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Abstract

Let A be a nontrival abelian group. A connected simple graph G = (V,E) is A-
antimagic if there exists an edge labeling f : E(G) → A \ {0} such that the induced
vertex labeling f+ : V (G)→ A, defined by f+(v) =

∑
uv∈E(G) f(uv), is injective. The

integer-antimagic spectrum of a graph G is the set IAM(G) = {k | G is Zk-antimagic
and k ≥ 2}. In this paper, we determine the integer-antimagic spectra for cycles with
a chord, paths with a chord, and wheels with a chord.

1 Introduction

Labelings form a large and important area of study in graph theory. First formally in-
troduced by Rosa [7] in the 1960s, graph labelings have captivated the interest of many
mathematicians in the ensuing decades. In addition to the intrinsic beauty of the subject
matter, graph labelings have applications (discussed in papers by Bloom and Golomb [1, 2])
in graph factorization problems, X-ray crystallography, radar pulse code design, and ad-
dressing systems in communication networks. The interested reader is directed to Gallian’s
[4] dynamic survey, which contains thousands of references to research papers and books on
the topic of graph labelings.

Let G be a connected simple graph. For any nontrivial abelian group A (written addi-
tively), let A∗ = A\{0}, where 0 is the additive identity of A. Let a function f : E(G)→ A∗

be an edge labeling of G and f+ : V (G) → A be its induced vertex labeling, which is
defined by f+(v) =

∑
uv∈E(G)

f(uv). If there exists an edge labeling f whose induced ver-

tex labeling f+ on V (G) is injective, then we say that f is an A-antimagic labeling and
that G is an A-antimagic graph. The integer-antimagic spectrum of a graph G is the set
IAM(G) = {k | G is Zk-antimagic and k ≥ 2}.

The concept of the A-antimagicness property for a graph G (introduced independently
in [3, 5]) naturally arises as a variation of the A-magic labeling problem (where the induced
vertex labeling is a constant map). There is a large body of research on A-magic graphs
within the mathematical literature. As for A-antimagic graphs (which is the focus of our
paper), cycles, paths, various classes of trees, dumbbells, multi-cyclic graphs, Km,n, Km,n −
{e}, tadpoles and lollipop graphs were investigated in [3, 6, 8, 9, 10].

A result of Jones and Zhang [5] finds the minimum element of IAM(G), for all connected
graphs on three or more vertices. In their paper, a Zn-antimagic labeling of a graph on
n vertices is referred to as a nowhere-zero modular edge-graceful labeling. They proved the
following theorem.

Theorem 1.1 (Jones and Zhang [5]). If G is a connected simple graph of order n ≥ 3, then
min{t : t ∈ IAM(G)} ∈ {n, n+ 1, n+ 2}. Furthermore,

1. min{t : t ∈ IAM(G)} = n if and only if n 6≡ 2 (mod 4), G 6= K3, and G is not a star
of even order,

2. min{t : t ∈ IAM(G)} = n+ 1 if and only if G = K3 or n ≡ 2 (mod 4) and G is not a
star of even order, and
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3. min{t : t ∈ IAM(G)} = n+ 2 if and only if G is a star of even order.

Motivation for our current work is found in the following conjecture [6].

Conjecture 1.1. Let G be a connected simple graph. If t is the least positive integer such
that G is Zt-antimagic, then IAM(G) = {k : k ≥ t}.

In [3, 6, 8, 9, 10], Conjecture 1.1 was shown to be true for various classes of graphs. The
purpose of this paper is to provide additional evidence for Conjecture 1.1 by verifying it
for cycles with a chord, paths with a chord, and wheels with a chord. We use constructive
methods to determine the integer-antimagic spectra for these particular classes of graphs.

2 Cycles with a Chord

In this paper, we use the constructed labelings from the proof of the following theorem.

Theorem 2.1 (Chan, Low and Shiu [3]). If r = 0, 1, 3, then C4m+r is Zk-antimagic, for all
m ∈ N, k ≥ 4m+ r. C4m+2 is Zk-antimagic, for all m ∈ N, k ≥ 4m+ 3.

For the sake of completeness, here are the labelings. Let e1, e2, ..., en be edges of Cn

arranged in counter-clockwise direction. A Zk-antimagic labeling of Cn can be obtained as
follows.

Case 1: n = 4m:

f(ei) =

{
i if 1 ≤ i ≤ 2m;

3 + 2(2m− d i
2
e) if 2m+ 1 ≤ i ≤ 4m.

Case 2: n = 4m+ 1:

f(ei) =

{
i if 1 ≤ i ≤ 2m;

3 + 2(2m− d i
2
e) if 2m+ 1 ≤ i ≤ 4m+ 1.

Case 3: n = 4m+ 2:

f(ei) =

{
i if 1 ≤ i ≤ 2m+ 3;

3 + 2(2m− d i−2
2
e) if 2m+ 4 ≤ i ≤ 4m+ 2.

Case 4: n = 4m+ 3:

f(ei) =

{
i if 1 ≤ i ≤ 2m+ 3;

3 + 2(2m− d i−3
2
e) if 2m+ 4 ≤ i ≤ 4m+ 3.

Let (1, 2, ..., n) denote the n-cycle with counterclockwise edges {i, i+ 1} for 1 ≤ i ≤ n−1
and {1, n}. Let [1, 2, ..., n] denote the path of length n−1 with edges {i, i+1} for 1 ≤ i ≤ n−1.
Suppose that Cn is the cycle (v1, v2, ..., vn), and let 2 ≤ l ≤ bn

2
c. Define Cn(l) to be the graph
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obtained from Cn by adding an edge c = {vi, vj}, where l = min{|i− j|, n−|i− j|}. We call
Cn(l) an n-cycle with a chord c of perimeter l.

Note that Cn(l) is the union of two cycles which share a common edge, namely chord c
of Cn(l). The minor subcycle of Cn(l) is the shorter of the two cycles, denoted by C−n (l).
The major subcycle of Cn(l) is the longer of the two cycles, denoted by C+

n (l).
The alternating cycle labeling of Cn = (1, 2, ..., n), starting with the edge {1, 2}, is the

function g : E(Cn)→ {1,−1}, such that g({1, 2}) = 1 and g alternates between 1 and −1.
The alternating path labeling of the path Pn = [1, 2, ..., n] starting with edge {1, 2} is the

function t : E(Pn)→ {1,−1}, such that t alternates between 1 and −1, and the labeling on
the first edge must be specified.

Lemma 2.2. Let n ≥ 4 be an integer and let l be a positive odd integer with 2 ≤ l ≤ bn
2
c.

Then, IAM(Cn(l)) = {k : k ≥ n} if n ≡ 0, 1, 3, (mod 4) and IAM(Cn(l)) = {k : k ≥ n + 1}
if n ≡ 2, (mod 4).

Proof. The main idea of the proof is to find an even cycle within Cn(l) containing the chord
and to use the alternating cycle labeling on it. One can choose the endpoints of the chord
to be v1 and vl+1. Now let f be the Zk-antimagic labeling of Cn defined in Theorem 2.1.
Since l is odd, C−n (l) has even length. This follows from the fact that C−n (l) contains an odd
number of edges from Cn, along with the chord. Let g be the alternating cycle labeling on
the edges of C−n (l) starting with edge {v1, v2}.

Now define the labeling h(e) = f(e) + g(e) where g(e) is defined to be 0 for all edges not
included in C−n (l) . Note that since 3 ≤ l+ 1 ≤ bn

2
c+ 1, we have that for each 1 ≤ i ≤ l+ 1,

f(ei) = 1 if and only if i = 1. The edge labeling on the chord is −1. Therefore, h(e) 6= 0 for
all e ∈ E(Cn(l)). Furthermore, h+(e) = f+(e) for all e ∈ Cn(l). Since f is a Zk-antimagic
labeling, so is h.

Figure 1 illustrates the proof of Lemma 2.2.

Theorem 2.3. Let n and l be postive integers with 2 ≤ l ≤ bn
2
c. Then IAM(Cn(l)) = {k :

k ≥ n} if n ≡ 0, 1, 3, (mod 4) and IAM(Cn(l)) = {k : k ≥ n+ 1} if n ≡ 2, (mod 4).

Proof. It suffices to consider only the case where l is even, since the case where l is odd is
addressed in Lemma 2.2. First, let f be the Zk-antimagic labeling of Cn defined in Theorem
2.1.

If n is odd, then C+
n (l) has even length. This follows from the fact that C+

n (l) contains
an odd number of edges from Cn, along with the chord. We will define the labeling h(e) =
f(e) + g(e) where g is the alternating cycle labeling on the edges of C+

n (l) starting with the
edge {v1, vn}, and g(e) is defined to be 0 for all edges not in C+

n (l). To ensure that h(e) 6= 0
for all e ∈ V (Cn(l)), we must show that f(e) 6= −g(e). We observe the following about the
minimum and maximum values of f .

In the case where n = 4m + 1, the maximum value of f is given by f(e2m+1) = 2m + 1.
The minimum value of f is 1. Furthermore, f(ei) = 1 if and only if i ∈ {1, 4m+ 1}.

In the case where n = 4m + 3, the maximum value of f is given by f(e2m+3) = 2m + 3.
The minimum value of f is 1. Furthermore f(ei) = 1 if and only if i = 1.

In either case, f(e) 6= −1 for all edges e; therefore f(e) 6= −g(e) for all edges where
g(e) = 1. We now have to check the edge labels on e1 and en. Since e1 is not in C+

n (l),
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Figure 1: IAM(C7(3)) = {7, 8, 9, . . . }.

g(e1) = 0 by definition; thus, f(e1) 6= −g(e1). By the definition of g, we have that g(en) = 1;
thus, f(en) 6= −g(en). Thus when n is odd, we have that h is the desired Zk-antimagic
labeling.

In the case where n is even, we consider the following two subcases.

Subcase 1: n = 4m+ 2. We assume chord c has endpoints v2m+3 and v2m+3+l. Note that
2 ≤ l ≤ 2m. So in the case where l = 2m, the endpoints of c are v2m+3 and v1. Define P to
be the path

[v2m+3, v2m+3+l, v2m+2+l, v2m+1+l, v2m+l, ..., v2m+4].

Now, define h : E(Cn(l))→ Z∗k by

h(e) = f(e) + z(e),

where addition is in Zk. Here, f is the Zk-antimagic labeling for Cn (given in Theorem 2.1,
Case 3) and

z(e) =

{
t(e) if e ∈ P ;

0 otherwise.

Here, t is the alternating path labeling of P starting with the chord, which is labeled t(c) =
−1.
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First, we will show that no edge is labeled 0. Since n ≡ 2 (mod 4), f(ei) = 1 if and only
if i =1. By the definition of P , we have that e1 6∈ P . Therefore, h(e) − 1 6≡ 0 (mod k) for
all edges e ∈ E(Cn(l)). By the definition of f , we see that max{f(ei) : 1 ≤ i ≤ 4m + 2} =
f(e2m+3) = 2m+ 3. Therefore, h(e) + 1 6≡ 0 (mod k). Thus, h(e) 6≡ 0 (mod k) for all edges
e ∈ E(Cn(l)).

Next, we will show that all induced vertex labels are distinct. Since t is the alternating
path labeling, we have that h+(v) = f+(v) for all vertices v (besides the two endpoints of
P , which are v2m+3 and v2m+4). We claim that h+(v2m+3) = f+(v2m+4) and h+(v2m+4) =
f+(v2m+3). To see this, observe that by the definition of f , we have that

f+(v2m+3) = f(e2m+2) + f(e2m+3)

= (2m+ 2) + (2m+ 3)

= 4m+ 5

and

f+(v2m+4) = f(e2m+3) + f(e2m+4)

= (2m+ 3) + 3 + 2
(

2m−
⌈2m+ 4− 2

2

⌉)
= 4m+ 4.

Then, we also have

h+(v2m+3) = f+(v2m+3) + t(c) = 4m+ 5− 1 = 4m+ 4

and

h+(v2m+4) = f+(v2m+4) + t(e2m+4) = 4m+ 4 + 1 = 4m+ 5.

Thus, the net result of combining the alternating path labeling of P with the Zk-antimagic
labeling of C4m+2 is that the induced vertex labels of v2m+3 and v2m+4 are transposed.
Therefore, h is the desired Zk-antimagic labeling.

Subcase 2: n = 4m. We assume chord c has endpoints v2m+1 and v2m+1+l. Define P to
be the path

[v2m+1, v2m+1+l, v2m+l, v2m+l−1, v2m+l−2, . . . , v2m+2].

We define the same labeling h as in the proof of Subcase 1, but with the alternating
path labeling t of the newly defined path P starting with the chord t(c) = 1. The argument
follows the same structure. The only differences are the calculations of the induced vertex
labels, which are as follows.

By the definition of f , we have that

f+(v2m+1) = f(e2m) + f(e2m+1)

= 2m+ 3 + 2
(

2m−
⌈2m+ 1

2

⌉)
= 4m+ 1

5
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and

f+(v2m+2) = f(e2m+1) + f(e2m+2)

= 2m+ 1 + 3 + 2
(

2m−
⌈2m+ 2

2

⌉)
= 4m+ 2.

Then,

h+(v2m+1) = f+(v2m+1) + t(c) = 4m+ 1 + 1 = 4m+ 2

and

h+(v2m+2) = f+(v2m+2) + t(e2m+2) = 4m+ 2− 1 = 4m+ 1.

Thus, h is the desired Zk-antimagic labeling.

Figures 2 and 3 illustrate the proof of Theorem 2.3.
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Figure 2: IAM(C6(2)) = {7, 8, 9, . . . }.
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Figure 3: IAM(C8(4)) = {8, 9, 10, . . . }.

3 Paths with a Chord

A path with a chord c of perimeter l (denoted Pn(l)), is defined similarly to a cycle with a
chord of perimeter l. More precisely, Pn(l) denotes the graph obtained by adding an edge,
called the chord, to the path Pn. The perimeter of the chord is the length of the path
from one end-vertex to the other which does not consist of the chord itself. We assume the
two endpoints of the chord are not the end vertices of the original path, since this would
simply be a cycle. The following theorem gives constructions of labelings which characterize
the IAM(Pn). Again in this paper, we use these particular labelings in characterizing the
IAM(Pn(l)).

Theorem 3.1 (Chan, Low and Shiu [3]). If r = 0, 1, 3, then P4m+r is Zk-antimagic, for all
m ∈ N, k ≥ 4m+ r. P4m+2 is Zk-antimagic, for all m ∈ N, k ≥ 4m+ 3.

For the sake of completeness, here are the labelings. Let e1, e2, ..., en−1 be edges of Pn,
from left to right. A Zk-antimagic labeling of Pn can be obtained as follows.

Case 1: n = 4m:

f(ei) =


i+1
2

if i is odd;
i
2

if i is even and 2 ≤ i ≤ 2m− 2;
i+2
2

if i is even and 2m ≤ i ≤ 4m− 2.
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Case 2: n = 4m+ 1:

f(ei) =


i
2

if i is even;
i+3
2

if i is odd and 1 ≤ i ≤ 2m− 3;
i+5
2

if i is odd and 2m− 1 ≤ i ≤ 4m− 1.

Case 3: n = 4m+ 2:

f(ei) =


i+1
2

if i is odd;
i+2
2

if i is even and 2 ≤ i ≤ 2m− 2;
i+4
2

if i is even and 2m ≤ i ≤ 4m.

Case 4: n = 4m+ 3:

f(ei) =


i
2

if i is even;
i+1
2

if i is odd and 1 ≤ i ≤ 2m− 1;
i+3
2

if i is odd and 2m+ 1 ≤ i ≤ 4m+ 1.

A tadpole graph T (r, s) is obtained by joining a cycle Cr and an end-vertex of a path Ps

by a bridge, where r ≥ 3 and s ≥ 1. The following technical lemma will be used in the proof
of Theorem 3.3.

Lemma 3.2 (Shiu, Sun and Low [10]). For r ≥ 3 and s ≥ 1,

IAM(T (r, s)) =

{
r + s, r + s+ 1, . . . if r + s 6≡ 2 (mod 4);

r + s+ 1, r + s+ 2, . . . if r + s ≡ 2 (mod 4).

We are now ready to establish the integer-antimagic spectrum of a path with a chord.

Theorem 3.3. Let n and l be postive integers with 2 ≤ l ≤ bn
2
c. Then, IAM(Pn(l)) = {k :

k ≥ n} if n ≡ 0, 1, 3 (mod 4), and IAM(Pn(l)) = {k : k ≥ n+ 1} if n ≡ 2 (mod 4).

Proof. First, let f be the Zk-antimagic labeling of Pn defined in Theorem 3.1. We make
several observations about the nature of f and f+. From the definition of f , we see that if
f(ei) = 1, then i ∈ {1, 2}. Thus, at most two edges are labeled with 1. We can also see that
for every edge e ∈ E(Pn), f(e) ≤ n

2
+2; in particular, f(e) 6= k−1, since k ≥ n. The last (and

most nuanced) observation is that there are at most two edges, with the exception of the
first and last edges, which do not have consecutive induced vertex labels on their endpoints.
Moreover, the two edges whose induced vertex labels are not consecutive are never adjacent
to each other.

The graph Pn(l) contains exactly one cycle which will be denoted C. Without loss of
generality, we assume that l ≥ 2 and that l is even. In the case that l is odd, C would have
even length. Here, our claim is established by overlaying the alternating cycle labeling, much
like how it was used in the proof of Theorem 2.3.

8
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Case 1: 2 ≤ l ≤ n − 3. By symmetry, we may assume that e1, e2 6∈ E(C). Thus for all
e ∈ E(C), f(e) 6∈ {1, k − 1}. Due to the observations above, there exists at least one edge
(say, x ∈ E(C)) whose endpoints (say, α and β) have consecutive induced vertex labels.
Thus, C − x is a path of even length and f+(α) = a − 1 and f+(β) = a for some a ∈ Zn.
We let t be the alternating path labeling of C − x for which the first edge is labeled with 1
and that edge is chosen to be the one whose endpoint is α.

Now, define h : E(Pn(l))→ Z∗k by

h(e) = f(e) + z(e),

where addition is in Zk, and

z(e) =

{
t(e) if e ∈ C − x;

0 otherwise.

Note that h+(v) = (f+z)+(v) = (f+t)+(v) for all v 6∈ {α, β}. Furthermore, (f+t)+(α) =
f+(β) and (f + t)+(β) = f+(α). In other words, by overlaying the labeling t on top of f we
transpose the induced vertex labels of α and β, and we leave all other induced vertex labels
fixed. Thus, h is the desired Zk-antimagic labeling of Pn(l).

Case 2: l = n − 2. Here, we have a cycle with a pendant path (i.e., a tadpole graph).
Hence, the claim is true for this case, by Lemma 3.2.

Figures 4 and 5 illustrate the proof of Theorem 3.3.

4 Wheels with a Chord

Let Wn denote the wheel on n spokes, which is the graph containing a cycle of length n with
another special vertex not on the cycle, called the central vertex, that is adjacent to every
vertex on the cycle. The integer-antimagic spectra of wheels were determined in [6], and is
stated in the following theorem.

Theorem 4.1 (Roberts and Low [6]). For each integer m ≥ 1, IAM(W4m+r) = {k : k ≥
4m+ r + 1} if r = 0, 2, 3 and IAM(W4m+1) = {k : k ≥ 4m+ 3}.

Figure 6 illustrates Theorem 4.1.

A wheel on n spokes with a chord (denoted W+
n ) is a graph obtained by adding an edge

to Wn. Since the central vertex of Wn is adjacent to all other vertices, a chord added to
Wn must have both endpoints on the outer cycle. Note that W+

3 is a multigraph and is not
considered in this paper.

Theorem 4.2. For each integer n ≥ 4, IAM(W+
n ) = {k : k ≥ n+ 1} if n ≡ 0, 2, 3 (mod 4),

and IAM(W+
n ) = {k : k ≥ n+ 2} if n ≡ 1 (mod 4).
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Figure 4: IAM(P15(6)) = {15, 16, 17, . . . }.

Proof. For n ∈ {4, 5, 6, 7, 8, 9}, the Zk-antimagic labelings of W+
n are given in Figures 7−12.

Suppose n ≥ 10. Let f be the Zk-antimagic labeling of Wn defined in Theorem [6]. Let
the vertices w and z be the endpoints of the chord in W+

n , and note that neither w nor z
are the central vertex. Denote the central vertex by y. There also must exist a vertex, say
x, on the outer cycle which is different from z and is adjacent to w.

Consider the 4-cycle C, with edges {w, x}, {x, y}, {y, z}, and {z, w}. Since n ≥ 10,
we have that k ≥ 11. So by the Pigeonhole Principle, there exists some a ∈ Z∗k such that
±a 6∈ {±f({w, x}),±f({x, y}),±f({y, z}),±f({z, w})}. We will overlay a variation of an
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Figure 6: IAM(W7) = {8, 9, 10, . . . } and IAM(W9) = {11, 12, 13, . . . }.

alternating cycle labeling on C by defining the edge labeling t : E(W+
n )→ Z∗k as follows.

t(e) =


a if e ∈ {{w, x}, {y, z}};
−a if e ∈ {{x, y}, {w, z}};
0 otherwise.

Now, define h : E(W+
n ) → Z∗k by h(e) = f(e) + t(e), where addition is in Zk. Note that

h(e) 6= 0 for all e ∈ E(W+
n ), since a was chosen appropriately. Furthermore, h+(v) = f+(v)

for all v ∈ V (W+
n ). Thus, h is the desired Zk-antimagic labeling.
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