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Chernoff Dimensionality Reduction–Where Fisher Meets FKT ∗

Jing Peng† Guna Seetharaman‡ Wei Fan§ Stefan Robila¶ Aparna Varde‖

Abstract

Well known linear discriminant analysis (LDA) based on the

Fisher criterion is incapable of dealing with heteroscedastic-

ity in data. However, in many practical applications we often

encounter heteroscedastic data, i.e., within-class scatter ma-

trices can not be expected to be equal. A technique based on

the Chernoff criterion for linear dimensionality reduction has

been proposed recently. The technique extends well-known

Fisher’s LDA and is capable of exploiting information about

heteroscedasticity in the data. While the Chernoff criterion

has been shown to outperform the Fisher’s, a clear under-

standing of its exact behavior is lacking. In addition, the

criterion, as introduced, is rather complex, making it diffi-

cult to clearly state its relationship to other linear dimen-

sionality reduction techniques. In this paper, we show pre-

cisely what can be expected from the Chernoff criterion and

its relations to the Fisher criterion and Fukunaga-Koontz

transform. Furthermore, we show that a recently proposed

decomposition of the data space into four subspaces is in-

complete. We provide arguments on how to best enrich the

decomposition of the data space in order to account for het-

eroscedasticity in the data. Finally, we provide experimental

results validating our theoretical analysis.1 Keywords:
Dimension reduction, LDA, FKT, Chernoff distance.

1 Introduction

In classification, a large number of features or at-
tributes often make the design of a classifier difficult
and degrades its performance2. This is particularly pro-
nounced when the number of examples is small relative
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1Part of Abstract appeared in [14].
2Part of Introduction appeared in [14].

to the number of features. This fact is due to the curse
of dimensionality. It states in simple terms that the
number of examples required to properly compute a
classifier grows exponentially with the number of fea-
tures. For example, assuming features are correlated,
approximating a binary distribution in a n dimensional
feature space requires estimating O(2n) unknown vari-
ables [1]. In such situations, subspace methods play an
important role by significantly reducing the number of
features for building classifiers. For example, in visual
learning and modeling the principal modes are extracted
and utilized for description, detection, and classifica-
tion. Using these principal modes to represent data can
be found in parametric descriptions of shape [2], object
detection [3], visual learning [4], face recognition [5, 6],
and Fisherfaces [7].

There are many dimensionality reduction tech-
niques for classification in the literature. The two popu-
lar ones are Fisher’s linear discriminant analysis (LDA)
[8] and Fukunaga-Koontz Transform (FKT) [9]. FKT
has shown promise in vision and classification applica-
tions [10, 11]. It can be shown that under appropriate
conditions FKT is an optimal reduced-rank representa-
tion [10]. Furthermore, FKT does not suffer from the
small sample size problem often associated with LDA.
FKT assumes that target and clutter objects have the
same mean. Therefore, it relies entirely on the differ-
ence in variance between target and clutter to compute
reduced-rank representations. However, it may not be
adequate in many applications.

LDA, on the other hand, simply tries to separate
class means as much as possible. In LDA, we are given a
set of l examples: z = {(xi, yi)}

l
i=1. These examples are

independently and identically distributed (i.i.d.) from
the probability space Z = X × Y . Here probability
measure ρ is defined but unknown, xi ∈ X ⊂ <q are the
q-dimensional inputs, and yi ∈ Y = [−M,M ] ⊂ < are
scalar labels. According to Fisher’s criterion, one has
to find a projection matrix W ∈ <q×d that maximizes:

JF (W ) = tr(W tSwW )−1W tSbW(1.1)

where Sb =
∑C

c=1 pc(mc − m)(mc − m)t and Sw =
∑C

c=1 pc
∑nc

i=1,xi∈c(xi −mc)(xi −mc)
t are the so-called

between-class and within-class matrices. Here m rep-
resents the overall mean, mc denotes the mean of class
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c, d denotes the dimensions of the reduced space, and
t represents the transpose operator. Determining lin-
ear discriminants with the Fisher criterion is relatively
efficient computationally.

While LDA based on the Fisher criterion simply
tries to separate class means as much as possible, it is
incapable of exploiting potential discriminant informa-
tion that might exist in data in terms of the difference
between the within-class matrices. That is, it can not
explicitly handle heteroscedastic data, where the data
do not have equal within-class matrices. This limitation
becomes more pronounced in the two-class case, where
a reduction to only one dimension is sufficient [9].

For the multi-class case with C classes, linear re-
duction to C − 1 dimensions does not guarantee to cap-
ture all the relevant information for a classification task.
Even if the C − 1 dimensions capture all discriminants,
it is unclear how LDA based on the Fisher criterion
will exploit them. To address this problem, a new crite-
rion for linear dimensionality reduction for the two class
case, called the Chernoff criterion, is proposed that ex-
tends and improves upon the Fisher criterion by tak-
ing the heteroscedasticity of the data into account [12].
The technique makes use of directed distance matrices
(DDMs) [13], which can be viewed as a generalization of
the between-class matrix. It is argued that the between-
class matrix can be associated with squared Euclidean
distance between pairs of class means.

While the Chernoff criterion is shown to outper-
form the Fisher criterion, a clear understanding of its
exact behavior is lacking. In addition, the criterion, as
introduced, is rather complex (especially in the multi-
class case), thereby making it difficult to clearly state
its relationship to other linear dimensionality reduc-
tion techniques in general, and the Fisher criterion in
particular. In this paper, we show precisely what can
be expected from the Chernoff criterion and its rela-
tions to the Fisher criterion and the Fukunaga-Koontz
transform (FKT) [9]. In fact, we show that in the two
class case, when two classes have two different means,
the Chernoff criterion demonstrates the characterics of
both Fisher and FKT. On the other hand, when the
two classes have the same mean, the Chernoff criterion
reduces to FKT. Thus, the Chernoff criterion takes ad-
vantage of both worlds. Furthermore, we show that the
decomposition of the data space into four subspaces de-
scribed in [11] is incomplete. We provide arguments on
how to enrich the decomposition of the data space to
account for heteroscedasticity in the data. In this work,
we focus on two class problems. This can be justified
by the fact that Chernoff distance is intended for two
distributions. Finally, we provide experimental results
validating our theoretical analysis.

We state at the outset that this work has signifi-
cantly extended our earlier analysis of Chernoff dimen-
sionality reduction that appeared in [14] in the follow-
ing ways: (1) This work provides a significantly precise
statement on the interplay among Chernoff, Fisher and
FKT through complete mathematical analysis (Sections
4.1, 4.2, and 4.3), which is not the case in our earlier
work [14]; (2) This work provides a significantly clear
augmentation to data space decomposition [11], in par-
ticular how subspace 3 should be augmented (Section 6),
which is not the case in our earlier work [14]; and (3)
This work provides examples that demonstrate clearly
how Chernoff criterion is related to Fisher and FKT
(Figures 1 and 2, and Section 5), which is not the case
in our earlier work [14].

2 Related Work

Note that part of Related Work appeared in [14]. Sev-
eral methods for extending linear classifiers to unequal
covariance matrices and non Gaussian distributions are
discussed in [9]. These methods can be applied to di-
mensionality reduction as well. However, most of these
techniques are derived for the two-class case and not
readily extendable to the multi-class case. In addition,
many require iterative optimization.

A technique based on Kullback-Leibler divergence
to extend the Fisher criterion is proposed in [15].
Several techniques based on probabilistic separability
and interclass distance measures can be introduced in
[16]. These techniques require rather time-consuming
iterative procedures to compute linear discriminants.

A maximum-likelihood approach to LDA is de-
scribed in [17]. This technique generalizes the Fisher
criterion in that it does not make the assumption that
all classes have equal within-class matrices. It itera-
tively maximizes a likelihood model.

A dimensionality reduction technique that improves
the Fisher criterion in heteroscedastic data has been
proposed [12]. The technique employs the Chernoff
distance to measure differences in both between- and
within-class covariance. Like the Fisher criterion, it
involves computing the inverse of within class matrices.
Thus, it potentially suffers from the small sample size
problem. A related technique that maximizes the
Chernoff distance in the transformed space, thereby
augmenting class separability in the space is introduced
in [18]. Convergence analysis is also provided. More
recently, an algorithm is proposed that computes the
one-dimensional subspace where the Bayes error is
minimized for multi-class problems with homoscedastic
data distributions [19].

A large number of subspace methods have been
proposed, most of which address the computational
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difficulty associated with LDA when the small sample
size problem occurs (Sw becomes singular). PCA+LDA
uses the pseudo-inverse S+

w in place of S−1
w . However,

computing S+
w is ill posed. Another method is to use

PCA to remove the null space of Sw, and then apply
LDA to the reduced representation. However, this
method remains sub-optimal because the null space of
Sw can contain discriminant information [20].

newLDA [20] first transforms the data into the null
space of Sw. It then applies PCA to maximize the
between-class matrix in the transformed space. Its
performance degrades with decreasing dimensions of
the null space. A variant of LDA+PCA is proposed
in [21]. The method first discards the null space of
Sw + Sb that is the common null space of both Sw and
Sb. And as such, discarding this null space does not
lose any discriminant information. The method then
applies LDA+PCA to the reduced representation in the
transformed space.

Weighted piecewise LDA is another technique for
addressing the small sample size problem [22]. The
technique first creates subsets of features and applies
LDA to each subset. The technique then combines the
resulting piecewise linear discriminants to produce an
overall solution. More recently, discriminant analysis
based on the average margin is proposed [23]. The
technique is closely related to LDA but does not involve
inverting matrices. Since the criterion (tr(Sb − Sw)) is
additive, the technique does not suffer from the small
sample size problem.

In [24], a two-stage LDA technique is proposed.
This technique not only avoids the small sample size
problem of LDA but also achieves greater computational
efficiency. This is accomplished by applying QR de-
composition first, followed by LDA. In [25], the small
sample size problem is addressed by simultaneously di-
agonalizeing the between- and within-class scatter ma-
trices through generalized singular value decomposition
(GSVD) [26, 27]. This technique also achieves greater
computational efficiency. In [11], a clear connection be-
tween GSVD and FKT for the LDA problem has been
established.

A dimension reduction technique, called linear fea-
ture extraction (LFE), based on Relief [28] is introduced
[29]. In [30], a metric space dimension reduction tech-
nique is proposed. The idea is to find a linear transform
such that in the transformed space total within class dis-
tance is minimized, while total between class distance
is maximized.

A dimension reduction technique based on max-
min distance analysis has been proposed recently [31].
For a multi-class problem with homoscedastic Guassian
distributions, this technique computes discriminants by

maximizing the minimum pairwise distance between
classes. The idea is that maximizing the minimum
pairwise distance produces a subspace that is overall
more discriminant. This is similar to the argument
made in support vector machines, where maximizing the
minimum margin results in better generalization [32].
The experimental results presented in [31] show that
max-min distance analysis is promising.

In [33], geometric means for subspace selection are
investigated. It is shown that in a multi-class problem,
when all covariances are Gaussian and identical, the
Fisher criterion is equivalent to the one that maximizes
the KL divergence of the classes. Several criteria based
on the geometric mean of KL divergence are studied and
empirically compared against competing techniques,
including the Chernoff criterion. It turns out the
proposed geometric mean criteria are very competitive
in the problems experimented.

3 Chernoff Criterion

The material presented in this section is taken from our
earlier work that appeared in [14].

The Fisher criterion (Eq. (1.1)) states that in order
to compute linear discriminants LDA maximizes the
ratio of the between class matrix to the average within
class matrix in a reduced space. This is achieved by
solving a generalized eigenvalue problem Sbw = λSww
[9].

For the moment, we assume that the data is linearly
transformed such that the Sw is identity. Then JF (W )
can be maximized by taking the eigenvector v associated
with the largest eigenvalue of Se = (m1−m2)(m1−m2)

t.
Note that Sb = p1p2Se, where pi is the a priori
probability of class i. Notice that the eigenvalue equals
the squared Euclidean distance. It can be shown that
the matrix Se provides us with the distance between
two distributions, in addition to the direction (e.g.,
eigenvectors).

From the above, if discriminant information exists
due to heteroscedasticity of the data, then this infor-
mation should be present in DDMs. We note that this
information about heteroscedasticity may not be in the
same direction that separates class means. One pow-
erful direct distance measure is based on the Chernoff
distance that provides a measure between two probabil-
ity density functions p1 and p2:

DC = − log

∫

pα1 (x)p
1−α
1 (x)dx(3.2)

where α ∈ {0, 1} is a constant. For two normally
distributed densities, the Chernoff distance can be
written as [34, 35]

DC = (m1 −m2)
t(p1S1 + p2S2)

−1(m1 −m2)
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+
1

p1p2
log

|p1S1 + p2S2|

|S1|p1 |S2|p2

.(3.3)

where Si =
∑

xj,yj=i(xj −mi)(xj −mi)
t for i = 1, 2. It

can be shown that one can obtain DC as the trace of
matrix SC [12]

SC = S−1/2SeS
−1/2 +

1

αβ
(log S − α logS1 − β logS2),

where β = 1−α. This provides a basis for the Chernoff
criterion for linear dimensionality reduction.

For the moment, we assume that Sw = I. The
Fisher criterion becomes:

JF (W ) = tr((W tW )−1(p1p2W
tSeW )).

If we replace Se by SC , we obtain a heteroscedastic
generalization of the Fisher Criterion. In general, when

Sw 6= I, we can first transform the data by S
−1/2
w . In

this space, the criterion for LDA becomes

tr((W tW )−1(p1p2W
tS−1/2

w SeS
−1/2
w W )).

We will then transform this back to the original space

by S
1/2
w . For the Fisher criterion, we have [12]

tr((W tSwW )−1(p1p2W
tSeW )).

Now, replacing Se by SC , we arrive at the Chernoff
criterion.

The heteroscedastic two-class Chernoff criterion JC
is defined as

JC(W ) = tr((W tSwW )−1(W tSbW

−W tS
1

2

w(p1 log(S
− 1

2

w S1S
− 1

2

w )

+p2 log(S
− 1

2

w S2S
− 1

2

w ))S
1

2

wW ))(3.4)

4 Chernoff Dimension Reduction: Combining

Fisher and Fukunaga-Koontz Transform

We note that part of this section appeared in our ear-
lier work [14]. However, subsections 4.1, 4.2, and 4.3 are
not. These sections provide analysis that significantly
extended our earlier work in terms of precise charac-
terization of the interplay among Chernoff, Fisher and
FKT.

Here we examine the Chernoff criterion in detail by
repeatedly applying the principle of simultaneous diago-
nalization of two matrices. This simultaneous diagonal-
ization is based on Fukunaga-Koontz transform (FKT)
[36]. Since Sw = p1S1 + p2S2, we can simultaneously
diagonalize S1 and S2. Let

P = QΛ−
1

2(4.5)

where

Sw = QΛQt.(4.6)

Then

P tSwP = p1P
tS1P + p2P

tS2P = I.

Thus, it can be shown that S̃1 = P tS1P and S̃2 =
P tS2P can be simultaneously diagonalized [9]

S̃1 = V Λ(1)V t(4.7)

and

S̃2 = V Λ(2)V t(4.8)

where Λ(1) and Λ(2) are the eigenvalue matrices of S̃1

and S̃2, respectively, satisfying

p1Λ
(1) + p2Λ

(2) = I,

and V is the eigenvector matrix of both S̃1 and S̃2, e.g.,
S̃1 and S̃2 share the same eigen space. In addition, the
following conditions hold

V tP tSwPV = I and V tP tS1PV = Λ(1)

and

S−1
w S1PV = PV Λ(1).

The above implies that

S
−

1

2

w S1S
−

1

2

w = QP tS1PQt

= QS̃1Q
t

= QV Λ(1)V tQt(4.9)

Since V and Q are orthogonal, it follows that

p1 log(S
− 1

2

w S1S
− 1

2

w ) = p1 log(QV Λ(1)S1V
tQt)

= p1QV log(Λ(1))V tQt

= p1QV Λ̃(1)V tQt,(4.10)

where Λ̃
(1)
i = log(λ

(1)
i ). Similarly, we have

p2 log(S
− 1

2

w S2S
− 1

2

w ) = p2QV Λ̃(2)V tQt,(4.11)

where Λ̃
(2)
i = log(λ

(2)
i ). Let

Σ = p1 log(S
−

1

2

w S1S
−

1

2

w ) + p2 log(S
−

1

2

w S2S
−

1

2

w )(4.12)

Combining Eqs. (4.10) and (4.11) gives rise to

Σ = p1QV Λ̃(1)V tQt + p2QV Λ̃(2)V tQt

= QV (p1Λ̃
(1) + p2Λ̃

(2))V tQt

= QV Λ̃V tQt,(4.13)
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where

Λ̃i = p1Λ̄
(1)
i + p2Λ̄

(2)
i

= log((λ
(1)
i )p1(λ

(2)
i )p2)(4.14)

Define

S̃w = S
1

2

wΣS
1

2

w .(4.15)

Then the Chernoff criterion becomes

JC(W ) = tr((W tSwW )−1(W t(Sb − S̃w)W )).(4.16)

We can optimize JC(W ) by solving an eigenvalue de-
composition of the matrix

S−1
w (Sb − S̃w).(4.17)

In the following sections, we analyze how each of the
terms in (4.17) contributes to Chernoff dimensionality
reduction.

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

Figure 1: In this two class example, the difference
between the two co-variances is most pronounced along
the X axis, while the variances along the Y axis are
the same. Fisher chooses the Y axis as its discriminent,
while Chernoff chooses the X axis.

4.1 Chernoff and FKT We begin by examining the
second term in (4.17) and the role it plays in computing
Chernoff discriminants. We do so by analyzing the
solution to Eq. (4.17), and thus Eq. (3.4). First, we
rewrite Λ̃i in Eq. (4.14) as

λ̃i = Λ̃i = log(
1

(λ
(1)
i )p1(λ

(2)
i )p2

).(4.18)

Eq. (4.17) becomes

S−1
w (Sb + S̃w)(4.19)

−10 −5 0 5 10

−8

−6

−4

−2

0

2

4

6

8
LDA

Chernoff

Figure 2: When both Fisher and Chernoff were applied
to the example in Fig 1, Fisher chose the Y axis as its
discriminent, while Chernoff chose the X axis.

Thus, there are two terms contributing to Chernoff cri-
terion. The first term, S−1

w Sb, is the classic Fisher’s cri-
terion, while the second term, S−1

w S̃w, requires further
discussion. From (4.6), (4.13), and (4.15), we have

S−1
w S̃w = S−1/2

w S̃wS
1/2
w(4.20)

= QΛ−1/2V Λ̃V tΛ1/2Qt(4.21)

= Z−1Λ̃Z(4.22)

where Z = V tΛ1/2Qt. Thus, S−1
w S̃w and Λ̃ are sim-

ilar under similarity transformation Z. Furthermore,
S−1
w S̃w and Λ̃ share the same eigenvalues.

When class means are identical (i.e., Sb = 0),
Fisher’s criterion can not be applied. S−1

w (Sb + S̃w)
reduces to

S−1
w S̃w = Z−1Λ̃Z.

Thus, the Chernoff criterion selects the eigenvector
having the largest eigenvalue of Λ̃ as its discriminant.
Since p1λ

(1) + p2λ
(2) = 1, or equivalently λ1 + λ2 = 1,

where λ1 = p1λ
(1) and λ2 = p2λ

(2) and

λ̃ = log(
1

(λ(1))p1(λ(2))p2

)(4.23)

= log(
1

(λ1)p1(1− λ1)p2

),(4.24)

the largest λ̃ corresponds to the largest difference be-
tween λ(1) and λ(2). Thus, λ̃ increases with increas-
ing λ(1) (decreasing λ(2)) or decreasing λ(1) (increasing
λ(2)). This is exactly what the Chernoff criterion is de-
signed to do, e.g., to capture heteroscedasticity in data.

This behavior of Chernoff dimension reduction is
closely related to FKT [9]. For the purpose of our
discussion, we use 1 and 2 to denote target class +1
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and clutter class -1, respectively. For the moment,
we assume both target and clutter follow Gaussian
distributions:

P1(x) =∝ exp{−(x−m1)
tS−1

1 (x−m1)}

and

P2(x) =∝ exp{−(x−m2)
tS−1

2 (x −m2)}.

The optimal maximum likelihood classifier is given by

f(x) =
P1(x)

P2(x)
,(4.25)

which is proportional to

exp{−(x−m1)
tS−1

1 (x−m1) + (x−m2)
tS−1

2 (x−m2)}.

Thus, x is classified as target if f(x) is greater than a
threshold, and clutter otherwise.

Since the sum of the matrices S1 + S2 is positive
semi-definite and thus can be factorized into

S1 + S2 = ΦDΦt.

Letting P = ΦD−1/2, we have

P t(S1 + S2)P = I.(4.26)

Now let T = P tS1P and C = P tS2P . It follows
that T + C = I. And define G1 = P t(x − m1) and
G2 = P t(x−m2). We obtain

f(x) = c exp{−Gt
1T

−1G1 +Gt
2C

−1G2},(4.27)

where c is constant. Now suppose m1 = m2 = m
(assumption of FKT). We then have G1 = G2 = G.
Thus, the optimal classifier thus becomes

Target = 1(c exp{−Gt(T−1 − C−1)G} ≥ α)

where 1(·) is the indicator (i.e., 1(·) is 1 if its argument
is true, and 0 otherwise), and α is a constant threshold.

Since T and C share the same eigen space,

T = ΘtΛΘ and C = Θt(I − Λ)Θ,

we have

f(x) = C exp{−(Θ−tG)t(Λ−1 − (I − Λ)−1)(Θ−tG)}.

Define W = Θ−tG. f(x) can be further simplified as

f(x) = C exp{−W t(Λ−1 − (I − Λ)−1)W}.

Or equivalently, we can write

g(x) = −W t(Λ−1 − (I − Λ)−1)W

=

d
∑

i=1

(
1

1− λi
−

1

λi
)w2

i .(4.28)

This is FKT. Classification can be made according to

Target = 1(

d
∑

i=1

(
1

1− λi
−

1

λi
)w2

i ≥ α).

Notice that all dimensions are used in the decision
function in Eq. (4.28). In order to achieve a reduced
rank representation of target and clutter objects, tuned
basis functions (TBFs) choose the dimensions (eigenvec-
tors) having max |λ − 1/2|, resulting in a reduced rank
representation. The dimensions having λ > 1/2 repre-
sent target features, while those with λ < 1/2 represent
clutter features. This exactly mirrors the behavior of
λ̃ in (4.24). Thus, when Sb = 0, the second term in
(4.19) has been shown to be an optimal reduced-rank
representation under appropriate conditions [10].

4.2 Chernoff and Fisher Suppose

λ
(1)
i = λ

(2)
i = λi(4.29)

for all is. We have

1 = p1λ
(1)
i + p2λ

(2)
i

= (p1 + p2)λi

= λi.(4.30)

Here we used the fact that p1 + p2 = 1. Thus, from
(4.14)

Λ̃i = log((λ
(1)
i )p1(λ

(2)
i )p2)

= log((λi)
p1(λi)

p2)

= log((1)p1 (1)p2)

= 0.(4.31)

It follows that

S̃w = QΛ1/2V Λ̃V tΛ1/2Qt

= 0.(4.32)

The Chernoff criterion thus becomes

S−1
w (Sb − S̃w) = S−1

w Sb.(4.33)

That is, when covariances are the same for two classes,
the Chernoff criterion reduces to the Fisher criterion, as
expected.

4.3 Chernoff: Combining Fisher and FKT Our
analysis shows that the Chernoff criterion is a combina-
tion of Fisher’s LDA and FKT, thus capable of taking
advantage of both worlds. When class means are identi-
cal (i.e., Sb = 0), the Fisher criterion can not be applied.
On the other hand, the Chernoff criterion is applicable

276 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

7/
22

 to
 1

30
.6

8.
13

0.
43

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



−4
−2

0
2

4

−4

−2

0

2

4
−4

−2

0

2

4

−4
−2

0
2

4

−4

−2

0

2

4
−4

−2

0

2

4

Figure 3: Two simple simulated examples in three dimensions. Left: Two Gaussians share the same zero mean
but different covariance matrices. Right: Two Gaussians have different means (0,0,0) and (1,0,-0.5).

by replying on the difference in variance between classes.

When within class matrices are equal (i.e., λ
(1)
i = λ

(2)
i ),

FKT fails. In this case, the Chernoff criterion reduces
to Fisher’s criterion and can find linear discriminants
by exploring difference in class means (LDA).

When neither Sb = 0 nor λ
(1)
i = λ

(2)
i ), Chernoff can

again differ from Fisher (it will certainly be different
from FKT). Figure 1 illustrates a case in point. In this
two class example, the two class means are different only
along the Y axis. Also, as can be seen, the difference
between the two co-variances is most pronounced along
the X axis, while the variances along the Y axis are
the same. Fisher chooses the Y axis as its discriminent,
while Chernoff chooses the X axis. When both Fisher
and Chernoff were applied to the example, Fisher chose
the direction along the Y axis as its discriminant,
since Sb 6= 0. On the other hand, the difference
between the two variances is the most along the X axis
(i.e., more significant than the mean difference and the
variance of the two classes along the Y axis combined).
Thus, Chernoff chose the X axis as its discriminant, as
expected.

5 Simple Illustration

To gain an intuitive understanding of the Chernoff
criterion and its relations to Fisher and FKT, we begin
with two simple simulated examples.

• Mixed: Two Gaussian classes: same mean but
different covariance matrices. The two classes share
the same zero mean in three dimensional space.
Each class has 200 samples. The two covariance
matrices are

C1 = [1, 1, 0]′ ∗ [1, 1, 0] + 0.1 ∗ [0, 1, 1]′ ∗ [0, 1, 1]

and

C2 = [0, 1, 1]′ ∗ [0, 1, 1] + 0.1 ∗ [1, 0, 1]′ ∗ [1, 0, 1].

• Separated: This example is the same as the
previous one, except the two classes have different
means: (0,0,0) and (1,0,-0.5).

Figure 3 shows the two examples. Clearly, the Fisher
criterion will fail in the first example, since Sb = 0.
However, the actual means estimated from the samples
may be different. The first example clearly favors
techniques that exploit differences in variance such as
FKT, while the second example favors technqiues that
rely on mean differences such as LDA.

Mixed Separated
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 
Fisher
Chernoff
FKT

Figure 4: Average accuracy in the subspace computed
by the competing methods using the one nearest neigh-
bor rule, on two simlated data sets.

Fig. 4 shows the average accuracy registered by
the three methods on the two exmples. As expected,
Fisher did poorly on Mixed, while FKT shows poor
performance on the Separated example. On the
other hand, Chernoff encompasses the strengths of both
Fisher and FKT. It therefore performs well on both
examples.

Figure 5 shows one dimensional data projection
by the three competing methods on the two simulated
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Figure 5: One dimensional data projection by the
three methods on the two similated problems (Mixed
vs Separated). Top: Fisher criterion. Middle: Chernoff
criterion. Bottom: FKT.

problems. Top row: One dimensional projections by
Fisher on the Mixed example (left) and the Separated
example (right). Similarly, The middle and bottom
row show the projections by Chernoff and FKT on the
two examples. These results again demonstrate the
advantage of the Chernoff method.

It is also interesting to note that in the two class
case, LDA can only obtain one dimensional projec-
tion, because rank(Sb) = 1 for two class problems. In
contrast, the Chernoff criterion is capable of obtain-
ing more than one discriminants, because the rank of
S−1
w (Sb + S̃w) (Eq. (4.19)) is determined not only by

the number of classes, but also by differences in vari-
ance between the two classes.

The following simulated example (taken from [11])
illustrates a case in point. While this example also ap-
peared in [14], the comparison with FKT was not pro-
vided. Figure 6 shows a two class problem in three
dimensions. The first class follows a Gaussian distribu-
tion with zero mean and covariance 0.5I. The second
class follows a mixture of three Gaussian distributions,

−5

0

5

−5

0

5

10
−2

−1

0

1

2

3

Figure 6: A three dimensional toy example, where the
first class follows a Gaussian distribution with zero
mean and covariance 0.5I. The second class follows a
mixture of three Gaussians, with means [1 4 0], [2

√

(3)

-2 0] and [-2
√

(3) -2 0], and covariance 0.5I. The first
class has 50 examples, while the second one has 75, with
each mixture contributing 1/3 of total examples.

with means [1 4 0], [2
√

(3) -2 0] and [-2
√

(3) -2 0], and
covariance 0.5I. The first class has 50 examples, while
the second one has 75, with each mixture contributing
1/3 of total examples.

The top left panel in Figure 7 shows the one
dimensional projection obtained by LDA, where the
two classes in the projected space overlap significantly.
The top right panel shows the dimensional projection
computed by FKT. In this example, FKT provides
superior one dimensional projection over LDA. The
bottom right panel shows two dimensional subspace
computed by the Chernoff criterion, where there are two
non-zero eigenvalues. This larger subspace provides a
much better separation of the two classes. The bottom
left panel shows a two dimensional projection by FKT.
Chernoff provides superior separation over FT.

6 Enhanced View of Data Space

We note that the first paragraph in this section is taken
from our earlier work appeared in [14]. Let A be the
transformation such that At(Sw + Sb)A = I. It can
be shown that AtSwA and AtSbA share the same eigen-
space. That is, AtSwA = BΛwB

t and AtSbA = BΛbB
t.

Furthermore,

Λw + Λb = I.

It is shown in [11] that if λ represents a generalized
eigenvalue of S−1

w Sb, then

λ =
λb

λw
,(6.34)
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Figure 7: Top panel: one dimensional projections
obtained by LDA (left) and FKT (right). Bottom panel:
two dimensional subspaces computed by FKT (left) and
the Chernoff criterion (right).

where λw is an eigenvalue of Sw, and λb is an eigenvalue
of Sb.

In [11], the entire data space is decomposed into
four subspaces based on Eq. (6.34), as shown in
Figure 8. Here, subspace 1 is the most discriminant,
followed by subspaces 2 and 3. The common null space
(null(Sw)∩null(Sb)), subspace 4, does not contain any
useful information.

Our analysis shows that the above decomposition
of the data space is incomplete. Clearly, subspace 4
contains no useful information, and thus can be safely
discarded. Also, the analysis of subspace 1 is quite clear.
Given that λw = 0, any thresholding along m1 − m2

suffices. Thus, no further analysis is necessary. On the
other hand, subspace 2 is complex, where neither λb = 0
nor λw = 0. Let λChernoff

l be the largest eigenvalue

of S−1
w (Sb + S̃w), λFisher

l be the largest eigenvalue of

S−1
w Sb, and λ̃l be the largest eigenvalue of S

−1
w S̃w. Then

λChernoff
l ≤ λFisher

l + λ̃l.

Thus, for a fixed λb or λw, the dependence of λ
Chernoff
l

on λFisher
l and λ̃l will be application specific. It is

difficult to obtain a general statement about subspace
2. Therefore, in this work, we focus on subspace 3.

Let us consider subspace 3, where λb = 0. Sub-
space 3 corresponds to the case where class means are
identical, i.e., Sb = 0. In this case, neither LDA nor
LDA/FKT [11] is capable of finding a solution. On the
other hand, the Chernoff criterion reduces to FKT when

Sb = 0. Thus, Chernoff simply computes discriminants
by exploiting the difference in variance between the two
classes, as in FKT. This shows that subspace 3 contains
more information than what is shown in Fig. 8.

Our analysis indicates that not every dimension in
subspace 3 is equally discriminant. The characterization
of discriminants residing in subspace 3 should be much
richer. Thus, according to Chernoff (4.19), subspace 3
should be augmented by λ(1) (or λ(2)) that indicates
the usefullness of a dimension in the space, as shown
in Figure 9. Here, any dimension in subspace 3 whose
corresponding λ̃ is large is more discriminant.

The above augmentation tells us that given the
same class means, we prefer the discriminant along
which within-class matrices exhibit the largest varia-
tion. That is, this dimension should be measured by the
eigenvalues of S̃w (Eq. 4.15). It captures information
about heteroscedasticity in the data, which is precisely
what the Chernoff criterion is designed to do.

7 Experiments

Notice that the following standard data description also
appeared in [14].

Extensive experiments have been carried out com-
paring the Chernoff criterion against other competing
methods [12, 18, 33]. Since our purpose in this work is
to provide theoretical insights into the Chernoff crite-
rion, only a few experiments are performed here.

We first apply PCA to training data to remove any
principal components whose eigenvalue is smaller than
one millionth of the total variance. This is to ensure
that problems with near/or singular covariance matrices
can be avoided and competing transformations can be
determined. In the transformed space, we use the one
nearest neighbor classifier to determine accuracy.

We compare the following competing methods:
Fisher criterion (Eq. (1.1)), Chernoff criterion (Eq.
(3.4)), and FKT [9].

7.1 Data Sets In these experiments, we compare
Fisher, Chernoff, and FKT in two class classification
problems. We use 9 data sets from the UC Irvine
machine learning database. They are all two class
classification problems.

(1) Glass Identification data (Glass). The data set
has n = 9 continuous numerical features describing each
of 214 instances in two classes: Window vs non-Window
glasses. The objective is to assign the class label to
each test instance. (2) Wisconsin breast cancer data
(Cancer Wisconsin). The data consists of 9 medical
input features that are used to make a binary decision on
the medical condition: determining whether the cancer
is malignant or benign. The data set consists of 683
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Figure 8: The entire data space is decomposed into four subspaces via FKT as described in [11]. There is no
discriminant information in U⊥, the null space of Sb + Sw. In U , λb + λw = 1.

Figure 9: Augmented subspace 3.

instances after removing missing values. (3) Breast
cancer data (Breast cancer). The data consists of 9
medical input attributes that are used to make a binary
decision on the medical condition: determining whether
the cancer is recurring (recurrence vs no-recurrence).
The data set has 286 instances, of which 201 are in
the no-recurrence class, while the remaining 85 are
in the recurrence class. (4) Heart disease diagnosis
data (Heart Cleve). This data set consists of 303
instances in two classes (There are five original classes.
However, we regrouped these five classes into two.)
Each of these instances is represented by 13 numerical
attributes. The data was collected at Cleveland Clinic
Foundation. The goal is to predict the presence of
heart disease in the patient. (5) Heart disease diagnosis
data (Heart Hungary). Similar to Heart Cleve,
this data set consists of 294 instances represented by

13 numerical attributes. The data was collected at
Hungarian Institute of Cardiology, Budapest. The
objective is to predict whether a patient has heart
disease. (6) Iris data (Iris). This data set consists of
n = 4 measurements made on each of 100 iris plants of
J = 2 species. The two species are iris versicolor and iris
virginica. The problem is to classify each test point to
its correct species based on the four measurements. (7)
Letter data (Letters). This data set consists of a large
number of black-and-white rectangular pixel arrays as
one of the 26 upper-case letters in the English alphabet.
Each letter is randomly distorted through a quadratic
transformation to produce a set of 20,000 unique letter
images that are then converted into q = 16 primitive
numerical features. For this experiment we select letters
“U” and “W”, where there are 813 “U” instances and
752 “W” instances. from each class. Thus, the data
set consists of 1565 letter images. (8) Pima Indians
Diabete data (Pima). This data set consists of n = 8
numerical attributes measured for each of 768 samples
of J = 2 classes. The problem is to classify each test
point in the 8-dimensional space to its correct class. (9)
Ionosphere data (Ionosphere). The data consists of
34 electromagnetic features that are used to determine
“good” or “bad” (J = 2) radar returns characterizing
evidence of some type of structure in the ionosphere.
The data set of 351 instances.

For each data set, we randomly choose 60% as
training and the remaining 40% as testing. We train
Fisher, Chernoff and FKT on the training data and
obtain projections. We then project both training and
test data on the chosen subspace and use the 1-NN
classifier to obtain average accuracy over ten runs. Note
that for the two class case, one dimensional subspace is
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Figure 10: Classification error rates in subspaces computed by Fisher, Chernoff, and FKT using 1-nn classifier,
on 11 UCI data sets.

sufficient.
Figure 10 shows the average accuracies registered

by the three methods. Overall the Chernoff criterion
generates good performance in the problems that we
have experimented with. Our results are consistent with
those provided in [12, 18].

8 Summary

We note that the summary presented here also appeared
in our earlier work [14].

This paper provides an analysis on the Chernoff cri-
terion for linear dimensionality reduction. The Chernoff
criterion has been proposed recently to address inabil-
ity of LDA based on the Fisher criterion to deal with
heteroscedasticity in data. The technique extends well-
known Fisher’s LDA and is capable of exploiting het-
eroscedasticity in data. While the Chernoff criterion is
shown to outperform the Fisher criterion, a clear un-
derstanding of its exact behavior has been lacking. In
addition, the criterion, as introduced, is rather com-
plex, making it difficult to clearly state its relationship
to other linear dimensionality reduction techniques. In
this paper, we have shown precisely what can be ex-
pected from the Chernoff criterion and its relations to
the Fisher criterion and FKT. In addition, we have
shown that a recently proposed decomposition of the
data space into four subspaces is incomplete. We have
provided evidence on how to best enrich the decomposi-
tion of the data space to account for heteroscedasticity
in data.

In this paper, our focus is on the Chernoff criterion

for the two class case. While our analysis for the two
class case provides a clue on its behavior in multiclass
problems, a direct analysis is highly desirable, which we
intend to pursue in our future work.
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Addendum 
 
The paper in the conference CD proceedings did not 
quote the source of some material in this paper [14].  This 
reference is now included.  ---The Publisher 
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