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Application of Ultrafast and CO2 Lasers for Cutting Waveguides 

ABSTRACT 

Techniques for the cutting of waveguides from patterned glass wafers are described. 

Translation of an ultrafast laser beam across a wafer is performed to mark the wafer by forming a 

filament curtain that is aligned to the waveguide edge profile. Chucks are used to secure the 

wafer during marking and subsequent separation of the waveguides. The chucks include vacuum 

ports placed at selected locations for debris control around the cut edges. After marking, thermal 

shock is induced by CO2 laser absorption for breakage along the filament curtain and waveguide 

separation (singulation). An optical imaging system is used to calibrate the positional alignment 

of cutting profiles to the patterned wafer. 
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BACKGROUND 

Display components of devices such as Augmented Reality (AR) or Virtual Reality (VR) 

headsets commonly include a waveguide to transmit an optical image signal from a projector to 

the eye. The waveguide is a thin (e.g., <1mm thick) glass piece that can be patterned using 

semiconductor or other fabrication processes. Multiple sets of waveguides are first patterned 

onto a wafer (e.g. 100mm - 300mm diameter), which are then cut to yield multiple waveguides. 

The fragility and thinness of the wafer poses challenges for conventional glass cutting 

and dicing methods such as diamond scribing, plasma etching, traditional laser cutting, etc. to 

achieve an acceptable cutting quality. Since the physical dimensions of defects and edge 

roughness in conventional methods of cutting glass is on the order of the waveguide thickness, a 

risk of catastrophic fracturing during the cutting is increased. Additionally, the use of high 

refractive index glass with a relatively high additive concentration worsens wafer fragility. 

Fracture risk during cutting is further compounded by the presence of coatings on the wafer that 

can add stresses and bow the wafer. This can result in damage to the surrounding regions and/or 

waveguides during separation of a single waveguide from the wafer. 

Conventional cutting methods limit choices in waveguide design due to constraints such 

as a minimum turning radius for cutting, as well as limit waveguide yield per wafer due to 

process-related spacing constraints between adjacent waveguides. A lower waveguide yield per 

wafer can increase the cost of waveguide production due to the high cost of wafer processing. 

In addition, steps that follow conventional glass cutting methods such as polishing to 

remove chips, cracks, poor edge roughness, etc. are undesirable here because of the added 

processing time and costs associated with maintaining high cutting yield (e.g. physical contact 
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risks waveguide breakage) and cleanliness (e.g. slurries and polishing debris risk cleanliness on 

the waveguide patterns and clear aperture).  

DESCRIPTION 

This disclosure describes techniques for cutting waveguides from patterned glass wafers. 

Per techniques of this disclosure, a waveguide cutting process utilizes an ultrafast laser to mark 

the wafer (marking) followed by separation of the individual waveguides using a carbon dioxide 

(CO2) laser (singulation).  

Fig. 1: Wafer with multiple waveguides prior to separation 

Fig. 1 depicts an example patterned wafer that includes multiple waveguides laid out 

across the wafer. Each waveguide includes one or more gratings per specified optical 
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requirements. Fig. 1 also depicts an example of chuck contact locations that are distributed over 

a supporting surface on which the wafer is placed, as seen through the wafer. While Fig. 1 

illustrates each waveguide in the shape of an ellipse, the described techniques can be used for 

waveguides of any suitable shape. 

 Fig. 2: (a) Ultrafast marking of a wafer; (b) waveguide separation using a CO2 laser 

Fig. 2 depicts an example of the cutting process for waveguides, per techniques of this 

disclosure. An ultrafast laser is utilized for marking a patterned wafer and to delineate the 

individual waveguide profiles (red dotted lines), as depicted in Fig. 2(a). Straight markings 

between adjacent waveguides, or peripheral waveguides to the wafer boundary, are also added to 

selectively divide the non-waveguide zones of the wafer (red dotted lines) for controlled 
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dissection during singulation. The laser-glass interaction utilizes minimal mechanical contact, 

except to hold the wafer in place during the marking, thereby minimizing any risk of catastrophic 

fracture.  

Ultrafast laser radiation with a wavelength that is transparent to glass is utilized for the 

marking to avoid linear absorption, thereby driving self-focusing and filamentation. The ultrafast 

laser parameters are selected such that the pulse duration and repetition rate minimize thermal 

effects in the glass (e.g., linear absorption, heat transfer), and a pulse peak intensity that is 

sufficiently high to drive nonlinear absorption in the glass (e.g. multiphoton ionization). This 

enables the marking of the wafer through its entire thickness by filamentation, thereby 

minimizing heat-affected zones, micro-cracks, and stresses in the waveguide and promotes 

waveguide durability after assembly into a device.  

Each filament is created by a single ultrafast pulse that self-guides through the glass and 

ionizes the glass material towards eventual modification in a column-like shape. The laser beam 

is programmed to move across the wafer surface following the waveguide profile at each wafer 

location, leading to the formation of a filament curtain (a linear array of column-like 

modifications) with a constant filament periodicity (e.g., 5 micrometers) that is minimized to 

reduce edge roughness and aligned to the waveguide edge profile. 

Chucks are utilized to hold the wafer in place during marking and subsequent separation 

of the waveguides. Accurate alignment of the wafer, e.g., by maintaining it in a flat position and 

avoiding bowing, is enabled by applying vacuum to select zones on the wafer. Maintaining a flat 

wafer surface that is aligned normal to the marking laser (filaments) is important for achieving a 

uniform cutting edge quality around the entire waveguide part, which prevents generation of 

6

Haque et al.: Application of Ultrafast and CO2 Lasers for Cutting Waveguides

Published by Technical Disclosure Commons, 2020



potentially weak spots due to poor laser alignment that can otherwise cause cracks and lead to 

catastrophic fracturing. 

Further to securing the wafer, the chuck includes vacuum ports placed at selected chuck 

locations to control debris fallout, e.g. potential thin film ablation during marking. This improves 

the cleanliness on the clear aperture of the waveguide. Air flow is also applied above the wafer 

for added cleanliness control. 

During the marking processes, the patterned surface of the wafer faces downward 

towards the chuck, thereby avoiding any potential debris buildup on the top of the surface that 

would otherwise jeopardize the optical function of the patterns. All contact between the wafer 

and chuck occurs only at non-critical zones to again avoid jeopardizing the optical function of 

the waveguide. 

Fig. 3: Separation of waveguides using a CO2 laser 

Fig. 3 is a schematic that illustrates separation of individual waveguides from a wafer 

using a CO2 laser, per techniques of this disclosure. After marking the wafer using an ultrafast 

laser, the wafer is placed under a CO2 laser for waveguide separation, as shown in Fig. 2(b). The 
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CO2 laser wavelength is absorbed by the glass, thereby inducing a thermal shock at and around 

the filament curtain.  

Slight expansion and contraction of the glass in the non-marked regions is induced by the 

weak heating and cooling effects of the absorbed CO2 laser, without reaching a brittle limit of 

the unmarked glass. Within the filament curtain, the low thermal shock is sufficient to induce 

breakage along the glass regions modified by the markings and leads to waveguide separation 

along the filament curtain. 

Further, during separation by the CO2 laser, a vacuum is applied by the chuck at select 

positions below the wafer to hold the waveguide parts in place while non-waveguide portions 

drop away. The waveguides are thereby isolated for pickup. Techniques of this disclosure enable 

efficient separation of individual waveguides that is not impeded by the presence of glass shards 

or larger glass pieces. No cracks or edge chips are observed after separation, and an edge surface 

roughness of Sa < 0.001 mm can be achieved, needing no additional edge treatments, e.g. 

mechanical edge polishing to achieve improved part durability.  

Additionally, the cutting edge quality is unaffected by the presence of thin films or 

patterns on the wafer surface. When compared to conventional cutting methods that can 

commonly cause deterioration of the films, including film delamination, blistering, and ablation 

toward debris accumulation on the clear aperture, ultrafast marking and CO2 singulation together 

avoid deteriorating the functional performance of the waveguide as disclosed here. 

In some implementations, an optical imaging system can be used to calibrate the 

positional alignment of the cutting profile to the patterned wafer. This provides an alignment 

precision that is limited only by the motion control accuracy and the filament diameter, thereby 
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offering a positional precision of 0.003 mm (range equal to the filament diameter) and near-zero 

rotation. 

The techniques of this disclosure can be utilized for the cutting of waveguides of superior 

quality that meet the required quality standards for shape, edge quality, durability, and 

cleanliness, e.g. for use in AR/VR headsets or other devices.  

CONCLUSION 

Techniques for the cutting of waveguides from patterned glass wafers are described. 

Translation of an ultrafast laser beam across a wafer is performed to mark the wafer by forming a 

curtain of filaments that follow the waveguide profile. Chucks are used to hold the wafer in place 

during marking and subsequent separation of the waveguides. Accurate alignment of the wafer is 

enabled by applying vacuum to select zones on the wafer. The chucks include vacuum ports 

placed at selected chuck locations for debris control. Thermal shock from CO2 laser absorption 

is utilized to induce breakage that leads to waveguide separation (singulation) along the filament 

curtain. An optical imaging system is used to calibrate the positional alignment of cutting profile 

to the patterned wafer. 
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