2 -, 4 -, and 8 -pair conditions, termites' density estimation is not quantitative, but rather a binary evaluation of the presence of competitors.

In general, availability of resources, including distributions and density of targets, strongly affects optimal search strategy and actual animal movements (Bartumeus et al., 2016; Viswanathan et al., 2011). In both foraging and mate search, searchers increase search effort in areas with a high density of targets; yet interestingly, the types of targets affect the patterns of behavioral change. Foragers often exhibit slow and sinuous movement in high-density areas (Banks, 1957; Murdie \& Hassell, 1973; Weimerskirch et al., 2007), which is an efficient random search strategy considering energy intake and perception accuracy (Benhamou, 1992). On the other hand, in this study, we showed that termite males increase their moving speed under a high density of individuals, which is adaptive in increasing encounter rates in a short period. The main difference between foraging and mate search is the value of a target. Foragers collect as many targets as possible given the prevailing
costs and benefits (Abe \& Shimada, 2015), while termite mate searchers seek only one partner but must do so within a time limit, after which they die (Mizumoto et al., 2017). Clarifying the motivation of searchers, combined with search theory, is key to understanding the movement patterns of animals.

Acknowledgments

We thank Daniel Aguilera, Sang-Bin Lee, Ronald Pepin, Nan-Yao Su, Reina Tong, and Joseph Velenovsky for the help to conduct the research, Pratt lab members and the Social Insect Research Group group at Arizona State University for helpful discussion, and two anonymous reviewers for helpful comments. NM is supported by JSPS Overseas Research Fellowships and by a JSPS Research Fellowships for Young Scientists, SPD.

Authors' contributions

NM and TC conceived and designed the study. NM performed the experiments. NM and AR collected the data from videos. NM performed data analysis and computer simulations. NM drafted the manuscript. SCP and TC edited the manuscript. All authors gave final approval for publication.

Competing Interests

The authors declare no competing interests.

Data Availability Statement

Data and source code associated with this manuscript will be available from the Dryad Digital Repository (doi:10.5061/dryad.15dv41ntn).

References

Abe, M. S., \& Shimada, M. (2015). Lévy walks suboptimal under predation risk. PLoS Computational Biology, 11(11), e1004601. doi: 10.1371/journal.pcbi. 1004601

Able, D. J. (1999). Scramble competition selects for greater tailfin size in male red-spotted newts (Amphibia: Salamandridae). Behavioral Ecology and Sociobiology, 46(6), 423-428. doi: 10.1007/s002650050638

Alpern, S. (1995). Rendezvous search problem. SIAM Journal on Control and Optimization, 33(3), 673-683. doi: 10.1137/S0363012993249195

Auger-Méthé, M., Derocher, A. E., DeMars, C. A., Plank, M. J., Codling, E. A., \& Lewis, M. A. (2016). Evaluating random search strategies in three mammals from distinct feeding guilds. Journal of Animal Ecology, 85(5), 1411-1421. doi: 10.1111/1365-2656.12562

Banks, C. J. (1957). The behaviour of individual coccinellid larvae on plants. The British Journal of Animal Behaviour, 5(1), 12-24. doi: 10.1016/S0950-5601(57)80039-2

Bardunias, P. M., \& Su, N.-Y. (2009). Dead reckoning in tunnel propagation of the formosan subterranean termite (Isoptera: Rhinotermitidae). Annals of the Entomological Society of America, 102(1), 158-165. doi: 10.1603/008.102.0118

Bartumeus, F., Campos, D., Ryu, W. S., Lloret-Cabot, R., Méndez, V., \& Catalan, J. (2016). Foraging success under uncertainty: search tradeoffs and optimal space use. Ecology Letters, 19(11), 1299-1313. doi: 10.1111/ele. 12660

Bartumeus, F., Da Luz, M. G. E., Viswanathan, G. M., \& Catalan, J. (2005). Animal search strategies: a quantitative random walk analysis. Ecology, 86(11), 3078-3087. doi: 10.1890/04-1806

Bartumeus, F., \& Levin, S. A. (2008). Fractal reorientation clocks: Linking animal behavior to statistical patterns of search. Proceedings of the National Academy of Sciences of the United States of America, 105(49), 19072-19077. doi: 10.1073/pnas. 0801926105

Bartumeus, F., Peters, F., Pueyo, S., Marrase, C., \& Catalan, J. (2003). Helical Levy walks: Adjusting searching statistics to resource availability in microzooplankton. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 12771-12775. doi: 10.1073/pnas. 2137243100

Bell, W. J. (1990). Searching behavior patterns in insects. Annual Review of Entomology, 35(1), 447-467. doi: 10.1146/annurev.en.35.010190.002311

Benhamou, S. (1992). Efficiency of area-concentrated searching behaviour in a continuous patchy environment. Journal of Theoretical Biology, 159(1), 67-81. doi: 10.1016/S0022-5193(05)80768-4

Berec, L., Kramer, A. M., Bernhauerová, V., \& Drake, J. M. (2018). Density-dependent selection on mate search and evolution of Allee effects. Journal of Animal Ecology, 87(1), 24-35. doi: 10.1111/1365-2656.12662

Bordereau, C., \& Pasteels, J. M. (2011). Pheromones and chemical ecology of dispersal and foraging in termites. In D. E. Bignell, Y. Roisin, \& N. Lo (Eds.), Biology of Termites: A Modern Synthesis (pp. 279-320). doi: 10.1007/978-90-481-3977-4_11

Chouvenc, T. (2019). The relative importance of queen and king initial weights in termite colony foundation success. Insectes Sociaux, 66(2), 177-184. doi: 10.1007/s00040-019-00690-3

Chouvenc, T., Helmick, E. E., \& Su, N.-Y. (2015). Hybridization of two major termite invaders as a consequence of human activity. PLoS ONE, 10(3), e0120745. doi: 10.1371/journal.pone. 0120745

Chouvenc, T., Li, H. F., Austin, J., Bordereau, C., Bourguignon, T., Cameron, S. L., ... Su, N.-Y. (2016). Revisiting Coptotermes (Isoptera: Rhinotermitidae): A global taxonomic road map for species validity and distribution of an economically important subterranean termite genus. Systematic Entomology, 41, 299-306. doi: 10.1111/syen. 12157

Chouvenc, T., Scheffrahn, R. H., Mullins, A. J., \& Su, N.-Y. (2017). Flight phenology of two Coptotermes species (Isoptera: Rhinotermitidae) in southeastern Florida. Journal of Economic Entomology, 56, 291-312. doi: 10.1093/jee/tox136

Chouvenc, T., Sillam-Dussès, D., \& Robert, A. (2020). Courtship behavior confusion in two subterranean termite species that evolved in allopatry (Blattodea, Rhinotermitidae, Coptotermes). Journal of Chemical Ecology, 1-14. doi: 10.1007/s10886-020-01178-2

Cloyed, C. S., \& Dell, A. I. (2019). Resource distribution and internal factors interact to govern movement of a freshwater snail. Proceedings of the Royal Society B: Biological Sciences, 286(1911). doi: 10.1098/rspb. 2019.1610

DeRivera, C. E., Backwell, P. R. Y., Christy, J. H., \& Vehrencamp, S. L. (2003). Density affects female and male mate searching in the fiddler crab, Uca beebei. Behavioral Ecology and Sociobiology, 53(2), 72-83. doi: 10.1007/s00265-002-0555-2

Ferreira, A. S., Raposo, E. P., Viswanathan, G. M., \& Da Luz, M. G. E. (2012). The influence of the environment on Lévy random search efficiency: Fractality and memory effects. Physica A: Statistical Mechanics and Its Applications, 391(11), 3234-3246. doi: 10.1016/j.physa.2012.01.028

Franks, N. R., Richardson, T. O., Keir, S., Inge, S. J., Bartumeus, F., \& Sendova-Franks, A. B. (2010). Ant search strategies after interrupted tandem runs. Journal of Experimental Biology, 213(Pt 10), 1697-1708. doi: 10.1242/jeb. 087296

Hartke, T. R., \& Baer, B. (2011, November 1). The mating biology of termites: A comparative review. Animal Behaviour, Vol. 82, pp. 927-936. doi: 10.1016/j.anbehav.2011.07.022

Holwell, G. I., Allen, P. J. D., Goudie, F., Duckett, P. E., \& Painting, C. J. (2016). Male density influences mate searching speed and copulation duration in millipedes (Polydesmida: Gigantowales chisholmi). Behavioral Ecology and Sociobiology, 70(8), 1381-1388. doi: 10.1007/s00265-016-2145-8

Humphries, N. E., Queiroz, N., Dyer, J. R. M., Pade, N. G., Musyl, M. K., Schaefer, K. M., ... Sims, D. W. (2010). Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature, 465(7301), 1066-1069. doi: 10.1038/nature09116

Husseneder, C., \& Simms, D. M. (2008). Size and heterozygosity influence partner selection in the Formosan subterranean termite. Behavioral Ecology, 19(4), 764-773. doi: 10.1093/beheco/arn041

Jirotkul, M. (1999). Population density influences male-male competition in guppies. Animal Behaviour, 58(6), 1169-1175. doi: 10.1006/anbe.1999.1248

Kareiva, P. M., \& Shigesada, N. (1983). Analyzing insect movement as a correlated random walk. Oecologia, 56(2-3), 234-238. doi: 10.1007/BF00379695

Kokko, H., \& Rankin, D. J. (2006). Lonely hearts or sex in the city? Density-dependent effects in mating systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1466), 319-334. doi: 10.1098/rstb.2005.1784

Li, G., Zou, X., Lei, C., \& Huang, Q. (2013). Antipredator behavior produced by heterosexual and homosexual tandem running in the termite Reticulitermes chinensis (Isoptera: Rhinotermitidae). Sociobiology, 60(2), 198-203. doi: DOI: 10.13102/sociobiology.v60i2.198-203

Matsuura, K., Kuno, E., \& Nishida, T. (2002). Homosexual tandem running as selfish herd in Reticulitermes speratus: novel antipredatory behavior in termites. Journal of Theoretical Biology, 214(1), 63-70. doi: 10.1006/jtbi.2001.2447

Mizumoto, N., Abe, M. S., \& Dobata, S. (2017). Optimizing mating encounters by sexually dimorphic movements. Journal of The Royal Society Interface, 14, 20170086. doi: 10.1098/rsif.2017.0086

Mizumoto, N., \& Dobata, S. (2018). The optimal movement patterns for mating encounters with sexually asymmetric detection ranges. Scientific Reports, 8(1), 3356. doi: 10.1038/s41598-018-21437-3

Mizumoto, N., \& Dobata, S. (2019). Adaptive switch to sexually dimorphic movements by partner-seeking termites. Science Advances, 5(6), eaau6108. doi: 10.1126/sciadv.aau6108

Mullins, A. J., Messenger, M. T., Hochmair, H. H., Tonini, F., Su, N.-Y., \& Riegel, C. (2015). Dispersal flights of the Formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 108(2), 707-719. doi: 10.1093/jee/tov022

Murdie, G., \& Hassell, M. P. (1973). Food distribution, searching success and predator-prey models. In Mathematical Theory of the Dynamics of Biological Populations (pp. 87-101).

Nalepa, C. A. (2011). Body size and termite evolution. Evolutionary Biology, 38(3), 243-257. doi: 10.1007/s11692-011-9121-z

Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., \& Smouse, P. E. (2008). A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences of the United States of America, 105(49), 19052-19059. doi: 10.1073/pnas. 0800375105

Nutting, W. L. (1969). Flight and colony foundation. In K. Krishna \& F. M. Weesner (Eds.), Biology of termites (Vol. 1, pp. 233-282). doi: 10.1016/B978-0-12-395529-6.50012-X

Pratt, S. C. (2005). Quorum sensing by encounter rates in the ant Temnothorax albipennis. Behavioral Ecology, 16(2), 488-496. doi: 10.1093/beheco/ari020

R Core Team. (2019). R.
Reynolds, A. M., \& Bartumeus, F. (2009). Optimising the success of random destructive searches: Lévy walks can outperform ballistic motions. Journal of Theoretical Biology, 260(1), 98-103. doi: 10.1016/j.jtbi.2009.05.033

Scharf, I., \& Ovadia, O. (2006, March 17). Factors influencing site abandonment and site selection in a sit-and-wait predator: A review of pit-building antlion larvae. Journal of Insect Behavior, Vol. 19, pp. 197-218. doi: 10.1007/s10905-006-9017-4

Sillam-Dussès, D. (2011). Trail pheromones and sex pheromones in termites. In Trail Pheromones and Sex Pheromones in Termites.

Sims, D. W., Humphries, N. E., Bradford, R. W., \& Bruce, B. D. (2012). Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics. Journal of Animal Ecology, 81(2), 432-442. doi: 10.1111/j.1365-2656.2011.01914.x

Turchin, P. (1998). Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sunderland: Sinauer.

Valentini, G., Mizumoto, N., Pratt, S. C., Pavlic, T. P., \& Walker, S. I. (in press) Revealing the structure of information flows discriminates similar animal social behaviors. eLife, doi: DOI: 10.7554/eLife. 55395

Vargo, E. L., \& Husseneder, C. (2009). Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annual Review of Entomology, 54, 379-403. doi: 10.1146/annurev.ento.54.110807.090443

Viswanathan, G. M., Luz, M. da, Raposo, E., \& Stanley, H. (2011). The Physics of Foraging: An Introduction to Random Searches and Biological Encounters. Cambridge: Cambridge University Press.

Wearmouth, V. J., McHugh, M. J., Humphries, N. E., Naegelen, A., Ahmed, M. Z., Southall, E. J., ... Sims, D. W. (2014). Scaling laws of ambush predator "waiting" behaviour are tuned to a common ecology. Proceedings of the Royal Society of London B, 281(1782), 20132997-20132997. doi: 10.1098/rspb. 2013.2997

Weimerskirch, H., Pinaud, D., Pawlowski, F., \& Bost, C.-A. (2007). Does prey capture induce area - restricted search? A fine-scale study using GPS in a marine predator, the wandering

Yamanaka, O., \& Takeuchi, R. (2018). UMATracker: An intuitive image-based tracking platform. Journal of Experimental Biology, 221(16), 1-24. doi: 10.1242/jeb. 182469

Zimmerman, M. (2011). Speed-Accuracy Tradeoff. In J. Kreutzer, J. DeLuca, \& B. Caplan (Eds.), Encyclopedia of Clinical Neuropsychology (p. 2344). Retrieved from http://link.springer.com/10.1007/978-0-387-79948-3_1247

