
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

EUR 23946 EN  -  2009

Positive Matrix Factorisation (PMF)
An introduction to the chemometric evaluation of 
environmental monitoring data using PMF

Sara Comero, Luisa Capitani and Bernd Manfred Gawlik

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by JRC Publications Repository

https://core.ac.uk/display/38615551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The mission of the JRC-IES is to provide scientific-technical support to the European Union’s 
policies for the protection and sustainable development of the European and global 
environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
European Commission 
Joint Research Centre 
Institute for Environment and Sustainability 
 
Contact information 
Address: Via E. Fermi, 2479 I-21020 Ispra (VA) Italy
E-mail: sara.comero@jrc.europa.eu 
Tel.: +39 0332 78 5935 
Fax: +39 0332 78 9831 
 
http://ies.jrc.ec.europa.eu/ 
http://www.jrc.ec.europa.eu/ 
 
Legal Notice 
Neither the European Commission nor any person acting on behalf of the Commission is 
responsible for the use which might be made of this publication. 
 

Europe Direct is a service to help you find answers 
to your questions about the European Union 

 
Freephone number (*): 

00 800 6 7 8 9 10 11 
 

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. 

 
A great deal of additional information on the European Union is available on the Internet. 
It can be accessed through the Europa server http://europa.eu/ 
 
JRC 52754 
 
EUR 23946 EN 
ISBN 978-92-79-12954-4 
ISSN 1018-5593 
DOI 10.2788/2497  
 
Luxembourg: Office for Official Publications of the European Communities 
 
© European Communities, 2009 
 
Reproduction is authorised provided the source is acknowledged 
 
Printed in Italy 
 



 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sara Comero, and Bernd Manfred Gawlik 
European Commission Joint Research Centre, Institute for Environment and Sustainability, 

21020, Ispra, Italy 
 

Luisa Capitani 
Department of Earth Sciences “Ardito Desio”, Section of Geochemistry and Volcanology. 

Università degli Studi di Milano, via Mangiagalli 34, 20133 Milano Italy 

 

Positive Matrix Factorisation (PMF)

 
An introduction to the chemometric evaluation of environmental monitoring data using PMF



 4

Abstract 

Positive Matrix Factorization (PMF) is a multivariate factor analysis technique used 

successfully among others at the US Environmental Protection Agency for the 

chemometric evaluation and modelling of environmental data sets. Compared to other 

methods it offers some advantage that consent to better resolve the problem under 

analysis. In this report, the algorithm to solve PMF and the respective computer 

application, PMF2, is illustrated and, in particular, different parameters involved in the 

computation are examined. 

Finally, a first application study on PMF2 parameters setting is conducted with the help 

of a real environmental data-set produced in the laboratories of the JRC Rural, Water 

and Ecosystem Resource Unit. 
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1 Introduction and rationale 
Receptor models are used in different branches of scientific research (i.e. atmospheric 

and geochemical research) because of they capability to handle large data-sets. The aim 

of their application is to reduce the original data-set into one of lower dimensions to 

detect “hidden” information and explain the variability of the measured variables. In 

particular, in environmental applications the goal of receptor modelling is to estimate 

number and composition of sources (the factor that explains the data variability) but 

also to point out any trend and/or correlation among observations and identify potential 

marker for pollutant sources. 

Among the different type of available receptor models (see Chapter 2), in this paper we 

want to focus the attention on the model PMF (Positive Matrix Factorization). 

The reason we are interested in PMF is its property to be a non data-sensitive technique 

that can manage and resolve inhomogeneous data-sets without any previous univariate 

analysis. In geochemical data-set, it usually happens that elements or compounds 

occurring in very different concentrations caused, for examples, by the presence of 

different geochemical features. This may be a problem for data-sensitive techniques and 

normalization procedures have to be applied to homogenize the original data-set. This, 

however, causes loss of information. 

Another important aspect of PMF is the introduction of error estimates (or weight) 

associated to the data. Like this, problematic data such as outliers or below-detection-

limit can be entered into the model with appropriated weight, avoiding rejection of such 

data.  

In Chapter 3 we give an introduction to PMF model explaining the mathematical 

algorithm and the selection of appropriate error estimates, while in the Appendix a 

guide to the program PMF2 used to solve PMF (Paatero, 2004a; Paatero 2004b) is 

given. 

Finally, in the last chapter, we describe the main steps to interpret results produced by 

PMF2 and the use of the parameters involved in the computation to obtain a solution 

that better describe the real problem; this will be done with the help of a practical 

example. This report is the basis for further PMF research in the framework of the PhD 

“Fate assessment and source apportionment of environmental pollutants using X-ray 
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analytical techniques and chemometric data modelling”, which objective is to develop a 

PMF toolbox for different kind of environmental monitoring data-sets. The toolbox will 

be use to extract “hidden” data structures (i.e. regional geomorphology) and to identify 

markers for pollution compounds or sources by a chemometric approach. 
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2 Chemometric modelling 

2.1 Development in chemometric modelling 

Environmental monitoring data are more and more often handled in terms of 

mathematical models that allow managing different kind of dataset with multiple 

observations. Depending on the type of known information (input data) and on the type 

of results that one would obtain (output data), different modelling technique are 

available. 

In the recent years receptor models became an increasingly important instrument in 

environmental sciences in order to elicit information on dataset containing a number of 

features (chemical or physical properties) related to the measured samples. In particular 

they are used to evaluate the contamination and pollutant sources contributions in 

different kind of samples, starting from the information carried out by the samples 

(registered at monitoring site) and hence at the point of impact, or receptor. Because of 

this property they are diagnostic models (Hopke, 2003). Receptor models complement 

the source-oriented dispersion models, which are prognostic model. They are indeed 

based on sources emission inventory to infer sources emission effects on pollutants 

concentration and required a high level of information about the diffusion parameter of 

the problem under analysis. 

Receptor models are also known as multivariate methods, because they are used to 

analyze data set involving a number of numerical values as a whole; they had been 

primarily implemented on atmospheric datasets (characterization of air pollution; Lee et 

al., 1999; Xie et al., 1998), but more and more these techniques are also used to study 

samples from aquatic and terrestrial compartments (DelValls et al., 1998; Reimann et 

al., 2002). 

Receptor models are based on the Chemical Mass Balance (CMB) equations that, 

considered a single sample taken at a single location and time period, can be expressed 

as (Watson et al., 2008): 

∑ +=
i

ijkjikij ESFC              (2.1.1) 

where Cij is the amount of the ith variable (i.e. a chemical element or 

compound concentration, or a physical property amount) measured at the 
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location (sample) j; Fik is the fractional abundance of the ith variable in the 

kth source type and Skj is the contribution of the kth source at the location j. 

Eij represents the residuals, that is the difference between the measured and 

calculated amounts. 

 

In order to obtain physically realistic solutions of the last equation, Hopke, 2000, 

identified some natural constraints that the system must satisfy: 

1. The original data must be reproduced by the model and the model must explain 

the observations. 

2. The predicted factor explaining the source composition must be non-negative 

since a negative amount does not have a physical sense (a source cannot be 

composed by a negative variable amount, otherwise it is a sink). 

3. The predicted factor explaining the source contributions must all be non-

negative since a source emitting a negative amount is physically not realistic. 

4. Only for chemical elements or compounds, where the unit of measurement are 

the same, the sum of the predicted elemental mass contributions for each source 

must be less than or equal to total measured mass for each element; the whole is 

greater than or equal to the sum of its parts (only in the case of chemical 

elements or compounds). 

 

2.2 Recent type of receptor models 

Starting from Equation 2.1.1 there are different ways to find a solution, depending on 

the type of available information and on the desired final result. Receptor models are 

categorized in two principal classes, based on the same Equation 2.1.1: chemical mass 

balance models and multivariate models.  

In case of chemical mass balance models, the number and characterization of the main 

sources must be known a priori; these kinds of models are generally used in 

environmental studies related to the determination of the sources mass contribution, 

starting from the sources characterization (sources profile). Sources profiles are 

customary known from preceding studies or extracted from existing data set. The most 

useful model in this class is the Chemical Mass Balance (CMB) and the equation is 
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solved using weighted least square regression analysis. In the majority of the cases, 

however, main sources are not well-known and/or inappropriate source profiles from 

other location are used, making the model usually very inaccurate. 

To elicit information on sources type, number and contribution starting from 

observations (i.e. element concentrations data set) at receptor site, different factor 

analysis methods (multivariate methods) have been developed. Commonly factor 

analysis methods used in physical and chemical sciences are: Principal Component 

Analysis (PCA), Unmix, Target Transformation Factor Analysis (TTFA), Positive 

Matrix Factorization (PMF) and Multilinear Engine (ME). 

Actually, PCA is referred to several forms of eigenvector analysis that have the same 

basic objective: the compression of data into fewer dimensions (or factors) and the 

identification of the correlation between the measured variables. 

It should be noted that the term “Factor Analysis (FA)” has an ambiguous meaning to 

identify the above factor models (Paatero and Tapper, 1994). In fact, in statistics, it 

means a non-linear analysis based on investigation of correlations of random variables, 

which is seldom used in physics or chemistry. This factor analysis is also named 

“orthodox FA” or “non-linear FA” in order to distinguishing from the above listed 

factor analysis methods. 

 

2.3 PCA and Single Value Decomposition 

Since Principal Component Analysis (PCA) is one of the most commonly used method 

used for data analyses in environmental sciences, particularly in atmospheric research 

and climate, it is necessary to shortly describe this model. PCA has been used in 

different kind of studies related to the atmosphere, like: air pollution (Motelay-Massei et 

al., 2003; Pires et al., 2008), ozone (Yu et al., 2000; Chang et al., 2009) and 

precipitation (Sakihama et al., 2008). Examples of other applications in aquatic and 

terrestrial compartments are known, too for instance river and lake sediments (dos 

Santos et al., 2004; Loska et Wiechuła, 2003) and sewage water (Critto et al., 2003) and 

in land studies (Officer et al., 2004) and so forth.. 
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This technique and its variants attempt to reduce the initial set of variables into a new 

set of casual factors with reduced dimension, by means of correlations between the 

measured variables.  

Traditionally the factorization of PCA has been based on the so-called covariance 

matrix; later also the Singular Value Decomposition (SVD) has been used (Paatero, a). 

The first resolving algorithm requires that the data matrix be first centred, but this 

results in a loss of information about the origin of the scale of variables; thus this 

approach is inappropriate for instance in physical sciences. 

Singular Value Decomposition is a matrix factorization technique that factors a given 

matrix X, of dimension mxn, into three matrices as follows: 
T
rxnrxrmxrmxn VSUX =     (2.3.1) 

where U and V are orthonormal matrices (UTU = VTV = I ). S is a diagonal matrix 

containing the singular values of the matrix X. There are exactly r singular values that 

correspond to the square roots of XXT or XTX eigenvalues, where r is the rank of X. 

With this decomposition we can also identify XXT and XTX eigenvectors that 

correspond respectively to U and V columns (Unonius and Paatero, 1990). 

The SVD algorithm hence consists of finding the eigenvalues and eigenvectors of XXT 

and XTX.  

Since the covariance matrix of the X is a multiple of XXT, the SVD is able to find its 

eigenvectors, also called principal component; moreover its eigenvalues (from S matrix) 

are the variance associate to each principal component. Hence, selecting only the more 

important components (those with higher eigenvalues), say the first h, data are projected 

from m to h dimensions. 

One important result of the SVD of X is that the truncated SVD of X up to an h order: 

∑
=

=
h

1k

T
kkk

)h( vsuX      (2.3.2) 

minimizes the sum of squares of the difference between X and X(h) elements. In other 

words, the truncated SVD forms an un-weighted least squares fit of X, giving a best 

possible approximation of X when the approximating matrices are restricted to h columns 

(Paatero and Tapper, 1994). 

In the case of PCA the factorization is given by X≈GF where the nxm X matrix is the 

measured data set (i.e. elements concentration in different sampling sites) and G and F, 
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respectively with nxp and pxm dimensions, are the two factor matrices explaining the 

resolved factors.  

The X matrix can also be viewed as a sum of the matrix components of rank one 

X1+…+Xp and applying to them the SVD, the solution of rank p is given by 

EGFEV~S~U~X ' +=+=  (the tilde denotes part of a matrix - the first p column). It can be 

shown, as mentioned above, that this solution has a least square property: among all 

approximation of rank p of X, it minimizes the Frobenius norm of E, 
F

E . 

Thus, we can define the unweighted factorization of rank p of X as: 

{ }
FF,G

GFXminargF,G −⋅=             (2.3.3) 

where G and F are required to be of previously selected rank p. The solution 

is optimal (i.e. minimum variance) if and only if all the variable Xij to be 

fitted are of the same accuracy (Paatero and Tapper, 1994). 

 

2.3.1 Scaling of the data matrix 

The singular value decomposition of a matrix X is not invariant with respect to scale 

changes of columns or rows of X, i.e. if the units of measurement are changed from one 

row or column to another, the SVD gives rise to different matrix decompositions. In 

order to solve this problem, various scaled forms of X in PCA have been used. 

Subsequently, these scaling transformations have been studied in connection to a 

weighted least square, where error estimates are available for the measured data 

(Paatero and Tapper, 1994; Paatero and Tapper, 1993). 

Using the PCS notation, given the input matrix X and the matrix Y = GF that define X, 

a weighted least square fit of X is performede by the following minimization 

expression:  

{ } ( )∑ −=
ij

2
ijijijF,G

yxwminargF,G            (2.3.4) 

where wij are the weight corresponding to each xij. Varying wij, the best 

solution is obtained when each scaled factor wij is equal to ( )( ) 2
ijxdev.std − , 

that is the inverse of the squared standard deviation of xij. 
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The most general scaled form of PCA is defined with the help of diagonal matrices. 

Applying the SVD the solution can only be optimal if the standard deviation matrix, σ, 

is of rank one. If, however, rank(σ)>1, the optimality condition cannot be fulfilled and 

SVD cannot be an optimal least square (LS) method. Among the different type of 

scaling, the standard scaling are the column norm scaling and the row norm scaling, i.e. 

the accuracy of all elements on any single column/row are assumed to be equal. They 

are not recommended as a general purpose tool in physical or chemical application, 

because the scalings are limited to treating whole columns or rows, while individual 

treatment of matrix elements is impossible (Paatero and Tapper, 1993). Alternative 

scaling deals with the possibility of find a rank one matrix which approximates σ and 

use this matrix to obtain the best possible scaling (Paatero and Tapper, 1993). 

 

2.3.2 Rotations 

Any non-singular square matrix T defines a rotation of the solution by: 

EFGEFGTTEGFX 1 +=+=+= −            (2.3.5) 

where the new rotated factors are GTG = and FTF 1−= . 

 

A rotation does not affect the residual matrix E. All rotation can be represented as 

sequence of the so-called elemental rotation, expressed by the following pair of 

matrices (Paatero and Tapper, 1994): 

1000
0100
a010
0001

T =  ,  

1000
0100
a010

0001

T 1 −
=−    (2.3.6) 

 

These matrices represent the addition of one column of G, multiplied by a scalar factor 

a, to another column, and subtraction of one row of F, multiplied by the same scalar 

facto a, from another row. 

Rotations are used to eliminate negative elements from factors G and F, but there is 

however the risk to produce new negative elements, because increasing the values on 
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one side simultaneously decreases the value on the other side (see elemental rotation 

coefficients a and –a) 

The introduction of elementary rotation leads to the definition p-rotatable factorization 

(p means ‘positive’) (Paatero and Tapper, 1994):  

“a factorization X = GF + E of selected rank r is called p-rotatable if it can be 

transformed (‘rotated’) to a different factorization X = GTT-1F + E so that all the 

elements of the new factors GT andT-1F be non-negative and T be not diagonal.” 

 

2.4 Positive Matrix Factorization 

Positive Matrix Factorization (PMF) is a recent type of receptor model, developed by 

Dr. Pentti Paatero (Department of Physics, University of Helsinki) in the middle of the 

1990s (Paatero and Tapper, 1994; Anttila et al., 1995), in order to develop a new 

method for the analysis of multivariate data that resolved some limitations of the PCA. 

One of the main positive aspects is the use of know experimental uncertainties as input 

data which allow individual treatment of matrix elements. This becomes increasingly 

important with the introduction of the Guide for Expression of Measurements (GUM) 

and the derived Guide for Quantification of Analytical Measurements (QUAM), which 

are nowadays commonly accepted references underlying numerous national and 

international standards (ISO/IEC, 2008; Ellison et al., 2000). 

However, point-by-point scaling results in a scaled data matrix that cannot be 

reproduced by a conventional factor analysis based on the SVD (Paatero and Tapper, 

1993). 

Positive Matrix Factorization is as a weighted factorization problem with non-negativity 

constraints which, given the matrices X (input data matrix) and σ (uncertainties data 

matrix) and a selected rank p, is defined in the 2-dimensional case by the following 

expressions: 

mp:F,pn:G,EGFX ××+=                                      (2.4.1) 

0F,0G ikik ≥≥                                                  (2.4.2) 

∑∑
= =

σ=
n

1i

m

1j

2
ij

2
ijEQ                                                       (2.4.3) 
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{ } QminargF,G
F,G

=                                                       (2.4.4) 

The problem is symmetric with respect to the rows and column of the matrix X and the 

factors G and F: this is a ‘bilinear model’. 

Its resolution is a difficult task, because it has two different non-linearities: inequalities 

and products of unknowns.  

Two are the main algorithms used to solve this problem: PMF2 and ME-2 (Multilinear 

Engine), discussed in the following. 

The introduction of the standard deviation matrix σ into the model creates a link 

between the factor model and the physical reality. Also, handling the standard deviation 

of certain non representative data avoid their discarded or the formation of a noise that 

arise in PCA. 

A more detailed PMF description and its mathematical algorithm are described in 

Chapter 3.  

 

2.5 Comparison between PMF and PCA 

The main difference between PCA and PMF is that in the fist one the solution forms a 

hierarchy and so, a higher dimension (a higher number of factors) contains all the 

factors of the lower dimension, while in the last one the factors are not orthogonal and 

so there is no hierarchy. However, when rotation is applied to PCA, the factors are not 

anymore orthogonal. 

Usually in physical sciences, the factors have not the orthogonality property so its 

missing in PMF is not significant. Moreover, PMF produces non-negative distributions 

(factors) by definition and this aspect precludes the orthogonality. 

Resolving PMF algorithms is however slower than PCA but, on the other hand PCA is 

simpler to use because of less parameters to control. 

Other different aspects between these two methods concern the rank of the standard 

deviation matrix and the p-rotatable property of SVD. In fact, different cases can be 

presented, as summarized hereafter (Paatero and Tapper, 1994): 

1. The matrix σ is of rank one and SVD of X is p-rotatable: with PCA the matrix 

can be scaled correctly and factorization by SVD is optimal. The factorization 

by PMF is always optimal, because it always uses the correct standard 
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deviations. When the solution given by SVD is p-rotated, then it becomes a 

solution of the PMF task, because both have the same residuals and 

Q(PMF)=Q(PCA). However, PMF produces a desired non-negative solution 

directly, whereas the solution by PCA must be rotated in order to obtain a non-

negative solution. 

2. The matrix σ is of rank one but SVD of X is not p-rotatable: it’s impossible to 

rotate the SVD-derived factorization, while PMF will produce the desired 

solution. PMF solves the problem, PCA does not. 

3. Rank(σ) > 1: correct scaling is not possible with SVD; it’s only possible to 

approximate the σ with a matrix of rank one, leading to loss of information. It 

may also happen that the solution by SVD is not p-rotatable, preventing the 

solution by PCA. On the other hand, PMF solves the original problem correctly. 

 

From this it becomes apparent that in conclusion, PMF is generally more powerful than 

the best possible PCA or at least equivalent to PCA. In exchange, PCA is that 

computing a SVD is much faster than in case of using PMF. 
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3 Positive Matrix Factorization 

3.1 Introduction to PMF 

In the previous chapter a new receptor model has been introduced, namely Positive 

Matrix Factorization (PMF). At the beginning PMF has been used in air pollution and 

source apportionment studies (Polissar et al., 1999; Lee et al., 1999) and in precipitation 

study (Juntto and Paatero, 1994; Anttila et al., 1994). Also recently, applications on air 

quality and source apportionment (Xie and Berkowitz, 2006; Begum et al., 2004) have 

been carried out. In addiction, in the latest years, PMF has been applied to lakes 

sediments (Bzdusek et al., 2006), wastewater (Soonthornnonda and Christensen, 2008; 

Singh et al., 2006) and soils (Vaccaro et al., 2007; Lu et al., 2008). 

As mentioned above, Positive Matrix Factorization differs from the customary factor 

analysis models such as PCA by the property to take into account standard deviations of 

observed data values and to introduce the constraint of non negativity (hence the use of 

the term “positive”) of all the factor matrices G and F elements in order to have 

physically meaningful solutions. It is thus a weighted least square problem in which a 

certain number of factors have to be determined in order to minimize an ‘object 

function’. As stated above, this problem cannot be solved by SVD. The input data are a 

multivariate data set containing the measured data and the corresponding uncertainties 

data matrix. 

One of the main features of PMF results is their quantitative nature: it is possible to 

obtain the composition of the sources determined by the model. In contrast, the results 

of PCA are qualitative as they can only distinguish variables that tend to appear together 

from those ones that do not (Paatero, 2004). 

Moreover, in contrast to customary factor analysis models, PMF model has been 

implemented to handle non representative data such as “below detection limit”, missing 

data and outliers. This is an important property as it prevents the rejection of such 

values and hence the reduction of the initial data set. These and other positive aspects 

are detailed described in the following section. 

Different approaches to resolve PMF algorithm have been studied, both for usual 2-

dimensional matrices and 3-way arrays. The firsts programs developed by Paatero are 
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called respectively PMF2 and PMF3 (Paatero, 2004a; Paatero 2004b) and later on the 

algorithm has been extender to arbitrary multilinear models by means of the program 

Multilinear Engine (ME), (Paatero, 1999). In the latest years other resolving techniques 

have been developed, starting from Paatero’s PMF equations, like a new PMF 

formulation by Bzdusek (Bzdusek et al., 2006). Moreover, given the importance of 

receptor models in scientific research, the United States Environmental Protection 

Agency (US-EPA) has developed a standalone version of PMF, EPA PMF 3.0, freely 

distributed (Norris et al., 2008). EPA PMF 3.0 is based on ME-2 (ME second version; 

Paatero, 2007) 

To have a clear distinction between PMF as a model and the name of the programs, the 

model is designated as PMF while the programs used to solve the model are designated 

PMF2, PMF3 and ME-2. 

 

3.2 PMF2 algorithm 

PMF2 is used to solve 2-dimensional problems by means of the following bilinear 

model: 

X = GF + E 

or, in component form: 

∑
=

+=
p

1p
ijpjipij efgx  i = 1…m; j = 1…n   (3.2.1) 

where X is the measured data matrix, G and F are the matrices to be determined and E is 

the residual matrix (the unexplained part of X). Due to the factor linearity, the matrices 

G and F can be exchanged without changes in the matrix X. In a practical example X 

can be viewed as a matrix contained measured value of certain variable, G the 

contributions matrix of the identified sources and F the matrix characterizing each 

sources. The elements of G and F are constrained to assume positive value and this 

corresponds to the idea that no sources may emit negative amounts of physical 

substances. 

The expression of the object function to be minimized as a function of G and F is given 

by: 
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( ) ∑∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ
=

m

1i

n

1j

2

ij

ije
EQ      (3.2.2) 

where σij are the known uncertainties for each data value xij, so that the optimum weight 

in the least square fit are 1/ σij. In this way the PMF problem is then identified as a 

minimization of Q(E) with respect to G and F, and under the constraint that each 

elements of the matrices G and F is to be non-negative. 

As in PCA, also in PMF there is rotational ambiguity. Starting from the T definition 

given in Section 2.3.2 and the identity: 

GF = GTT-1F      (3.2.3) 

the expressions GT and T-1F represent a pair of factors which are ‘equally good’ (same 

goodness of fit) as the original pair, G and F. 

The original basic algorithm used to determine the 2-dimensionl solution was the so-

called Alternating Regression (AR): one of the matrices G and F is taken as known and 

the object function Q is minimized with respect to the other matrix; then their roles are 

interchanged. This process is continued until convergence (Paatero and Tapper, 1993). 

However, this process can be slow if the factors are far from being orthogonal (needing 

up to thousand of steps). 

In order to improve the model performance the AR algorithm was modified by 

computing G and F steps where both these matrices are changing simultaneously. 

Starting for example from G = G0 and F = F0 the iteration consists of the repetition of 

the following three basis steps: 

• minimize for G = G0 + ΔG while keeping F = F0 constant;  

• minimize for F = F0 + ΔF while keeping G = G0 + ΔG constant; 

• minimize for the extension coefficient α in 

   (G0 + αΔG)(F0 + αΔF) = X + E 

where ΔG and ΔF are as determined from the first and second steps. 

This algorithm is fast and typically the convergence needs 30 to 100 steps. 

Subsequently, as a generalization of the latter AR algorithm, PMF2 algorithm was 

created by Paatero. It is able to simultaneous vary the elements of G and F in each 

iterative steps and have a faster convergence. 

 



 21

3.2.1 Mathematical algorithm 

In PMF2 the object function Q(E) assumed a more complicate formula than the simpler 

Equation 3.2.2 one, because the addition of a correct implementation of the non-

negativity constraint and of two terms to reduce the rotational ambiguity. The objective 

is to minimize the expression Q(G0 + ΔG, F0 + ΔF) with respect to ΔG and ΔF 

simultaneously. Starting from arbitrary matrices ΔG and ΔF in the factor spaces G and F 

of dimension nxp and mxp respectively, during each such ‘full’ step of the iteration 

there would be (m+n)p unknowns to solve. Because the number of unknowns in this 2-

way models may be very large, the full model is not very efficient with respect the 

computational workload. Thus, PMF2 works on two restricted spaces (for 

computational details see Paatero, 1997). 

Here we summarize only the main steps of the PMF2 algorithm with a detailed 

description to be found in the above mentioned article. 

The new object function, called enhanced object function is defined as: 
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 (3.2.4) 

P(G) and P(F) are called penalty function and prevent the elements of the factor 

matrices G and F from became negative. R(G) and R(F), called regularization function, 

are used to remove some rotational indeterminacy and to control the scaling of the 

factors. The coefficients α, β, γ and δ of the Q equation control the strength of their 

respective. For efficiency reasons the log function of the penalty term was approximated 

by a Taylor series expansion up to quadratic terms (Paatero, 1997). 

To solve each ‘full’ step the algorithm use the Gauss-Newton and Newton-Raphson 

numerical method and the Cholesky decomposition. Between these steps, rotational 

substeps are performed: the algorithm determines a rotation T and its inverse T-1 so that 

the new factor matrices GT and T-1F minimize the enhanced object function. Taking 

into account the definition of rotation, the main part of Q  does not change because the 

matrix T does not change the residual matrix and so the minimization is only related to 

the penalty and regularization terms. These rotations lead to a fast computation. 
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Rotational ambiguity 

As above discussed, PMF have a rotational ambiguity, which make the solution of the 

algorithm not unique. To illustrate this problem we can consider the example of two 

measured elements, iron ad silicon, in environmental samples, illustrated in the 

following picture (Paatero et al., 2002) 

 
Figure 3.1 – Example of rotational ambiguity (Paatero et al., 2002) 

 

In order to reproduce the sources profile we need two factors, as the two parameters are 

not correlated each other; however we can choose one of the many profile which range 

from the Cartesian axes to the solid lines. In conclusion, without additional information 

the source profile cannot be completely determined. 

Some of the rotational ambiguity is however removed by the non-negativity constraint 

of the matrices G and F as the transformation described by Equation 3.2.3 is only 

acceptable if it does not produce negative elements in these matrices. In the extreme 

case in which all the rotations are forbidden the solution is unique. Actually there are 

different possible rotations so the issue is to determine the optimal solution that better 

represents the problem under analysis 

But what happened when an elementary rotation with a r coefficient is applied? 

If the r coefficient is positive, by the effect of the matrix T (see Section 2.3.2) the G 

elements are spread towards positive value meanwhile F elements are spread toward 
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negative values. On the contrary, if r has a negative value the elements of the matrices 

G and F are changed vice-versa. In this manner, if all the matrices elements are positive, 

all the rotations are possible (Paatero et al., 2002).  

However, as can be proofed by the multivariate statistic analysis theory, if a sufficient 

number of G (or F) elements assumed a priori zero value, then there is not rotational 

ambiguity and the solution is unique. 

In PMF2 algorithm rotations are implemented in the iterative steps by means of the so-

called FPEAK parameter, φ, which can assume positive or negative value (the zero-

value correspond to a free rotation solution also called centred solution). If the factor 

matrices have all non-zero values there is not a logical common sense in selecting a 

specific φ value, but the entire φ domain can be explored. Also in PMF2 the rotations 

are controlled by means the T matrix but an additional control is provided by the 

regularization terms in the enhanced object function (Equation 3.2.4). This latter is also 

used in PMF3 and ME-2 algorithm where there is not a T-corresponding mechanism for 

controlling rotations. 

 

3.2.2 Errors 

If the error matrix is not known (i.e. analytical uncertainties are missing) an estimation 

of the data uncertainties could be performed using known concentrations (or variables 

amounts) and the limit of detection values. 

In a recent source apportionment study based on PM2.5 (Particulate Matter with an 

aerodynamic diameter of 2.5 μm or less) data (Kim and Hopke, 2007), PMF results 

from known uncertainties and estimate uncertainties have been compared. The resulting 

factors are similar and little difference seems to be due by differences in true 

uncertainties from the different laboratories.  

In literature different kinds of uncertainties estimation are reported. As an example, in 

the study of daily precipitation data, described in Juntto and Paatero, 1994, the standard 

deviation associated to a single measurement of ions j is calculated by: 

σ = ej + dj x 

where x is the ion j concentration. The values ej and dj are determined experimentally 

for each ion in order to include in the calculated standard deviations about the 80-90% 
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of the data. Like this, for small concentrations (near the limit of detection) the ej value 

prevail on the standard deviation, while for large concentrations became more important 

the dj x member. 

The parameters used in the error estimates (in the above example: ej and dj) could be 

determined by trial and error, varying their values until they produce the best fit. In 

example, in Reinikainen et al., 20001, the parameters are adjusted in order to obtain 

approximately equal scaled residuals for all the data. Instead, in Polissar et al., 2001, the 

parameters corresponding to the best fit are evaluated analyzing Q values, scatterplots, 

distributions of the residuals and results from multiple regressions. 

It is important to note that when an input data-set contains below detection limit data 

and/or missing data, referred as non representative data, they can also be handle by the 

model, avoiding loss of information. However, in this case their errors and 

concentrations have to be estimated. This can be done in different ways and in the 

following section some error and data estimates are listed for dataset including this type 

of data. 

 

Error model (EM) 

Alternatively, when the uncertainties of the input data xij are not known, PMF2 can 

compute error estimates for xij.(Paatero, 2004). This is done by means of the three codes 

C1, C2 and C3, the Errormodel (EM) and the three arrays T, U and V. As explained in 

the following, the Errormodel makes a choice of the equation used to determine the 

standard deviation matrix, named next by S. 

In the simplest case in which all the X elements have either the same accuracy or the 

same relative error, only the C1 and C3 value have to be set, corresponding to the 

matrices T and V respectively. Usually, the U matrix (and so the C2 value) is not used 

unless in the case of Poissonian situations.  

The S matrix is computed by two ways: in the first one this matrix is determined before 

the iterative steps are started (EM = –12); in the latter, S is determined during each step 

using the fitted value yij in place of the xij values (EM = –10, –11, –13, –14). 

Following a description of the different error models: 

• EM = –12. The equation used to determine the sij value is given by: 

ijijijijijij xvxuts ++=  
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The T matrix corresponds to the xij uncertainties matrix and the V matrix to the 

relative errors one. Alternatively, if the T, U and V matrices contain each one the 

same elements, then their values can be replaced with the corresponding C1, C2 

and C3 values. Typically C1 is chosen equal to the detection limit and C3 in the 

range 0.01–0.1. 

• EM = –10. In this error structure it is assumed that data and uncertainties have a 

lognormal distribution. Assuming also there is a measurement error with standard 

deviation equal to tij and be vij geometric standard deviation logarithm, the S 

matrix is iteratively calculated by: 

( )ijijij
2
ij

2
ijij xyyv5.0ts ++=  

For this model the fitted Q value is greater than the expected one, corresponding 

to the problem degree of freedom. 

• EM = –11. It is assumed a poissonian data distribution with μij parameter equal to 

GF. During the iteration steps sij values are given by: 

( )1.0,maxs ijij μ=  

• EM = –13. Like the EM = –12 structure the sij values are given by the same 

formula, but now they are computed at each iterative step replacing the xij values 

with the relative fitted yij values.  

• EM = –14. The sij value are computer by means the following equation: 

( ) ( )ijijijijijijijij y,xmaxvy,xmaxuts ++=  

This option is recommended in environmental work as an alternative method to 

the EM = –12, although the processing time is greater. 

 
When the uncertainties matrix is read from an external file (i.e. the matrix is computed 

by the user as one of the error estimates method described in section 2.2.3), only the T 

matrix is read in the .INI file, so C2 = C3 = 0 and EM = –12. 

 

3.2.3 Non-representative Data 

Below detection limit and missing data 
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Typically, elemental concentrations data set or physical-chemical parameters data set 

can contain below-detection-limit values (BDL) and/or missing values (MV). In the 

below-detection-limit data the values are below the method detection limit so we only 

know they are small. In the case of missing data the values could not be determined and 

hence they are totally unknown. In order to avoid rejection of this data or, in the worst 

case, rejection of all the variables related to the same sample (input matrix must not 

contain null values) as done in PCA, PMF is able to handle BDL ad MV by means of 

different type of data values estimates and associates error estimates. Also, when the 

data uncertainties are not known it is possible to associate calculated error estimates. 

In literature different types of data and errors estimates can be found and here below 

some example are reported. 

Polissar (Polissar et al., 1998) in a PMF study for atmospheric samples has suggested 

the following estimates: 

xij = νij σij = uij + DLij/3 for determined values νij 

xij = DLij/2 3/DL2/DL ijijij +=σ    for below detection limit values 

ijijx ν=  ijij 4 ν⋅=σ      for missing value 

where uij, DLij and ijν  are the analytical uncertainty, the method detection limit 

and the geometric mean of the measured concentrations respectively, for sample i 

and parameter j. 

In this case, the detection limit specified the error estimates for low data value while the 

uncertainties provided the estimation of errors for high data values. According to this 

equations, relative error estimates for below detection limits value range from 100% to 

250%, while for missing value are equal to 400%. 

 

Xie and Berkowitz, 2006, in an application to hydrocarbon emissions, use the previous 

estimates introducing the additional percentage parameter C2: 

xij = νij σij = MDLij/3 + C2⋅xij for determined values νij 

xij = MDLij/2 σij = MDLij/2 + MDLij/3 for data below MDLij 

ijijx ν=  ijij 4 ν⋅=σ  for missing value 

where C2 is the percentage parameter determined by trial and error and MDL 

stand for Minimun Detection Limit. 
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In an atmospheric aerosol study Polissar et al., 2001, replace below detection limit data 

with half detection limit values and missing data with mean concentration. For 

determined values the errors formula used is: 

2
ijj

2
ijjij DLbua +=σ  

where uij are the analytical uncertainties and DLij are the analytical detection limits 

for sample i and element j. The variables aj and bj are the scaling factor for the 

weight associated to each element and their values are chosen by trial and error. 

For below-detection-limit data, the term uij was set equal to zero, so that only the second 

term of the error equation is used. For missing values, the error estimate equal 25 times 

the mean element concentration 

 

PMF2 allows an automatic handling of missing value by the use of the optional 

parameters “Missingneg r”, with r as a decimal value, and “BDLneg r1 r2”, with r1<0. 

For detailed information see Paatero, 2004a. However these options must be used with 

caution. 

 

Outliers 

Outliers are extreme values that differ from the mean trend of all the data. They can 

occur for various reasons, for instance because of a sample contamination that affect all 

the elements in a row of the data matrix (a sample) or a laboratory error that affect only 

one element of the data matrix. Such very high or very low value can also be true 

outliers, but in either case they have a significant influence on the solution. Thus, PMF 

offer a so-called “robust mode” where the outliers influence is reduced. This robust 

factorization is a technique of iterative reweighing of the individual data values based 

on the Huber influence function, that modify the object function Q. 

In the non-robust formulation we can express Q in terms of the scaled residues rij = 

eij/σij 

( ) ( ) 2
ijij

m

1i

n

1j
ij rrQwhererQ)r(Q == ∑∑

= =

 (3.2.5) 

Usually, the influence function ψ(r) is defined as half of the derivative of the functional 

Q(r) (Paatero, 1997): 
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For each xij, this equation indicates that values with high residue have a high influence, 

but this is not the correct way to handle outliers because they represent data of a poorer 

quality. 

Robustness is hence achieved by constructing an appropriate influence function, the 

Hubert function, which limits the maximum strength that each data can bring to the fit. 

It is defined by: 
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where α is the outlier distance (the distance for classifying the observation as outliers). 

The object function corresponding to ψH is denoted by QH and the least square 

formulation becomes: 
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In this manner, the outliers are not rejected but they are handled as they stay at the 

distance ασij from the fitted value. This method however is not applied to outlier with 

very low values respect the mean observations. 

 

High noise variables 

In environmental studies it may happens either that some variables present a higher 

noise than others or the noise is greater than the signal (in some situation the signal may 

also be absent). So the problem is to identify and handle these variables. 

In Paatero and Hopke, 2003, they list the variables using the ratio signal to noise (S/N): 

weak variable contain signal and noise in similar quantities, while bad variables 

contains much more noise than signal. In order to have a general numerical definition 

base on this ratio Pattero and Hopke define a variable is weak if: 

2
N
S2.0 <<  
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Like this a variable is bad if S/N<0.2. 

If the detection limits (DL) are known and the below detection limit values are replaced 

with DL/2, then the relation defining a weak variable is the following: 

2
n

xi x
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DLjj
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where nDLj is the number of below detection limit value in column j and δj is the mean 

detection limit in column j. 

Since to each variables is associated a corresponding weight (inverse of the errors), one 

must may pay attention to do not have either downweighting (weight too high) or 

overweighting (weight too low). Relating to weak variables it is recommended to 

downweight them by a factor of 2 or 3 in order to be sure that their noise does not affect 

significantly the result. Bad variables can be rejected from the analysis or, if they are 

kept in the dataset, it is recommended to downweight them by a factor 5 to 10 (Paatero 

and Hopke, 2003) 

 

3.2.4 Explained variation 

The Explained Variation (EV) is a dimensionless quantity describing how much each 

computed factor explained a row (EV of G) or a column (EV of F) of the input data 

matrix, X. The explained variation matrix is defined by Paatero, 2004b, considering that 

the X values are explained by both the p factors and the residuals. In this way, residuals 

form a (p+1) additional factor also called NEV (Not Explained Variation) as they 

represent the X part not explained by the p factors. The EV elements values range from 

0.0 to 1.0 corresponding to no explanation and complete explanation respectively. 

In the G matrix case, EVG is a nx(p+1) matrix where the (p+1st) column correspond to 

NEVG; their elements are give by the equations: 
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The first equation gives information of how much each factor (1, …, p) explains the ith 

row of X; in example, in the case of a data set made by measurement of j parameters in i 

samples, EVGik describe the amount of ith sample explained by the kth factor. 

Instead, the second equation describes how much the residues explain the ith row of X 

or, like the above example, describes the amount of ith sample not explained by the p 

factors. By definition, the EVG and NEVG sum must be equal to one. 

Similar equations are used to determine the EVF matrix, where the sum over j is now 

substituted with an ‘i’ sum. This is a (p+1)xm matrix where the last row indicate the 

NEV of F that is the amount of the jth variable unexplained by the p factor (see above 

example). However, it is a practical rule to consider unexplained a variable when its 

NEVF value exceeds 0.25. In this case it is advisable to decrease the weight of the 

variable such as their residues are approximately between – 1 and +1. In source 

apportionment cases the explained variation of F is used in order to qualify the sources 

since a factor explaining a large amount of one or more parameters can be identify 

according to the origin of those parameters. 

The information carried out by the explained variation must be handled with care, 

mainly in the presence of high outlier values in the data matrix because of the explained 

variation are computer using the original standard deviations. For more realistic value it 

is opportune to manually decrease the weigh of outliers. 
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4 PMF – Toolbox 
In this chapter we want to focus the attention on the choice of the optimal solution. As 

described in the Appendix, there are many parameters involved in the determination of 

the factor matrices and, change one of them, may lead to a different solution. This is 

why it is not correct to investigate only one parameters combination, while several runs 

with different conditions should be made. 

To better explain how to manage the different PMF parameters to find the optimal 

solution, an example based on an existing data-set is reported. This data-set is referred 

to XRF (X-Ray Fluorescence) analyses on sediments, extracted from 12 alpine Italians 

lakes; for each lake from 17 to 20 samples had been collected. 

 

4.1 Initialization 

As to the first, in order to produce different solutions to compare each other, we make 

different runs with the FPEAK parameter equal to zero (no rotations), changing at every 

turn the number of factors. Customary the starting number of factors is 2 and the 

maximum number may be of the order of tens; even if the number of factor seems to be 

small or large in relation to the problem under analysis, we should considered these 

solutions until we are sure of their wrongness. 

The next step is to investigate different values of the FPEAK parameter for each number 

of factors. However this may lead to a high number of analyses and so it should be more 

easily to reject some numbers of factors, using the tools described in the next section, in 

order to reduce the number of possible solutions. 

FPEAK can assume positive and negative values, but different studies reported that too 

high positive and negative values lead to a poorer fit. So the correct values to be 

investigated vary from -2 to 2 with a step chosen by the user (ideally a 0.2 step is used 

as an intermediate choice). 
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4.2 Determining the number of factors 

Obviously, the solution is dependent from the number of factors and it is necessary to 

retain the one that optimally describe the problem under analysis. However the solution 

has also a rotational ambiguity so it is better to analyze together these two important 

parameters.  

In this section we describe the methods used to select the correct number of factors 

starting from the central solutions (FPEAK=0); the selection involves the analysis of 

output parameters computed during the fit. 

 

4.2.1 Analysis of Q value 

Before describing the procedure used to select a range of number of factors starting 

from the Q values computed by the fit, we have to look at the following guideline, 

based on the expected Q value. 

In weighted-least-square problems if the uncertainties associated to the variables are 

correct, the Q function should be distributed as a chi-square, χ2, distribution (Q value is 

a χ2 value). The degrees of freedom are an important parameter of this distribution as 

they correspond to the χ2 expected mean value; this number is calculated by subtracting 

the number of bond (or free parameter) from the number of data points. In the two-

dimensional approach the free parameters of the matrices product GF is given by (n + 

m)xp; if also the rotational ambiguity is to be considered then the introduction of the 

matrix T (pxp) makes the free parameters equal to (n+m–p)xp. Considering the Q 

expression, the resulting degrees of freedom are υ = nxm – (n + m – p)xp = (n – p)x(m 

– p) (Paatero and Tapper, 1993) and consequently the expected Q is given by: 

Qexp = (n – p)x(m – p) 

If the data matrix is expected to be very large, in example mxn>>p(m + n) then Qexp ≈ 

mxn, that is the expected value of Q may be approximated to the number of data points. 

Now it is clear that Qexp value gives important information about the quality of the fit 

since the optimal solution should have a Q not too different from the Qexp value. This 

may be a tool for selecting the optimal number of factors (Bzdusek et al., 2006) but in 

some cases, the optimal solution does not satisfy this requirement, in example when a 

dataset contains much weak variables or the uncertainties are not well known. In this 
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latter case, the standard deviations can be ‘settled’ so that the expected Q is close to the 

theoretical one (see also Section 3.2.2 about choosing errors estimates that improve the 

quality of the fit). 

Using the data-set of alpine lakes, from 2 to 8 number of factors have been tested (with 

FPEAK=0) and the resulting Q/Qexp values are plotted in the following figure: 

 

Figure 4.1 – Q/Qexp values from different number of factors 

 
The Q/Qexp value steadily decreases except from factor 2 to 3 where the slope is greater; 

this suggests rejecting the solution with 2 factors. Q ranges from 3 to 10 times the Qexp 

value and this is could be due to the uncertainties associated with the data that are not 

known, but are computed with the formula used by Xie and Berkowitz, 2006 (see also 

Section 3.2.3). 

Also, for each number of factors, we computed different initial runs to assess Q 

stability, using different starting points (see Appendix, .INI file and Multiple results). 

Local minima occurred in results from 6, 7 and 8 number of factors suggesting that too 

many factors are used (see Appendix, Multiple results). 

 

4.2.2 Analysis of residuals 

Another method is based on the analysis of the scaled residuals of the model (Juntto and 

Paatero, 1994). The scaled residuals may in fact be used in order to detect data 

anomalies. If the input data and the model are correct, the plot of scaled residual values 

against their occurrence shows a random distribution with no positive or negative 
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divergences. Customary the majority of them is located from -2 to +2 (Juntto e Paatero, 

2004). 

On the other hand if they fluctuate outside of this range it is possible that either the 

chosen number of factors is not correct or there is some noise in the variables (i.e: 

outliers or downweight). 

Moreover, it may be happened that the scaled residuals are large for certain variables, 

because the associated standard deviations are set to too small values, so it would be 

better to increase their values. Opposite to this, if the scaled residuals are too small, the 

standard deviation may be set too large or the variable is explained by a unique factor. 

This latter case may occur naturally but such situation may also occur when high 

standard deviations have been specified for a noisy variable (Paatero, 2004a). 

However, it is necessary to pay attention at these approaches as it may be happens that a 

factor have a good fit even if it is not “interpretable”; in example it explain only one 

variable (Huang et al., 1999). 

In the example of alpine lakes, after a first step of analysis of residuals, data 

uncertainties have been modified accordingly to preceding residuals plots, increasing 

the errors for those element that show a bad residuals distribution (Free et al.). In 

Error! Reference source not found. the plot of Mn residuals is reported, before and 

after the associate uncertainties have been increased by a factor 1.5. 

 

 
Figure 4.2 – Residual plots for Mn. Left: before increase Mn uncertainties. Right: 

after increase Mn uncertainties 

 

As it can be seen, increasing the uncertainties lead to a residuals distribution closer to 

zero and hence to a better fit. However residuals are still not well located between -2 
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and +2 and this is probably due to the variability of the elements concentrations. In fact, 

as the geochemical data are referred to different lakes, the possible presence of different 

lithologies may causes extremely inhomogeneous elements concentrations, as in the 

case of Pb, illustrated in Figure 4.3. 

 

 
Figure 4.3 – Spatial plot of Pb 

 

The points where the concentrations are very high are all referred to one of the alpine 

lakes; hence these data are not outliers because they correspond to real concentrations. 

This situation could lead to some ambiguity in the analysis of results, in fact in the plot 

of Pb residuals (Figure 4.4) the distribution is bimodal and one could deduce a poorer 

fit. Actually this bimodal distribution reflects the original spatial distribution (see also 

Polissar et al., 1998). 
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Figure 4.4 – Plot of Pb residuals 

4.2.3 IM and IS 

In order to reduce the range of the meaningful number of factors, two parameters named 

IM and IS have been used in Lee et al., 1999. Starting from the scaled residual matrix 

R, these parameters are computed as follow: 
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 where jr  is the mean over the ith row.  

As stated from this expression, IM represents the jth variable with greater scaled 

residuals mean and so the less accurate one. Instead IS reproduces the jth variable with 

greater scaled residual standard deviation and so the more imprecise fit. 

Plotting these parameters against the number of factors it is possible to reject some of 

them from further analysis as IM and IS show a drastic decrease when the number of 

factors increase up to a critical value. Also high IM and IS values should not be 

considered as they represent a more inaccurate and imprecise fit (Lee et al., 1999). 

Analysing IM and IS values from the alpine lakes data-set, reported in Figure 4.5, we 

can observe a rapid decrease of IM from 3 to 4 number of factors and a further decrease 

from 5 to 6, with a step between 4 and 5. Instead, IS a first step between 3 and 4 number 

of factors.  

From this analysis it seems that solutions with 3 to 5 number of factors have a better fit. 
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Figure 4.5 – IM and IS plot vs number of factors 
 

4.2.4 Rotmat 

The rotmat matrix, indicating the rotational freedom of the solution, give us another tool 

to elicit information on the number of factors by plotting the maximum element in the 

matrix (the worst case, corresponding to greater rotational freedom, is used) against the 

number of factors. 

Then we can reject those number of factors from which the maximum element value 

shows a rapid increase, as they have a high rotational freedom (Lee et al., 1999). 

In Figure 4.6, maximum elements of rotmat matrix from the alpine lakes example show 

a rapid increase for number of factors 2 and 8; these solutions have hence a high 

rotational ambiguity and, in addition to preceding results, they can be rejected from 

further analyses. 
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Figure 4.6 – MaxRotMat values vs the number of factors 
 

4.2.5 NEVF 

As stated in Section 3.2.4 when a given variable shows NEVF values greater than 0.25 

(more than 25% of its variability is not explained by the fit), then the variable is 

considered not explained by the fit. In this case it is necessary to introduce a further or 

more factors in order to explain the variable. 

NEVF of data from alpine lakes example are reported in Figure 4.7 for solutions with 3, 

4 and 5 factors. Moving from 3 to 4 factors, Na and Si NEVF show a greater decrease, 

reaching values below 25% while other variables record a lower decrease. The 5 factors 

plot differs from the 4 factor mainly for the variable Cr that decreases its NEVF from 

37% to 22%. This great change in Cr NEVF is explained by the isolation of Cr into the 

new additional factor.  
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3 factors                                                          4 factors 

 
5 factors 

 
Figure 4.7 – Not Explained Variation of F (NEVF) plots for different number of 

factor 

 

The variables Ni, As and Cu maintain their NEVF at high values: the reason could be 

attributed to high percentage of below-detection-limit data, respectively of 59%, 56% 

and 28%. 

 

4.3 Controlling rotations 

Usually in the PMF2 algorithm, pseudorandom numbers are used as initial element 

matrices values. However, when many trials with different rotations have to be 

performed on the same dataset in order to evaluate all the possible solutions, the use of 

pseudorandom number do not seems to be the right choice. This is because different 

local minima may be produces with this type of initialization respect to the selected 

rotation and also the calculated factors may appear with a different index in each 

solution, making the comparison among solutions more complicated. Since these effects 

might mask the rotational effects on the solutions (Paatero et al., 2002), Paatero 

suggests the following scheme when operating with rotations: 

• Perform different initialization runs with pseudorandom value and φ = 0 (central 

solution) in order to evaluate the Q stability. 

• Choose the best central solution and use it as a starting point for the data 

processing with rotations. This is done using the “goodstart” parameter as 

described in Appendix (Rotations). 
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• For a complete point of view this step may be repeated with another central 

solution as a starting point. 

With the above procedure the effects produced by the rotations on the solutions are 

clearest to compare. 

 

Once different runs have been made and different numbers of factors and rotations have 

been explored, it needs to reject the solutions that do not satisfy some criteria. One of 

these evaluation techniques is the Q-value investigation respect the FPEAK parameter, 

φ. 

Before describing this method an apparent contradiction has to be remarked: when 

analyzing the Q versus φ dependence it may happen that the solution with a non-zero φ 

shows a slightly higher Q. This might result in contradiction with the rotation definition 

in make unchanged the factor matrices product (GF = GTT-1F). Actually the G and F 

factors are “flexible” that is their product can differ a little bit from the rotate factor 

product (GF ≈ GTT-1F) and so a worse fit has been accepted in order to minimize the 

object function. This is due by the non-negative forcing of the matrices elements and it 

is said that a distorted rotation is performed (Paatero et al., 2002). 

In conclusion, also solutions with Q value that is not too high than the central one (φ = 

0) have to be considered. 

Based on years of experience, customary trend of Q respect to the φ value is described 

in the article by Paatero et al., 2002. Starting from the central solution and observing the 

behaviour of Q related to the increase of the φ parameter, two distinct phases may be 

distinguished. In the first phase the Q value grow slowly while in the latter one the Q 

value increases very quickly and the factor matrices tend to be distorted because of the 

non-negativity constraint. In seems that useful results appear when φ is near the end of 

the first phase; however further experience is needed in order to have a best knowledge 

in choosing φ values. Anyway, this could be a helpful tool to make a first step decision 

on the rotate solutions to be considered. 
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4.3.1 Assessing the increase of Q 

As previously mentioned, rotations are considered also if the Q value is not too different 

from the central solution one. In order to quantify the expression “not too different” we 

can compare the Q value computed from the fit with the Qexp or the Q of the central 

solution. 

When a rotation is performed and some of the G or/and F matrix elements move to near 

zero value (say z the number of these elements), then Qexp value increase because of the 

near zero elements are viewed as non free parameter. The Qexp increment is equal to z 

number. Clearly it is not possible to define a precise rule, based on Q value, that allow 

us to decide when a rotation is to rejected, but, as a practical decisional step we could 

considered forbidden rotations that show an increase of Q values, respect to the central 

solution one, above than 10% (Paatero et al., 2002). 

In Figure 4.8 an example of the variations of Q values respect the FPEAK parameter. 

The plot is referred to the 5 factors solution of the alpine lakes data-set and reports the 

ratio between the calculated Q value and the Q value from the central solution (Qzero). 

All the ratios are closed to the unit but moving toward too high positive and negative 

FPEAK the ratio increases. 

 

 
Figure 4.8 – Q/Qzero values from different rotations (Qzero is the Q value 

corresponding to the central solution) 
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4.3.2 Scaled residual 

As in the case of number of factors, the scaled residual can be used to reject some 

rotations. Observing the residual plot it is possible to detect the rotations that show a 

better residual distribution. However, as already explained some deviation from the 

expected distribution may be due to not well known standard deviation, so it is 

advisable to control them. 

 

4.3.3 IM, IS and rotmat 

The parameters IM, IS and rotmat, described in the previous section, are used to select 

the most meaningful range from all the FPEAK values input into the model. The range 

of interest should have low and stable IM and IS values, representing the more accurate 

and precise fits. 

In Figure 4.9, from the 5 factors solution of alpine lakes data-set, IM shows lower 

values in the range -0.4 – 0.2, while for IS a continuous decrease until 0.7 take place. 

 

 
Figure 4.9 – IM and IS valued for different FPEAK 
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Using the rotmat matrix, we find the FPEAK values that show lower maximum element 

of rotmat, corresponding to a lower rotational freedom; therefore these rotations will be 

favored (Lee et al., 1999). 

 
Figure 4.10 – RotMat values from different FPEAK 

 

Rotations with FPEAK from -0.5 to to 0.1 show higher rotational ambiguity (Figure 

4.10) and can be rejected while, in addiction to IM and IS results, FPEAK values from 0 

to 0.2 are favoured. 

 

4.3.4 Fkey: a priori information 

An alternative for controlling rotations is the use of a priori information (Paatero et al., 

2002). Selection among different solutions given by different φ (FPEAK) values may be 

performed by the knowledge of some information on the problem under analysis, 

extracted from preceding studies; this allows users to reject non representative rotations.  

A priori information may be input within the algorithm through the use of Fkey matrix 

(see Appendix, Rotations) that pulls down to zero some F elements. Like this, Fkey 

matrix guides the analysis towards a more understanding solution/rotation. In example, 

if it is known a priori that one or more variables have a zero contribution on some 

factors, this information can be implemented in order to force the variable to the known 

values (see a Fkey example applied to the analysis of atmospheric particulate matter on 
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Lee et al., 1999). However forcing to zero elements in F matrix seems to increase the 

frequency of local minima, giving rise to multiple problem solution (Paatero, 1997); this 

problem may however be overcome processing different run, starting from various 

pseudorandom values. 

An interesting application on the use of a priori information in the contest of 

atmospheric pollution is describe in Lingwall and Christensen, 2007. They studied the 

priori information effects, with Fkey and the target source profile (Gkey, see Appendix, 

Rotations), using simulated experiments on ambient air pollution data and varying the 

correctness of such information. In general they found out an improved source profiles 

and source contribution when the pulling to zero elements is performed on ‘clean data’ 

(i.e. data with low uncertainties and not affected by unidentified source), otherwise the 

results are nearly the same. However the fit was worsened if the information carried by 

the zero elements was not correct. In the case of the target source profile method, the 

estimate of source profile and contribution was improved even if the profiles have some 

inaccuracy. 

Therefore it is advisable to do not introduce many a priori information into the 

algorithm especially if we are not sure of their trueness. This may lead in fact to a 

poorer analysis of the problem because of a priori rejecting of some solutions/rotations.  

We suggest, firstly, running the model without the implementation of a priori 

information and, after solutions are obtained, using such information to reject ones of 

them. Subsequently, solutions may be recalculated, adding a priori information within 

the algorithm in order to compare the results of these two different methods. 

 

4.3.5 A graphical diagnostic method 

The graphical approach is a simple method to assessing the optimal rotation, also called 

G space plotting for PMF modelling (Paatero et al., 2005). This procedure is carried out 

after the model is run and a number of factors is chosen. It is made the assumption that 

the determined factors are uncorrelated each other. Actually there is always a weak 

correlation between pairs of factors, called weak independence. The goal of this method 

is to reject the rotation that give correlation between pair of factor and to show this, Gik 

elements corresponding to two different factors are plotted in a Cartesian plane. All the 
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points lie in the positive quadrant because of the non-negative constraint and, if the 

factors are not correlated, the straight lines passing thought the origin of axes and 

including all the point between them should approximate the Cartesian axes. These 

lines, called edges, split the positive quadrant in two regions: one contains all the points 

and the other with no points (or with outliers that lies away). Hence, the factor plotting 

that have the edges nearest the axes are those relating to the optimum rotation.  

However it is important to note that there may be physical situations where oblique 

edges can occur and so the optimal rotation is not identify with this method; priori 

information, if available, can help interpreting the plot. Also edges parallels to Cartesian 

axes do not guarantee that the solution is unique! (Paatero et al., 2005). 

In Figure 4.11 an example of two G plots from the alpine lakes analysis is reported. In 

the first one it is clear that factor 2 and factor 3 are uncorrelated each other, while the 

second show some correlation between factor 4 and factor 5. The correlation may 

indicate either an uncorrected rotation or a natural trend, and a good knowledge of the 

problem could be helpful to make a decision. 
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Figure 4.11 – G plot between factor 2 and 3 (up) and factor 4 and 5 (below) 

 

4.4 Non-linear variables 

As already explained, PMF is a linear model respect to the factors and generally the 

input variables obey this property, i.e. chemical elements concentrations are additive 

when emitted by different sources. However certain variables, such as pH, are non-

linear (as in the example, pH values are not additive when emitted by different sources). 

In the article by Reinikainen, 2001, relate to the study on water quality in Lake Saimaa, 

this problem is treated by using the expression 7.5-pH instead the variable pH. The new 

variable is even now non linear but it has the property to increase when the acidifying 

emission increase. For a more careful factors estimate the pH uncertainties were 

increased. 
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Appendix 

Guide for PMF programs 
 

Paatero PMF2 

PMF2 program runs under DOS environment (it is not an installation program).It uses 

an initialization file with extension .INI in order to input desired parameters into the 

algorithm. In this file the users can select the input file (data and uncertainties matrices) 

and all the parameters and information that will be used in the problem under analysis.  

 

.INI file 

In this section the general run control parameters, which can be set in the .INI file to 

determine the optimum solution, are described. See Paatero, 2004a and Paatero, 2004b 

user’s guide for a more detailed discussion on the .INI file. 

Monitor: 

This parameter controls the number of monitoring output produced by the algorithm. 

With the default value, set to 1, every step is reported on screen and in .log file. If 

monitor>1 then only the Mth step is reported. 

Dimensions: 

In this part of the code the number of rows and columns of the data and uncertainties 

matrices (they must have the same dimensions) and the number of factors must be 

inserted. For a more quickly computation it should be better to have rows number > 

columns number. 

Repeats: 

Set the repeat value equal to the number of different repeated computation to do in each 

run. Between different repeats some information may be varied, in examples starting 

from different initialization numbers. The information to be recalculated at each run 

must have the (R) code in the Input/Output table set to T or true value. The .INI file is 

read only once. 
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Fpeak: 

A positive or negative value implements rotation. The central solution is achieved with 

FPEAK=0 (default value). 

Robust mode: 

When set to true value (default value) the algorithm take into account the outliers data 

using the enhanced Q described in Section 3.2.1 and the here below listed outlier 

distance.  

Outlier distance 

This parameter is set in order to select a threshold to identify outliers. The following 

values are suggested: α = 0.2, 0.4 (default value), 0.8. Also the program enables to set 

two different thresholds, one for positive residues, αp, and the other for negative 

residues, αn, by the use of the optional parameter outlimits αp αn. 

Codes C1, C2, C3 and Errormodel 

The three codes and the Errormodel (EM) are used as explained in Section 3.2.2 in 

order to determine the data standard deviation when the uncertainties matrix is not 

input. 

Pseudorandom Seed 

According to the seed value, pseudorandom numbers are generated to initialize the 

algorithm. 

Iteration control table 

The model convergence can be controlled by means of four parameters, each of them 

having three values corresponding to three subsequent convergence steps. The third 

level is more involved in the fit convergence as the first two steps are only used to 

address the initial values of the factor matrices toward a more realistic solution; so it is 

important to make the right choice for this last level. Below, the explanation of the 

parameters and the common used value: 

• Lims: it represents a weight coefficient for the penalty and regularization terms 

and its value indicates the closeness of the matrices component to zero values. 

As to the last step, the value can be chose in relation to the number of data point. 

For large model a good range is 1.0 – 10.0, while for small model can be used a 

lower value as 0.01; 

• Chi2_test: represent a threshold fixed for the fit convergence; 
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• Ministep_required: number of convergence consecutive steps (say N); 

• Max_cumul_count: maximum number of cumulative steps allowed for the 

convergence. 

Once fixed these values, the fit is said to converge if the variability of Q value (χ2) is 

lower than Chi2_test after N consecutive step without go over the maximum number of 

cumulative steps allowed (Max_comul_count). 

It is interesting to test if different parameter values produce similar results; like this we 

are sure of a good convergence. 

 

Rotations 

In PMF2 rotations can be induced by four different techniques (Paatero, 2004a). 

As to the first, rotations can be implemented in the model by the FPEAK value (φ) with 

a zero value default setting (central solution). This method is simple because the users 

have only to select the desired rotational value. In order to examine different rotations it 

is better to start from lowest φ values and use, as a starting point for the following 

computation, the result obtained from the previous computation. This is done using the 

optional parameter goodstart (do not use the sortfactors parameters, see following 

subsection). 

The second method to induce rotation uses the matrix rotocom, but this technique is not 

recommended and not yet use in practical applications. 

The third method is based on a priori knowledge of information about the problem 

under analysis when some elements in the factor matrix F are known to have zero or 

very small values. Pulling down elements is done acting on the penalty term of the Q 

function by means the Fkey matrix, an integer values matrix with the same dimensions 

of F and which controls the corresponding F elements behavior. The Fkey matrix 

contains all zero values except in correspondence to the pulling-down elements; for 

these points values are as greater as the elements are likely to be zero. The influence of 

Fkey is exponential (Lee et al., 1999). It is obvious that, as to the first, a Fkey = 0 

solution must be found in order to detect if the a priori information are already satisfied 

by the fit. 
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To enable Fkey matrix, the FIL code (= 0 is the default value) in the .INI file must be 

set to a non zero value; it is recommended to use FIL = 4 to include this matrix in the 

.INI file.  

The latter method uses target factor shape and it is the most complicated method. At the 

time no experiences have been found about its usefulness. This approach is based on 

“pseudo measurements” that are included in the X matrix and which represents the 

target shapes for each factor. New rows are added in the X and standard deviation 

matrices in a number equal to the number of factors and the priori information about the 

factor shapes are used to set them. A Gkey matrix is used like the Fkey. 

 

Robuste method 

The so called robust mode may be activated or not and it is also possible to select the 

threshold distance used to handle outliers (the default value is set to 4.0). 

 

Multiple results 

Computing different initial runs, using the parameter “Repeats”, is necessary to assess 

the Q stability. In fact the Q expression may have one or more local minima, and it may 

even happen that the optimum solution does not correspond to the global one. The 

correct statistical handling of this situation is not known yet, but there are indications 

that local minima tend to occur when too few or too many factors are used in the 

algorithm. 

In order to detect if there are not local minima several runs must be performed, starting 

from different point. This can be done either changing to each run the SEED value, used 

to set different pseudorandom starting point, or in the simplest way, raising the repeat 

number from the default value (=1) and in addition activating the repeated runs putting 

the ‘true’ (T) value in the (R) codes of the factor matrices. 

Customary, results from different runs show the factors in random order and this make 

difficult to compare the obtained results. Using the optional command sortfactorsg or 

sortfactorsf, the factors appear about in the same position from run to run. 
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Normalization of factor matrices 

If necessary, near the bottom of the .INI file, the user can normalize the factor matrices 

according to the following options (Paatero, 2004a): 

• None: no normalization 

• MaxG = 1: the maximum absolute value in each G column is equal to the unity 

• Sum|G| = 1: the sum of elements absolute value in each G column is equal to the 

unity 

• Mean|G| = 1: the mean value of elements absolute value in each G column is equal 

to the unity 

• MaxF = 1: the maximum absolute value in each F row is equal to the unity 

• Sum|F| = 1: the sum of elements absolute value in each F row is equal to the unity 

• Mean|F| = 1: the mean value of elements absolute value in each F row is equal to 

the unity 

With one of these operations the GF product does not change because of columns of G 

and rows of F are respectively divided and multiplied by the same p normalization 

coefficients. 

 

Output files 

The outputs produced by the program and organize into .txt file according to the users 

preferences are: G and F factor matrices, G and F standard deviations, copy of the input 

matrices, scaled residual matrix, explained variation (EV) matrix of G and F, Q value of 

the fit and the rotmat matrix. A .LOG file is also produced in which possible errors 

made by the algorithm are reported 

The produced residuals (i.e. the difference between the measured ad the fitted values) 

are useful tools to gain information on the Q values and the quality of the standards 

deviation if the latter are not well known (see Section 4.2.2) 

Rotomat is a pxp matrix describing the degrees of rotation of the results that is a 

measure of the rotational ambiguity of the obtained solution. Applying FPEAK to the 

central solution there will be less rotational ambiguity for further rotations; 

correspondingly, rotomat values are decreasing. Rotomat values must only be purely 

indicative (Paatero, 2004a) 
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With regard to the G and F standard deviation matrices, their values are not too accurate 

if the uncertainties of X elements are not correct as they are computed starting from X 

matrix and the uncertainties matrix. 

With regard to the G and F standard deviation matrices, their values are not too accurate 

if the input uncertainties are not well-known and hence computed with one of the 

method described in the Chapter 3. 
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