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Optimized Decision Making in the Power Industry Using Machine Learning 

ABSTRACT 

To supply power to customers, a power company procures fuel from suppliers while also 

holding an inventory of such fuel and/or storing a very limited amount of excess power in a 

battery. Additionally, a power company may directly sell renewable energy sources to customers 

and exchange power with a neighboring grid to ameliorate shortages. The standard techniques of 

optimizing profit entail a tedious, human-driven decision-making procedure that results only in 

local optima. This disclosure optimizes the profit of a power company by automatically making 

intelligent procurement and selling decisions using machine learning. The decisions are treated 

as an end-to-end supply-chain problem and jointly optimized, such that optimal trade-offs are 

achieved amongst supply, demand, system restrictions, and environmental constraints. In 

particular, the techniques jointly optimize over the end-to-end supply chain, including fuel 

procurement, fuel and electricity selling, fuel stocking, etc.  
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BACKGROUND 

Fig. 1: The ecosystem of a power station 

Fig. 1 illustrates the ecosystem of a power station. To supply power to customers, a 

power company procures fuel (e.g., coal, LNG, etc.) from suppliers while also holding an 

inventory of such fuel and/or storing a very limited amount of excess power in a battery. 

Additionally, a power company may own or have access to renewable energy sources, which can 

be directly sold to customers. Moreover, an excess or shortfall of power can be ameliorated by an 

exchange of power with a neighboring power grid. 

In optimizing profit, a power company seeks to optimize costs, e.g., of procurement, of 

holding inventory, of having to buy power from another grid to cover a shortfall, etc. The power 

company also seeks to optimize revenue, e.g., supply to markets with excess demand, use an 

appropriate renewable-conventional mix, etc.  

The standard techniques of optimizing profit entail a multi-stage, human-driven decision-

making procedure. Although forecasting tools are used, it is primarily humans who arrive at 

procurement or sales decisions by applying domain heuristics. For example, operational 

decisions can be made (e.g., daily electricity production) to minimize operational expenses. 
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However, merely minimizing operational expenses only optimizes for the production stage, 

which is only a part of the supply chain. Such an approach does not account for demand 

fulfillment, nor does it leverage the availability of potential new markets. It also does not account 

for fuel procurement price trends or supplier availability, which are both stochastic in nature.  

Such optimization being local rather than end-to-end, suboptimal decisions can result, 

and profit remains unmaximized. Separately, the human involvement needed to make decisions 

is costly, bias-prone, and sub-optimal. Also, a local optimization outcome (e.g., of operational 

expenses) has to be manually tied in with optimization outcomes in other parts of the supply 

chain (e.g., supply-side, demand-side factors). 

DESCRIPTION 

This disclosure describes techniques to optimize the profit of a power company by 

generating (and in some configurations, automatically making) intelligent procurement and 

selling decisions using machine learning. The decisions are treated as an end-to-end supply-chain 

problem. Different parameters are jointly optimized, such that optimal trade-offs are achieved 

amongst supply, demand, system restrictions, and environmental constraints. In particular, the 

techniques jointly optimize over the end-to-end supply chain, including fuel procurement, fuel 

and electricity selling, fuel stocking, etc. The optimization is carried out temporally, e.g., over 

data obtained over the course of months. 

The profit of a power company is given by 

Profit = Sales revenue

+ Direct-selling revenue 

− Costs of procurement 

− Costs of procurement shipping or set-up
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− Costs of sales shipping or set-up

− Inventory-holding costs. 

In mathematical terms, the profit Zit at a time (day-of-year) t and energy item (e.g., LNG, coal, 

electricity, etc.) i is given by 

where the symbols have the following meanings (the symbol i indexes the energy item; t, time; u, 

supplier; k, market or customer). 

: sale price for energy item i at time t for market (or customer) k; 

: transmission efficiency for supplying energy item i to market (or customer) k; 

: transmission efficiency for supplying renewable energy item i directly from supplier 
u to market (or customer) k;

: sale price for direct sales of renewable energy item i from supplier u to market (or 
customer) k at time t;

: quantity of direct sales of renewable energy item i from supplier u to market (or 
customer) k at time t;

: a binary variable; equals 1 if supplier u is owned by the power company, 0 otherwise;

: procurement price for energy item i at time t from supplier u; 

: quantity of procurement of energy item i at time t from supplier u; 

5

Defensive Publications Series, Art. 3924 [2020]

https://www.tdcommons.org/dpubs_series/3924



: cost of shipping energy item i from supplier u at time t;  

: cost of sales of energy item i to market (or customer) k at time t;  

: quantity of sales of item i at time t to customer k; 

: a binary variable; equals 1 if a procurement order is placed for market (or customer) k
for energy item i at time t, 0 otherwise;

: a binary variable; equals 1 if energy item i is sold to market (or customer) k at time t, 
0 otherwise;

: unit cost of holding inventory of energy item i at time t;

: the inventory level of energy item i at time t+1.

The problem is to maximize the sum-profit Z over time and energy item: 

(1) 

The variables of optimization are included in the vector . The 

components of the optimal vector indicate an optimal supplier-to-market combination and energy 

mix and quantity to procure and to sell for each day of the year.  

The optimization of equation (1) can be carried out using, e.g., an actor-critic 

reinforcement-learning neural network, linear programming, multi-stage dynamic programming 

(Bellman) techniques, etc. The parameters of equation (1), e.g., sale and procurement prices, 

transmission efficiencies, costs of shipping and sales, costs of holding inventory, fuel and 

electricity demand, etc., can be made available by the power company.  

Based on such input parameters, the described techniques automatically model the supply 

chain, and output optimal decisions in the vector . This can result 

in optimal energy sourcing, optimal long- and short-term inventory decisions, optimal production 

planning, rapid response to unexpected incidents, and optimal demand-fulfilling decisions. The 
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techniques are robust to the stochastic nature of energy parameters, e.g., random fluctuations in 

energy supply (due to wind velocity, cloud cover, etc.), mix, demand, etc. 

Conventional approach This disclosure 

Algorithm 
Stochastic dual dynamic 
programming 

Temporal difference learning with value 
function approximation 

Approximation 
function 

Sampling solution in dual 
problem 

Concave piecewise linear regression or 
deep neural network 

Generalizable 
to new data? 

No. With new input, requires 
the solving of a new problem 
from scratch. 

Yes. Able to generalize to unseen data, 
robust to small distribution shifts of 
stochastic variables. 

Model-less? 
Not model-less. It requires a 
given distribution of stochastic 
variables 

Model-less. The distribution is learned via 
sampling data or exploring the environment 

Table 1: Differences between the disclosed approach and conventional approaches 

Table 1 illustrates some important differences between the disclosed techniques and 

conventional approaches. In summary, the techniques of this disclosure can improve power-

industry optimization as follows: 

● The techniques jointly optimize decisions across multiple stages in the supply chain of a 

power plant, thereby reaching global optima. As mentioned, the stages include fuel 

sourcing, fuel inventory stocking, electricity production, electricity or fuel-sales 

decisions, etc.  

● The techniques automate decision making across multiple stages, eliminating substantial 

manual efforts and heuristics. 
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● In making decisions that encompass the entire (end-to-end) supply chain, the techniques 

minimize risk and maximize the lifetime value for the power company. 

CONCLUSION 

This disclosure optimizes the profit of a power company by automatically making 

intelligent procurement and selling decisions using machine learning. The decisions are treated 

as an end-to-end supply-chain problem and jointly optimized, such that optimal trade-offs are 

achieved amongst supply, demand, system restrictions, and environmental constraints. In 

particular, the techniques jointly optimize over the end-to-end supply chain, including fuel 

procurement, fuel and electricity selling, fuel stocking, etc. 
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