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Spontaneous emission of electric and magnetic 
dipoles in the vicinity of thin and thick metal 

R. Hussain,1 D. Keene,2 N. Noginova,1,3 and M. Durach2,* 
1Norfolk State University, Norfolk, Virginia 23504, USA 

2Georgia Southern University, Statesboro, Georgia 30458, USA 
3nnoginova@nsu.edu 

*mdurach@georgiasouthern.edu 

Abstract: Strong modification of spontaneous emission of Eu3+ ions placed 
in close vicinity to thin and thick gold and silver films was clearly 
demonstrated in a microscope setup separately for electric and magnetic 
dipole transitions. We have shown that the magnetic transition was very 
sensitive to the thickness of the gold substrate and behaved distinctly 
different from the electric transition. The observations were described 
theoretically based on the dyadic Green’s function approach for layered 
media and explained through modified image models for the near and far-
field emissions. We established that there exists a “near-field event 
horizon”, which demarcates the distance from the metal at which the dipole 
emission is taken up exclusively in the near field. 

©2014 Optical Society of America 

OCIS codes: (240.6680) Surface plasmons; (240.0310) Thin films; (260.2510) Fluorescence; 
(260.3800) Luminescence; (260.3910) Metal optics; (160.5690) Rare-earth-doped materials. 
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1. Introduction 

The effects of the local environment on spontaneous emission are commonly discussed in 
terms of the Purcell effect [1] accounting for a modification of the photonic mode density and 
a subsequent alteration of the dipole emission rate [2–5]. Depending on the degree of 
modification of electric and magnetic components of optical modes, electric and magnetic 
dipoles can be affected in a different manner. This was discussed theoretically [4–8] and 
shown experimentally by observing changes in luminescence spectra of rare earth ions such 
as Eu3+ [9–18], having both magnetic and electric dipole transitions. It was suggested that 
Eu3+ ions can be used as a spectroscopic tool for probing the effect of optical magnetic 
resonance in plasmonic nanostructures [19], and for mapping local distributions of optical 
magnetic and electric fields in plasmonic metamaterials [15]. It was established that losses in 
nanostructured materials and changes in radiation patterns, which are different for magnetic 
and electric dipoles, are important factors for these applications [10–12]. 

Modification of electric and magnetic dipole emission associated with the presence of 
metal is an open problem in nano-optics and has recently attracted a lot of attention [12, 13]. 
If an emitter is placed in the vicinity of an ideal mirror and oriented parallel to the interface, 
one can expect a reduction of an electric and an enhancement of a magnetic dipole emission 
normal to the interface due to the boundary conditions for optical electric and magnetic fields 
[8, 17]. However, in very close vicinity to real metals at distances of about 30 nm, the 
opposite behavior has been recently observed: the emission of the electric dipole was 
enhanced while magnetic dipole emission was decreased near thin gold films and nano-strip 
arrays [10, 18]. 

The goal of the current work is to provide a better understanding of the effects of close 
vicinity of metal on electric and magnetic emitters. Here we restrict ourselves to planar 
geometry, considering dipoles very close to the surface of thin and thick metal films. The 
paper is organized as follows. First, we describe an experiment where the distinctly different 
behavior of electric and magnetic emitters located near thin gold films was visualized in an 
optical microscope setup. Then, we provide a theoretical description where we show that the 
contribution of Eu3+ emitters to far-field radiation demonstrates a threshold-like behavior 
dependent upon the distance between the emitters and the metal surface. In very close vicinity 
to the metal, all of the energy imparted on the emitter is required to establish a near field 
image within the metal, leaving nothing for radiation into the far field, which we refer to as 
being beyond the “near-field event horizon”. Our model establishes a theoretical framework 
for the estimation of this threshold as a function of the thickness of the metal film. Also we 
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show that it provides an adequate description of the effects observed in far field emission, 
which was originated from emitters located outside of this “event horizon.” 

2. Experiment 

Highly luminescent Eu(TTA)3(L18) chromophore material was synthesized in house, 
following [20]. The emission spectrum of Eu3+ has several well-distinguishable spectral lines, 
Fig. 1. The transition 5D0 - 

7F1 with the emission at the wavelength, λ = 590 nm is associated 
primarily with a magnetic dipole [21] while the rest of the lines are primarily electric dipole 
transitions, including the strongest line, 5D0 - 

7F2 with λ = 611 nm, originating at the same 
energy level. 

 

Fig. 1. Emission spectrum of Eu(TTA)3(L18) amphiphilic complex. The excitation wavelength 
is 330 nm. Schematic of the levels is shown in insert. 

The idea behind our experiment was to use the microscope setup where one could 
simultaneously observe the emission of Eu3+ placed in different surroundings: near thin metal, 
thick metal, and glass, which would be used as a reference. Then we would record and 
compare the effects of the different placement on the emission intensity separately for 
magnetic and electric transitions. 

The substrates were fabricated with thermal deposition of gold or silver on a glass 
substrate through a standard STM mesh, 656-300-AU, purchased from Ted Pella Inc. Such a 
deposition produced 7 μm x 7 μm square patches of metal with 2 μm distances between each 
other, arranged in square blocks of ~50 x 50 μm size with 15 μm distances between blocks. 
The thickness of metal after the first step of deposition was ~50 nm as measured with the 
Bruker DektakXT profilometer. In order to obtain metal squares of two different thicknesses 
on the same substrate, we covered a half of the sample, and continued the thermal deposition. 
After the second phase, the thickness of squares at the exposed part was in the order of 170 
nm. 

Solutions of Eu(TTA)3(L18) complex and polystyrene in chloroform were mixed in the 
proportion 1:5. 30-microliter drop of the mixture solution was spread on a water surface. 
After evaporation of chloroform, a thin polymeric film was formed on the water surface [22]. 
Such a process produced films with practically uniform thickness (which was confirmed with 
the profilometer after transferring the film to a flat surface). Immersing the substrate with 
metal squares, the film was transferred to the substrate covering both squares and a space 
between them. The thickness of the Eu3+ polymeric films was in the range of 30-40 nm. 
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The microscope images were recorded using Zeiss Imager Z2m microscope equipped with 
Axiocam camera. The luminescence of Eu3+ was excited with UV light at λ = 325 nm, which 
was brought to the sample with the optical fiber from the CW He-Cd laser. In order to record 
the emission signals at electric and magnetic transitions separately, interferometric filters for 
610 nm and 590 nm correspondingly were inserted in the recording channel. The signal at 590 
nm was relatively weak, that restricted us to use the 20x resolution objective of microscope. 

The images obtained in the sample with thin gold are shown in Fig. 2. In Fig. 2(a), the 
golden squares seen in the standard reflection mode (using the microscope light source) 
correspond to square arrangements of small gold patches. The total emission, Fig. 2(b), is 
brighter on the gold than on glass between them. However, the image clearly shows the 
presence of the luminescent film on both gold and glass. 

 

Fig. 2. (a) A substrate with thin gold squares in a standard reflection mode. Eu3+ luminescence: 
(b) total (c) at 610 nm and (d) at 590 nm. 

Images taken at 610 nm (strong electric transition) and 590 nm (magnetic transition) are 
shown in Fig. 3(c) and Fig. 3(d) correspondingly. As one can see, the image recorded at the 
electric dipole transition (Fig. 3(c)) is similar to the image with the total emission (Fig. 3(b)), 
which can be expected taking into account that the transition at 610 nm contributes of ~70% 
to the total signal. For the magnetic dipole emission, the contrast between gold and glass is 
the opposite (Fig. 3(d)): the film on gold is darker than on glass interspacing. 

Such a difference in contrasts for magnetic and electric dipole emission exists only if gold 
is thin (50 nm). At larger thicknesses of metal, both electric and magnetic dipoles show 
similar behavior. In order to clear demonstrate this, the polymeric film with Eu3+ was 
deposited onto a substrate having both thick and thin metal patches in such a way that the 
polymeric film of almost uniform thickness covered both thick and thin metal patches and 
bare glass. 

In Fig. 3(a), recorded in the standard reflection mode, different thicknesses of gold 
squares can be distinguished by different colors of squares. The light colored squares 
(indicated with a circle at the top of the figure) were thicker (d ≈170 nm) and dark colored 
squares (bottom circle) were thinner (d ≈50 nm), Fig. 3(a). The images recorded at 610 nm 
and 590 nm are shown in Figs. 4(b) and (c). Some variation in the emission from top to 
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bottom is related to non-uniform illumination due to the position of the excitation source. 
However, the character of contrast between gold squares and glass in the inter-space is clearly 
seen. 

The image recorded at the electric dipole transition (shown in Fig. 3(b)) shows much 
stronger emission intensity from the Eu3+ placed on the top of gold squares than that on the 
glass (inter-square spacing). The character of contrast does not depend on the thickness of 
gold: gold brighter than glass is seen for both thin and thick patches. 

 

Fig. 3. (a) Thick and thin (as indicated with circles) patches of gold on glass in reflected light; 
(b) and (c) Eu3+ luminescence at 610 nm and 590 nm correspondingly. 

The magnetic transition (in Fig. 3(c)) shows the negative contrast (gold is darker than 
glass) only for the thin gold (see the bottom circle). The contrast between thick gold and glass 
was similar to what was observed for the electric transition (gold is brighter than glass, see 
squares in the top circle). 

 

Fig. 4. (a) Thick and thin (as indicated with circles) patches of silver on glass in reflected light; 
(b) and (c) Eu3+ luminescence at 610 nm and 590 nm correspondingly. 

We repeated the same experiment using a similar substrate having thin and thick silver 
patches, Fig. 4. In opposite to the observations with gold, the contrast was the same in all 
cases. For both electric and magnetic transitions, thick and thin silver squares looked brighter 
than glass, however, the magnetic dipole emission was significantly weaker on the top of thin 
silver than that on thick silver. Note that non-uniformity which can be seen in Figs. 3 and 4 is 
due to the combined effects of films roughness, illumination from the side and possibly to a 
non-uniform distribution of Eu3+ ions in the polymeric films. 
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3. Theory 

Our formulation is based on the dyadic Green’s function approach for layered media [23]. 
Consider the structure composed of a glass substrate with refraction index ,gn  a metal film 

with thickness a  and a polymer layer with thickness d  and refraction index ,pn  containing a 

dipole separated by distance h  from the metal (see Fig. 5). We show that the behavior of the 
emitters is strikingly different depending on the parameter h. 

 

Fig. 5. Schematic of the structure. 

The experiments are performed at CW UV excitation, which implies a steady state 
condition uv e m non emP P P P −= + +  where the excitation power uvP is equal to the power released 

by the ions in the form of electric dipole emission eP at the transition 5D0 - 7F2, magnetic 

dipole emission mP  at the transition 5D0 - 7F1 as well as non emP −  released through other 

radiative and non-radiative channels. 
In this paper we use normalized emission rates eF  and mF  defined through 0e e e eP Fω= Γ  

and 0m m m mP Fω= Γ . Here the spontaneous emission rate for electric and magnetic dipoles in 

a homogeneous polymer medium are 
23 2

0 04 / (3 )e e pk d nΓ =   and 
23

0 04 / (3 )m mk dΓ =   [7]. 

The normalized emission rates are equal to the integrals 
0

( )e eF k dkρ
∞

=    and 

0
( )m mF k dkρ

∞
=    over the density of states ( )kρ  per interval dk of the component k of the 

wave vector parallel to the layers of the structure [23, 24]. Note that the integrals not only 
include the density of states involving radiation of photons, but also the states involving near-
field for 0k k> . Generic expressions for ( ) /e ek dP dkρ ∝  and ( ) /m mk dP dkρ ∝ are provided 

in the Appendix (please see Eqs. (8) and (10)) and were derived following [23, 24]. 
In Fig. 6(a) we show the normalized relaxation rates eF  and mF  as functions of distance 

h  from a metal film with thickness 50 nma = . When emitters are placed next to the metal, 
the emission rate is strongly enhanced, especially for the electric dipole. Such modification of 
the dipole emission near an interface can be described in terms of the image model [5,9,10]. 
In our case the dipoles are placed next to metal interface and the frequency range of the 
emission is close to the conditions of plasmon resonance of the metal, which leads to 
renormalized Coulomb interaction [25]. At the frequency of plasmon resonance, a source 
positioned within the near field zone at a distance h  from the metal interface induces an 
image with the amplitude multiplied by a factor [7]. 

 
2 2

1 ,d m m m

d m m m

i iε ε ε ε
ε ε ε ε

′ − = − + ≈ ′′ ′′+  
 (1) 
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where mε ′  is the real part and mε ′′  is the imaginary part of the dielectric permittivity of the 

metal mε , such that m mε ε′ ′′  and dε  is the permittivity of the dielectric. This modified image 

formation can also be understood from the fact that Fresnel coefficient [7] for such an 
interface in the near-field limit, i.e. at high longitudinal momenta, is ( 0) 1 2 /p m mr k iε ε′ ′′→ = −  

(compare this to the near-field of the super-lens of [26]). The induced near-fields of the image 
are produced by plasmonic waves, which destructively interfere far from the dipole and 
constructively interfere to form the dipole image next to the position of the source dipole. 

Formation of the electric dipole image and the dominant contribution of this relaxation 
channel can be confirmed by the fact that the normalized relaxation rate eF  is directly 

proportional to 3h−  for 10 nmh <  as can be seen from Fig. 6(a). Interaction of the electric 
dipole with its image results in an increased relaxation rate as well as strong quenching of 
radiation from emitters positioned near metal films. 

Interaction of the magnetic dipole with the near-field created by it is different from that of 
the electric dipole. The dependence of mF  on h  approximately corresponds to 0.8h− , which 

first of all means that in the plane geometry there is no near-field image in the form of a 
magnetic dipole. The near-fields created by a magnetic dipole near plasmonic metal 
nanostructures is a very interesting problem of optical magnetism, which will be considered 
elsewhere. 

 

Fig. 6. (a) Normalized total emission rates eF  and mF  of electric and magnetic dipoles 

placed into a polymer film with 40 nmd = next to a gold film with 50 nma = averaged 

over dipole orientation; (b) Factor f  as a function of the metal film thickness and separation 

of emitter from the metal film h color coded as shown to the right of the graph. The graph is 

made for 40 nmd =  , 12β =  and 0 0/ 8e mΓ Γ = . 

The intensity of radiation emitted by the dipoles toward the microscope at an angle θ  to 
the normal of the structure per solid angle dΩ  is given by 

 0
0 0

( )
( ) ,

( / )
e uv uv e

e e e
e m non em e m e m

dI P P

d P P P F F

ρ θω ρ θ
β−

= Γ =
Ω + + + Γ Γ +

  (2) 

 0 0
0

0 0

( )( / )
( ) ,

( / )
m uv uv m m e

m m m
e m non em e m e m

dI P P

d P P P F F

ρ θω ρ θ
β−

Γ Γ= Γ =
Ω + + + Γ Γ +

  (3) 

where it is assumed that m eω ω≈ , and 0/ ( )non em e ePβ ω−= Γ . Here ( )ρ θ is the local density of 

states involving emission of a photon in the interval of emission angles dθ normalized to the 
density of photons in the vacuum (see Appendix). In our calculations below, we use 
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0 0/ 8e mΓ Γ ≈  for the ratio between the rates of emission of electric dipole transition (5D0 - 
7F2) 

and magnetic dipole transition (5D0 - 
7F1) in free space, which we estimate as ratio of relative 

areas under the corresponding spectral lines in Fig. 1. We use β as the only fitting parameter 

for our theory. 
The numerators in Eqs. (2) and (3) correspond to the far field formation, while the 

denominators are responsible for the quenching. To illustrate how the quenching is included 
into our theory we introduce factor f , which represents the denominators in Eqs. (2) and (3). 

The physical meaning of f corresponds to the ratio between the full relaxation rate of 

emitters on glass to emitters on the metal films. We normalize f by the full relaxation rate on 

the glass substrate, since this rate is practically independent of h 

 0 0 0

0 0

( ( / ) )
.

( ( / ) )
e m e m a

e m e m

F F
f

F F

β
β

→
+ Γ Γ +

=
+ Γ Γ +

 (4) 

The factor f is plotted in Fig. 6(b). It can be seen that for emitters with 10 nmh <   0f ≈ . 

This is due to strong quenching, which was described above. Quenching is also stronger for 
very thin metal films, where it is effective even for emitters separated by 30 nmh ≈  from the 
metal. The divide between green and red areas in Fig. 6(b) defines what we call the “near-
field event horizon”, beyond which emitters cannot radiate and be detected in the far field. 

If an emitter is placed far enough from the metal the quenching is not as strong, which is 
represented by the factor 1f ≈ . Those emitters contribute into far field emission and this 

emission can be explained based on the modified image model. Consider an emitter located 
next to air-metal interface right at plasmonic resonance. Reflection coefficients for high and 

low momenta are related as ||
|| 2

||

2 ( 0)
( )

1 ( 0)
p

p
p

r k
r k

r k

=
→ ∞ =

+ =
 (see [27] for the idea behind our 

derivation), with reflection coefficient at normal incidence for TM polarization being 
approximately equal to ||( 0)pr k i= ≈ (the exact equality is in absence of absorption). Thus, the 

reflection at normal and near normal incidence leads to appearance of phase-shifted image 
dipoles positioned in metal at distance h  from its surface visible in the far-field and observed 
in the experiment with complex amplitudes 

 0|| 0

0|| 0

,

,

i

i

i i

i i

⊥

⊥

= − +

= −

d d d

m m m

  

    (5) 

where d


and m


are correspondingly electric and magnetic dipole moments and subscripts ||  

and ⊥  correspond to the parallel and perpendicular orientation vs the plane interface. 
We explain the properties of the observed emission based on these images. The complex 

factors in front of the amplitudes lead to a lag in the oscillations of the images with respect to 
the original dipoles. The radiation emitted by the images travels toward the original dipoles 
and acquires the corresponding phase. At arrival to the position of the original dipole the 
emission constructively or destructively interferes with the emission from the original dipole. 
Since we observe the emission in the direction normal to the interface most of the emission 
comes from dipoles oriented parallel to the interface and this is where we will place our focus 
in the discussion. 

The amplitude of the waves travelling toward our microscope from an electric dipole next 
to the metal-dielectric interface is given by 

 1 exp(2 ),hi iϕ− ⋅  (6) 
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where the phase 0h pk n hϕ = is related to the propagation from the position of the image to the 

source. Note that emitters, whose radiation is not quenched, are separated from the metal by 
distance 15 40 nmh ≈ −  , while the index of refraction for the polymer 1.7pn = , which makes 

phase /15 / 4hϕ π π≈ − . The combination of the quarter-period lag of the image dipole and 

the phase accumulated during the travel leads to the enhancement of the radiation from the 
electric dipoles positioned parallel to metal films. This is in contrast with the image model 
based on an ideal reflector, but in agreement with the experimental data. 

Now let us turn to the magnetic dipole emission. For a magnetic dipole on top of thick 
metal films enhancement is observed, while emission is decreased on top of thin films. If one 
reduces the thickness of the metal film to be on the order of the skin-depth 

sl  the reflection 

coefficient is changed to tan h( / )p sr i a l=  [28] and the far-field image described above is 

modified, so that its magnitude becomes reduced. Taking this into account the intensity of the 
magnetic dipole radiation normal to the structure is modified as 

 
22 21 tan h( / ) 1 tan h( / ) 2sin(2 ) tan h( / ).hi

s s h si a l e a l a lϕ ϕ+ ≈ + −   

It can be easily seen that, for example, for /15hϕ π≈  this function represents 

enhancement for thick metal films sa l  and reduction of intensity for thin films sa l≈ . It 

needs to be noted that the reflection characteristics of our actual structure (see Fig. 5) are 
more complex than the ones we use for the explanations we provide above, first of all, 
because the emission frequencies of Eu3+ transitions are somewhat detuned from the 
plasmonic resonance. Another factor is the additional reflections from the polymer-air and 
metal-glass substrate interfaces. 

Now having established the groundwork for the theoretical description we turn to the 
exact situation with which we are presented experimentally. To find the intensities eI  and mI  

measured by the microscope, we integrate Eqs. (2) and (3) over the radiative angle from 0 to 

mθ  corresponding to the numerical aperture of the microscope 0.5NA = using Eqs. (13)-(17) 

from Appendix. We also average the result over the position h  of the emitters within the 
polymer films. We define the intensity contrast between emitters on metal films and emitters 
placed directly on the glass substrate as 

 
( ) ( )

( ) 1 and ( ) 1
( 0) ( 0)

e m

e m

I a I a
a a

I a I a
η μ= − = −

= =
       (7) 

With this definition a positive value of contrast means that the signal coming from the 
emitters placed on gold films is stronger than the signal coming from those on the glass 
substrate. Negative contrast signifies the opposite situation. 

The contrast ratiosη and μ are shown as functions of the metal film thickness a, for gold 

and silver, in Fig. 7. The contrastη is positive for gold films thicker than 20 nma ≈  and is 

higher for thicker films, which agrees with the experimental results. One can also see that the 
contrast ratio μ is negative for thin gold films with 70 nma ≤ and is positive for thicker films. 

We have placed orange and green dots in Fig. 7 to highlight the theoretical values 
corresponding to metal thickness, 50 nma = and 170 nma = , at which the experiments were 
conducted. It can be easily seen from Fig. 3(b) and (c) that these contrast ratios correspond 
nicely to the experimental values. At the same time both η and μ are positive for silver films 

thicker than 20 nm in accordance with the experiments shown in Fig. 4(b) and (c). It is 
through varying the fitting parameter β that we establish a curve for the function μ shown in 

Fig. 7(a) that fits the experimental data for gold (Fig. 3(c)), therefore locking down the value 
for 12β = , which seems to be reasonable for our highly luminescent material. Such 
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sensitivity of magnetic dipole radiation to changes in the optical nanoscale environment can 
serve as yet another proof of the importance of investigations into the field of optical 
magnetism. Note that in the current study, the sign of the contrast is clearly demonstrated in 
different surroundings simultaneously and is in agreement with theoretical results. 
Experimental estimation of the exact values of contrasts in the dependence of the gold/silver 
film thickness is the subject of a separate study which will be published elsewhere. 

 

Fig. 7. (a) The contrast ratios η  and μ  (see Eq. (7)) for electric and magnetic transitions for 

gold film as a function of film thickness; (b) The same for silver film. 

4. Conclusions 

In conclusion, we have studied the effects of close vicinity to metal on spontaneous emission 
of electric and magnetic dipole sources through an optical microscope setup. Distinctly 
different behavior of electric and magnetic dipoles was demonstrated near gold films of a 
nanoscale thickness. We described the results theoretically based on the dyadic Green’s 
function approach for layered media and proposed an interpretation based on modified image 
models for the near and far-field. 

These results can find applications in probing and mapping of optical field distributions in 
plasmonic systems by spectroscopic methods. 

Appendix 

The electric local density of states ( )e kρ per interval dk of the component k of the wave 

vector parallel to the layers of the structure can be found to be 

 
0

1
( ) ,e

e
e e

dP
k

dk
ρ

ω
=

Γ



 (8) 

where 0 0 0
ˆ/ 2 Im( ( , ) )e e e eP ck ∗= ⋅ d G r r d

  
, and Ĝ is the electric dyadic Green’s function at the 

position of the emitter 0r


. Using the Fourier representation of the Green’s function we find 
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 (9) 
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Here 2 2 2
0z pk k n k= − , 1pr  and 1sr are reflection coefficients from the polymer-air interface for 

TM and TE polarized radiation, while 2 pr and 2sr are corresponding reflection coefficients for 

reflection from the metal films ([28] has detailed description of reflection from films). 
The magnetic local density of states ( )m kρ can be found as 

 
0

1
( ) ,m

m
m m

dP
k

dk
ρ

ω
=

Γ



 (10) 

where 2
0 0 0

ˆ/ 2 Im( ( , ) )m p m m mP ck n ∗= ⋅ d G r r d
  

, and Ĝ is the magnetic dyadic Green’s function. 

Finally, we find that 
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 (11) 

The intensity of radiation emitted into the air by the electric dipole with moment ed and 

frequency 0ckω = into a solid angle dΩ at angleθ  to the normal in the far-field zone is 

 
2 2

0( ) ( ).
4

e
e e

dI c
E r

d
θ ω ρ θ

π
= = Γ

Ω
  (12) 

Here 
2

E is the electric field at distance r from the sample averaged over the orientation of 

the dipoles. The spontaneous emission rate in a homogenous polymer medium is 
23

0 02

4

3e e
p

k d
n

Γ =


 and the local density of states involving emission of a photon into the air 

in the interval of emission angles dθ normalized to the density of photons in the vacuum for 
the electric dipole is 

 ( )( )2
2 22 2 2 2

2 2

1 cos
( ) sin sin .

16 ( sin )e s p p p
p

t t t n
n

θρ θ θ θ
π θ + + −= + + −

−
 (13) 

Similarly, the intensity of radiation by the magnetic dipole reads as 

 
2 2

0( ) ( ).
4

m
m m

dI c
H r

d
θ ω ρ θ

π
= = Γ

Ω
  (14) 

Here the spontaneous emission rate for a magnetic dipole in a homogeneous polymer medium 

is 
23

0 0

4

3m mk dΓ =


and the normalized density of states for the magnetic dipole is 

 ( ) ( )2
2 2 24 2 2 2

2 2

1 cos
( ) sin ( sin ) .

16 sin
m p p s s p

p

n t t t n
n

θρ θ θ θ
π θ + + −= + + −

−
 (15) 

The amplitudes of the detected radiation ,p st ±  in Eqs. (12)-(15) are 
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, 2
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1 ( )
,
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d h h

d

i i
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ϕ ϕ

ϕ
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where phases are given by 0x pk n xϕ = , and 0( ) 2 2 /m m sa k a a lφ ε= − ≈ . The skin-depth is 

equal to ( ) 1

0 Re 25 nms ml k ε
−

= − ≈ at optical frequencies. The subscripts in the Fresnel 

coefficients for p-polarization i j
ij

i j

n n
r

n n

−
=

+
 and 

2 j
ij

i j

n
t

n n
=

+
correspond to the notations given 

in Fig. 5, while the Airy coefficient ( )R a represents reflection from the metal film [28]. The 

coefficients ,p st ± contain all the information about the environment in which the emitters are 

located. 
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