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Abstract. As geographic range estimates for the IUCN Red List guide conservation actions,
accuracy and ecological realism are crucial. IUCN’s extent of occurrence (EOO) is the general
region including the species’ range, while area of occupancy (AOO) is the subset of EOO occu-
pied by the species. Data-poor species with incomplete sampling present particular difficulties,
but species distribution models (SDMs) can be used to predict suitable areas. Nevertheless,
SDMs typically employ abiotic variables (i.e., climate) and do not explicitly account for biotic
interactions that can impose range constraints. We sought to improve range estimates for data-
poor, parapatric species by masking out areas under inferred competitive exclusion. We did so
for two South American spiny pocket mice:Heteromys australis (Least Concern) andHeteromys
teleus (Vulnerable due to especially poor sampling), whose ranges appear restricted by competi-
tion. For both species, we estimated EOO using SDMs and AOOwith four approaches: occupied
grid cells, abiotic SDM prediction, and this prediction masked by approximations of the areas
occupied by each species’ congener. We made the masks using support vector machines (SVMs)
fit with two data types: occurrence coordinates alone; and coordinates along with SDM predic-
tions of suitability. Given the uncertainty in calculating AOO for low-data species, we made esti-
mates for the lower and upper bounds for AOO, but only make recommendations for H. teleus
as its full known range was considered. The SVM approaches (especially the second one) had
lower classification error and made more ecologically realistic delineations of the contact zone.
For H. teleus, the lower AOO bound (a strongly biased underestimate) corresponded to Endan-
gered (occupied grid cells), while the upper bounds (other approaches) led to Near Threatened.
As we currently lack data to determine the species’ true occupancy within the post-processed
SDM prediction, we recommend that an updated listing for H. teleus include these bounds for
AOO. This study advances methods for estimating the upper bound of AOO and highlights the
need for better ways to produce unbiased estimates of lower bounds. More generally, the SVM
approaches for post-processing SDM predictions hold promise for improving range estimates
for other uses in biogeography and conservation.

Key words: area of occupancy; biotic interaction; competition; extent of occurrence; parapatric; range
limits; Red List; rodent; species distribution model; support vector machine.

INTRODUCTION

Estimates of species’ geographic ranges, derived from
expert information, statistical models, or a combination
of both, represent essential sources of information that
guide conservation actions. Range estimates have a vari-
ety of uses in conservation biology, from prioritizing
reserve networks (Urbina-Cardona and Flores-Villela

2010) to monitoring population trends (Noon et al.
2012). In particular, assessments of species’ extinction
risk by the IUCN Red List rely on geographic range esti-
mates (IUCN 2019), which remain the principal sources
of information for the vast majority of species (Gaston
2009). Red List range estimates are separated into two
categories. Extent of occurrence (EOO) is defined as the
“spatial spread of the areas currently occupied by the
taxon” and is not intended as an estimate of occupied
areas but as an indication of the spread of extinction
risks to the taxon (IUCN 2019). Area of occupancy
(AOO) represents the “area of suitable habitat currently
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occupied by the taxon” within the EOO at a defined ref-
erence scale of 2 9 2 km (4 km2; IUCN 2019). The sim-
plest approaches are to estimate EOO based on a convex
hull around occurrence localities, and AOO by totaling
the area of occupied grid cells at the defined resolution
that hold occurrences (IUCN 2019). However, calculat-
ing these geographic range metrics accurately is espe-
cially difficult for poorly known species with few
occurrence records and little natural history knowledge
(Roberts et al. 2016).
With the advent of correlative statistical modeling

techniques such as species distribution models (SDMs;
also called ecological niche models) and documentation
of best practices for their use (Peterson et al. 2011, Ara-
�ujo et al. 2019), the potential geographic ranges of most
species can be estimated. Modeled range estimates can
be considered in assessments of EOO and AOO given
data on occurrence localities and the environment; sec-
tion 4.10.7 of the IUCN Red List Guidelines specifies
conditions for the use of SDMs in indirectly estimating
these metrics (IUCN 2019). Some approaches instead
derive species’ range estimates using expert maps and/or
habitat associations with existing geographic data
(Ocampo-Pe~nuela and Pimm 2014). For example, the
newly proposed “area of habitat” methodology uses
remotely sensed data such as elevation and land cover
maps to estimate an upper bound for AOO (Brooks
et al. 2019). However, approaches using statistical mod-
els can improve range estimates, especially in areas with
low sampling effort, as well as predict heterogeneity
within the known range (Peterson et al. 2018). These
predicted areas may represent significant parts of the
true species’ range that otherwise would not be included
in range estimates (Marcer et al. 2013, Fivaz and
Gonseth 2014, Zhang and Vincent 2018). Alternatively,
they may also represent suitable areas that are unoccu-
pied for other reasons such as anthropogenic factors,
dispersal barriers, Allee effects, or lack of suitable land
cover, so such factors must be taken into account in
post-processing.
Although often overlooked, additionally considering

biotic interactions (e.g., competition, parasitism, or pre-
dation) can help refine AOO estimates. Biotic interac-
tions are increasingly recognized as important drivers of
species ranges at the macroscale, and many studies have
recommended that they be considered in some way
alongside environmental variables to improve range esti-
mates (Wisz et al. 2013, Anderson 2017). In fact, the
Red List Guidelines advocate employing “both biologi-
cal and statistical considerations” to better ensure that
each range estimate is an “accurate representation of the
habitat requirements of the species” (section 4.10.7;
IUCN 2019). Including biotic variables in a modeling
analysis can help prevent overprediction of species’
ranges that are estimated with SDMs (Freeman and
Mason 2015). Alternatively, when using models to esti-
mate AOO, post-processing to remove areas within the
prediction that are unoccupied for biotic reasons should

result in a better representation of “suitable habitat occu-
pied by the taxon.” Such considerations of biotic factors
can directly benefit conservation actions, such as design-
ing reserve networks better tailored for species of con-
cern that face threats from climate change (Hof et al.
2012).
Delineating biotically unsuitable areas of a species’

range may be a difficult process due to the lack of data
on biotic interactions at the macroscale (Wisz et al.
2013), but this would constitute new and useful informa-
tion for species of concern. Predictions from SDMs that
use only abiotic variables (the vast majority of such stud-
ies) will likely fail to account for range limits due to bio-
tic interactions. Other options are to include the
occurrences or SDM predictions of interacting species
as predictor variables (Bateman et al. 2012). Yet, theory
indicates that interacting species should only be included
as SDM predictor variables if they are not themselves
affected by the focal species (Sober�on 2007, Anderson
2017). Often, competitive relationships between closely
related species are bidirectional in effect, disqualifying
either species from inclusion as a predictor variable in an
SDM for the other. Thus, addressing inferred biotically
unsuitable area for such interactions is better done by
post-processing model predictions of potential distribu-
tion. A good example for this would be closely related
(e.g., congeneric) parapatric species that replace each
other across space, presumably due to bidirectional
effects on each other’s distributions, a common phe-
nomenon. If the geographic boundary between ranges is
caused by competitive exclusion, the range of the focal
species’ congener would be defined as biotically unsuit-
able area and could be removed from the estimate of the
focal species’ potential distribution. Some studies have
predicted range boundaries of congeneric parapatric
species with SDMs under the assumption of competitive
exclusion by removing areas from each species’ esti-
mated range with higher abiotic suitability for the con-
gener (Anderson and Mart�ınez-Meyer 2004, Guti�errez
et al. 2014). However, this purely environmental
approach for predicting range boundaries may yield
results that are not biogeographically plausible. For
example, areas with high abiotic suitability predictions
for species A outside its true range may exist in the true
range of congener species B, possibly quite far from the
zone of contact.
Support vector machines (SVMs) are models with

multiple characteristics that make them attractive for
predicting range boundaries in such circumstances. They
are supervised learning models that classify data into
groups and have tuning settings that control the com-
plexity of fit; these settings can be optimized using cross
validation. In the case of species occurrence data, SVMs
can classify the study extent with regard to the species
most likely to be present in each grid cell when trained
on the coordinates of occurrence localities. SVMs can
additionally use other predictor variables besides spatial
coordinates to guide the classification, such as SDM
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predictions of suitability. Even for species with low sam-
ple sizes, range boundaries might still be reasonably pre-
dicted given that occurrence data exist for both species
in the boundary region. Further, if hybrid individuals or
known sites of sympatry exist along a narrow contact
zone, ecological realism can be evaluated by plotting the
coordinates of such localities on the range boundary
classifications.
In the case of congeneric parapatric species, SVMs

can thus be used to predict the range boundary when the
locations of the congener provide essential information
that environmental variables alone cannot capture. This
predicted boundary can then be compared with existing
expert maps or SDM predictions and used to remove
areas inferred to be biotically unsuitable. Additionally,
SVMs could be used in a similar way for species with
other kinds of interactions that affect range boundaries
such as parasitism or predation. Although there are a
few studies that have demonstrated various ecological
applications for SVMs (Drake et al. 2006, Pouteau et al.
2011), to date none have used them for classifying range
boundaries. It is important to note that although we
focus here on SVMs, other machine learning methods
are available for making similar classifications based on
spatial predictors, and other methods exist for delineat-
ing species ranges based on spatial data (i.e., alpha hulls,
kernel density estimators; Fortin et al. 2005). Our aim
here is not to determine an optimal method, but rather
to demonstrate the particular utility of SVMs for classi-
fying range boundaries between species. In this study, we
investigate whether (1) considering biotic interactions in
SDMs can lead to real differences in IUCN Red List
classifications when compared with standard
approaches, and whether (2) the accuracy and ecological
realism of SDM-derived AOO estimates can be
improved for two data-poor parapatric species using
SVMs.
To demonstrate these techniques, we focus on the

spiny pocket mice Heteromys australis (Least Concern;
Anderson et al. 2018) and Heteromys teleus (Vulnerable
D2; Naylor and Roach 2018) in Ecuador and southwest-
ern Colombia, west of the crest of the Andes. This
region encompasses the southern part of the range of H.
australis (the part with the highest quality occurrence
data) and the full known range of H. teleus. Both species
have poor sampling for this region (Anderson 2015),
typical for tropical species and less-studied groups in
other areas, and neither has a currently listed AOO esti-
mate. For this region, both species have verified occur-
rence localities inside or proximal to (<2 km from) some
protected areas. Sampling efforts span many years for
both species, which are considered parapatric because of
a thin region of possible sympatry. Competitive exclu-
sion was inferred to explain biogeographic patterns of
H. australis and a different parapatric congener (H.
anomalus; Anderson et al. 2002), and no clear climatic
demarcations were found to define the range boundary
with H. teleus (Anderson and Mart�ınez-Meyer 2004,

Shcheglovitova and Anderson 2013). We thus interpret
it is likely that H. australis and H. teleus have bidirec-
tional biotic effects on each other’s ranges. Two previous
studies have modeled the ranges of these two species: an
older conservation assessment with very coarse environ-
mental data (Anderson and Mart�ınez-Meyer 2004), and
a more recent study with finer resolution data that
addressed model evaluation for small sample sizes
(Shcheglovitova and Anderson 2013). However, no
recent conservation assessments have been done for
these species using high-resolution environmental data
and modern modeling methods that take biotic interac-
tions into account.
As occurrence data for both species in this region are

limited and suffer from sampling bias, IUCN range esti-
mates that do not use SDMs for prediction of suitable
areas will likely be vast underestimates. As mentioned
above however, if SDMs are employed and occupied
areas are predicted while ignoring inferred biotic interac-
tions, AOO can be overestimated. It is clear that the
range of one species should not be included in calibrat-
ing the SDM of the other when bidirectional effects are
inferred (Anderson 2017). Here we use SDMs to derive
EOO estimates for each species and then implement
SVMs to mask out regions of the EOO predicted to be
within the range of each species’ parapatric congener.
We use these results to make estimates of AOO, but
make recommendations regarding threat status only for
H. teleus. To our knowledge, no further information
exists to determine the occupancy status within the mod-
eled range of the species, and hence we report a gradient
of estimates to be considered as upper and lower bounds
of AOO (Section 3.2; IUCN 2019). We estimate AOO in
different ways to account for this inherent uncertainty:
(1) occupied grid cells, (2) SDM range prediction, (3) the
range prediction masked using a SVM with spatial pre-
dictors only (occurrence locality coordinates), and (4)
the same as (3) but also including environmental (SDM-
derived) predictors (Fig. 1). For each approach, we esti-
mate AOO bounds before and after considering current
forest cover. We conclude by discussing the importance
of this methodology for generating AOO gradients that
consider uncertainty for low-data species and for mak-
ing conservation decisions concerning assignments of
threat categories.

METHODS

Occurrence data

Heteromys australis ranges from Venezuela and
Panama in the north to northwest Ecuador in the south,
but localities from Ecuador and southwest Colombia
(16 known occurrences) are widely separate from those
in northern Colombia, likely due to sampling bias
(Anderson and Jarr�ın-V. 2002). Here, we model this
region of the species’ distribution, which is common
practice in conservation, e.g., country-specific red-listing
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projects (Brito et al. 2010), as georeferenced occurrence
data of high quality is not currently available for the
more northerly populations. Heteromys teleus, with
seven known occurrences, is restricted to central-western
Ecuador (Anderson and Jarr�ın-V. 2002). Both species
are found only in evergreen forest, but as a strong pre-
cipitation gradient exists in western Ecuador, H. aus-
tralis is found mainly in wet and unseasonal areas and
H. teleus in drier and more seasonal areas (Anderson
and Mart�ınez-Meyer 2004).
We updated occurrence data sets for each species

based on museum specimens for a study area that
encompasses the region west of the crest of the western
Andes extending from southwestern Colombia (consid-
ered here as the area south of Tumaco Bay) through
western Ecuador. We thoroughly vetted each set of geo-
graphic coordinates for each of the new localities. We
obtained geographic coordinates from primary sources
(documented on specimen tags or found in collectors’
field notes) when available, and verified these by consult-
ing topographic maps and contacting collectors. When
coordinates were not available from these primary
sources, we georeferenced localities using topographic
maps based on the elevation and verbatim locality
descriptions from specimen tags and collectors’ field
notes. We then combined these newly vetted occurrence

data with previously published records (Anderson and
Jarr�ın-V. 2002) and compiled an expanded data set to
serve as input data for building SDMs (detailed in
Appendix S1).
In addition to the 23 collection localities from this

region reported by Anderson and Jarr�ın-V. (2002), we
examined and report 34 specimens in total of the genus
Heteromys from Ecuador, representing 16 additional
collection localities (Appendix S1) and including some
inferred hybrids (based on morphological characteris-
tics). These derive from specimens in natural history
museum collections, and we made identifications by
examining morphological characters (Anderson and
Jarr�ın-V. 2002), either in person or via photograph. We
also considered measurements of hind-foot (recorded on
specimen tags), a diagnostic trait for distinguishing H.
teleus from H. australis (Anderson and Jarr�ın-V. 2002).

Species distribution models

For predictor variables, we selected a subset of eight
bioclimatic variables from the WorldClim 2.0 data set
(Fick and Hijmans 2017) at 30 arcsecond resolution
(� 1 km at the equator) that we hypothesized to be most
closely associated with the distributions of these two spe-
cies in this region, in accordance with the Red List
Guidelines (section 4.10.7; IUCN 2019). These variables
were mean diurnal range (bio02), temperature seasonal-
ity (bio04), minimum temperature of coldest month
(bio06), mean precipitation of wettest month (bio13),
mean precipitation of driest month (bio14), precipitation
seasonality (bio15), mean precipitation of warmest quar-
ter (bio18), and mean precipitation of coldest quarter
(bio19). We chose WorldClim 2.0 because its broad tem-
poral coverage (1970–2000) was appropriate for building
SDMs with our occurrence data, which was collected
over a wide temporal range (ranging from 1912 to 2016
with mean 1984). These variables, which relate to sea-
sonality and climatic extremes, differentiated well
between the wet and unseasonal north and the drier and
more seasonal south; additionally, they provided infor-
mation regarding differences between warmer lowlands
and cooler highlands. We reduced this subset further by
removing variables with high collinearity to aid in inter-
pretation (Appendix S2).
Besides the occupied grid cells approach to estimating

AOO, the others either represent SDM predictions or
their post-processed output (Fig. 1). We carried out the
same SDM procedure for both species using Wallace
1.0.6 (Kass et al. 2018), a modular and interactive eco-
logical modeling application launched via the R package
wallace. This procedure included spatial thinning of
occurrence data to reduce clustering caused by sampling
bias (package spThin; Aiello-Lammens et al. 2015) and
iterative building of Maxent 3.4.1 (Phillips et al. 2017)
models with settings that ranged from simple to com-
plex, each with jackknife (leave-one-out) cross validation
for small sample sizes (package ENMeval; Muscarella

FIG. 1. In this flowchart of experimental design, data
sources (green circles) and models (blue rectangles) undergo
operations (i.e., threshold or mask) to produce extent of occur-
rence (EOO) estimates (purple hexagon) and area of occupancy
(AOO) estimates (orange hexagons). All AOO estimates were
calculated before and after considering current forest cover (not
shown).

Article e02228; page 4 JAMIE M. KASS ETAL.
Ecological Applications

Vol. 31, No. 1



et al. 2014). We selected optimal models sequentially by
first choosing those that accurately predicted the most
withheld occurrence localities (lowest average omission
rate). We calculated omission rate based on the mini-
mum training presence (MTP) threshold, which is the
lowest predicted suitability value associated with the
occurrence localities used to train the model. To break
any ties, we then chose those models with the best dis-
criminatory ability on the withheld occurrences (highest
average test AUC, or area under the receiver operating
characteristic curve). Although there are problems with
interpreting AUC in absolute terms as a measure of
accuracy for presence/background models (Lobo et al.
2008), it is a valid metric to compare model settings for a
single species across the same study extent (Peterson
et al. 2011). We then made binary range maps that pre-
dict presence and absence across a study extent by
thresholding the SDM predictions of suitability for each
species by the respective MTP value. All data prepara-
tion and analysis was done using the R programming
language v3.5.1 (R Core Team 2018). More details on
these methods can be found in Appendix S2.

Estimating extent of occurrence

For each species, we made estimations of EOO based
on the binary range maps derived from the continuous
SDM predictions. Standard practice for delineating
EOO, which must be a boundary that encompasses all
known, inferred, or projected sites of occurrence (section
4.9; IUCN 2019), is to draw a convex hull around all
occurrence localities. But for poorly sampled species,
including areas in the EOO that are predicted by SDMs
as highly suitable can result in better representations of
the true spatial extent of their ranges (Syfert et al. 2014,
IUCN 2019). Although techniques have been developed
to derive thresholds for producing binary range maps
that best avoid overprediction (Syfert et al. 2014), in
keeping with the definition of EOO, which states it must
include all marginal localities (IUCN 2019), we chose to
threshold using the MTP value. We then delineated con-
vex hulls around the binary range predictions to create
the EOO estimates. For areal comparison with another
commonly implemented approach, we also generated
EOO estimates using convex hulls around the occurrence
localities (IUCN 2019).

Support vector machines

In order to better estimate the bounds of AOO (i.e.,
the occupied areas), we masked out inferred biotically
unsuitable areas from the EOO by classifying the range
of each species over the combined study extent using
SVMs. These models can be used as simple classifiers to
distinguish one data class from another. They differenti-
ate data classes by finding the best-fitting boundary line
(or lines) in predictor space, focusing only on those “vec-
tors” (points) with the greatest “support,” or those that

are closest to others of a different class (Drake et al.
2006). This leads to a classification of grid cells within
the combined study extent, indicating which species is
more likely to be present. In geographic space, we made
spatial classifications of each species’ range with two
SVMs fit with different predictor variables: one using
the occurrence localities coordinates as predictors (spa-
tial) and the other using these coordinates along with
the SDM-derived suitability predictions for each species
(spatial-environmental).
For each approach, we fit SVMs with the response

variable as species identity and either the “spatial” or
“spatial-environmental” predictor variables described
above. We tuned the models with the Gaussian radial
basis function for geometric ranges of the settings C
(from 2�5 to 215) and gamma (from 2�15 to 23) and used
10-fold random cross validation for model evaluation
(Hsu et al. 2003). The setting C (cost) specifies how strict
the boundary should be at tolerating misclassifications:
a lower value results in a simpler function and thus a
smoother boundary, whereas a higher value results in a
more complex function that prioritizes correct classifica-
tions. The setting gamma specifies how far away any
particular point can be to influence the definition of the
boundary: a lower value gives more influence to farther
points whereas a higher value gives more influence to
closer points. The settings with the lowest classification
error after cross validation were chosen as optimal. As
the random cross validation is stochastic, we ran 100
model replicates and chose the most frequently selected
optimal settings for the final models. We fit all SVMs
using the tune.svm() function from the R package e1071
(Meyer et al. 2017).
Within each species’ estimated EOO, we used the

SVMs to classify which cell belonged in which species’
range, then masked out the areas classified to be in the
range of the parapatric congener. As a qualitative assess-
ment of ecological realism, we also plotted inferred
hybrid occurrence localities on each support vector
machine classification to determine the proximity of
each to the contact zone. R functions for tuning the
SVM model with/without SDM predictions and for
making a raster prediction for the SVM can be found in
Data S1: [rangeSVM.R].

Estimating area of occupancy bounds

We made estimates of the bounds of AOO by masking
the estimated EOO using the four approaches outlined
above (Fig. 1). For all approaches, we projected the bin-
ary rasters to UTM 17S (m) and resampled to 2 km res-
olution (using nearest neighbor interpolation for
categorical data) before calculating area, in accordance
with the IUCN suggestions for AOO (IUCN 2019). The
occupied grid cells approach simply takes the area of all
grid cells that overlap with occurrence localities, and the
generic IUCN recommendation is 2 9 2 km; for this,
we masked out all grid cells that did not overlap with at
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least one occurrence locality. For the SDM prediction
approach, we used the MTP-thresholded binary predic-
tion (also used to delimit the EOO by convex hull). For
the SVM approaches, we masked the binary SDM pre-
diction by removing areas classified by the SVMs as
within the range of the parapatric congener. To evaluate
these AOO estimates, for each species we determined
how many occurrence localities were misclassified. To
avoid confusion, here we use “misclassification” to refer
to localities of one species falling into the AOO bound
estimate of another, whereas “omission” refers to a sin-
gle species’ model failing to predict occurrence localities
of that species.
We calculated each AOO estimate before and after

masking out grid cells that lack current broadleaf ever-
green forest cover. We derived forest cover from the
European Space Agency Climate Change Initiative
(ESA CCI) Land Cover 2.0.7 data set, a global 300-m
resolution categorical raster based on the UN Land
Cover Classification System (European Space Agency
2018), for the most recent year available at the time of
the analysis (2015). Although the SDMs were calibrated
with climatic data from 1970–2000 for occurrence data
mostly originating from this time period, we expected
that any recent changes to these species’ ranges likely
resulted from anthropogenic changes to forest cover,
thus, we aimed to use the most recent forest cover data
to estimate these species’ current range areas using the
SDM predictions as baselines. We subsetted the forest
cover raster to broad-leaved evergreen forest (value 50),
cropped it to the shared extent, then projected it to
UTM 17S and resampled to 2-km resolution. Finally,
for each species we compared the areas of each of the
resulting eight AOO estimates and calculated the percent
difference between each and the SDM prediction
approach (the highest areal estimate). Additionally, we
derived the spatial similarity between each pair of SDM-
based AOO estimates (with binary values) by calculating
spatial overlap using Schoener’s D. All raster operations
were performed with the raster (Hijmans 2017) and
dismo (Hijmans et al. 2017) R packages.

RESULTS

Occurrence data

Of the 34 total Heteromys specimens newly examined
for Ecuador and southwestern Colombia, we identified
24 as H. australis (representing 10 unique collection
localities at the 1-km2 scale), 6 as H. teleus (3 unique col-
lection localities), and 3 as likely H. australis / H. teleus
hybrids (2 unique collection localities). The specimens
from the latter 2 localities displayed strange mixes of
characters not found in any other specimens throughout
Ecuador or southwestern Colombia (Appendix S1).
Finally, one additional specimen, the only representative
of a single collection locality, could not be identified
beyond genus due to skull damage and is designated

Heteromys sp. (Appendix S1). Addition of these new
unique collection records increased the H. australis
records from 16 to 26, and those of H. teleus from 7 to
10. Spatial thinning reduced these numbers to 20 for H.
australis and 9 for H. teleus, and these occurrence data
sets were used for analysis.
Some newly documented occurrence localities were

proximal to (<2 km from) protected areas in Ecuador
(Fig. 2). Based on the original occurrence locality data
sets before the addition of those records in Appendix S1,
both species have localities inside or proximal to pro-
tected areas in southern Colombia and Ecuador (Fig. 2;
Ministerio del Ambiente de Ecuador 2019, Sistema de
Informaci�on Ambiental de Colombia 2019). Heteromys
australis was found in Los Cedros (n = 1, year = 1993)
and close to Asociaci�on Agr�ıcola Carchi Imbabura
(n = 1, year = 2000) in Ecuador, as well as Maindes and
Cuenca Alta del R�ıo Nemb�ı (n = 1, year = 1995) in
Colombia. Heteromys teleus was found in Cordillera
Chong�on-Colonche (n = 2, year = 1923), and close to
Hacienda La Perla (n = 1, year = 1990) and R�ıo Lelia
(n = 1, year = 1996) in Ecuador. With the addition of
the records from western Ecuador in Appendix S1, H.
australis was also found in Cerro Golondrinas (n = 3,
year = 2016) and Milpe Pachijal (n = 1, years = 2001–
2002), while H. teleus was found in Tulipa Pachijal and
San Francisco (n = 1, year = 2007).

SDMs and extent of occurrence estimates

The Maxent SDMs we selected for both species had
settings different from default and had flexible, linear
responses (hinge features; Appendix S3: Table S1). A
total of six predictor variables were used for modeling,
as we removed bio13 and bio15 from the data set due to
high correlations with the other variables. The H. aus-
tralis model was less complex (Appendix S3: Table S1)
and had positive responses for mean diurnal tempera-
ture range (bio02), temperature seasonality (bio04), and
precipitation of coldest quarter (bio19) (Appendix S3:
Fig. S1). In contrast, the H. teleus model was more com-
plex (Appendix S3: Table S1), with positive responses
for precipitation of driest month (bio14), precipitation
of warmest quarter (bio18), and precipitation of coldest
quarter (bio19; Appendix S3: Fig. S1). The H. teleus
SDM omitted proportionally fewer withheld occurrence
localities on average (ORMTP = 0.111) than that of H.
australis (ORMTP = 0.150). Across each species’ study
extent, the suitability predictions for H. australis were
less variable (cloglog range, 0.43–0.75) than those of H.
teleus (cloglog range, 0.22–1.00; Fig. 3), likely because
there are greater differences in seasonality within the
study extent of H. teleus (Fig. 3; Anderson and
Mart�ınez-Meyer 2004).
The EOO estimates for both species generated using

SDM predictions were approximately triple the area of
those based on occurrence localities. The convex hull of
the binary SDM prediction (bounded by the study

Article e02228; page 6 JAMIE M. KASS ETAL.
Ecological Applications

Vol. 31, No. 1



extent, which excluded large areas likely beyond disper-
sal barriers) was 36,843 km2 for H. australis (portion of
range in southwestern Colombia and northern Ecuador;
see Methods) and 54,985 km2 for H. teleus, compared
with 11,664 and 18,686 km2 for the convex hulls of the
occurrence localities, respectively. For H. australis, the
EOO estimate excluded northwest areas with low mean

diurnal temperature range (bio02), and areas in the east
and southwest with drier conditions in the coldest quar-
ter (bio19). For H. teleus, the EOO estimate included
most of the area within the study extent, and excluded
only the driest southern areas and those on the western
coast that are driest in the warmest quarter (bio18).
Both estimates included small areas of ocean, which are

FIG. 2. Total occurrence localities (before thinning) for Heteromys australis (circles), H. teleus (triangles), and inferred hybrids
(squares); filled shapes represent localities first reported in this study. Study extents are depicted as solid lines for H. australis and
dotted lines forH. teleus, with the combined study extents represented by elevation hillshades. This region is also displayed for refer-
ence in gray with the political boundaries of Colombia and Ecuador (bottom right). Protected areas (Ministerio del Ambiente de
Ecuador 2019, Sistema de Informaci�on Ambiental de Colombia 2019) are depicted in green, with those referred to in the text con-
taining occurrence localities in brown and those proximal (<2 km) to localities in orange. Protected areas are labeled as follows (1–3
contain occurrences, 4–10 are proximal): (1) Los Cedros, (2) Mashpi, (3) Cordillera Chong�on-Colonche, (4) Cuenca Alta del R�ıo
Nemb�ı and Maindes, (5) Asociaci�on Agr�ıcola Carchi Imbabura, (6) Cerro Golondrinas, (7) Milpe Pachijal, (8) Tulipa Pachijal and
San Francisco, (9) Hacienda La Perla, (10) R�ıo Lelia.
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relatively negligible and also in agreement with how the
IUCN defines EOO (IUCN 2019).

Tuned support vector machine settings and classifications

The SVM settings that were optimal based on random
cross validation were similar for both spatial and spa-
tial-environmental. Both had a cost of 32, but gamma
was higher for the spatial SVM (0.5) than for the spatial-
environmental SVM (0.03), indicating the latter had
greater weight on localities farther from the boundary.
Both models omitted only one occurrence locality per
species near the contact zone. The distance from the
omitted H. australis locality to the closest cell centroid
classified for this species was greater for the spatial SVM
(1129 m) than the spatial-environmental SVM (745 m).
Notably though, this same difference for the omitted H.
teleus locality was more pronounced (spatial, 8,278 m;
spatial-environmental, 3,363 m). Within the contact
zone, the spatial-environmental SVM followed areas pre-
dicted to be climatically suitable for each species in

addition to their occurrence coordinates (Fig. 4), mak-
ing the classifications more ecologically realistic. In fur-
ther support of this, the two inferred hybrid occurrence
localities fell closer to the border between the two ranges
predicted by the spatial-environmental SVM than by the
spatial SVM (Fig. 4).

Area of occupancy estimates

The occupied grid cells approach had by far the lowest
AOO estimate (Appendix S3: Fig. S2), while the SDM
prediction had the highest, constituting the lower and
upper bounds of AOO estimates for each species
(Table 1). Both species had a single occurrence locality
associated with lack of current forest cover, but the cor-
responding proportion of unforested localities for H. tel-
eus (10%) was higher than that for H. australis (4%).
The estimate of the spatial-environmental SVM was
higher than that of the spatial SVM for H. australis,
though the inverse was true forH. teleus (Table 1). Over-
all, considering only currently forested areas (56% of the

H. australis H. teleus

Predicted suitability

La
tit

ud
e

Longitude

FIG. 3. Maxent species distribution model (SDM) continuous suitability predictions (cloglog transformation) thresholded by
the minimum training presence (MTP) for H. australis and H. teleus on a scale from blue (low) to red (high). The estimation of
extent of occurrence (EOO), a convex hull around the thresholded SDM prediction, is displayed as a dashed line, and occurrence
localities for H. australis and H. teleus are depicted as circles and triangles, respectively. Areas outside the MTP threshold are dis-
played in a gray elevation hillshade, while areas outside the study extent used for model training are displayed in black.
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shared region) reduced the AOO estimates minimally for
H. australis but by more than one-half in some cases for
H. teleus (Table 1). The SDM prediction estimates
(thresholded by MTP) had no omissions by definition,
but they resulted in some occurrence localities predicted

to be in the congener’s range (three for H. australis and
five for H. teleus). These could be interpreted as misclas-
sifications, or alternatively as areas of possible sympatry.
In contrast, both SVM approaches had one omission
(and thus one misclassification) per species.

FIG. 4. Support vector machine classifications for H. australis (light blue) and H. teleus (dark blue) over the shared region on
an elevation hillshade. The “spatial SVM” refers to the model fit with species occurrence coordinates only, and the “spatial-environ-
mental SVM” to that fit with both coordinates and continuous SDM suitability predictions. Occurrence localities for H. australis
(circles), H. teleus (triangles), and inferred hybrids (squares) are shown for reference. The upper-left box shows a zoomed-in view of
the location of the inferred hybrids.

TABLE 1. Area of occupancy (AOO) estimates (km2) for each approach, before and after considering current forest cover.

Before After

Species and approach Total area (km2)
Total SDM

prediction area (%) Forest area (km2)
Total SDM

prediction area (%)

Heteromys australis
Occupied grid cells 104 0.38 100 0.37
SDM prediction 27,280 100 24,100 88
Spatial SVM 22,572 83 20,288 74
Spatial-environmental SVM 24,472 90 21,696 80

Heteromys teleus
Occupied grid cells 40 0.09 36 0.08
SDM prediction 46,360 100 25,064 54
Spatial SVM 40,652 88 19,812 43
Spatial-environmental SVM 39,000 84 18,544 40

Notes: Percent of total species distribution model (SDM) prediction area (before considering forest cover) is also reported to
provide comparisons with the highest areal estimations.
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FIG. 5. Estimations of area of occupancy (AOO) for each species (geographic coordinate system) showing areas with current
broadleaf evergreen forest cover (green) and those without (pink) over a gray elevation hillshade, representing areas outside the
respective estimates of AOO. The dashed line represents the estimated extent of occurrence (EOO), and occurrence localities are
shown for H. australis (circles) and H. teleus (triangles). Black arrows denote cool and mesic areas excluded from the spatial SVM
estimate of H. australis but included in the spatial-environmental SVM estimate (or the inverse for H. teleus). Projected from UTM
17S (projected: meters) to WGS84 (geographic).
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Although spatial overlap was high among the SDM-
based approaches (more so for SVM-derived estimates;
Appendix S3: Table S2), there was substantial variation
at the contact zone boundary (Fig. 5). The SDM predic-
tion estimate extended well into the known and inferred
portions of the congener’s range for each species,
whereas the SVM-derived estimates were more restric-
tive around the contact zone and thus matched ecologi-
cal expectations better. In comparison with the spatial
SVM, the spatial-environmental SVM estimate for H.
australis included a cool and mesic area in the center-
east portion of the contact zone, which was classified as
within the range of H. teleus by the spatial SVM
approach (Fig. 5). The environmental characteristics of
this area align best with the associations of H. australis,
a designation made successfully by the spatial-environ-
mental SVM.

DISCUSSION

Support vector machine approaches improved AOO
bound estimates

Using range area estimates derived from species distri-
bution models (SDMs) to determine IUCN Red List
threat categories can address issues of incomplete sam-
pling, but we demonstrate here that also accounting for
the spatial effects of inferred biotic interactions can
result in more realistic AOO estimates even for a data-
poor species. Using more accurate AOO estimates that
better reflect the focal species’ ecology, as well as consid-
ering different estimates as bounds for low-data species,
can lead to better prioritization of critical habitat, selec-
tion of reserves, and estimates of impact from future cli-
mate and land use change (Guisan et al. 2013). Using
SDMs allowed us to include areas in the EOO (within
expert-delimited areas of likely dispersal) that lacked
known occurrence records yet had high predicted suit-
ability, which in turn expanded the potential extent of
AOO. Additionally, we employed support vector machi-
nes to remove areas predicted to be in the range of each
species’ parapatric congener. Although we did not con-
sider this in our study, it is important to note that EOO
estimates could also be reduced by removing biotically
unsuitable areas (section 4.9; IUCN 2019). Both SVM
approaches predicted fewer localities of each species to
be in their congener’s range than the unprocessed SDM
range prediction did, and we found that the SVM
approach using spatial and SDM-derived predictor vari-
ables (spatial-environmental) resulted in delineations of
the contact zone that aligned better with our ecological
expectations. More occurrence data and consideration
of other environmental predictor variables would likely
improve range predictions within this contact zone,
but we were still able to make sensible range-limit
predictions for these data-poor species. Other factors
not directly considered in this study such as the
removal of occurrence outliers, increased precision in

georeferencing, or different SDM or classification
approaches may also change the AOO estimates, result-
ing in different bounds. Though these issues fall beyond
the scope of the current product, future studies should
evaluate their relative impact. Regardless, the point
remains that removing biotically unsuitable areas with
prior ecological knowledge using an operational
approach should result in more conservative AOO esti-
mates that are more ecologically realistic. We suggest
that these methods should be attempted for other sys-
tems where competitive exclusion is inferred to assess
how generally applicable they may be.
These analyses also indicate priority areas for future

sampling to improve distributional estimates for these
two spiny pocket mouse species. This is particularly true
for the provinces Esmeraldas (west) and Pichincha (cen-
tral) where no records in close proximity between these
species exist. For H. teleus, there are several priority
areas for new sampling efforts based on the current
occurrence data and our SDM results. One is the Cordil-
lera Chong�on-Colonche in the far southwest, where two
unique occurrence localities from 1923 are currently
known (Anderson and Jarr�ın-V. 2002). Although this
area is heavily deforested, some remaining forest still
exists there, and confirmation of a possibly disjunct and
imperiled population is important for conservation. If it
is found that this population has since been extirpated,
the EOO based on the occurrence localities for H. teleus
would shrink by more than one-half, from 18,686 to
8,234 km2. Another is the coastal plain in central-west
Ecuador, which has been heavily developed for oil palm
and banana plantations (Anderson and Jarr�ın-V. 2002),
as it is feasible that populations exist there in forest
patches. The last is southern Ecuador west of the crest
of the Andes, as the southern limit of the range of H. tel-
eus is currently unresolved, and discoveries that extend
the range farther south would be of great conservation
interest. However, modeled suitability and the presence
of forest does not necessitate the existence of popula-
tions, which can be in decline or absent due to insuffi-
ciently large patch size or other anthropogenic
disturbances not assessed (such as hunting or extraction
of plant resources). Potential for the discovery of new
populations and range limits makes sampling efforts in
these areas worthwhile.

New geographic estimates and associated
threat categories

These results provide new geographic estimates for
conservation, which we propose should lead to IUCN
Red List updates for one species. Although H. australis
is currently labeled Least Concern (Anderson et al.
2018), and our analysis considers only part of its range,
the range estimates we present can be informative for its
distribution in southwestern Colombia and Ecuador.
Future efforts should focus on refining the georeferences
for the existing occurrence localities farther north, as
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well as identifying museum specimens or collecting field
specimens for gaps in the known range. A climate-based
SDM that additionally includes H. australis occurrences
outside of the region considered in this study may lead
to discrepancies in range estimates due to an expansion
of the environments considered by the model. Nonethe-
less, based on our current knowledge of the species, we
still expect to observe a similar degree of overlap
between the range estimates of these two species that
SVMs can help address.
In contrast, H. teleus (whose entire known range is

considered here) is labeled Vulnerable D2 due to a short-
age of occurrence data (previously there were five to
seven reported localities, meeting the restriction of five
or fewer) and an estimated “13–19% suitable habitat
remaining” (Naylor and Roach 2018). We updated the
occurrence data set for H. teleus from 7 to 10 verified
unique localities, which now further exceeds the require-
ment for Vulnerable D2 (≤5) but still makes the sub-re-
quirement for Vulnerable B1 or B2 (≤10). The current
IUCN listing reports EOO to be 46,156 km2, which is
based on an estimation using the existing IUCN range
map (Shelby McCay, personal communication); this is
close to our SDM-based EOO estimate (54,985 km2).
Although both these estimates exceed the threshold for
Vulnerable B1 (<20,000 km2), our lower-end EOO esti-
mate based on the occurrence localities (18,686 km2)
would qualify.
The AOO estimates we present, on the other hand, are

the first for H. teleus. As stated earlier, because we cur-
rently lack data to determine the occupancy status of
modeled range areas for H. teleus, we present these
AOO estimates as bounds and not as a single definitive
calculation. Assuming sub-requirements for threat cate-
gories are met, the occupied grid cells estimate (36 km2;
low bound of estimates) would correspond to Endan-
gered B2 (<500 km2), and consideration of the estimates
based on the SDM prediction (25,064 km2; upper bound
of estimates) and both SVM approaches (18,544–19,812;
mid-range estimates) could correspond to Near Threat-
ened given the uncertainty necessary for this attribution
(section 10; IUCN 2019). Due to the sparse sampling in
this tropical region (relative to 4 km2 grid cells), we
interpret that the occupied grid cells estimate is a
strongly biased underestimate. Considering the continu-
ing loss of forest cover in this region of Ecuador (Van
der Hoek 2017), the assumptions concerning the geo-
graphic range category B subrequirements and future
threatened status seem likely. The differences between
the AOO bound estimates considering forest cover from
the SDM prediction and SVM approaches are not large
enough to result in a difference of threat category. Nev-
ertheless, as the SVM-derived estimates were lower (9–
14%; Table 1), they are more likely to result in higher
threat categories for H. teleus if applied on data sets with
less total forest cover (with present or future estimates).
As mentioned earlier, if future field sampling determines
the H. teleus population in the Cordillera de Chong�on-

Colonche is extirpated, the resulting EOO would shrink
considerably and result in lower AOO estimates. Regard-
less, the problem remains that although we have realistic
estimates for upper bounds of AOO (especially those
from the SVMs), we still lack those for the lower bounds.
Based on the above conclusions concerning IUCN threat
categories and the associated uncertainties, we recom-
mend that the listed AOO for H. teleus include the
bounds we estimated. We propose conducting intensive
fieldwork in a randomized sample of sites from within
the spatial-environmental SVM estimate to determine a
prevalence value, which could then be multiplied with
the upper bound AOO estimates to narrow them further.

Considering gradients of AOO for IUCNAssessments

Especially for data-poor species with perceived extinc-
tion threats that lack an AOO estimate, such as the two
species in this study, an AOO gradient from lower (re-
strictive) to upper (expansive) bounds based on different
approaches with varying levels of uncertainty and eco-
logical realism can be informative for conservation (sec-
tions 3.2.2 and 4.10.8; IUCN 2019). The lowest (and
unrealistic) bound should usually be the occupied grid
cells estimate, except in extreme cases with near-perfect
sampling. All approaches that use either SDMs or expert
maps in some way should fall between the extreme
bounds of the gradient, assuming these AOO estimates
are subsets of the EOO (the highest possible bound).
Techniques that subset an expert map or SDM predic-
tion based on ancillary information, such as known ele-
vational limits (Harris and Pimm 2008), habitat
estimates derived from remote sensing data products
(Brooks et al. 2019), or inferred biotic interactions as in
this study will result in estimates that are presumably far
greater than the occupied grid cells estimate. Unmodi-
fied SDM predictions, particularly those thresholded by
the minimum training presence value (MTP), will result
in even higher estimates. Most expert maps will also
likely fall in a similar position on the gradient, as they
tend to be general in nature and thus suffer from high
commission errors unless modified (Rondinini et al.
2006). Finally, the highest (yet unrealistic) bound on the
AOO gradient should be the unmodified EOO estimate
delineated around known occurrence localities or addi-
tionally including inferred or projected occurrences
based on estimated available habitat (Brooks et al.
2019). The most realistic AOO for a majority of species
likely falls somewhere between the marginal bounds of
this gradient. In accordance with the Red List Guideli-
nes, we recommend using the lowest estimate that is also
realistic (section 3.2.4; IUCN 2019), such as those from
the SVM approaches and additional consideration of
forest cover presented here.
AOO estimates that account for important spatial

restrictions, such as those imposed by biotic interactions,
can lead to more accurate range estimates that better
inform biogeographic studies as well as conservation
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decisions such as planning long-term monitoring, assess-
ing current or future extinction risk, and managing
reserve systems. If species’ ranges are incorrectly esti-
mated, sparse funds could be misdirected, conservation
actions could be negatively affected, and the species’ sur-
vival could even be impacted. More broadly, we recom-
mend this approach for other species that have
parapatric ranges apparently impacted by biotic interac-
tions, particularly for data-poor species of concern.

CONCLUSIONS

Despite growing evidence that biotic interactions
help to shape species’ ranges at the macroscale (Ara-
�ujo and Luoto 2007, Wisz et al. 2013), the explicit,
operational exclusion of inferred biotically unsuitable
areas in estimates of AOO for IUCN conservation
assessments is rarely, if at all, practiced. This is true
despite the necessity for AOO to represent areas with
good evidence of actual occupancy, and certainly not
areas associated with the presence of a parapatric con-
gener. Although we have reasons to hypothesize that
competitive exclusion is driving parapatry between our
two study species, confirming this mechanism is extre-
mely difficult given the scarcity of field observations
and difficulty of manipulative experiments for these
nocturnal and elusive rodents (Koplin and Hoffmann
1968, Anderson et al. 2002), as well as their rarity even
in museum collections. Given that confirming biotic
interactions in general is difficult for most species
based on macroscale data (Morales-Castilla et al.
2015), predictions for threatened species that account
for inferred interactions should be compared with
others in a gradient of different AOO estimates to
address the inherent uncertainty in assigning areal val-
ues to ranges of low-data species.
Given that the competitive interactions between our

two study species are indeed inferred, we thus acknowl-
edge that other factors may be responsible for the cur-
rent distributional patterns we observe. However,
regardless of whether or not the underlying mechanism
is biotic in nature, the results of the SVM approaches
align better with our expectations regarding the spatial
extents of these species’ ranges based on the limited but
well-georeferenced occurrence data available. Addition-
ally, as mentioned above, we advocate for the collection
of data to determine species prevalence, which would
facilitate estimation of more realistic lower bounds of
AOO. For species pairs or larger groups of species that
are spatially structured by strongly supported biotic
interactions, these techniques can help remove areas that
are biotically unsuitable from AOO estimates. Nonethe-
less, for systems that are hypothesized to be spatially
structured by interactions (i.e., not verified but with
strongly suggestive evidence) such as the two species in
this study, the SVM-derived estimates can make impor-
tant contributions to more realistic upper bounds of
AOO.

In addition to accounting for competition between
parapatric species, we envision that the technique we
demonstrate could be applied to other kinds of inferred
interactions that result in similar effects on ranges. One
example would be if the presence of a generalist parasite
or parasitoid results in such high levels of mortality for a
host species that it cannot sustain populations. If sites of
absence for the parasite/parasitoid exist (in addition to
sites of presence), SVMs could be used to mask out areas
where it occurs from the AOO estimate of the host spe-
cies. However, this technique can only be used when each
species considered can subsist without the other, and
hence would not work for most specialist parasites or
parasitoids. Our aim here was not to propose SVMs as
the optimal technique for considering biotic interactions
in determining species ranges and calculating AOO esti-
mates, but to more generally advocate for automated
methods that can classify species ranges based at least
partially on the positions of occurrence localities for the
purpose of masking out areas of inferred biotic unsuit-
ability. Future work would further benefit biogeography
and conservation biology by comparing among methods
to determine which are optimal for which systems and
research goals.
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