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Abstract
Standard optomechanical cooling methods ideally require weak coupling and cavity damping rates
which enable the motional sidebands to be well resolved. If the coupling is too large then
sideband-resolved cooling is unstable or the rotating wave approximation can become invalid. In
this work we describe a protocol to cool a mechanical resonator coupled to a driven optical mode
in an optomechanical cavity, which is also coupled to an optical mode in another auxiliary optical
cavity, and both the cavities are frequency-modulated. We show that by modulating the amplitude
of the drive as well, one can execute a type of STIRAP transfer of occupation from the mechanical
mode to the lossy auxiliary optical mode which results in cooling of the mechanical mode. We
show how this protocol can outperform normal optomechanical sideband cooling in various
regimes such as the strong coupling and the unresolved sideband limit.

1. Introduction

Mesoscopic mechanical resonators have recently garnered extensive theoretical and experimental research
interest due to their potential uses in quantum information processing and quantum state engineering
[1–3]. In the field of cavity optomechanics, nanomechanical resonators have been studied to generate
entanglement between optical and mechanical modes, to facilitate state transfer between optical and
microwave fields, etc, among other various applications. However, optomechanical resonators are always in
contact with a thermal bath, which hampers the observation of many quantum effects and requires their
cooling to the ground state. For this, conventional cavity cooling makes use of optomechanically enhanced
damping due to radiation pressure coupling, where the norm is to drive an optomechanical cavity at the red
sideband so that the cooling rate can be increased in comparison to the heating rate. In order to resolve the
Stokes and anti-Stokes sidebands the cavity decay rate has typically to be much smaller than the mechanical
frequency, κ � ωb. In this resolved sideband regime a variety of optomechanical cooling schemes exist,
including ones based on cavity backaction cooling [4–7], dissipative optomechanical coupling [8, 9],
feedback cooling [10–16], quadratic coupling [17, 18], sideband cooling [19, 20], transient cooling [21, 22],
cooling based on the quantum interference effect [15, 23, 24], and others. A few proposals for cooling in the
unresolved-sideband regime have been developed as well, based on modulation of the cavity damping rate
[25], using resonant intracavity optical gain [26], optomechanically induced transparency [27], feedback
cooling [28], squeezed light [29, 30], or by changing photon statistics via parametric interaction [31].

Most of the experiments on cavity optomechanical cooling have focused on sideband cooling in the
weak coupling regime, which offers the potential to obtain mechanical ground state in the resolved
sideband condition. Nevertheless, the strong optomechanical coupling regime is of interest because it is
essential for coherent-quantum control of mechanical resonators, where such resonators can be used for
quantum state transfer in optomechanical systems [32–36], and also for application as quantum
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transducers for wavelength conversion where it connects to both optical and microwave electromechanical
components [37, 38]. These mechanical control protocols mostly work in precooled optomechanical
systems because any quantum fluctuations due to the large thermal bath occupations can deteriorate such
state preparations. Hence, it is natural to seek ways to achieve cooling in such strong optomechanical
coupling regimes.

In this work we propose a novel method to cool an optomechanical mirror based on adiabatic transfer
of phonons into photons. Our model consists of an optomechanical system where a frequency-modulated
primary optical cavity, is coupled to a mechanical resonator, and also to a frequency-modulated auxiliary
optical cavity. We show that by driving the primary optical cavity with an amplitude-modulated optical
field, one can transfer phonons from the mechanical resonator to the auxiliary cavity mode without
populating the primary cavity. We use a technique similar to stimulated Raman adiabatic passage (STIRAP)
to drain the phononic excitations to the auxiliary lossy optical cavity and by repeatedly iterating the pulses
sequence, we show that it is possible to cool the mechanical mode down to the ground state. The advantage
of our method is that it operates over a much broader range of conditions than what can be accommodated
using standard sideband cooling methods, including strong coupling and the unresolved sideband limit.

2. Model

We consider a system consisting of a primary optomechanical cavity coupled to an auxiliary optical cavity,
as shown in figures 1(a) and (b). There is a cavity–cavity coupling between the primary cavity (with mode
c) and the auxiliary cavity (with mode a), with fixed coupling rate gca. The primary cavity mode is also
optomechanically coupled to a mechanical mode (b), with single-photon coupling rate gcb. The
Hamiltonian of the complete system is given by (in units of � = 1)

H0 = ωaa†a + ωbb†b + ωcc
†c + gcbc†c(b + b†) + gca(a†c + c†a)

+ i(εpc† e−iωpt − ε∗pc eiωpt), (1)

where a(a†), b(b†) and c(c†) are the annihilation (creation) operators of the auxiliary cavity mode,
mechanical mode and primary cavity mode with resonance frequencies ωa, ωb, and ωc respectively. The
resonance frequencies of the two cavity modes, ωa and ωc, are time-modulated, which can be achieved
using an electro-optic modulator [39–42]. The last term describes the external driving of the primary cavity
mode, where, εp is the amplitude, which will be time-modulated, and ωp is the frequency of the drive. The
Hamiltonian of the system in a doubly-rotating frame, under the transformation,
R = exp

[
iωp (a†a + c†c) t

]
, with H = RH0R† + i ∂R

∂t R†, is given by

H = Δaa†a + ωbb†b +Δcc
†c + gcbc†c(b + b†) + gca(a†c + c†a)

+ i(εpc† − ε∗pc), (2)

where, Δa(t) = ωa(t) − ωp and Δc(t) = ωc(t) − ωp, are the cavity detunings. The dynamical evolution of
the system operators can be described by the Langevin equations

ȧ = (−iΔa − κa)a − igcac +
√

2κaain,

ḃ = (−iωb − κb)b − igcbc†c +
√

2κbbin,

ċ = (−iΔc − κc)c − igcaa − igcbc(b + b†) + εp +
√

2κccin, (3)

where κa, κb and κc are the losses of the auxiliary cavity mode, the mechanical mode and the primary cavity
mode, respectively. The ain, bin and cin are the noise operators with zero mean values and correlation
functions given by 〈Ain(t)A†

in(t′)〉 = (n̄A + 1)δ(t − t′), 〈A†
in(t)Ain(t′)〉 = n̄Aδ(t − t′), and where

n̄A = (e�ωA/kBTbath − 1)−1 with A = {a, b, c}, are the mean thermal occupations of the modes. Here Tbath is
the common bath temperature and kB is the Boltzmann constant. Following the standard linearization
procedure for external driving [43, 44], each Heisenberg operator is expressed as a sum of its steady-state
mean value and the quantum fluctuation, i.e., a = α+ a1, b = β + b1 and c = η + c1, where α, β, η are the
classical mean field values of the modes and a1, b1, c1 are the corresponding quantum fluctuation operators.
By separating the classical mean fields and the quantum fluctuations, the classical and quantum Langevin
equations can be written as

(−iΔa − κa)α− igcaη = 0,

(−iωb − κb)β − igcb|η|2 = 0,

(−iΔ̃c − κc)η − igcaα+ εp = 0, (4)
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Figure 1. Schematic cooling setups in (a) and (b) show a primary optical cavity with mode c, and an auxiliary optomechanical
cavity with optical mode a, that are coupled at a rate gca. Both the optical modes are frequency-modulated. The primary cavity
mode is optomechanically coupled to a mechanical mode b, at rate Gcb, whose strength is modulated via an optical drive on the
primary cavity. By modulating the amplitude, εp, of the optical drive, and the frequencies, ωa and ωc of the two optical modes,
occupation can be transferred from the mechanical mode to the auxiliary cavity mode, thereby cooling the mechanics.

and

ȧ1 = (−iΔa − κa)a1 − igcac1 +
√

2κaain,

ḃ1 = (−iωb − κb)b1 − igcb(η∗c1 + ηc†1) − igcbc†1c1 +
√

2κbbin,

ċ1 = (−iΔ̃c − κc)c1 − igcaa1 − igcbη(b1 + b†1) − igcbc1(b1 + b†1) +
√

2κccin, (5)

where Δ̃c = Δc + gcb(β + β∗) with β = −igcb|η|2/(iωb + κb). For the parameters we consider here,
gcb(β + β∗) � Δc. Therefore, it can be safely approximated that Δ̃c ≈ Δc. The mean field amplitude of the
primary cavity mode, η is given by

η =
εp(iΔa + κa)

g2
ca + (iΔc + κc)(iΔa + κa)

. (6)

In the quantum Langevin equations, the product of the fluctuation terms, igcbc†1c1 and igcbc1(b1 + b†1), can
be considered to be very small in comparison to the other terms, and hence been neglected. Thus, the
linearized Hamiltonian of the system is obtained as

Hlin = Δaa†1a1 +Δcc
†
1c1 + ωbb†1b1 + Gcb(c1 + c†1)(b1 + b†1)

+ gca(c†1a1 + c1a†1), (7)

where Gcb = ηgcb is the coherent-driving-enhanced linearized optomechanical coupling strength. Since η is
proportional to the amplitude of the driving field, εp, one can modulate Gcb via the external optical drive on
c. However, it is to be noted that the cavity–cavity coupling gca cannot be modulated using such a technique
and in what follows we will assume that we can time-modulate Gcb, while gca is constant in time.

Transforming the Hamiltonian now to an interaction picture with U = exp
[
−iωb(a†1a1 + c†1c1 + b†1b1)t

]
,

yields H = UHlinU†, where

H = δa(t)a†1a1 + δc(t)c†1c1 + Gcb(t)
(

c†1b1 + c1b†1

+ e−2iωbtc1b1 + e2iωbtc†1b†1

)
+ gca(c†1a1 + c1a†1). (8)

Here δa(t) = Δa(t) − ωb and δc(t) = Δc(t) − ωb are time-dependent detunings. One can see that the
detunings can be varied by tuning the frequency-modulations of the two cavities, while the optomechanical
coupling is varied by tuning the primary cavity drive amplitude. Using these time-dependent modulations
we now seek to apply a STIRAP-like protocol to effectively transfer the phonon population to the auxiliary
cavity mode. We also note that in most of our analysis below we will not make the rotating wave
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approximation (RWA) in the optomechanical coupling term, and the counter rotating terms in the
Hamiltonian play an important role particularly when |Gcb|/ωb �	 1.

3. Population transfer protocol

In conventional three-level atomic systems, population can be transferred using a STIRAP protocol, via a
so-called ‘counter-intuitive’ modulation of the coupling strengths, to achieve high fidelity transfer between
the initial and the final states. However, this conventional STIRAP method cannot be straightforwardly
applied to our system, as the cavity–cavity coupling, gca cannot be modulated in a time-dependent manner
[43–45]. In what follows we therefore use an alternate method which allows population transfer from the
mechanical mode to the auxiliary cavity mode by modulating the detunings instead, and show how it allows
us to cool the mechanical resonator to the ground state.

For this we write the static optical cavity–cavity coupling, which is traditionally known as the ‘Stokes’
coupling, as gca ≡ Ωs/2 = Ω0/2 and set the time dependent optomechanical coupling Gcb(t) ≡ Ωp/2,
known as the ‘pump coupling’, to be the Gaussian

Ωp(t) = Ω0 e−( t−tc
T )2

, (9)

centered at time tc, with width T, and amplitude Ω0. We also apply detunings chosen as

δc(t) = κδδs(t),

δa(t) = (κδ − 1)δs(t), (10)

where

δs(t) = −hδ
Ω0

2

[
tanh

(
t − τ

τch

)
+ tanh

(
t + τ

τch

)]
, (11)

and we will seek values of the parameters (κδ , hδ , τ , τ ch), to obtain the best cooling of the b-mode for a
given strength of driving Ω0/ωb. The pulse shapes are shown in figure 2(a). Here, the parameter Ωs is
equivalent to a Stokes pulse if one considers an analogous three-level atomic system for normal STIRAP.
However, our choice of pulse shape can be better understood by looking at the instantaneous eigenvalues of
the system. In the RWA the Hamiltonian (8), can be expressed as

H =

⎡
⎣ 0 Ωp(t)/2 0
Ω∗

p(t)/2 δc(t) Ωs/2
0 Ωs/2 δa(t)

⎤
⎦ , (12)

which has the right form to possess a ‘dark’ eigenstate. Consider the instantaneous eigenvalues (λ0,λ1,λ2),
of this Hamiltonian when the time modulated pulses are applied. If the optomechanical coupling Gcb(t)
vanishes (i.e. Ωp(t) = 0), the so-called ‘Stokes’ Hamiltonian is given by

Hs =

⎡
⎣0 0 0

0 δc(t) Ω0/2
0 Ω∗

0/2 δa(t)

⎤
⎦ . (13)

This Hamiltonian acts only on the two cavity subspace, i.e. it does not involve the mechanical mode,
yielding the asymptotic eigenstates |s0(t = ±∞)〉, and |s±(t = ±∞)〉, where

|s+(−∞)〉 � |Nc〉 → |s+(+∞)〉 � |Na〉 , (14)

|s−(−∞)〉 � |Na〉 → |s−(+∞)〉 � |Nc〉 . (15)

Here |Na〉 (|Nc〉) are Fock states of the auxiliary (primary) optical cavities and the corresponding
eigenvalues are

S0 = 0, S± =
δa + δc

2
±

√
(δa − δc)2 +Ω2

0

2
. (16)

The time evolution of the eigenvalues of this Stokes Hamiltonian using the pulses shown in figure 2(a),
results in the eigenvalues S±(t) crossing the eigenvalue S0 twice at t ∼ ±tc. However, when the Gaussian
coupling Ωp is applied, it lifts the degeneracy between S0 and S+, resulting in an avoided crossing, which
leads to population transfer. The time evolution of the phonon occupancy in the mechanical resonator, Nb

(〈b†1b1〉), and photon occupancy in the two cavities, Na (〈a†1a1〉) and Nc (〈c†1c1〉), are shown in figure 2(b) for
the case when initially (Nb, Na, Nc) = (1, 0, 0), found by solving the Schrödinger equation without

4
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Figure 2. (a) Modulation of the coupling and detuning pulses for the case when Ω0/ωb = 0.1. Here δa, δc are the cavity
detunings and Gcb, gca are the coupling amplitudes in units of ωb. (b) Unitary time evolution of the modal populations using the
pulses shown in (a), (Nb, Nc , Na) are the mechanical, primary and auxiliary cavity mode occupations, where initially
(Nb, Nc, Na) = (1, 0, 0). The pulse parameters used are shown in table 1.

Table 1. Values of the parameters used in figures 2–4. The thermal occu-
pations n̄a , n̄c , of the optical modes are taken to vanish, while n̄b is set
equal to the mode’s initial occupation, e.g. n̄b = 103, in figures 3 and 4.

Figure Ω0/ωb ωbτ ch κδ ωbτ hδ ωbT ωbtc

2 0.1 164.99 14.05 1101.69 13.94 108.76 612.26
3 0.9 18.33 14.05 122.41 13.94 12.08 68.03
4(a) 0.3 54.99 14.05 367.23 13.94 36.25 204.08
4(b) 0.5 32.99 14.05 220.34 13.94 21.75 122.45
4(c) 0.6 27.49 14.05 183.62 13.94 18.13 102.04
4(d) 0.9 18.33 14.05 122.41 13.94 12.08 68.03
4(e) 1.2 13.74 14.05 91.81 13.94 9.06 51.02
4(f) 0.2 82.49 14.05 550.85 13.94 54.38 306.13

considering any coupling of the system to external baths. One can see that the population is transferred
with virtually 100% fidelity from the phonon b-mode to the auxiliary cavity a-mode. The population in the
primary cavity c-mode, is briefly non-zero and quickly returns to vanishing occupancy, leading to a
complete transfer to the auxiliary cavity mode, despite a vast difference in frequencies between the
mechanical and optical modes. This method will be extended in the following to study the population
dynamics in a realistic open system by coupling each mode to a thermal bath.

In order to apply our proposed method in a realistic setup one needs to consider open quantum system
dynamics. The phonon number evolution can be studied via covariance methods using the quantum master
equation [46, 47], which for our model is given by

ρ̇ = i [ρ, H] +
{
κa (n̄a + 1)D[a1] + κan̄aD[a†1] + κc (n̄c + 1)D[c1] + κcn̄cD[c†1]

+ κb (n̄b + 1)D[b1] + κbn̄bD[b†1]
}
ρ, (17)

where

H = δa(t)a†1a1 + δc(t)c†1c1 + Gcb(t)
(

c†1b1 + c1b†1 + e−2iωbt

× c1b1 + e2iωbtc†1b†1

)
+ gca(c†1a1 + c1a†1), (18)

and D[A]ρ ≡ AρA† − 1/2 {A†A, ρ}. We use the covariance approach to find the time evolution of the mean
phonon number 〈b†1b1〉(t). For this, we solve a linear system of differential equations

∂t

〈
ôiôj

〉
= Tr

(
ρ̇ôiôj

)
=

∑
m,n

μm,n 〈ômôn〉 , (19)

where ôi, ôj, ôm, ôn are one of the operators: a†1, c†1, b†1, a1, c1 and b1; and μm,n are the corresponding
coefficients. The ordinary differential equations for the time evolution of the second-order moments can be
obtained from the master equation as follows,

∂t〈a†1a1〉 = igca(〈c†1a1〉 − 〈a†1c1〉) − κa(n̄a + 1)〈a†1a1〉

+ κan̄a(1 + 〈a†1a1〉), (20)
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Figure 3. Phonon cooling with and without coupling to thermal baths: (a) evolution of phonon occupancy in the mechanical
resonator, Nb(t), while applying the complete transfer pulses (9)–(11), with (Nb, Na , Nc) = (103, 0, 0) initially. This is obtained
by solving the master equation without considering any damping; (b) evolution of Nb(t) after including damping in the system,
with (κc,κa)/ωb = (0.5, 2.0), and Qb = 107, solved using the master equation approach with initial values
(Nb, Na, Nc) = (103, 0, 0); (c) solid (dashed) lines show the eigenvalues of the time-dependent Hamiltonian with (without) the
pump coupling applied, showing the creation of a gap between S+ and S0. (d) Nb(t), when using a truncated pulse
(ωbTstart = 0.5 to ωbTend = 0.9), which encloses the gap and repeating it ten times, indicated by different colours used.
Parameters for all simulations shown are in table 1, and we note that here we have considered Ω0/ωb = 0.9, i.e. we are in the
strong coupling regime where the RWA is no longer valid.

∂t

〈
c†1c1

〉
= igca(〈a†1c1〉 − 〈c†1a1〉) + iGcb(〈b†1c1〉 − 〈c†1b1〉) + iGcb e−2iωbt〈c1b1〉

− iGcb e2iωbt〈c†1b†1〉 − κc(n̄c + 1)〈c†1c1〉+ κcn̄c(1 + 〈c†1c1〉),

∂t〈b†1b1〉 = −iGcb(〈b†1c1〉 − 〈c†1b1〉) + iGcb e−2iωbt〈c1b1〉 − iGcb e2iωbt〈c†1b†1〉

− κb(n̄b + 1)〈b†1b1〉+ κbn̄b(1 + 〈b†1b1〉),

∂t〈a†1c1〉 = iδa〈a†1c1〉 − iδc〈c1a†1〉+ igca(〈c†1c1〉 − 〈a†1a1〉) − iGcb〈b1a†1〉

− iGcb e2iωbt〈a†1b†1〉 − (κa/2)(n̄a + 1)〈a†1c1〉+ (κa/2)n̄a〈c1a†1〉

− (κc/2)(n̄c + 1)〈a†1c1〉+ (κc/2)n̄c〈c1a†1〉,

∂t〈a†1b1〉 = iδa〈a†1b1〉+ igca〈c†1b1〉 − iGcb〈c1a†1〉 − iGcb e2iωbt〈a†1c†1〉

− (κa/2)(n̄a + 1)〈a†1b1〉+ (κa/2)n̄a〈a†1b1〉 − (κb/2)(n̄b + 1)〈a†1b1〉

+ (κb/2)n̄b〈a†1b1〉,

∂t〈c†1b1〉 = iδc〈c†1b1〉+ igca〈a†1b1〉+ iGcb(〈b†1b1〉 − 〈c†1c1〉) + iGcb e−2iωbt〈b1b1〉

− iGcb e2iωbt〈c†1c†1〉 − (κb/2)(n̄b + 1)〈c†1b1〉+ (κb/2)n̄b〈c†1b1〉

− (κc/2)(n̄c + 1)〈c†1b1〉+ (κc/2)n̄c〈c†1b1〉,

∂t〈b1b1〉 = −2iGcb〈b1c1〉 − 2iGcb e2iωbt〈c†1b1〉+ κb(n̄b + 1)〈b1b1〉

+ κbn̄b〈b1b1〉,

∂t 〈c1b1〉 = −iδc〈b1c1〉 − iGcb(〈c1c1〉+ 〈b1b1〉) − igca〈a1b1〉

− (κb/2)(n̄b + 1)〈b1c1〉+ (κb/2)n̄b〈b1c1〉 − iGcb e2iωbt
(
〈c†1c1〉

+ 〈b†1b1〉+ 1
)
− (κc/2)(n̄c + 1)〈b1c1〉+ (κc/2)n̄c〈b1c1〉,

6
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Figure 4. Comparison between optomechanical cooling using iterated STIRAP truncated pulses and standard sideband cooling.
Multicoloured curves show phonon occupancy starting from (Nb, Na, Nc) = (103, 0, 0), using STIRAP cooling for various
parameters. The horizontal black solid line (wherever shown), depicts the steady-state phonon number obtained from normal
sideband optomechanical cooling while in other cases normal optomechanical cooling is not possible due to instability in the
system. The parameters used for each sub-graph are given in table 1. Here (a)–(e) show cases where the coupling strength Ω0/ωb

gradually increases and also the resolved sideband condition becomes less valid as κc/ωb increases. (f) is the case for moderate
coupling strength but is deep in the unresolved sideband regime. Here, κa/ωb = 2, Qb = 107, and Tstart and Tend are the start and
end time of each individual truncated sub-pulse.

∂t〈a†1c†1〉 = i(δa + δc)〈a†1c†1〉+ gca(〈c†1c†1〉+ 〈a†1a†1〉) + Gcb〈a†1b†1〉

+ Gcb e−2iωbt〈a†1b1〉 − (κa/2)(n̄a + 1)〈a†1c†1〉

+ (κa/2)n̄a〈a†1c†1〉 − (κc/2)(n̄c + 1)〈a†1c†1〉+ (κc/2)n̄c〈a†1c†1〉,

∂t〈a†1b†1〉 = iδa〈a†1b†1〉+ igca〈c†1b†1〉+ iGcb〈a†1c†1〉+ iGcb e−2iωbt〈a†1c1〉

− (κa/2)(n̄a + 1)〈a†1b†1〉+ (κa/2)n̄a〈a†1b†1〉

− (κb/2)(n̄b + 1)〈a†1b†1〉+ (κb/2)n̄b〈a†1b†1〉,

∂t〈c†1c†1〉 = 2iδc〈c†1c†1〉+ 2igca〈a†1c†1〉+ 2iGcb〈b†1c†1〉+ 2iGcb e−2iωbt〈c†1b1〉

+ κc(n̄c + 1)〈c†1c†1〉+ κcn̄c〈c†1c†1〉,

∂t〈a†1a†1〉 = 2iδa〈a†1a†1〉+ 2igca〈a†1c†1〉+ κa(n̄a + 1)〈a†1a†1〉+ κan̄a〈a†1a†1〉. (21)

Solving these equations, one can determine the mean values of all the time-dependent second-order
moments: 〈a†1a1〉, 〈c†1c1〉, 〈b†1b1〉, 〈a†1c1〉, 〈a†1b1〉, 〈c†1b1〉, 〈c1b1〉, 〈a†1b†1〉, 〈c

†
1a†1〉, 〈b2

1〉, 〈c
†
1c†1〉 and 〈a†1a†1〉. In the

following, we will consider an initial state of the system where only the b-mode is occupied, i.e.
〈b†1b1〉(t = 0) is nonzero. We will consider that at t = 0, all the other second-order moments vanish. In
particular the initial thermal occupations of the optical cavities at room temperatures is assumed to be
vanishingly small.
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Table 2. Comparison of steady-state phonon number calculated for
normal cooling NNC

min, and the minimal phonon number obtained
using the iterated STIRAP-cooling method NSC

min, for a variety of
parameters. Here, ωbTstart and ωbTend are the start and end time of
each pulse which have been found to achieve the optimal cooling in
each case. We observe that STIRAP cooling succeeds in all cases and
in some cases reaches lower final phonon occupations.

G/ωb κc/ωb κa/ωb Qb ωbTstart ωbTend NNC
min NSC

min

0.02 0.05 0.01 105 3000 3180 0.51 2.11
0.02 0.05 2 105 3000 3180 0.51 1.98
0.02 0.05 0.01 107 3000 3180 0.005 0.021
0.02 0.05 2 107 3000 3180 0.005 0.020
0.1 0.1 0.01 105 500 600 0.13 0.52
0.1 0.1 2 105 500 600 0.13 0.39
0.1 0.1 0.01 107 500 600 0.0070 0.0077
0.1 0.1 2 107 500 600 0.0070 0.0058
0.3 0.1 0.01 105 150 186 0.173 0.442
0.3 0.1 2 105 150 186 0.173 0.219
0.3 0.1 0.01 107 150 186 0.071 0.016
0.3 0.1 2 107 150 186 0.071 0.008
0.5 0.2 0.01 105 100 115 12.679 0.184
0.5 0.2 2 105 100 115 12.679 0.114
0.5 0.2 0.01 107 100 115 12.628 0.046
0.5 0.2 2 107 100 115 12.628 0.030
0.6 0.3 0.01 105 90 100 Unstable 0.179
0.6 0.3 2 105 90 100 Unstable 0.136
0.6 0.3 0.01 107 90 100 Unstable 0.097
0.6 0.3 2 107 90 100 Unstable 0.080
0.9 0.5 0.01 105 50 90 Unstable 0.300
0.9 0.5 2 105 50 90 Unstable 0.266
0.9 0.5 0.01 107 50 90 Unstable 0.161
0.9 0.5 2 107 50 90 Unstable 0.149
1.2 0.5 0.01 105 55 62 Unstable 1.574
1.2 0.5 2 105 55 62 Unstable 0.717
1.2 0.5 0.01 107 55 62 Unstable 0.441
1.2 0.5 2 107 55 62 Unstable 0.451
1.5 0.5 0.01 105 44 51 Unstable 1.574
1.5 0.5 2 105 44 51 Unstable 1.44
1.5 0.5 0.01 107 44 51 Unstable 1.143
1.5 0.5 2 107 44 51 Unstable 1.03
0.2 4 0.01 105 280 350 1.273 3.512
0.2 4 2 105 280 350 1.273 3.46
0.2 4 0.01 107 280 350 1.023 0.953
0.2 4 2 107 280 350 1.023 0.940
0.5 10 0.01 105 100 150 6.480 10.09
0.5 10 2 105 100 150 6.480 9.91
0.5 10 0.01 107 100 150 6.381 5.37
0.5 10 2 107 100 150 6.381 5.277

Using this approach, we plot the unitary evolution of the phonon occupation, Nb, for a system in the
strong coupling regime with Ω0/ωb = 0.9 in figure 3(a), without considering any damping in the system.
Setting initially (Nb, Na, Nc) = (103, 0, 0), we see that one can achieve nearly perfect transfer out of the
b-mode. In order to consider a realistic system, we incorporate damping in the system with
κc/ωb = 0.5,κa/ωb = 2, and Qb(ωb/κb) = 107, and initially Nb = 103, and we observe the evolution shown
in figure 3(b). Although the phonon occupation reduces significantly it does not reach the ground state.
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In figure 3(c) we plot the eigenspectrum and note that when the pump pulse is applied, a gap opens up
between the eigenstates S0 and S+. As the system evolves adiabatically from the initial state to the final state,
it stays on the same eigenstate because of this avoided crossing [48–50], and it is this gap that permits the
transfer. In STIRAP, the system evolution along the eigenstate is perfect if the evolution is adiabatic and
infinitely slow. Such infinitely slow evolution will permit perfect transfer despite the gap to another
eigenstate becoming very small (as long as the gap is nonzero), anytime during the adiabatic evolution.
However, for faster evolution, non-adiabatic evolution might occur which will degrade the transfer [48]. If
the gap can be widened then such non-adiabatic processes are greatly reduced improving the transfer. And
as can be seen from equation (16), the eigenvalue S+ increases as Ω0 is increased; thereby opening up the
gap between S0 and S+, allowing faster transfers, but there are physical limits on how large Ω0/ωb can be
[32–36]. Since most of the transfer occurs during this gap we consider in the following a truncated portion
of the full pulse chosen from the behaviour in the interval t ∈ {Tstart, Tend}, which closely matches the
temporal location of this gap. Iterating this truncated sub-pulse a number of times, as shown in figure 3(d),
allows us to minimise the time for heating and thereby efficiently cool the mechanical mode to its ground
state. In the following, we will apply this method over a range of system parameters, and we will also discuss
the advantages over standard optomechanical cooling.

4. Comparison to standard optomechanical cooling

In standard optomechanical sideband cooling, a quantum cooling limit exists which is characterised by
when the system finally attains a stationary state, i.e. d〈oioj〉/dt = 0. When working on the red side-band
(Δc = ωb), and when the cooperativity parameter C ≡ 4|Gcb|2/(κbκc) � 1, the steady-state final mean
phonon number is given by [51],

〈b†1b1〉lim � 4|Gcb|2 + κ2
c

4|Gcb|2(κc + κb)
κbn̄b +

(4ω2
b − κ2

c )(8|Gcb|2 + κ2
c ) + 2κ4

c

16ω2
b(4ω2

b + κ2
c − 16|Gcb|2)

, (22)

where the first term describes the cooling limit in the presence of a motional thermal environment, while
the second term describes the cooling limit achieved in the case where the motional bath is the vacuum.
This latter is non-zero as the cooling process itself has competing cooling and heating rates. The stability
condition is given by the Routh–Hurwitz criterion, |Gcb|2 < ω2

b/4 + κ2
c/16 [51].

In figure 4, we compare the reduction of the phonon occupancy achieved via iterated STIRAP pulses
and standard sideband cooling in different regimes. For the parameters shown in figures 4(c)–(e), the
conditions for stability in normal sideband optomechanical cooling are violated and that cooling method
fails. However, our method succeeds and one can almost reach the ground state in most cases. For the
parameters shown in figures 4(a), (b) and (f), normal sideband cooling works, however, it is evident that
our method returns better cooling in these regimes. An elaborate comparison is presented in table 2 for a
range of parameters from where the regimes where our method succeeds over normal sideband cooling can
be easily identified. It can be seen that in the unresolved sideband regime, i.e. κc � ωb, cooling with the
STIRAP pulses can be improved with higher κa/ωb.

5. Conclusions

Cooling of mechanical resonators remains a crucial goal in the engineering of quantum motional states of
matter. Using a detuning-assisted STIRAP scheme we have shown that a cooling method exists which
effectively transfers the quanta from the mechanical oscillator to an optical oscillator in a one-way fashion
and operates over a broad range of parameters. Just as normal STIRAP transfer is quite robust to
pulse/parameter imperfections we expect our scheme should also exhibit similar robustness.
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