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MULTIPLE IMPUTATION USING INFLUENTIAL EXPONENTIAL TILTING IN CASE OF 

NON-IGNORABLE MISSING DATA  

by 

KAVITA GOHIL 

(Under Direction of Hani M. Samawi) 

ABSTRACT 

Modern research strategies rely predominantly on three steps, data collection, data analysis, and 

inference. In research, if the data is not collected as designed, researchers may face challenges of 

having incomplete data, especially when it is non-ignorable. These situations affect the 

subsequent steps of evaluation and make them difficult to perform. Inference with incomplete 

data is a challenging task in data analysis particularly in clinical trials when the data related to 

the condition under study is missing. Moreover, results obtained from incomplete data are prone 

to biases. Parameter estimation with non-ignorable missing data is even more challenging to 

handle and extract useful information. This dissertation proposes a method based on the 

influential tilting resampling approach to address non-ignorable missing data in statistical 

inference. This robust approach is motivated by a brief use of the importance resampling 

approach used by Samawi et al. (1998) for power estimation. The exponential tilting also inspires 

it for non-ignorable missing data proposed by Kim & Yu (2011). One of the proposed approach 

bases assumes that the non-respondents' model corresponds to an exponential tilting of the 

respondents' model. The tilted model's specified function is the influential function of the 

function of interest (parameter). The other bases of the proposed approach are to use the 

importance resampling techniques to draw inference about some model parameters. Extensive 

simulation studies were conducted to investigate the performance of the proposed methods. We 

provided the theoretical justification, as well as application to real data. 

INDEX WORDS: Missing data, Non-ignorable missing data, Exponential tilting, Influence 

function, Resampling, Mean estimation, Linear model parameter, Multiple imputation, Follow-

up data. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

In statistics, missing data frequently occurs in practice and can significantly affect 

conclusions of the data. Missing data occurs because of nonresponse or no information provided 

for one or more items or the entire sampling unit. Data often are missing in research such as 

economics, sociology, political science, and clinical trials. Governments or private entities 

choose not to or fail to report critical information. Sometimes the information is not available. 

Moreover, it could be due to the researchers’ errors, such as when the data is collected 

inefficaciously, or errors made during the data entry. 

Analysis with incomplete data leads to biased results and can severely affect the 

inference. In such cases, the reliability and accuracy of the results are misleading. 

The primary effects of missing data during analysis are the loss of power when testing 

hypotheses and bias in parameter estimation. As the proportion of these missing values increases, 

the study’s power reduces, which has severe consequences on its accuracy (Rubin, 1987). In 

clinical studies, missing data can pose a risk of false conclusions and misdirect the drug 

development program (Walton, 2009). In social sciences, missing data at the research design 

stage causes indistinctness in inferences (Kenward, 2017). 

For example, in a social science research survey, data obtained from respondents’ 

answers are presented in the following manner: 

Source: Missing Data: The hidden Problem, Retrieved from 

“https://www.bauer.uh.edu/jhess/documents/2.pdf 

https://www.bauer.uh.edu/jhess/documents/2.pdf
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Table 1.1 

Missing data example, a social science research survey 

Case Age Gender Home Education Occupation 

1 . Female No 16 Non-professional 

2 22 Male No . Non-professional 

3 39 Male . 20 Professional 

4 . Female Yes . Professional 

5 40 . Yes 16 Non-professional 

6 22 Female No 16 . 

7 35 Male Yes 18 Professional 

8 39 Male Yes 20 Professional 

In this recorded dataset, ‘.’ indicates a missing response, and if it is ignored in any 

variable, the available data would be inadequate. For instance, if the researcher’s goal is to 

predict an association between homeownership and demographic factors such as age and 

educational background while ignoring the missing data, the researcher will be left with only half 

of the observations. Therefore, it is obligatory to properly handle this missing data issue to 

reduce the impact of missing information. 

The early attempt dealing with the issue, in the 1900s, was restricted to algorithmic and 

computational solutions to the deviations from the intended study designs. The most popular 

initial method, usually done by statistical software, was complete case analysis. This method 

recalls and analyzes only available observations. However, in the last quarter of the twentieth 

century, various strategies have come into the picture, like expectation-maximization (A. P. 

Dempster, 1977), data imputation, and augmentation methods (Rubin, 1987) (Wong, 1987). All 

these strategies combined with influential computing resources provided a solution to handle this 

problem (Geert Molenberghs, 2007). 
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1.2 Missing Data Mechanism 

Missing data can occur at any stage of the research due to many causes in several different 

scenarios. For example, it can happen in longitudinal studies and clinical trials due to the dropout 

or follow-up loss. In surveys, it can happen if participants refuse to answer a specific question, 

accidentally skip a question, or do not know the answer. 

When we handle missing data, it is vital to understand the underlying mechanisms for its 

absence. Using missing data methods depends predominantly on the dependencies' nature in 

these mechanisms (Rubin, 1987). Rubin distinguished three missing data mechanisms: 

1) Missing Completely at Random (MCAR),

2) Missing at Random (MAR),

3) Missing Not at Random (MNAR).

The above mechanisms are used to label the associations between measured variables and the 

probability of missing data. The first two mechanisms are called the "ignorable" missing 

mechanism, and the last one is called the "non-ignorable" missing mechanism. 

1.2.1 Missing Completely at Random (MCAR) 

If the missing data is unrelated to both the missing responses and the set of observed 

responses, it implies that the observed values represent the entire sample. This mechanism is 

known as missing completely at random (MCAR). For clinical trials and longitudinal studies, the 

chance of missing data is the same for the individuals in different groups. It is equally likely to 

occur in any subject in the study. 

Examples for MCAR would be a dropped test tube in the lab for a drug trial, which leads to a 

missing value in the report for that individual. When a machine fails while collecting or 
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recording data during usage, it gives a missing reading. Another example is a single question 

skipped accidentally during the survey. 

These are all examples of MCAR missing data.  

Properly, let ( )ijY y= denote a complete (𝑛 × 𝐾) rectangular data set without any missing

values, with ith row 
1 2( , ,..., )i i i iky y y y=  where 

ijy is the value of a variable
jY for subject i. Y can 

be partitioned into an observed part, labeled as
obsY , and a missing part,

missY , which yields

,( )obs missY Y Y= . Furthermore, we define a matrix of missingness indicators R, which can take the 

value of 0 or 1, with dimension (𝑛 × 𝐾).  

The vector of outcomes for a subject partitioned as: 

( , )obs miss

i i iY Y Y=    {
𝑌𝑖

𝑂𝑏𝑠,  𝑅𝑖𝑗 = 1 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠

𝑌𝑖
𝑚𝑖𝑠𝑠, 𝑅𝑖𝑗 = 0 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠

To better understand the missing types, assume if the missing data mechanism is 

characterized by the conditional distribution of missing indicator given the data, i.e. ( | )f R  , 

where   denotes the unknown parameters (Thoemmees & Mohan, 2014). 

For MCAR mechanism, the distribution of missingness will be independent of data being 

observed or missing. In other words, the unconditional distribution of missingness 𝑃(𝑅) is equal 

to the conditional distribution of missingness given 
obsY  and 

missY or simply 𝑌. 

( | , ) ( | , , ) ( | )obs missP R Y P R Y Y P R  = = ,Y 

In MCAR type, one cannot verify that the observed data is missing only due to complete 

randomness. However, the examination of homogeneity of means and variances of the data can 

guide us to believe that the data is missing as MCAR. Little (1998) provided a multivariate test 

for homogeneity for assessment. For data with MCAR, the analysis remains unbiased. Still, the 
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loss of power can occur in inference, but the estimated parameters are not biased because of the 

missing data (Thompson, 2013). 

1.2.2 Missing at Random (MAR) 

If the missing data is related to the observed data and not on the missing data, it is called 

Missing at Random (MAR). It is a less restrictive condition than MCAR. There is a systematic 

relationship between the missing values and the observed data, but not the missing data.  

For example, if men are more likely to tell about their weight than women in a survey, then 

the weight is Missing at Random. Another example is that if both men and women have the same 

chance of dropout in a clinical trial, but if the dropout rate is higher in men, then the missing data 

mechanism is MAR. Besides, survey respondents in service occupations are less likely to report 

income questions in the survey. 

More formally, for the MAR mechanism, the conditional probability of missingness, given 

the observed part
obsY , is equal to the conditional probability of missingness, given both the 

observed and unobserved part, 

,( )obs missY Y i.e.   ,( | , ) ( | )obsf R Y f R Y =     ,missY   

,( | ) ( | ) ( | )obs miss obsP R Y P R Y Y P R Y= =

In MAR assumption, the missingness is independent of the unobserved portion of Y, given 

the information about the observed part of Y. Missing at Random does not mean it always 

produces unbiased results. Still, there are different ways of dealing with this issue to make 

unbiased estimates (Thompson, 2013). 

The above two mechanisms are considered as “Ignorable Missing” because for such data, we 

can still produce unbiased parameter estimation without model explanation for missingness 

(Thompson, 2013). 
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1.2.3 Missing Not at Random (MNAR) 

If the probability/likelihood of missing data is systematically related to the missing 

hypothetical values (the unobserved information), it is called Missing Not at Random (MNAR). 

MNAR is characterized by the absence of any of the above-mentioned probability equalities or 

conditional independencies, which implies that,    

, ,( | ) ( | )obs miss obsP R Y Y P R Y 

MNAR is the most challenging to deal with as it produces biased results. The bias depends 

on the correlation between the missing variables. For example, survey respondents with very 

high incomes are more likely to decline to answer their income questions. In substance abuse 

trials for abstinence outcomes, people with relapse are more likely to drop out of the study. For 

the education outcome survey, people with the least education are most likely to skip the 

question regarding the highest education completed. 

MNAR is considered "Non-Ignorable Missing" as in this case, the missing data 

mechanism itself must be modeled and require some prototype for why the observations are 

missing and the possible values (Grace-Martin, 2008). 

To represent the missing data mechanisms graphically, let us have X - represents the 

variables that are completely observed, and Y represents a partly missing variable. Let Z 

represents the causes of missingness unrelated to X and Y, and R represents the missingness 

indicator (Mohan, 2015). 

Figure 1.1 

Missing Data Mechanism, Reproduced from Schafer & Graham, 2002 

X Z Z X Z 

Y R Y R Y R 

X 

MCAR MAR MNAR

R
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1.3 Methods for Handling Missing Data 

Traditionally researchers used a wide variety of techniques to handle missing values. In 

earlier times, the most common were deletion methods and single imputation methods (Enders, 

2004). Deletion techniques include listwise deletion and pairwise deletion in which observations 

with missing data are discarded, and analysis was done using only complete cases. Those are 

called Complete Case Analysis (CCS) (Eekhout, n.d.). The single imputation methods include 

mean/mode substitution, the dummy variable method, and single regression imputations. Such as 

stochastic regression imputation, hot deck imputation methods, last observation carried forward 

(LOCF), baseline observation carried forward (BOCF), and worst observation carried forward 

(WOCF) found in the literature. The regression method consists of constructing a regression 

model containing missing values used as the response variable. The missing value’s replacement 

is generated by the predicted value derived from the model, and then it is used to impute the 

missing observations. These regression models depend on the structure of the data like Poisson 

regression for count variables, logistic regression for binary variables, and linear regression for 

continuous variables (Raghunathan, Lepkowski, Hoewyk & Solenberger, 2001). The last 

observation carried forward (LOCF), baseline observation carried forward (BOCF), and worst 

observation carried forward (WOCF) are used in dropout cases in clinical trials and/or 

longitudinal studies. These methods are inefficient as they have drawbacks like loss of power, 

biased coefficient estimates, and underestimated variances (Baraldi & Enders, 2010) (Eekhout et 

al., 2012). 

Due to the weaknesses associated with the above-mentioned traditional methods, 

researchers came up with model-based approaches to handle the missing data (Graham, 2002). 

Two widely popular model-based methods, Maximum Likelihood Estimation and Multiple 
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Imputation are considered "State of the Art" missing data techniques (Schafer & Graham, 2002). 

These methods are more powerful than traditional methods because not a single piece of data is 

deleted. These methods are based on the assumptions about the joint distribution of all variables 

in the model. It produces unbiased estimates with MCAR and MAR data. The major advantage 

of this method is that with given assumptions, the results obtained using this method can apply to 

a broader range of contexts with fewer conditions. However, this requires more complex 

computations (Baraldi & Enders, 2009). 

In Maximum Likelihood Estimation, parameter values estimated have the highest probability 

of producing the samples using complete and incomplete data. It identifies the population 

parameter values using the highest probability of producing the sample data. In order to obtain 

the sample data, the log-likelihood function is used to quantify the standardized distance between 

the observed data point and the parameter of interest. The goal is to minimize this distance. Once 

the parameters are estimated using the complete data, the missing data are estimated based on 

those parameters. This method uses the assumption that the observed data are a sample drawn 

from a multivariate normal distribution. One type of maximum likelihood approach is 

Expectation-Maximization (EM). The first step is the expectation step, in which parameters are 

estimated using listwise deletion. Then these estimates are used to create a regression equation 

that predicts missing data. The second step is the maximization step, which uses those regression 

equations to fill in the missing values. The steps are repeated with new parameters each time, and 

new regression equations are determined to fill those missing values. The process is repeated 

until the convergence is achieved or when the covariance matrix for the subsequent iteration is 

virtually the same as the preceding one.  Disadvantages of using this method are long 

convergence time when a large portion of data is missing and the complex technique. Another 
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hindrance is that it also relies on the normality assumption. This method cannot generate values 

when missingness is present in covariate data  (Kang, 2013). 

Another model-based method is Multiple Imputation (MI), proposed by Rubin (1987), 

which is very popular in missing data analysis. In this method, several copies of the dataset are 

created, and each of them contains different imputed values. Then, analyses are performed on 

each dataset separately, and they are combined with having a single set of results. This procedure 

is divided into three phases: the imputation phase, the analysis phase, and the pooling phase. In 

the imputation phase, the draws are performed to create several complete datasets as needed. In 

the analysis phase, each data set is analyzed using the standard methods for complete data sets. 

Lastly, in the pooling phase, the individual analyses’ results are combined to get a single 

estimator and then, consequent inferences are made. MI preserves the advantages of single 

imputation methods by using standard statistical analysis procedures available for complete data 

and incorporating data collectors’ knowledge. MI eliminates the major problem associated with 

single imputation by adding uncertainty using multiple data sets. A random draw of imputations 

increases the estimation’s efficiency, and it also contemplates variability due to missing data, and 

it provides valid inference under the MAR mechanism. MI also allows researchers to study 

inference sensitivity efficiently as applied to different nonresponse models (Rubin 1987).  

Furthermore, regression-based multiple imputation methods include Bayesian least squares, 

predictive mean matching, and local random residual methods. Other methods for MI include 

modified propensity score and completion score methods. These model approaches are valid and 

give unbiased results under the MAR assumption.  

Although maximum likelihood and multiple imputations have Bayesian connections, there 

is a Fully Bayesian (FB) way to handle missing data. Fully Bayesian methods for missing 
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covariate data involve specifying priors on all the parameters and specifying distributions for the 

missing covariates. The missing values are then sampled from their full conditional distribution 

via the Gibbs sampler. Fully Bayesian (FB) approach for missing values is nothing but just 

incorporating an extra layer in the Gibbs steps. Therefore, Bayesian methods can easily 

accommodate missing data without extra modeling assumptions or new inference techniques. In 

this sense, fully Bayesian methods are perhaps the most powerful and more general method for 

dealing with the missing covariate data. 

The methods mentioned above to handle missing data are optimal but require a lot of 

computation. These methods are only useful when distributional assumptions are correct. If those 

assumptions are violated, then results are undesirable. A semi-parametric model for missing data 

is proposed where information about the missing probabilities are used by finding the solution to 

a set of weighted estimating equations. This approach is called the Weighted Estimating 

Equation (WEE) method, proposed by Robin et al. (1994). The inference with missing responses 

is based on the weights, which are inversely proportional to the observed probability.    

1.4 Motivation  

For the non-ignorable missing data issue, Kim and Yu (2011) and Scharfstein et al. 

(2014) proposed that the distribution of missing values is related to the observed values’ 

exponential tilted distribution. They used the single imputation regression approach to predict the 

missing values. This dissertation proposes the influential exponential tilting resampling approach 

for the missing values to handle non-ignorable missing data problems. Our method is an 

extension of the exponential tilting approach. This is performed using the exponential tilting 

probability assignment to the observed data based on the influence function of the statistics under 

consideration (Samawi et al., 1998). The proposed influential exponential tilting method’s 
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motivation came from a brief use of the importance resampling for power estimation by Samawi 

et al. (1998).  

The subsequent sections provide a literature review in chapter 2, summarizing methods 

exclusively used to handle non-ignorable missing data in chapter 3. Chapter 4 introduces the 

influential exponential tilting resampling approach for mean function estimation under non-

ignorable missing data. Chapter 5 expands the proposed method to a more robust approach to 

estimate the linear model parameters under non-ignorable missing data. Then the concluding 

chapter includes real data examples, discussion, and final remarks. 

 

 

 

 

  



18 

CHAPTER 2 

LITERATURE REVIEW 

The effects of missing data during analysis can severely result in loss of power when 

performing hypotheses testing and biased parameter estimation. It is even worse when missing 

data is non-ignorable. There are several attempts to handle the non-ignorable missing data during 

the analysis in the last two decades. 

According to Schafer & Graham (2002), model-based approaches, maximum likelihood 

estimation, and multiple imputations are widely used methods to handle missing data due to their 

superiority over the traditional missing data techniques for MAR and MCAR data. They attempt 

to provide unbiased estimates in those cases. These two methods are more powerful than 

traditional methods because no data needs to be discarded during the analysis. Despite their 

advantages, these methods are not the perfect solution for handling missing data with an 

underlying MNAR mechanism. Therefore, it provides a biased parameter estimation. However, 

the bias tends to be considerably less than the bias that falls out from traditional missing data 

methods. 

Schafer & Graham (2002) indicated that, one must specify a distribution for the 

missingness and the complete data model to handle missing data without MAR assumption. The 

missing data framework denotes different factorizations of the full density for modeling 

incomplete data. Thus, the possible missing data frameworks are the selection model, the pattern 

mixture model, and the shared parameter model.  

The selection model featured by Heckman (1976) encompasses the factorization of the 

full density. This factorization is the product of the marginal density of the measurement process 

and the density of the missingness process conditional on the outcome.   
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The likelihood estimates obtained using the selected model are not computed directly 

and, therefore, are approximate values. Hence, the parameter values are poorly defined. These 

models are heavily weighted on non-demonstrated assumptions about the population distribution 

(Kenward, 1998). According to Laird (1997), these models are considered too complicated for 

scientific applications and cannot generate any answers. The selection model approaches were 

used by Wu and Carroll (1988), Diggle and Kenward (1994), Little (1995), Ibrahim et al. (2001), 

and Stubbendick and Inbrahim (2003). Troxel et al. (1998) propose a selection model, which is 

valid for non-monotone longitudinal missing data, but it is unmanageable for more than three-

time points. The Monte Carlo EM algorithm was used for parametric estimation in selection 

models with non-ignorable missing response data proposed by Joseph (2011). 

In the pattern mixture model, the marginal density is to be factored as the product of the 

density of the measurement process, which is conditional on the missingness and the marginal 

density of the missingness process (Rubin, 1987). These models classify individual responses by 

their missingness group. 

Pattern mixture models do not presume robust theories about the missing mechanism. It 

describes the observed responses in each missing group and then hypothesizes aspects of missing 

behavior to undetected portions of the data. Thus, pattern mixture models are not extremely 

sensitive to distribution like selection models, but the estimation of effects is possible by 

identifying the restrictions, which observed data does not provide. Therefore, they suggested 

using these models for sensitivity analysis to identify different restrictions to see how the results 

are changing (Schafer & Graham, 2006). Little used the pattern mixture model approaches to 

handle missing data (1995) (Little and Wang, 1996) (Hogan and Laird,1997). The main 

drawback of the pattern mixture model is that one cannot examine the effects of individual 
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covariates on the marginal distribution of the outcomes in terms of the regression coefficients 

and computational complexity. 

Additionally, it might be possible that pattern mixture models may be intractable for 

more general patterns of incomplete data (Molenberghs, 2009). Another use of the pattern 

mixture model is for doing sensitivity analysis using the tipping point approach. In this method, 

the researcher can specify a subset of observations to derive the pattern mixture model's 

imputation models. These imputed values can be adjusted by specifying shift and scale 

parameters for a set of selected observations. That set of selected observations then used for 

sensitivity analysis with the tipping point approach (Yuan, 2014) (Xu Yan, 2009). 

The shared-parameter model uses the same factorization method as the pattern mixture 

model, with at least one component of the parameter vector shared between both factors (Wu and 

Carroll, 1988). This model explains the dependency between the measurement and missingness 

processes through latent variables such as the random effects (Wu and Bailey, 1988; Wu and 

Carroll, 1988; Creemers et al., 2009). However, this model may fail when the outcomes depend 

on missing data, such as when varying time residuals cause missingness (Nisha C. Gottfredson, 

2014). 

When missing data is non-ignorable (MNAR), the maximum likelihood estimation of the 

data model parameters can give biased results and are based only on the observed data 

likelihood. Marlin et al. (2003) suggested that to obtain correct maximum likelihood estimates of 

the data model parameters, and a selection model is needed along with the data model. Most of 

the time, the parameters of the selection model will also be unknown. The combined data and 

selection model parameters can be estimated simultaneously by maximizing the full data log-

likelihood using the standard EM algorithm (Marlin, 2003) (Zemel).  
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Another model-based approach introduced by Holman and Glas (2005) is modeling non-

ignorable missing data mechanisms with item response theory models. The process is formulated 

so that the degree to which missing ignorability is violated can be evaluated and used for missing 

covariate data. In this approach, the distribution of the observed data and the missing data 

indicator are parameterized by different sets of parameters, which have a common distribution. 

These distinct parameters are used to find the amount of ignorability (Glas, 2005). 

Wang and Fitzmaurice (2006) proposed a simple imputation method for longitudinal 

studies. It specified two regression models: the marginal mean of the response and the second for 

the conditional mean of the response given nonresponse patterns. The inference of model 

parameters is made by using generalized estimating equations. It has a two-step procedure 

wherein the first step, covariate effects are obtained by solving a generalized estimating equation 

based on the observed data for imputation. The second step uses the observed and the imputed 

data to obtain complete longitudinal data and make inferences based on that complete data 

(Fitzmaurice, 2006). 

Harel, in 2008, proposed Outfluence approaches. He introduced a new measure that 

evaluates the effect of a single missing observation or a group of missing observations, or an 

incomplete variable, or any combination of these for regression analysis in any parametric 

settings. In this approach, the outfluence of missing values is calculated by separating the 

missing values into two categories, like the specific missing value of interest called type B and 

the rest of the missing values considered type A. For non-ignorable missing, the extended 

missingness indicator matrix is created for each type, and imputation is done for each type from 

their predictive distribution. Each missing value has an outfluence measure associated with it, 

calculated by two-stage multiple imputation for each missing value of the data. The estimated 
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overall rate of missing information is the sum of the estimated missing information rate due to 

these missing types, A and B. The outfluence function is calculated, which makes the value of 

the outfluence function between 0 and 1. 

Consequently, if the value of outfluence is close to 0, then that value does not influence 

the analysis results, and if the value is close to 1, it does have much influence. Moreover, 

comparing these values will give information about how much influence these missing values 

have. This measure is analogous to the influence measure in regression analysis but inspects the 

effect of missing values on a particular analysis and can help in the inference (Harel, 2008; 

Stratton, 2009). 

Cheng (1994) introduced a nonparametric estimation procedure for missing data without 

modeling the missing mechanism or a joint distribution. Cheng (1994) used kernel regression 

estimators to estimate the mean function through empirical estimation of the missing pattern, 

verified under the MAR assumption (Cheng, 1994). Based on his idea, Kim and Yu (2011) 

proposed a semiparametric approach to estimate the mean in non-ignorable missing data based 

on the exponential tilted model. The authors assumed a semiparametric logistic regression model 

for response probability and kernel regression for the missing data. With an exponential tilting 

model and nonparametric regression, the estimation method became more robust (Yu, 2011). 

Kim and Shao (2013) suggested a conditional likelihood approach for handling MNAR, 

close to the partial likelihood in survival analysis for analyzing censored data under Cox's 

proportional hazard model. This method utilizes the score function derived from the observed 

data likelihood. Another variant of this method is a pseudo-likelihood approach by assuming the 

entire covariate vector as a nonresponse tool. In addition to the methods mentioned above, a few 
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other approaches to handle MNAR missing data by conditional likelihood are the Callback and 

capture-recapture experiment (Shao, 2013). 

Kim and Shao (2014) suggested some of the naïve approaches which handle the non-

ignorable missing data. Out of them, one is the nonresponse instrument method. The 

nonresponse instrument method is based on partitioning the covariate vector into two parts such 

that based on that partition, conditional distributions of parameters are identifiable. Thus, it can 

help identify unknown quantities, giving the observed likelihood of a unique maximum. This 

unique maximum can help to obtain the maximum likelihood estimate, which eventually 

maximizing this observed likelihood. Another approach is the Conditional Likelihood approach, 

which is similar to the partial likelihood in survival analysis for analyzing censored data under 

Cox's proportional hazard model. Another approach is the Generalized methods of moments 

(GMM) approach, for which generalized methods of moments are used to construct a set of 

estimating functions. Based on the vector of observations and parameter space, these estimating 

functions include the true parameter value. The GMM estimator of unknown parameters 

obtained by minimizing the estimating functions over the parameter space.  The next one is the 

Latent Variable approach, in which non-ignorable missing is to assume a latent variable related 

to the study variable. It is assumed that the study variable is observed if and only if the latent 

variable exceeds a threshold. This approach is applicable in econometrics to explain the self-

selection bias and attitude scale (Shao, Statistical methods for handling incomplete data, 2014). 

Tang et al. (2014) developed an empirical likelihood for parameters in generalized 

estimating equations for non-ignorable missing data. They used the exponential tilting model for 

the MNAR mechanism and proposed modified estimating equations for imputation via the kernel 

regression method (Tang, 2014). 
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Linero and Daniels (2018) proposed Bayesian approaches for MNAR outcome data by 

emphasizing the role of identifying restrictions for likelihood-based perspective and monotone 

missingness. A nonparametric Bayesian model is used to determine limitations. This 

nonparametric model is also used to find extrapolation distribution concerning the observed data 

likelihood. This approach permits putting informative priors on sensitivity parameters and allows 

simultaneous inference of full data distribution (Daniels, 2018).  

The next chapter discusses the specifics of Kim and Yu’s (2011) exponential tilting tactic 

and a brief discussion about the importance resampling approach, from which motivation of the 

proposed method comes.  
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CHAPTER 3 

METHODS 

As non-ignorable missing data is the most difficult to handle than other missing data 

mechanisms, researchers tried to handle this type of data. They came with various methods to 

deal with the MNAR missing data, and many of them were mentioned in the previous chapter. 

The more details described below are Kim and Yu's Exponential tilted model to handle the non-

ignorable type of missing data. 

3.1 Exponentially Tilting Model 

Kim and Yu (2011) used exponential tilting to model the non-ignorable missing data. The 

proposed method is considered a tilting parameter for determining the amount of departure from 

the MAR assumption of the response mechanism. Scharfstein et al. (1999) handled the case 

where the tilting parameter was assumed to be known. Moreover, Kim and Yu (2011) proceeded 

to estimate the tilting parameter when it was unknown. They used the validation subsample to 

estimate the tilting parameter and assumed complete responses among the validation subsample 

elements. 

Their model contains one auxiliary variable X and one study variable Y, where the 

missing values are in Y. The approach is to find a prediction model that fits Y on X.  They also 

defined the response status variable as R. For this method, they proposed an exponential tilting 

model for non-ignorable missing data. In that method, the nonresponse part of the data is 

modeled as an exponential tilt for the responding part, and this tilting parameter regulates the 

amount of departure from the ignorability of the response mechanism. 
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Let ( , ), 1,2,...,i ix y i n= be n independent observations of continuous random variables 

( , )X Y with joint distribution being ( , )F x y . In this joint distribution, ix always observed and iy is 

subject to missing. The parameter of interest is ( )E Y = . If iR is the response indicator for

0 1

( , )
( | ) ( | )

{ ( , ) | , 1}

i i
i i i i

i i i i

O x y
f y x f y x

E O x y x R
= 

=
,     (3.1) 

where 1iR = if iy is observed and 0 otherwise. Then the response mechanism will have Bernoulli

distribution with probability i .

1| ( , ) ( )i i i iR x y Bernoulli =  (3.2) 

where ( , )i i ix y = and iR is independent of jR for any i j . 

If the conditional density of respondents for the observed part is given by 
1( | )i if y x

where 1iR = and the conditional density of respondents for the non-observed part is given by 

0 ( | )i if y x where 0iR = then under ignorable missing condition (MAR), 
1 0( | ) ( | )i i i if y x f y x= and 

more generally probability for observed and non-observed part would be equal and can be 

written as per below: 

( | , 0) ( | , 1)i i i i i iP Y B x R P Y B x R = =  =     (3.3) 

It is true for any measurement set B. 

The following equation attain the consistent estimator of   

1

1

1ˆ ˆ( (1 ) ( ))
n

i i i i

i

RY R x
n

 
=

= + −  (3.4) 

where ˆ( )ix is a consistent kernel estimator of ( ) ( | )i i ix E Y x = when R=1. 

Under the non-ignorable missing data, 
1 0( | ) ( | )i i i if y x f y x and, 

( | , 0) ( | , 1)i i i i i iP Y B x R P Y B x R =   =   and 1̂ is biased. 
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Thus, one can use 

2 0

1

1ˆ ˆ( (1 ) ( ))
n

i i i i

i

RY R x
n

 
=

= + −   (3.5) 

where 
0

ˆ ( )ix  is a consistent weighted kernel estimator of 0 ( ) ( | )i i ix E Y x = when 0iR = . 

The computation of conditional distribution when 0iR = is as follows: 

( 0 | , ) / ( 1| , )
( | , 0) ( | , 1) .

( 0 | ) / ( 1| )

i i i i i i
i i i i i i

i i i i

P R x y B P R x y B
P Y B x R P Y B x R

P R x P R x

=  = 
 = =  =

= =

From which the conditional distribution of missing data can be written as the following: 

0 1

( , )
( | ) ( | )

{ ( , ) | , 1}

i i
i i i i

i i i i

O x y
f y x f y x

E O x y x R
= 

=
 ,     (3.6) 

where 
P( 0 | , )

( , )
P( 1| , )

i i i
i i

i i i

R x y
O x y

R x y

=
=

=
 which is a conditional odd of nonresponse. 

If the response probability model is a logistic regression model for some function g(.) as a 

function of x,  ( )ir y  as a function of Y , and parameter   and is given by,

exp[ ( ) ( )]
( , ) P( 1| , ) ,

1 exp[ ( ) ( )]

i i
i i i i i

i i

g x r y
x y R x y

g x r y






+
= = =

+ +
 (3.7) 

This response probability model in (3.7) is a semiparametric model because in logistic 

regression, the component accompanying ix and ( )ig x is unspecified and the component 

accompanying 𝑦𝑖 can be parametrically modeled with parameter . To simplify the derivation, 

Kim and Yu (2011) suggested taking ( )i ir y y= . 

Under this response model, the odd function is defined as 

( , ) exp{ ( ) }i i i iO x y g x y= − −

Also, the conditional distribution of the missing data is written as, 
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0 1

exp( )
( | ) ( | )

(exp( ) | , 1)

i
i i i i

i i i

y
f y x f y x

E y x R





−
=

− =
 (3.8) 

The above equation shows that the nonrespondents' density is an exponential tilting of the 

respondents' density. The parameter −∅ =  𝛾 is a tilting parameter that examines the amount of 

departure from the ignorability of the response mechanism.   

Thus, the real density of Y based on the above model can be given by,  

1 0( | ) . ( | ) (1 ) ( | )i i i i i i i if y x f y x f y x = + −

1 1

exp( )
. ( | ) (1 ) ( | )

(exp( ) | , 1)

i
i i i i i i

i i i

y
f y x f y x

E y x R


 



−
= + −

− =

1

exp( )
( | ) (1 )

(exp( ) | , 1)

i
i i i i

i i i

y
f y x

E y x R


 



 −
= + − 

− = 

( )1( | ) (1 )i i i i if y x w = + − ,  (3.9) 

where 
exp( )

{exp( ) | , 1}

i
i

i i i

y
w

E y x R





−
=

− =

To find out the departure from the ignorability, the tilting parameter −∅ =  𝛾 needs either 

to be known using planned missingness or sensitivity analysis. In other cases, it needs to be 

estimated. Kim and Yu (2011) proposed that it can be estimated using the follow-up studies. The 

follow-up is done to obtain responses in a subset of the nonrespondents.   

Yu’s (2011) approach depends on the assumption of the missingness models. This 

research proposes an approach that is presumably more robust. We use the influential 

exponential tilting (Yu, 2011) with a resampling method to estimate the model parameters with 

non-ignorable missing data. This approach uses an influential function to penalize observations 

that are more influential concerning statistics under consideration, which is in the opposite 

direction of the possible non-ignorable missingness but rewards those in the same direction. For 
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this process, the importance-resampling approach is used to impute the missing data by the 

influential exponential tilting weights, as the resampling distribution. The importance resampling 

approach is one of the most promising bootstrap methods used to reduce computational efforts. 

This method uses the variance reduction approach. Next, we discuss briefly the bootstrap and the 

importance resampling methods.  

3.2 Bootstrap & Importance Resampling 

3.2.1 Bootstrap Inference 

Bootstrap methods are computer-intensive, which involves simulated data sets. The 

uniform (ordinary) bootstrap resampling method was established by Efron (1979). This method 

is based on resampling with replacement from the observed sample, and each one has an equal 

probability to be selected on sample values. Uniform bootstrap resampling described by Efron 

(1979) and others is an assumption-free method and can be used for inferences. However, it is 

designed for a complete and continuous set of observations. This initial approach is called the 

uniform resampling method or uniform bootstrap. This uniform bootstrap involved thousands of 

simulated datasets. For one sample case, the uniform resampling rules will be applied to each 

sample separately and independently (Ibrahim, 1991; Samawi et al., 1996; Samawi et al., 1998; 

Samawi, 2003). 

Suppose 11 12 1( ,  ,  ..., ) nY Y Y= is independent and created by random samples drawn 

from, ( )f y . Assume that the parameter of interest is the functional ( ) ( ) ( ).Y T F m y dF y = = 

If S is an estimate of Y based on   that is ( )S S=  and can be defined as

ˆ ˆˆ ( ) ( ) ( )Y n nS T F m y dF y= = = 

where ˆ
nF is the empirical distribution.  
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Furthermore, assume that S is a smooth function of the random samples.  Assume another 

parameter U which is a function of S, that is, ( )U U S= . Then we can obtain U* for the same 

function of the data but in resamples 
* * *

11 12 1  n(Y , Y , ..., Y )= which are drawn from   according to 

the rules which places probability 
1

n
 on each sample value of .  Let ( )u E U=  then the 

bootstrap estimate (say û ) of u is given by 

*ˆ ( | )u E U=    (3.10)       

This expected value is often not computable.  

3.2.2 Uniform Resampling Approximation for Bootstrap Estimate 

Assume that the probability of selecting 1iY in a resample is

*

1 1

1
( | )iP Y Y

n
=  = .     (3.11) 

Let  
* * *

1 2,  ,  ....,  B   denote independent resamples sets of size B, each drawn from. To obtain 

a Monte Carlo approximation to û  using uniform resampling, let 
*

bU denote U computed from
* .b

Then, the uniform resampling approximation to the bootstrap estimate û is given by 

( )* *

1

1ˆ
B

B b
b

u B U
=

−=  .  (3.12) 

Do and Hall (1991) showed that 
*ˆ
Bu is an unbiased approximation to ˆ,u in the sense that

*ˆ ˆ( |  )BE u u = . Moreover, an approximation of the bootstrap bias of u can be obtained by

* *ˆ ˆ ˆ| |Bbias u u−= , and an approximation of the bootstrap MSE can be obtained by

( )
2

* *

1

1ˆ ˆ .
B

b
b

MSE B U u
=

−= −

3.2.3 Importance Resampling Approximation for Bootstrap Estimate 

In subsequent years, different researchers derived different thoughts to reduce the number 

of simulated datasets and, thus, computational struggles (D. V. Hinkely, 1989). Among that, 
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Johns (1988) and Davison (1988) introduced the most promising approach of importance 

resampling for probability and quantile estimation. In importance resampling, data values are 

resampled with unequal or tilted probabilities. That makes it more likely for the statistics under 

consideration to assume a value that is close to the point of interest. Some resampled values
*y

may contribute much more to estimate   than others. Importance sampling aims to sample more 

frequently from those important values of
*.y This can be achieved by resampling from a 

distribution that concentrates probability on these values of
*y and then weighing the values of 

*( )m y  to replicate the approximation if it had been sampled from G. Then importance 

resampling identity is  

*
* * * *

*

( )
( ) ( ) ( ) ( )

( )

dG y
m y dG y m y dH y

dH y
 = =   

where the support of G includes the support of F.  

Importance sampling approximates the above expression using independent resamples

** ** ** **

1 2( , ,..., )j j j njy y y y= , which are drawn from   according to the rules, which places probability 

1 2( , ,..., )ng g g  on each sample value of , respectively. Assume that the probability of selecting 

1iY   in a resample is  

**

1 1( | ) ; 1,2,...,i iP Y Y g i n=  = = .   

Let  
** ** **

1 2,  ,  ....,  B   denote independent resamples sets of size B, each drawn from. 

To obtain a Monte Carlo approximation to û  using importance resampling, let 
**

bU denote U 

computed from
**. b Then, the importance resampling approximation to the bootstrap estimate û

is given by 
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( )
1

** **

1

1ˆ
n

jn

j jn

B
dF

B b dG
b

u B U
==

−=   . 

Do and Hall (1991) showed that 
**ˆ
Bu is an unbiased approximation of ˆ,u in the sense that

**ˆ ˆ( |  )BE u u = . Moreover, an approximation of the bootstrap bias u can be obtained by

** **ˆ ˆ ˆ| |Bbias u u−= , and an approximation of the importance resampling variance can be obtained

( )** **2 2

1

1ˆ ˆ( )
B

b b
b

Var B U W u
=

−= −
1

n
jnb

j jnb

dF

b dG
W

=

=  .

In the following chapters, we introduce the Influential Exponential Tilting Resampling 

Approach method for parameter estimation in the non-ignorable missing data. The next chapter 

describes the mean functional estimation method with non-ignorable missing data using an 

influential exponential tilting approach. Following the mean functional estimation, the 

subsequent chapter describes the modified Importance Resampling Approach for linear 

parameter estimation with non-ignorable missing data. Simulation studies were also presented 

for both functional estimation procedures.   
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CHAPTER 4 

Mean Functional Estimation with Non-Ignorable Missing Data Using Influential 

Exponential Tilting Resampling Approach 

Kim and Yu (2011) used exponential tilting to model the non-ignorable missing data. In 

this chapter, the exponential tilting approach is extended using the influence function for tilting 

the assigned probability to the observed responses used by Samawi et al. (1998). The proposed 

method's advantage is that the tilting based on the influential function depends on the statistics 

(functional) under consideration. This method is robust compared to other methods as it fixes the 

tilting parameter for the benchmark assumption, in which different ranges of deviation from 

missingness at random are considered. The preliminaries for this method are already described in 

the previous chapter. 

The purpose of this work is to propose a method for handling missing data using the 

influential tilting resampling approach (ITRA), which considers the missing pattern of MNAR 

assumptions. The proposed ITRA uses an influence function to penalize observations that are 

more influential concerning the statistics under consideration and in the opposite direction of the 

possible MNAR missingness but rewards those in the same direction. In this process, importance 

sampling distribution for the outcome is created, and resampling can be done from that 

distribution.  

Similar to the exponential tilting method proposed by Kim and Yu (2011), ITRA states 

that the non-responding part’s model is an exponential tilting of the responding part. In general, 

in the exponential tilting approach, the model in (3.7) is derived from

0 1

exp( )
( | ) ( | )

(exp( ) | , 1)

i
i i i i

i i i

y
f y x f y x

E y x R





−
=

− =
 by replacing r(𝑦) with 𝑦. Sometimes, (𝑦) serves to 
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quantify the effect of the observed response on the risk of dropping out (Scharfstein et al., 2014). 

For our ITRA, we chose r(y) to be the influential function for estimating the functional

( )Y T F = . The influential function approach considers parameter estimation based on

nonparametric estimation of unknown functional. In general, nonparametric estimation consists 

of estimating a statistical functional ( )Y T F = , where we presume that Y follows a c.d.f, say F.

The influence function of a functional (𝐹), under some regularity conditions, is defined using 

Gateaux derivative by 

0

{(1 ) } ( )
( )

yT T F
L y Lim



 

→

− + − 
=  

 
  (4.1) 

where 

0    if 
( )

1     if u y.
y

u y
u


= 



For estimating the mean of Y, the influence function, L(y), and its estimate ˆ( )iL y are defined by  

( ) YL y y = − and ˆ( ) ,i iL y y y= − respectively. Using the influential function can be justified 

because the problem in this work is to estimate a parameter depending on the probability density 

function of all the responses. This probability density function is partially unknown because only 

the distribution of the observed data is available. As in the resampling exponential tilting 

approach (see Samawi et al., 1996; Samawi et al. 1998), we suggest that the distribution of the 

missing values can be defined as, 

0 1

exp( ( | ))
( | ) ( | ) ( | ).

[exp( ( | )) | 1]

i i
i i i i i i

i i i

r y x
f y x f y x f y x

E r y x R





= =

=
,   (4.2) 

where   is the tilting parameter.  The tilting parameter determines the magnitude of the 

departure from the ignorability of the response mechanism by penalizing observations that are 
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more influential concerning the statistic under consideration. These influential observations are 

in the opposite direction of the possible MNAR missingness but reward those in the same 

direction.  In this case, the specified function is chosen as 1( | ) ( | ) / .i i i i Lr y x L y x n = , where

2( ( , ) )L E L Y x = . Note that under MAR assumption  =0. 

Besides, Huber (1981) showed that
1

1
[ ( ) ( )] [ ( | )] (1)

n

n i i p

i

n T F T F n L y x o
n =

− = + nF the 

empirical function F and (1)po tends to be 0 as n → . Now by Central Limit Theorem, we have

2[ ( ) ( )] (0, )nn T F T F N −   (4.3) 

Where 2 2 ( | ) ( | )L y x dF y x =  .  

Finally, using the influence function ( | )i iL y x for estimating the population mean is 

justified because it can produce the same conditional distribution of the nonresponse in (3.8) as 

follows: 
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where 1. .Ln  = −

The proposed approach, ITRA, is similar to Kim and Yu’s (2011) approach. However, Kim and 

Yu (2011) predict the missing observation using the single imputation regression kernel 

estimates. On the other hand, our proposed approach is using the empirical importance 

resampling method. 

4.1 Semiparametric Approaches to ITRA- 2 stages 

For a dataset of size n to be used for estimation, we consider the outcome of interest Y 

with a density function f. Suppose that we have nonignorable missing data of size (n2 <n). The 

following steps are used to perform influential tilting resampling approaches: 

1. Determine the tilting parameter (  ) by prior information on a benchmark assumption for how

data can be MNAR and find the percentage of missing values (p) to calculate   which we will 

discuss later using two-stage resampling (multiple imputations) methods to guess  . 

2. Estimate the assumed distribution 0f of the missing values as an exponential tilted 

distribution of the observed value as follows: 

( )

( )
1

1

0 1 1

1

1

ˆ ˆexp ( | ) / ( . )
ˆ ˆ ˆ( | ) ( | ). ( | ) ( , )

ˆ ˆexp ( | ) / ( . )

i i i L

i i i i i i i in

i i i L

i

R L y x n
f y x f y x f y x w y

R L y x n

 


 
=

= =


,     (4.5) 

where 1n is the size of observed data, �̂�(𝑦|𝑥) is the estimate of influential function and

1

2

11

1 ˆˆ ( , )
n

L i i

i

L y x
n


=

=  . 
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3. Using standard nonparametric resampling methodology to draw 2n (number of missing

values) subsets. Each of them is of size 1n (number of observed values) using the tilted

distribution of the observed data. Denote the imputed (resampling) sets by
2

* * *

1 2, ,..., ny y y , where

1

*

1 2( ,..., ); 1,2,..., .i i iny y i n= =y

4. From the ith resampling (imputed subsample) we estimate the ith missing value as,

* *

2

1

ˆ ; 1,2,...,
n

i ij ij

j

y w y i n
=

= = ,where

*

1

*

1

1

ˆ ˆexp( ( ) / ( . ))
.

ˆ ˆexp( ( ) / ( . ))

j ij L

ij n

j ij L

j

R L y n
w

R L y n

 

 
=

=


     (4.6) 

5. Similar to Kim and Yu (2011) method, we propose estimating Y by 

* *

1

1
ˆ ˆ( (1 ) )

n

Y i i i i

i

RY R y
n


=

= + −
.        (4.7) 

4.1.1 Properties of Semiparametric Approaches (ITRA) 

The proposed method ITRA combines multiple imputation techniques, resampling approach, 

and Kim and Yu’s (2011) approach. The desired estimates of the missing values are generated 

using the tilting resampling method. These estimated values are imputed to generate a complete 

dataset. The complete data is then used to estimate ( ( , ))y T F Y X = . In the subsequent 

discussion, we will show the results for estimating the population mean, implying that 

( )Y E Y = .  However, under the above assumption, the parameter of interest  Y can be written 

as [ . ( | 1) (1 ). ( | 0)]Y E R E Y R R E Y R = = + − =  

[ ( )( | 1)] [(1 ( ))( | 0))]E y Y R E y Y R = = + − =

( ) [ | 1] (1 ( )) [ | 0]y E Y R y E Y R = = + − =     (4.8)    
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where ( ) P( 1| )y R y = = . 

As described in Kim and Yu (2011), the proposed estimator of Y is given by

* *

1

1
ˆ ˆ( (1 ) )

n

Y i i i i

i

RY R y
n


=

= + − ,     (4.9) 

where 
*

2

1

ˆ ; 1,2,...,
n

i ij ij

j

y w y i n
=

= = ,and 

*

1

*

1

1

ˆ ˆexp( ( ) / ( . ))
.

ˆ ˆexp( ( ) / ( . ))

j ij L

ij n

j ij L

j

R L y n
w

R L y n

 

 
=

=


 (4.10) 

Hence using a similar argument as in  Kim and Yu (2011) and using the derivation from equation 

(4.4), we can show that 

( ) ( )

( )

( )

*

1

1 1

1

1

1
ˆ ˆlim lim ( (1 ) )

( ) (1 ( )) exp ( ) / ( . ) / exp ( ) / ( . )

exp ( ) / ( . ) ( ) ]
( ) ( | 1) (1 ( ))

exp ( ) / ( . ) ( )

( ) ( | 1) (1 ( ))

n

Y i i i i
n n

i

L L

L

L

p p RY R y
n

E Y Y Y RY L Y n E R L Y n

E L Y n Y Y
y E Y R y

E L Y n Y

E
y E Y R y



     

  
 

  

 

→ →
=

= + −

 = + −    

  = = + −
  

= = + −



 
 

(1 ( )) ]

1 ( )

( ) ( | 1) (1 ( )) ( | 0).

Y Y

E Y

y E Y R y E Y R





 

−

−

= = + − =

(4.11) 

Now, let 
* * *ˆ ˆ( ),

( )

i
i i i i

i

R
q y Y y

y
= + − then it can be written as

* * *ˆ( 1)( ) ( ) .
( )

i
i i i i i Y

i

R
q Y Y y E q

y



= + − −  =  (4.12) 

For large sample sizes and using the result in (4.11) we have 

* ( 1)( ( | 0)).
( )

i
i i i i i

i

R
q q Y Y E Y R

y
→ = + − − = (4.13) 

Using similar arguments as in Theorem 1 in Kim and Yu (2011) and (4.13), we can show that  

* 2ˆ( ) (0, ),Y Y wn N  − →  (4.14) 
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where 

2

2

( ) ( [ ]) ( [ ])

1
( ) 1 ( ( | 0)) .

( , )

W i Y R i Y R iVar q Var E q E Var q

Var Y E Y E Y R
X Y





= = +

  
= + − − =  

  

 (4.15) 

The variance estimate associated with 
*̂ is similar to that provided by Kim and Yu (2011) as

2

2 *2 *

1 1

1 1
ˆ ˆ ˆ ,

n n

W i i

i i

q q
n n


= =

 
= − 

 
    (4.16) 

where 
* * *ˆ ˆ ˆ( )

ˆ
i

i i i i

i

R
q y y y


= + − , and 

1

2 1

1

1

ˆ ˆexp( ( ) / ( . ))
ˆ 1

ˆ ˆexp( ( ) / ( . ))

i L
i n

j j L

j

n L y n

r L y n

 


 

−

=

 
 
 = +
 
 
 


is the estimated response 

probability of (3.9) with fixed known   as in  Kim and Yu (2011). Note we can show that

* * *

1

1
ˆ ˆ ˆ

n

i Y

i

q q
n


=

= = . 

4.1.2. Finding the tuning (tilting) parameter  

This research proposes two ways to guess ; the first is to determine a benchmark 

assumption for how the data is missing in a nonignorable manner. In other words, we check if 

the lower values or higher values are missing in the data. After that, find the percentage of 

missing values (P) to calculate the tilting parameter. If missingness was from above or below, we 

determine the tilting parameter by 

(217.621+120.952(P)-0.3 ) (direction of missingness)P sign =

Direction of missingness sign= -1 if the missing from above (smaller values are missing) else 

sign= +1.  This method works in these cases; however, it depends on the benchmark assumption. 
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If   is guessed using only benchmark assumption, then it’s called the nonparametric estimation 

approach.  

However, in absence of a benchmark assumption it is difficult to guess  value. The second 

method is more flexible by using two-stage multiple imputations. This method allows us to find 

  without a benchmark assumption as 2 stages provides the room for the sensitivity analysis 

specifically when a benchmark assumption is not available or difficult to assume.  

1- Start with an initial guess of    say 
0

2- In the first stage, with
0 , use the tilting distribution 0

ˆ ( | )i if y x , where

( )

( )

0

1

0 1
0

1

1

ˆ ˆexp ( | ) / ( . )
ˆ ˆ( | ) ( | ).

ˆ ˆexp ( | ) / ( . )

i i i L

i i i i n

i i i L

i

R L y x n
f y x f y x

R L y x n

 

 
=

=



to obtain a resample of size 2n , namely, 
2

*

0 01 0( ,..., )ny y=y . This can be considered a test 

data that allows us to find the range (-a, a) to obtain   . We are performing sensitivity 

analysis using 
0 to obtain correct  .

3- For   in (-a, a), ( a>0 and the interval is pre-determined and contains 
0  ) 

4- Using the Newton-Raphson method to find the root of the

*

0

1

ˆ(1 )( ( )) 0
n

i i i

i

R y y 
=

− − =

 where, 
2

*

0 2

1

ˆ ( ) ( ) ; 1,2,...,
n

i ij j

j

y w y i n 
=

= = , and 
0 1

0 1

1

ˆ ˆexp( ( ) / ( . ))
.

ˆ ˆexp( ( ) / ( . ))

j j L

ij n

j j L

j

R L y n
w

R L y n

 

 
=

=
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4.2 Semiparametric Approach to ITRA 

The prior information about the benchmark assumption is not always available and hence   

is unknown. We propose to use a semiparametric approach to estimate the functional ( )Y T F =  

using the ITRA method as in Kim and Yu (2011):    

1. Estimate   using a follow-up (validation) data (a certain percentage of the missing

values) by ̂where ̂  is the solution of

*

1

ˆ(1 ) ( ( )) 0
n

i i i i

i

R I y y 
=

− − = ,   (4.17) 

where iI  is an indicator function that takes the value of one if the observed ith sampling 

unit belongs to the follow-up sample and takes the value of zero otherwise and 
*ˆ ( )iy  is 

defined similar to equation (4.10). 

2. Estimate the assumed distribution ˆf of the missing values as an influential exponential 

tilted distribution of the observed value (including the observed follow-up sample) as 

follows:  

( )

( )

1

0 1 1

1

1

ˆˆ ˆexp ( | ) / ( . )
ˆ ˆ ˆ ˆ( | ) ( | ). ( | ) ( , )

ˆˆ ˆexp ( | ) / ( . )

i i i L

i i i i i i in

i i i L

i

R L y x n
f y x f y x f y x w y

R L y x n

 


 
=

= =


, 

where �̂�(𝑦|𝑥) is the estimated influential function. 

3. Using standard semiparametric resampling methodology, draw resampling datasets each

of size 11n  (total observed data), based on the observed data 21n (the size of the remaining 

missing values). Then 21 11n n n= + .   
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4. From the ith resampling (imputed subsample)
11

* * * *

1 2( , ,..., )i i i iny y y =y  we estimate the ith 

missing value as, 

* *

21

1

ˆ ˆˆ ( ) ( ); 1, 2,...,
n

i ij ij

i

y w y i n 
=

= = , 

where

**

11

**

11

1

ˆˆ ˆexp( ( ) / ( . ))
.

ˆˆ ˆexp( ( ) / ( . ))

i ij L

ij n

j ij L

j

R L y n
w

R L y n

 

 
=

=



5. As similar to Kim and Yu (2011), we propose estimating Y by 

 
** *

1

1
ˆˆ ˆ( (1 ) ( ))

n

Y i i i i

i

RY R y
n

 
=

= + − .  

4.2.1 Estimating the functional ( )Y T F =  using ITRA 

Kim and Yu (2011) suggested to estimate   using independent survey or using a 

validation sample, which is a subsample of the nonrespondents. Thus, in either case, the 

proposed estimator of Y is 

** *

1

1
ˆˆ ˆ( (1 ) ( ))

n

Y i i i i

i

RY R y
n

 
=

= + − , (4.18) 

where 

* *

21

1

ˆ ˆˆ ( ) ( ); 1, 2,...,
n

i ij ij

i

y w y i n 
=

= = , where

*

1

*

1

1

ˆˆ ˆexp( ( ) / ( . ))
.

ˆˆ ˆexp( ( ) / ( . ))

i ij L

ij n

j ij L

j

R L y n
w

R L y n

 

 
=

=


  (4.19) 

We will consider here the case when a validation sample is randomly selected from the set of 

nonrespondents and the data collected from all the subjects in the validation sample. Hence, 
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similar to the method described by Kim and Yu (2011), a consistent estimate of   using a follow-

up (validation) data which is called ̂ , and is obtained by solving, 

*

1

ˆ(1 ) ( ( )) 0
n

i i i i

i

R I y y 
=

− − = ,  (4.20) 

where iI  is an indicator function that takes the value of one if then observed ith sampling unit

belongs to the follow-up sample and takes the value of zero otherwise and 
*ˆ ( )iy  is defined in 

(4.10). 

As mentioned in Kim and Yu (2011), the solution,̂ , of (4.20) exist almost everywhere. Then 

our proposed semiparametric estimator presented in (4.18) for estimating Y has the following 

asymptotic properties. The proofs are similar to those provided in Kim and Yu (2011). 

1- 0̂ →

2- 
** 2ˆ( ) (0, )Y Y Sn N  − → ,  

where 
2 **( ),S iVar q =  

** 0 0(1 )
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−
= = + + − =

= =
, 

and 
0 * 0ˆ( | 0, ) lim ( )i

n
E Y R p y 

→
= = . With little algebra, we can show that 

2 01
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Then, if the model in (4.1) is true, this implies that 
0 = and then

0 1

1

[ exp( ( ) / ( . ))] [(1 ) ]
( | 0, ) ( | 0).

[ exp( ( ) / ( . ))] [(1 )]

L
i i i

L

E RY L Y n E R Y
E Y R E Y R

E R L Y n E R

 


 

   −
= = = = =   

−  

Finally, the variance estimate associated with 
**ˆ
Y is similar to that provided by Kim and Yu 

(2011) as follows: Let 
** * *(1 )

ˆ ˆˆ ˆ ˆ( ) [ ][ ( )]
( 1| 0)

i i
i i i i i

i i

I R
q y R Y y

P I R
 

−
= + + −
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2
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1 1

1 1
ˆ ˆ ˆ .

n n

S ii i

i i

q q
n n


= =

 
= − 

 
    (4.21) 

4.3 Simulation 

To get an insight into the theory, we conducted a simulation study. We generate 2000 

samples of size 200 from the model 1 0.5 ,i i iy x e= + + where (2,1) and e (0,1).i ix N N  N 

(2,1). Like Kim and Yu (2011), to generate the missing values we need to generate ir , we

proposed the following models. 

M1 (Deleting from below): delete P% of the larger values 

M2 (Deleting from above): delete P% of the smallest values 

M3 (Linear nonignorable): 
0 1 2

0 1 2

exp[ ]
,

1 exp[ ]

i i
i

i i

f f x f y

f f x f y


+ +
=

+ + +
where 0 1 2( , , ) ( 3.4,1,1)f f f = − . 

M4 (Quadratic in x, nonignorable): 

2

0 1 2 3

2

0 1 2 3

exp[ ]
,

1 exp[ ]

i i i
i

i i i

f f x f x f y

f f x f x f y


+ + +
=

+ + + +
where 

0 1 2 3( , , , ) ( 4.1,1,1,1)f f f f = −

M5 (Quadratic in y, nonignorable): 

2

0 1 2 3

2

0 1 2 3

exp[ ]
,

1 exp[ ]

i i i
i

i i i

f f x f y f y

f f x f y f y


+ + +
=

+ + + +
where 

0 1 2 2( , , , ) ( 10.1,1,1,1)f f f f = −
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M6 (Interaction x and y, nonignorable): 0 1 2 3

0 1 2 3

exp[ ]
,

1 exp[ ]

i i i i
i

i i i i

f f x f y f y x

f f x f y f y x


+ + +
=

+ + + +
where 

0 1 2 2( , , , ) ( 5.2,1,1,1)f f f f = −

In all the above proposed missing mechanism models, the response rate is approximately 

60%. We used a 20% follow-up rate for the semiparametric estimators. Note that models M3 and 

M4 satisfy the assumed response probability in (3.9). However, the missing mechanism M1, M2, 

M5, and M6 models do not meet the assumption in (3.9) and are included to test the robustness 

of the proposed methods suggested by Kim and Yu (2011). We compared our proposed 

estimators ( *ˆ
Y  and **ˆ

Y ) with the complete data estimator 
11

1
ˆ

n

C i i

i

R y
n


=

=  and the estimator using 

the ordinary multiple imputation ˆ
mi . 

Table 4.1 shows that the semiparametric estimator **ˆ
Y  has the smallest relative bias, then 

comes the two stage semiparametric ( *ˆ
Y ) with the second smallest relative bias, compared to

ordinary multiple imputation estimator ( ˆ
mi ). The worst is assuming ignorable missingness and 

using the complete data estimator ( ˆ
c ). Concerning MSE, our semiparametric estimator 

performs better than other estimators for all proposed models except that for model M6, the two 

stage semiparametric estimator has smaller MSE. However, the semiparametric approach using 

ITRA imputation is more robust than the two stage semiparametric approach. 

Table 4.1 

Monte Carlo estimation of the relative bias, the variance and mean square error 

Missing Mechanism Estimates ˆ
C ˆ

mi *ˆ
Y

**ˆ
Y

M1 Relative Bias -0.6470 -0.4760 -0.1426 0.0048 

Variance  0.0345 0.2406 0.0023 0.0203 

MSE 1.7091 1.1470 0.0836 0.0204 
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Table 4.1 (Continued) 

Monte Carlo estimation of the relative bias, the variance and mean square error 

Missing Mechanism Estimates ˆ
C ˆ

mi *ˆ
Y

**ˆ
Y

M2 Relative Bias 0.6548 0.4724 0.1393 -0.0017

Variance  0.0329 0.1927 0.0023 0.0202 

MSE 1.7178 1.0855 0.0798 0.0202 

M3 Relative Bias -0.6192 -0.1461 0.0054 -0.0001

Variance  0.0224 0.1677 0.0245 0.0212 

MSE 1.556 0.2532 0.0246 0.0212 

M4 Relative Bias -0.4511 -0.1241 -0.0058 -0.0026

Variance  0.0222 0.1518 0.0242 0.0214 

MSE 0.8363 0.2133 0.0244 0.0214 

M5 Relative Bias -0.4820 -0.2578 -0.0173 0.0002 

Variance  0.0175 0.1501 0.0044 0.0217 

MSE 0.9469 0.4160 0.0055 0.0217 

M6 Relative Bias -0.4690 -0.1599 -0.0300 0.0016 

Variance  0.0203 0.1576 0.0043 0.0216 

MSE 0.9001 0.2599 0.0079 0.0217 

Next, we are extending our method to do parameter estimation for linear models. The 

following chapter will introduce our method of importance resampling approach for parameter 

estimation, especially the linear regression slope. The slope of the regression line of non-

observed data is obtained based on Importance resampling weights. 
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CHAPTER 5 

Linear Model Parameter Estimation with Non-Ignorable Missing Data Using 

Importance Resampling Approach 

This chapter discusses the methodology for parameter estimation in the linear model in 

non-ignorable missing data, which is slightly different from the previous chapter’s method. We 

used the linear model parameter estimation via multiple imputations based on influential 

exponential tilted resampling. To understand this method better, we need to get insight into the 

impact of non-ignorable missing data in regression analysis. 

5.1 Introduction 

The causes of missingness in the data are plentiful. Some of which are the result of a 

particular study design or due to a chance. Certain variables are not collected or recorded from 

all the subjects. They often refuse to provide some answers. Sometimes, some of the information 

may be consciously omitted in the case of protecting confidentiality. These can result in different 

types of missing outcomes described in earlier chapters. In these scenarios, examining the 

relationship between two variables, called regression analysis, is arduous. The linear model we 

are investigating is 

0 1 ; 1,2,..., ,i i iy x e i n = + + =

where 2(0, )i ee N  (iid). 

Next, we see how this relationship is affected if data contains missing values. The 

example below shows how the relationship between two variables fluctuates if we have complete 

data versus the missing data. This example also illustrates the comparison of doing available case 

analysis against complete case analysis. 
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For this example, we simulated the data from a normal distribution, with one variable 

being independent and the other being the dependent. In addition to that, we generated some 

missing values based on non-ignorable missing patterns and ran a simple linear regression to 

assess the relationship between them. Table 5.1 shows how the slopes are affected by missing 

data and if they use general multiple imputations ignoring the underlying missing mechanism. 

Table 5.1 

Comparison of complete case analysis vs. missing data vs. multiple imputations 

Complete Case Missing Data Multiple Imputation 

Intercept 0.9768 0.7117 0.7309 

Slope 1.9372 1.5900 1.5962 

The below figure shows how the regression is affected by the missing data. 

Figure 5.1 

Complete case analysis vs. available case analysis 

a) Complete data b) With missing data
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The coefficient of determination for the complete data is R2 = 0.8251, while for the data with 

missing observation became R2 = 0.7702. 

 The next section mentions our influential tilted resampling approach, which is used to do 

parameter estimation in the linear regression model. 

5.2 Proposed Method 

Multiple Imputation (MI) performs better under the assumption of MAR missingness in 

the case of parameter estimation, and it gives biased results in MNAR missing assumption. This 

method uses the influential exponential tilted resampling approach (ITRA) to obtain the desired 

parameter estimation. In this method, we propose an approach in which we are using the 

probabilities based on ITRA, which are highly influential in estimating the parameter in the 

presence of missing observations. Similar to the exponential tilting methods proposed by Kim 

and Yu (2011), assume that response probability has logistic regression model given by, 

exp[ ( ) ( )]
( , ) P( 1| , ) .

1 exp[ ( ) ( )]

i i
i i i i i

i i

g x r y
x y R x y

g x r y






+
= = =

+ +
 (5.1) 

As we discussed in chapter 4, ITRA states that the model for the non-responding part is an 

exponential tilting of the responding part. Thus, the conditional distribution of nonresponse is 

0 1

exp( ( ))
( | ) ( | )

(exp( ( )) | , 1)

i
i i i i

i i i

r y
f y x f y x

E r y x R





−
=

− =
,     (5.2) 

and r(y) to be the influential function for estimating the functional T(F) and parameter  . 

The influence function of a functional T(F), where we suppose Y follows a c.d.f, say F, 

under some regularity conditions, defined using Gateaux derivative by 
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0

{(1 ) } ( )
( ( ))

yT T F
L T F Lim



 

→

− + − 
=  

 
    (5.3) 

where        
0    if 

( )
1     if u y.

y

u y
u


= 



For estimating the slope of the regression line, the influence function estimate is

1

1

0 1
1

21

1

ˆ ˆ[ ( )]ˆ( ( )) ; 1, 2,...,i i i

n

in

i

x y x
L T F i n

x

 

=

− −
= =


.  (5.4) 

Note that 0̂  and 1̂  obtained by using the regression analysis of the available case 

analysis with size n1. In resampling the exponential tilting approach (Samawi et al., 1996; 

Samawi et al. 1998), we suggest that the distribution of the missing values defined as 

0 1

exp( ( | ))
( | ) ( | ) ( | ).

[exp( ( | )) | 1]

i i
i i i i i i

i i i

r y x
f y x f y x f y x

E r y x R





= =

=
,  (5.5) 

where   ( = − ) is the tilting parameter, which determines the magnitude of the departure 

from the ignorability of the response mechanism. It penalizes observations that are more 

influential concerning the statistic under consideration and in the opposite direction of the 

possible MNAR missingness but rewards those in the same direction.  In this case, the specified 

function is chosen as 
1( | ) ( | ) / .i i i i Lr y x L y x n = , where 

2( ( , ) )L E L Y x =  . Note that under 

MAR assumption  =0. 

5.2.1 Semiparametric approach to ITRA and estimating the function T(F) 

Kim and Yu (2011) suggested estimation of 𝜂 using an independent survey or a validation 

sample, which is a subsample of the nonrespondents. Thus, in either case, the proposed estimator 

of the linear model parameters are as follows:  
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Define the functional T(F) as 

0, 1

2

0 1( ) arg ( ) ( | )T F min y x F y x
 

 = − −  ,  (5.6) 

where ( | )F y x  is consisting of observed part, 1( | )F y x and non-observed part 0 ( | )F y x , then 

0, 1

0, 1 0, 1
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0

2

0 1 1 0

2 2

0 1 1 0 1 0
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0 1 1

( ) arg ( ) [ ( , ) ( | ) (1 ( , )) ( | )]

( , ) arg ( ) ( | ) (1 ( , )) arg ( ) ( | )

( , ) arg ( ) ( | )

(1 ( , )) arg

T F min y x x y F y x x y F y x

x y min y x F y x x y min y x F y x

x y min y x F y x

x y min
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2 1
0 1 1

1
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[exp( ( | ) / . ) | 1]

i i L

i i L i

L y x n
y x F y x

E L y x n R

 
 

 
− − 

=

 (5.7) 

In the above equation, using the indicator variable R, for observed and non-observed 

value, the above equation's empirical version would be as per below: 

0, 1

0, 1

* * * 2

0 1 0 1

1

2 * 2 1
0 1 0 1

1
1

1

ˆ ˆ ˆ ˆ( , ) arg ( )

ˆ ˆexp( ( | ) / . )
ˆ(1 )arg [ ( ) (1 )( ) ] .

ˆ ˆexp( ( | ) / . ))

n

i i i

i

n
i i L

i i i i i i n
i

i i L

i

min R y x

L y x n
min R y x R y x

L y x n

 

 

    

 
    

 

−

−

=

= = − −

+ − − − + − − −






β

  (5.8) 

A naïve estimate of  is ˆ
m

n
 = , where m is the number of all observed data and *

iy is the

missing dependent variable. To find *

iy , first, let

0 1 ; 1,2,..., ,i i iy x e i n = + + =  where 2(0, )i ee N  .   (5.9) 

Under missing data (MNAR), the systematic part of the model is 

( | ) [ . ( | 1, ) (1 ). ( | 0, )]

( , ) [ | 1, ] (1 ( , )) [ | 0, ]

E Y x E R E Y R x R E Y R x

x y E Y R x x y E Y R x 

= = + − =

= = + − =
  (5.10) 
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If the unobserved part of our dependent variable ( *

iy ), is called ( ) [ | 0, ]m x E Y R x= = .

Our goal is to find ( ) [ | 0, ]m x E Y R x= = of non-observed data, based on the observed data by 

minimizing the following identity, 2[( ( )) | 0, )]E Y m x R x− = as follows: 

2

0
( )

arg ( ( )) ( | 1, )
m x

min y m x F y R x−  =

 
2 1

1
( ) 1

exp( ( | ) / . )
arg ( ( )) ( | )

[exp( ( | ) / . ) | 1]

i i L
i

m x i i L i

L y x n
min y m x f y x y

E L y x n R

 

 
= − 

=

2 1

1
1

1

ˆ ˆexp( ( | ) / . )1
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ˆ ˆexp( ( | ) / . )

i i i L
i i n

i i i L

i

R L y x n
y m x

n
R L y x n

 

 
=

 −


(Empirical Distribution function) 

Taking derivative and solving for ( )m x  

1

1
1

1

1
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ˆ2 ( ( )) 0
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where 1

1

1

ˆ ˆexp( ( | ) / . )
ˆ ( , )

ˆ ˆexp( ( | ) / . )

i i i L
i n

i i i L

i

R L y x n
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=

=


. 

Then 

*

1

ˆ ˆ( ) ( , )
n

i i i i i

i

y m x R y w x 
=

= =  (5.11) 

In this approach, a dataset of size n to be used for the estimation. We consider the 

outcome of interest to be Y, depending on X, our independent variable, and the density function 
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being f. Presume that we have non-ignorable missing data of size (n2<n). The following steps are 

used to perform influential exponential tilting resampling approaches. Most of the time, the 

preliminary information about the benchmark assumption is unknown, and, thus, 𝜂 is the 

unknown. Therefore, follow-up (validation) data is used to obtain 𝜂 value. 

5.2.2 Finding the tuning (tilting) parameter 𝜂 

We are finding 𝜂 using the follow-up (validation) data obtained from a certain percent of the 

missing data. 

1. Estimate the assumed distribution 0f of the missing values as an influential exponential 

tilted distribution of the observed value (including the observed follow-up sample) as 

follows: 

( )

( )
0 1 1

1
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ˆ ˆ ˆ( | ) ( | ). ( | ) ( )
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i i i L
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R L y x m
f y x f y x f y x w x

R L y x m

 

 
=

= =


, where �̂�(𝑦|𝑥) is 

the estimated influential function.  

2. Using the standard semiparametric resampling methodology, draw 22n resamples of size 

m each ( 11 21m n n= + , total observed data), say * * * *

1 2 22( , ,..., ); 1,2,...,i i i imy y y i n = =y .   

3. From the  ith resampling (imputed subsample) * * * *

1 2( , ,..., )i i i imy y y =y , we estimate the ith

missing value as, 
* *
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= = , 
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4. Estimate   using a follow-up (validation) data (a certain percentage of the missing

values) by ̂ where ̂  is the solution of 

*

1

ˆ(1 ) ( ( )) 0
n

i i i i

i

r I y y 
=

− − =

where iI is an indicator function that takes the value of 1 if then observed ith sampling 

unit belongs to the follow-up. 

5.2.3 Approximation of the variances 

As in Kim and Yu (2011) let 0̂ →    

* 0 *

10 * 0
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Then, if the model in (4.2) is true, this implies that 
0 = and then

0 [ exp( ( | ) / ( . ))] [(1 ) | ]
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Now under some regularity conditions, we have 
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Also, Huber (1981) showed that
1

1
[ ( ) ( )] [ ( | )] (1)

n

n i i p

i

n T F T F n L y x o
n =

− = + , where nF

is the empirical function of F and (1)po  tend to 0 as n → . Now by Central Limit Theorem, we

have 
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2[ ( ) ( )] (0, )n Ln T F T F N −

where 2 2 ( | ) ( | )L L y x dF y x =  .  

The variance of ˆ *
β using the least square approach is given by

2 2 1 2 2 1ˆvar( ) ( ) (1 ) ( )e weX X X WX   − − = + −*
β  (5.12) 

For estimating, the above variances, similar to Kim and Yu (2011), let 
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5.3 Simulation  

To have insight into the theory we generated in this chapter, we conducted a simulation 

study, like in chapter 4. We generated 2000 samples of size 200 from the model 1 2i i iy x e= + +

where ~ (0.5,1)ix and ~ (0,1)ie . As in the previous chapter, to generate missing values using 
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indicator variable iR following models are proposed, which are similar to mean functional 

estimation and Kim and Yu’s (2011) approach. 

M1 (Deleting from below): delete P% of the larger values 

M2 (Deleting from above): delete P% of the smallest values 

M3 (Linear nonignorable): 

0 1 2

0 1 2

exp[ ]
,

1 exp[ ]

i i
i

i i

f f x f y

f f x f y


+ +
=

+ + +
where 0 1 2( , , ) ( 3.4,1,1)f f f = − .

M4 (Quadratic in x, nonignorable): 

2

0 1 2 3

2

0 1 2 3

exp[ ]
,

1 exp[ ]

i i i
i

i i i

f f x f x f y

f f x f x f y


+ + +
=

+ + + +
where 0 1 2 3( , , , ) ( 4.1,1,1,1)f f f f = −

M5 (Quadratic in y, nonignorable): 

2

0 1 2 3

2

0 1 2 3

exp[ ]
,

1 exp[ ]

i i i
i

i i i

f f x f y f y

f f x f y f y


+ + +
=

+ + + +
where 0 1 2 2( , , , ) ( 10.1,1,1,1)f f f f = −

M6 (Interaction x and y, nonignorable): 

0 1 2 3

0 1 2 3

exp[ ]
,

1 exp[ ]

i i i i
i

i i i i

f f x f y f y x

f f x f y f y x


+ + +
=

+ + + +
where 0 1 2 2( , , , ) ( 5.2,1,1,1)f f f f = −

In all the above proposed missing mechanism models, the response rate is approximately 

60%. Also, we used a 20% follow-up rate for the semiparametric estimators. We compared our 

proposed estimator (
*

1̂ ) with a complete data estimator 1,
ˆ

C and the estimator using the ordinary 

multiple imputation 1,
ˆ

mi . 

From simulation results in table 5.2, we see that our semiparametric estimator 
*

1̂  has the 

closest estimate to our simulated dataset's real values for all the models where missingness is 

included in either right or left tails or randomly spread in the data. It has the smallest bias than 
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the ordinary multiple imputation estimator (
1,

ˆ
mi ) and the available case analysis by ignoring 

missing data and using the complete data estimator (
1,

ˆ
C ). Concerning MSE, the semiparametric 

estimator outperforms other estimators for these models as well. This analysis shows that our 

semiparametric approach using ITRA imputation is more robust than the other two approaches 

for various missingness scenarios.  

Table 5.2  

Monte Carlo estimation of the slope, bias, variance, and the mean square error (MSE) 

1,
ˆ

C 1,
ˆ

mi *

1̂

Model 1 Estimate 1.8499 1.7214 2.0206 

Bias -0.1500 -0.2786 0.0206 

Variance 0.0059 0.0074 0.0083 

MSE 0.0285 0.0849 0.0087 

Model 2 Estimate 1.8379 1.6789 1.9318 

Bias -0.1620 -0.3210 -0.0682

Variance 0.0002 0.0076 0.0001

MSE 0.0265 0.1102 0.0048

Model 3 Estimate 1.9195 1.4057 2.1326

Bias -0.0679 -0.2935 -0.2260

Variance 0.0010 0.0072 0.0198

MSE 0.0165 0.3604 0.0375

Model 4 Estimate 1.8680 1.6388 2.0635

Bias -0.1319 -0.3612 0.0635

Variance 0.0180 0.0069 0.0185

MSE 0.0355 0.1374 0.0226

Model 5 Estimate 1.8446 1.7433 2.0649

Bias -0.1554 -0.2567 0.0649

Variance 0.0038 0.0164 0.0112
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Table 5.2 (Continued) 

Monte Carlo estimation of the slope, bias, variance, and the mean square error (MSE) 

1,
ˆ

C 1,
ˆ

mi *

1̂

MSE 0.0279 0.0823 0.0154 

Model 6 Estimate 1.8999 1.5231 2.0099 

Bias -0.1001 -0.4769 0.0099 

Variance 0.0151 0.0114 0.0189 

MSE 0.0251 0.2388 0.0190 
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CHAPTER 6 

Application in Cobb County, GA, Women, Infants, and Children (WIC) Data 

6.1 Introduction 

This chapter discusses the application of our method to the real data provided by Bindele 

and Zhao (2018). The authors used this data from the statistical consulting center project at the 

Department of Mathematics and Statistics of the University of South Alabama. The data source 

was the Cobb County, GA, Women, Infants, and Children (WIC). The original data consists of 

six variables: neonatal baby weight (as the response variable), age, body mass index, smoking 

status, race, and Hispanic ethnicity (as predictors). The data contains a sample of 1499 

observations, out of which 22.7% are missing (340 observations).  

In this data, it has been suggested that mothers with premature babies may be less likely 

to disclose their baby's weight. Therefore, it is considered that missing baby weights is non-

ignorable. We are interested in illustrating the relationship of mothers' BMI to their baby's 

weight as they are proportionally related to one another. As we mentioned, mothers with 

premature babies are less likely to report their baby's weight; thus, this missing data is not 

random (NMAR). The sample we used has 1499 observations; out of them, 22.7% were missing. 

Of the 340 non-respondents, 45% were randomly selected for follow-up samples, in which about 

153 responded to the follow-up (Zhao, 2018).  

6.2 Data Analysis & Results 

6.2.1 Mean functional estimation 

As mentioned above, out of 1499 observations with having 22.7% (340 observations) 

missing outcomes, we were able to obtain the follow-up data of 153 observations from the non-
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respondents. For the available data, including the follow-up data, the mean of the baby weight 

came out to be 124.1113, and its standard error came out to be 0.3449. The empirical variance 

came out to be 0.1187. We applied our proposed method to estimate the mean of the baby 

weights. Using the proposed formula in chapter 4 for the 153 follow-up data, we estimated the 

tuning (tilting) parameter  by .  Using the available data, we applied multiple 

imputations and our semiparametric approach. We obtained the following results shown in table 

6.1. The tuning parameter came out to be negative, showing lower values are missing, which are 

more influential in this case. As we can see, our method’s estimation came out to have the lowest 

value compared to the other two cases, which is assumed to be closer to the real mean birth 

weights of the data. 

Table 6.1.  

Results of estimating the mean functional of neonatal baby weight with 95% confidence 

interval 

Method Estimate Standard error Lower bound Upper bound 

124.0003 0.3019 123.4085 124.5917 

124.1710 0.3720 123.4419 124.9001 

124.2252 0.3441 123.5508 124.8996 

6.2.2 Linear Model Parameter Estimation 

A similar dataset was used to estimate the linear model parameter (slope, 1 ) about 

Baby's weight to their mothers' BMI using our proposed approach of ITRA. We assumed that 

mothers with lower BMI would have a low birth weight and do not report their baby's weight. 

Thus, missingness in the baby's weight is considered a non-ignorable type. While considering 

mothers’ BMI as an independent variable, we tried to find the regression coefficient for the 

baby’s weight change. For the available data, including the follow-up data, the estimate came out 

 ˆ 47 = −

**ˆ
Y

ˆ
mi

ˆ
C
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to be 0.13826, and its standard error came out to be 0.03729. The empirical variance came out to 

be 0.0014. We applied the proposed method to estimate the regression coefficient for the baby’s 

weight, and the results are as per below. Linear model parameter value came out to be the lowest 

as this represents the most influential lowest weights that are missing from the data.  

Table 6.2 

Results of estimating the beta coefficient of neonatal baby weight in relation to mothers’ BMI 

with a 95% confidence interval  

Method Estimate Standard error Lower bound Upper bound 

*

1̂
0.12498 0.0311 0.0640 0.1859 

1,
ˆ

mi 0.1553 0.0385 0.1533 0.1572 

1,
ˆ

C 0.1383 0.0373 0.0651 0.2114 
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CHAPTER 7 

FINAL REMARKS & CONCLUSION 

7.1 Final Remarks 

We tried to address handling the non-ignorable missing data by using importance 

resampling and doing parameter estimation through this dissertation. In the non-ignorable 

missing data, we used the nonparametric and the semiparametric influential tilting resampling 

approaches to estimate the mean. However, we proposed a semiparametric influential tilting 

resampling approach for the non-ignorable missing data to estimate the linear model parameter. 

Our proposed methods performed very well with smaller variances, biases, and Mean 

Squared Errors (MSEs) for all six different mean estimation models. That included the non-

ignorable missing data with right and left censoring linear, quadratic, and interaction models. 

Similar to estimating the linear model parameter, the beta coefficient, the proposed method 

worked very well when the data is missing in a non-ignorable manner, including quadratic and 

interaction models. This works well as the relationship between independent and dependent 

variables was identified using the most influential values for the missing observations 

contributing the most for the association between the two variables.  

7.2 Conclusion 

As the research field is vastly dependent on the data available to make any inference, 

incomplete data has the highest impact on making these interpretations. As mentioned in earlier 

chapters, it is challenging when such missing data is non-ignorable. 

This dissertation proposed a method based on the influential tilting resampling approach 

to handle non-ignorable missing data for inference purposes. This approach is motivated by a 

brief use of the importance resampling proposed by Samawi et al. (1998) and the exponential 



63 

tilting for non-ignorable missing data by Kim & Yu (2011). This anticipated a method of 

influential exponential tilted resampling approach (ITRA) for desired parameter estimation. The 

multiple imputation (MI) methods work best for the data missing at random (MAR). However, 

this is a novel approach to using multiple imputations (MI) incorporating the bootstrap method of 

importance resampling, which imputes the most influential values for the missing observations 

obtained by exponential tilted resampling. Thus, this tactic includes the benefits of multiple 

imputations and bootstrapping services, which exclusively use the resample, that is of the most 

substantial influence to predict the missing ones. 

In preparation for estimating the mean function, this method proved robust despite the 

data being non-ignorable missing, which is the most difficult situation to address in the analysis. 

In addition to that, finding an association between two variables and thus estimating the linear 

model parameter in non-ignorable missing data is the most challenging. Our proposed 

semiparametric approach of the influential exponential tilted resampling approach (ITRA) 

worked well for the described models.  

7.3 Limitations & Future work 

The problem of missing data is critical and one of the most challenging issues in public 

health data analysis and clinical trials. The well-known multiple imputation (MI) approach is a 

solution to such a situation, but it has a limitation in the non-ignorable missing data. Our 

proposed approach has the goodness of two mathematical methods, the multiple imputations 

(MI) and bootstrapping using the importance resampling techniques. However, this has

limitations too. 

Survey data and public health datasets do not need to have missing values only in the 

dependent variables, but missingness could be present in the independent variables as well. 
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There might be a combination of ignorable and non-ignorable missingness in different variables 

in the same datasets. Thus, there is a need to explore the robustness of the proposed methods in 

such situations. 

While parameter estimation itself is challenging in non-ignorable missing data, it still 

needs more investigation to find an association between two variables in such scenarios. It is 

important to explore the correct relationship between two variables, which has been hindered due 

to missingness and worsened due to non-ignorable missingness.   
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