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Glutamylation regulates transport, specializes function, and 
sculpts the structure of cilia

Robert O’Hagan1, Malan Silva1, Ken C. Q. Nguyen2, Winnie Zhang1, Sebastian Bellotti1, 
Yasmin H. Ramadan1, David H. Hall2, and Maureen M. Barr1

1Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University 
of New Jersey, Piscataway, NJ 08854, USA

2Center for C. elegans Anatomy, Albert Einstein College of Medicine, 1410 Pelham Parkway, 
Bronx, NY 10461, USA

Summary

Ciliary microtubules (MTs) are extensively decorated with post-translational modifications 

(PTMs), such as glutamylation of tubulin tails. PTMs and tubulin isotype diversity act as a 

“Tubulin Code” that regulates cytoskeletal stability and the activity of MT-associated proteins such 

as kinesins. We previously showed that, in C. elegans cilia, the deglutamylase CCPP-1 affects 

ciliary ultrastructure, localization of the TRP channel PKD-2 and the kinesin-3 KLP-6, and 

velocity of kinesin-2 OSM-3/KIF17, while a cell-specific α-tubulin isotype regulates ciliary 

ultrastructure, intraflagellar transport, and ciliary functions of extracellular vesicle (EV)-releasing 

neurons. Here, we examine the role of PTMs and the Tubulin Code in the cililary specialization of 

EV-releasing neurons using genetics, fluorescence microscopy, kymography, electron microscopy, 

and sensory behavioral assays. Although the C. elegans genome encodes five tubulin tyrosine 

ligase-like (TTLL) glutamylases, only ttll-11 specifically regulates PKD-2 localization in EV-

releasing neurons. In EV-releasing cephalic male (CEM) cilia, TTLL-11 and the deglutamylase 

CCPP-1 regulate remodeling of 9+0 MT doublets into 18 singlet MTs. Balanced TTLL-11 and 

CCPP-1 activity fine-tunes glutamylation to control velocity of kinesin-2 OSM-3/KIF17 and 

kinesin-3 KLP-6 without affecting the IFT kinesin-II. TTLL-11 is transported by ciliary motors. 

TTLL-11 and CCPP-1 are also required for the ciliary function of releasing bioactive EVs, and 

TTLL-11 is itself a novel EV cargo. Therefore, MT glutamylation, as part of the tubulin code, 

controls ciliary specialization, ciliary motor-based transport, and ciliary EV release in a living 

animal. We suggest that cell-specific control of MT glutamylation may be a conserved mechanism 

to specialize the form and function of cilia.
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eTOC Blurb

O’Hagan et al report that fine-tuning of microtubule glutamylation by the glutamylase TTLL-11 

and the deglutamylase CCPP-1 regulates ciliary function by controlling ciliary receptor 

localization, the velocity of particular kinesin-2 and kinesin-3 motors, the release of extracellular 

vesicles, and sculpting a specialized axonemal ultrastructure.

Introduction

Cilia and flagella are antenna-like organelles that protrude from most eukaryotic cells and 

serve sensory and motility functions that are important for development, physiology, and 

behavior. Cilia have a conserved structural core called an axoneme, composed of 

microtubules (MTs) that typically form a ring of nine outer A–B doublet MTs surrounding 

two or zero inner singlets—the so-called “9 + 2” or “9 + 0” formations in motile or primary/

sensory cilia, respectively [1]. Although virtually all cilia are built by a conserved 

intraflagellar transport (IFT) process and share a similar architecture, cilia and flagella adopt 

morphological specializations and serve diverse functions [1]. For example, the rods and 

cones of the retina are elaborately shaped cilia [2], while sperm have simple whip-like 

flagella that are variable in length and axoneme structure [3]. C. elegans amphid channel 

cilia, mammalian olfactory cilia, and mammalian renal primary cilia possess a proximal 

doublet region followed by a distal A-tubule singlet region [1, 2, 4, 5]. Another ciliary 

specialization is the ability to produce extracellular vesicles (EVs) called ectosomes [6–11]. 

The molecular underpinnings and functions of these specializations are only beginning to be 

appreciated.

Regulation of the function of conserved ciliogenesis proteins by post-translational 

modifications (PTMs) of MTs could provide a mechanism for generating structural and 

functional diversity of cilia. Ciliary MTs are marked by diverse PTMs that have been 

proposed act as a “Tubulin Code” to regulate particular motors, MT-binding proteins, and 

MAPs (microtubule associated proteins) [12–14]. The tubulin tyrosine ligase-like (TTLL) 

family of proteins includes glutamylases, which act as writers of the Tubulin Code by adding 

or elongating glutamate side-chains on MTs [15]. Carboxypeptidases of the M14D 

deglutamylase subfamily act as erasers of the Tubulin Code that remove or reduce the length 

of glutamate side-chains on tubulins [15, 16]. Hence, MT glutamylation is a reversible 

modification, and a balance of glutamylase and deglutamylase activity may fine- tune the 

extent or pattern of glutamylation in tubulin C-terminal tails [13]. Ciliary MTs are heavily 

glutamylated [15]. Defects in glutamylation are implicated in human ciliopathies. Joubert 

syndrome [17], blindness [18], and schizophrenia [19], are associated with defects in TTLL 

glutamylases. Defects in the Ccp1 deglutamylase cause neuronal degeneration in mice [20]. 

How dysregulated glutamylation might contribute to human disease is largely unknown.

C. elegans possess variant 9+0 cilia whose ultrastructures can be simultaneously analyzed 

using transmission electron microscopy (TEM) and electron tomography [4, 21]. Variant 

9+0 cilia are not nematode-specific oddities. Variations from the “typical” 9+2 and 9+0 

doublet structure may be more common than appreciated, largely due to technical difficulty 

of serial section TEM of mammalian cilia. Of the 302 neurons in the C. elegans 
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hermaphrodite, 60 have dendritic endings that terminate in cilia [22]. In addition to the 

shared ciliated nervous system (common between hermaphrodites and males), the C. elegans 
male possesses 48 ciliated neurons of 385 total neurons [22]. Specialized male-specific cilia 

shed and release bioactive EVs that contain the polycystin receptor LOV-1 and TRP channel 

PKD-2 [7]. The diversity of C. elegans sensory cilia enables study of ciliary specialization 

and the role of the Tubulin Code in this process in a living animal.

CCPP-1, a homolog of the mammalian deglutamylase Ccp1, is required in C. elegans 
sensory neuronal cilia to regulate MT stability [23]. In nematodes lacking CCPP-1, EV-

releasing cephalic male-specific CEM cilia contain fewer MTs [23]. In CEM cilia, CCPP-1 

regulates localization of the ciliary TRP channel PKD-2 and the kinesin-3 KLP-6, and the 

velocity of homodimeric kinesin-2 OSM-3/KIF17 without affecting the anterograde 

heterotrimeric kinesin-II motor [23]. These pleiotropic defects are likely to result from MT 

hyperglutamylation.

CEM cilia display an ultrastructural specialization in which nine MT doublets splay into 

nine A-tubule and nine B-tubule singlets in middle regions of the axoneme, but remain 

joined in distal and proximal regions [24]. The α-tubulin isotype TBA-6 is essential for B-

tubule singlet formation, hence the tubulin code is implicated in generating this specialized 

EV-releasing cilium [24].

The mammalian and C. elegans genomes encode nine and five ttll glutamylases, respectively 

[15, 25]. TTLL glutamylases are biochemically distinguished by their preferences for the C-

terminal tails of α- or β-tubulin and whether they are initiases (adding the first E) or 

elongases (extending chains of poly-E) [15]. However, the true physiological function of 

each TTLL enzyme is not known. Here, we focus on how hypoglutamylation resulting from 

genetic ablation of the TTLL glutamylases affects the cilia of a set of C. elegans male-

specific EV-releasing neurons (EVNs) that express PKD-2 [26]—specifically, the four CEM 

neurons in the head; the HOB (Hook B-type) neuron in the tail, and 16 RnB (Ray B-type, 

where n=1–9, excluding ray 6) neurons that innervate the copulatory fan structure of the 

male tail. We show that CCPP-1 deglutamylase and TTLL-11 glutamylase act in concert to 

sculpt the CEM axoneme and regulate ciliary kinesin-2 OSM-3/KIF17 and kinesin-3 KLP-6 

motors. CEM cilia are functionally specialized to shed and release bioactive EVs. We find 

that CCPP-1 and TTLL-11 are required for environmental release of EVs from ciliated 

neurons in C. elegans males, and that TTLL-11 itself is a novel EV cargo. Our results 

suggest that CCPP-1 and TTLL-11 fine-tune glutamylation to regulate ciliary transport, 

EVs, and axonemal structure in cilia.

Results

The tubulin glutamylase TTLL-11B isoform regulates PKD-2∷GFP ciliary localization and is 
specifically expressed in EV releasing neurons

ccpp-1 is widely expressed in ciliated sensory neurons in hermaphrodites and males [23]. 

Here we focus on the role of glutamylation in ciliary specialization of the male-specific 

EVNs, where CCPP-1-mediated regulation of MT glutamylation is important for appropriate 

localization of the ciliary TRP channel PKD-2∷GFP. PKD-2∷GFP abnormally accumulates 
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in ccpp-1 mutant cilia and distal dendrites (Figure 1A; [23]). To identify the TTLL 

glutamylase that opposes CCPP-1 in EVNs, we hypothesized that loss of a TTLL 

glutamylase might suppress the ccpp-1 PKD-2∷GFP ciliary (Cil) defective phenotype caused 

by hyperglutamylation. The C. elegans genome encodes five TTLL family members 

TTLL-4, TTLL-5, TTLL-9, TTLL-11, and TTLL-15 [27]. (We exclude TTLL-12 for two 

reasons: It is an ortholog to mammalian TTLL12, which lacks glutamylase and glycylase 

activity [15], and is not neuronally expressed [27]). Mutant alleles that delete portions of 

coding regions were available for each of the five ttll- genes: ttll-4(tm3310); ttll-5(tm3360); 
ttll- 9(tm3389); ttll-11(tm4059); ttll-11(gk482); ttll-15(tm3871). We examined ttll mutants 

for the ability to suppress the ccpp-1 PKD-2∷GFP Cil phenotype.

None of the tested TTLL glutamylase deletion mutations suppressed the ccpp-1 
PKD-2∷GFP localization defect. However, ttll-11(tm4059) and ttll-11(gk482) deletion 

mutants displayed a PKD-2∷GFP Cil phenotype similar to ccpp-1 mutants, with 

PKD-2∷GFP abnormally accumulating in ciliary bases and distal dendrites (Figures 1A and 

S1). These results suggest that regulated MT glutamylation is essential for normal ciliary 

localization and abundance of PKD-2. We conclude that different TTLL enzymes may act in 

a cell-specific manner and may possess different enzymatic activities in vivo.

The C. elegans ttll-11 locus encodes two isoforms: the long TTLL-11B and short TTLL-11A 

proteins [25, 27]. A BLAST search of the Human TTLL11 long isoform (NCBI reference 

sequence NP_001132914) against C. elegans WS259 protein database identified both 

TTLL-11B and TTLL-11A as top hits [28], and alignments showed that amino acids 213 – 

742 from the human TTLL11 long isoform are 35% identical and 58% similar to C. elegans 
TTLL-11B amino acids 119 – 642 and TTLL-11A amino acids 19 - 542. TTLL-11A lacks 

the first 100 amino acids of TTLL-11B, but is otherwise identical (Figure 1B; [25, 27]). 

TTLL-11B contains a putative myristoylation sequence at its N-terminus [29]. We 

previously showed that myristoylation is necessary for targeting and function of the EV 

regulator and EV cargo CIL-7 [30].

The ttll-11(tm4059) deletion allele is presumably a null allele for both ttll-11 isoforms, and 

is predicted to produce an early stop codon after 90 amino acids in TTLL-11A and 190 

amino acids in TTLL-11B (Figure 1B; [27]), removing all except seven amino acids of the 

predicted ATP-grasp_4 domain [31]. The gk482 deletion allele affects the coding region of 

only the TTLL-11B long isoform (Figure 1B; [27]). Both the tm4059 and the gk482 alleles 

produced a PKD-2∷GFP Cil phenotype (Figures 1A and S1). Therefore, at least the 

TTLL-11B isoform is required for normal localization of PKD-2. Hereafter, unless 

specifically noted as the ttll-11b(gk482) allele, reference to mutation of ttll-11 indicates the 

tm4059 allele, which affects both isoforms.

To examine where the ttll isoforms function, we created transcriptional reporters. The 

ttll-11b reporter was exclusively expressed in ciliated EV-releasing neurons. Expression of 

GFP (green fluorescent protein; [32]) driven by the ttll-11b promoter was observed in the 

IL2 ciliated sensory neurons in both males and hermaphrodites, as well as the male-specific 

PKD-2-expressing neurons (CEMs in the head; HOB and Ray type B neurons, or “RnBs,” in 
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the tail; Figure 1C, D). The IL2, CEM, HOB, and RnB neurons comprise the EVNs, which 

release bioactive EVs to the environment [7, 8]

The ttll-11a promoter drove GFP expression in a distinct and non-overlapping set of ciliated 

sensory neurons in the head, including the IL1s, OLQs, CEPs, and amphids, but not in the 

EVNs (Figure 1E). In the male tail, expression was seen in HOA, Ray type A neurons 

(RnAs), and phasmids, but not the HOB and RnB neurons (Figure 1F). Expression was also 

seen in phasmid neurons in the hermaphrodite tail (data not shown). These expression 

patterns suggest that TTLL-11B functions in the EVNs and is essential for normal 

localization of PKD-2, whereas TTLL-11A functions in other ciliated sensory neuronal 

types.

The polycystin PKD-2 and the male-specific EVNs mediate male mating behaviors [26]. 

Because ttll-11b expressed in these neurons and the ttll-11 mutant displayed abnormal 

accumulation of PKD-2∷GFP, we examined the mating behaviors of ttll-11 mutant males 

(Figure 1G, H). ttll-11 mutant males were “Lov” defective (i.e., abnormal location of vulva 

substep of mating behavior) but not “Rsp” defective (i.e. the response substep of mating 

behavior was normal). These results suggest that abnormal glutamylation impairs the 

function of these male-specific EVNs, and that hyperglutamylation caused greater 

impairment than hypoglutamylation. The RnBs play a role in response behavior, while the 

HOB functions in location of vulva behavior [26]. The fact that ttll-11 mutants are Lov 

defective but not Rsp defective suggests that requirements for MT glutamylation may not be 

identical even among the neurons that express ttll-11 and ccpp-1 and mediate mating 

behaviors. Alternatively, location of vulva behavior may be more sensitive to abnormal 

glutamylation because a single pair of neurons (HOB and HOA) senses the vulva, whereas 

multiple ray neurons redundantly sense the hermaphrodite for response behavior [26].

TTLL-11 is essential for MT glutamylation

ttll-11 encodes a glutamylase and ttll-11 mutations are predicted to reduce glutamylation. To 

determine if TTLL-11 regulates glutamate side-chain length, we analyzed glutamylation 

state by immunodetection with a polyclonal polyglutamylation (polyE) antibody (IN105) 

that recognizes chains of 3 or more glutamates [33]. Glutamylation in cephalic CEM and 

CEP cilia was undetectable by polyE staining in ttll-11(tm4059) mutant males, which lack 

both TTLL-11B and TTLL-11A. (Figure S2). However, in the absence of TTLL-11B only, 

some ciliary polyE staining remained in cephalic cilia.

To determine if TTLL-11 is required for glutamylation branch point initiation, we stained 

animals with the monoclonal antibody GT335, which detects the branch point of 

glutamylation side-chains on tubulin C-terminal tails [23, 34]. In ttll-11(tm4059) mutants, 

glutamylation was undetectable by GT335 staining in all cilia, including those in male-

specific EVNs (Figure 2). In ttll-11b(gk482) mutant males, GT335 still stained cilia, 

consistent with TTLL-11A-mediated glutamylation of ciliary MTs in amphid, phasmid, 

CEP, and RnA cilia when only the ttll-11b isoform is mutated (Figure 2).

Taken together, our immunofluorescence data (Figures 2 and S2) and isoform expression 

patterns (Figure 1C–F) suggest that TTLL-11B is an EVN-specific glutamylase and 
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TTLL-11A functions in a distinct and non-overlapping set of neurons. Although a previous 

study showed that a mammalian TTLL11 prefers elongation over initiation of glutamate 

side-chains in vitro [33], our results suggest that initiation of glutamate side-chains is an 

important function of C. elegans TTLL-11 in vivo.

ccpp-1 and ttll-11 modulate OSM-3/KIF17 and kinesin-3 KLP-6 but not heterotrimeric 
kinesin-II

In CEM cilia, anterograde IFT is driven predominantly by kinesin-II with minimal 

modulation from accessory kinesin-2 OSM-3/KIF17 and kinesin-3 KLP-6 [35]. KLP-6 is 

similar to mammalian KIF13B [36] and KIF28 [35]. Hyperglutamylation of ciliary MTs in 

ccpp-1 mutants causes abnormal accumulation of the kinesin-3 motor KLP-6 in EVNs 

(Figure 3 A, B; [23]). Therefore, we tested if TTLL-11 was required for normal localization 

of GFP∷KLP-6 in EVNs. Although GFP∷KLP-6 localization was not affected in ttll-11 
mutant males, loss of TTLL-11 did suppress the GFP∷KLP-6 accumulation defect in ccpp-1 
mutants (Figure 3 A, B).

To determine if glutamylation state regulates the velocity of the kinesin-3 KLP-6, we 

analyzed the motility of GFP∷KLP-6 puncta in CEM cilia of young adult males (less than 

four hours after the L4 larval stage; see Methods). In wild type, GFP∷KLP-6 particles moved 

at 0.8μm/s (Table 1; Figure S3). In ccpp-1 GFP∷KLP-6 velocity increased to 0.88 (p<0.05 

vs. wild type). By contrast, in ttll-11 cilia, GFP∷KLP-6 velocity decreased to 0.71 (p<0.05 

vs wild type; Table 1; Figure S3). In the ccpp-1;ttll-11 double mutant, GFP∷KLP-6 velocity 

was similar to wild type. To date, perturbing glutamylation is the only genetic manipulation 

found to affect KLP-6 motility in vivo [24, 35].

In ccpp-1 CEM cilia, OSM-3∷GFP but not kinesin-II-driven IFT moves abnormally rapidly 

[23], suggesting that glutamylation specifically regulates OSM-3/KIF17. To test this, we 

examined OSM-3 and kinesin-II ciliary velocity in ttll-11 mutant CEM cilia. While ttll-11 
mutants displayed normal OSM-3∷GFP velocity, ttll-11 suppressed the abnormally fast 

OSM-3∷GFP velocity of ccpp-1 mutants (Table 1; Figure S3).

C. elegans heterotrimeric kinesin-II comprises motor subunits KLP-11 and KLP-20 and 

accessory subunit KAP-1 [37]. In ccpp-1 single, ttll-11 single, and ccpp-1; ttll-11 double 

mutants, KAP-1∷GFP velocity was similar to wild type, indicating that kinesin-II is not 

regulated by hyper-glutamylation or hypo-glutamylation [23] (Table 1; Figure S3).

CCPP-1 and TTLL-11 regulate release of EVs

C. elegans EVNs produce bioactive EVs [7]. In the male head, the cephalic sensillum is 

comprised of two ciliated sensory neurons (CEM and CEP) surrounded by the glial socket 

and sheath cells. The CEM neuron secretes EVs from the ciliary base into the extracellular 

lumenal space formed by glial support cells (Figure 4A; [7]). We call this process EV 

“shedding.” In a process we call EV “release,” EVs exit through cuticular pores to the 

outside environment, where they can evoke a behavioral response in other males (Figure 4A; 

[7]). EVs shed and released by the CEMs and RnBs contain polycystins, and can be 

visualized by PKD-2∷GFP (Figure 4A, B; [7]). The kinesin-3 KLP-6 and α-tubulin TBA-6 

regulate release of ciliary EVs, with mutants releasing fewer PKD-2∷GFP labeled EVs and 
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also accumulating excessive amounts of EVs in the cephalic lumen surrounding the CEM 

cilium, as visualized by the PKD-2∷GFP reporter in living animals and transmission electron 

microscopy (TEM) in fixed animals [7, 24].

To determine if the PKD-2∷GFP Cil phenotype of ccpp-1 and ttll-11 mutants is due to 

defects in EV shedding and/or release, we visualized and counted environmentally released 

PKD-2∷GFP-labeled EVs (Figure 4B – D; Figure S4). In wild-type males expressing 

PKD-2∷GFP, 102 ± 12 fluorescently marked EVs surrounded the nose, and 100 ± 11 

surrounded the tails. In contrast, ccpp-1, ttll-11, and ttll-11b single mutants, and the 

ccpp-1;ttll-11 double mutant released few PKD-2∷GFP-labeled EVs from ciliated neurons in 

the head or tail of adult males. We also counted PKD-2∷GFP-labeled EVs trapped in the 

molting cuticles of L4 male tails. Wild-type L4 male tails contained 34 ± 4.7 EVs, compared 

with 9.6 ± 2.4 in ccpp-1; 3.4 ± 0.9 in ttll-11; 4.8 ± 2.1 in ccpp-1; ttll-11 double mutants; and 

5.8 ± 1.0 in ttll-11b(gk482) mutants (Figure S4).

To examine EV shedding into the glial lumen, we counted EVs from TEM serial sections of 

ccpp-1 single, ttll-11 single, and ccpp-1; ttll-11 double mutants. The lumen surrounding 

CEM cilia in ccpp-1;ttll-11 double-mutant males contained on average the same number of 

EVs as wild type (Figures 4D and S5). In contrast, both ccpp-1 and ttll-11 single mutants 

contained an abnormally high number of EVs in the lumenal space surrounding CEM cilia– 

almost ten-fold more than wild type (Figures 4E and S5). We conclude that glutamylation 

enzymes regulate EV environmental release (Figures 4 and S4).

TTLL-11 moves in dendrites and cilia and is an EV cargo

To observe the subcellular localization of TTLL-11 in EVNs, we expressed TTLL-11∷GFP 

in the CEM, HOB, and RnB neurons under control of the pkd-2 promoter (Figure 5A–C). 

TTLL-11∷GFP localized in puncta throughout sensory neurons, including axons, cell bodies, 

and dendrites, and was enriched in cilia. TTLL-11∷GFP was packaged into EVs that were 

shed and released from CEMs and RnBs to the environment (Figure 5B, C). Therefore, 

TTLL-11 is a regulator of EV release as well as an EV cargo.

Time-lapse fluorescence microscopy was used to see if TTLL-11∷GFP puncta move in 

dendrites or cilia of CEM neurons. In dendrites, TTLL-11∷GFP exhibited bidirectional and 

saltatory movement (Figure 5D, E). Depending on directionality, TTLL-11∷GFP puncta 

moved at different rates. Anterograde TTLL-11∷GFP movement (from cell body to ciliary 

base) was approximately 0.87 μm/sec and retrograde movement (from ciliary base to cell 

body) was 0.97 μm/sec (Fig 5D). TTLL-11 dendritic transport rates are similar to dendritic 

velocities of IFT components and different from the dendritic velocities of PKD-2 and the 

ODR-10 G-protein coupled receptor [38, 39]. We previously proposed that the dendritic 

transport of ciliary receptors and the IFT machinery involves different mechanisms [38]. Our 

new data support this hypothesis and suggest that TTLL-11 and the IFT machinery are 

transported along dendrites in a similar manner.

TTLL-11∷GFP also moved bidirectionally in CEM cilia. The average velocity of 

anterograde TTLL-11∷GFP transport was 0.87, which was faster that the velocity of KLP-6, 

OSM-3, or KAP-1 in wild-type CEM cilia, but similar to KLP-6 and OSM-3 rates in ccpp-1 
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hyper-glutamylated cilia (Figure 5E, Table 1). To identify the motors that transport 

TTLL-11∷GFP in cilia, we examined TTLL-11∷GFP transport in mutants lacking the 

OSM-3, KLP-6, or KLP-11 kinesin motor. In osm-3 and klp-6 mutants, TTLL-11∷GFP 

velocity was similar to wild type, but mutation of klp-11 significantly increased 

TTLL-11∷GFP velocity to approximately 1 μm/s (Figure 5E), which matches the faster 1 

μm/s velocity observed previously for IFT-A and IFT-B polypeptides in klp-11 mutant CEM 

cilia [35]. Combined, these results indicate that TTLL-11 is moved by IFT and that 

TTLL-11 is a promiscuous cargo that does not rely on a single ciliary kinesin for its 

transport.

TTLL-11 sculpts CEM axonemal MT architecture

The structure of the wild-type CEM axoneme is distinctive (Figure 6A; [24]). Like most 

ciliary axonemes, the CEM ciliary transition zone contains a ring of nine doublet MTs, 

connected to the membrane by Y-link structures, followed by a proximal region with nine 

doublet MTs without Y-links [24]. In the middle region, the nine doublet MTs splay into 18 

singlets [24]. Many of these A-tubule and B-tubule singlets remain adjacent to the ciliary 

membrane (Figure 6A). In the distal region, the MT A- and B-tubule singlets remain joined 

as doublets, and A-tubules extend to the distal most ciliary tip [24]. Therefore, ciliary 

doublets splay in the middle to create singlets that are fused at both the proximal and distal 

ends.

Serial section TEM analysis of ttll-11 mutant male CEM cilia revealed that MT doublets 

extended along the entire length of the axoneme and failed to splay into singlets (Figure 6A). 

We previously reported that mutation of ccpp-1 causes loss of some of the singlets in CEM 

cilia, and that remaining MT singlets were more distant from the ciliary membrane [23]. We 

observed an additional ccpp-1 mutant phenotype using high-pressure freeze tannic acid 

staining of serial sections: open C-shaped singlets in middle segments that may represent B-

tubules that separated from partner A-tubules and neither sealed to form B-tubule singlets 

nor remained joined as doublets in distal segments (Figure 6B). Remaining A-tubule and B-

tubule singlets with 13 and 10 protofilaments, respectively, were visible (Figure 6B). In 

ccpp-1; ttll-11 double mutant males, CEM ciliary MTs resembled those in ttll-11 single 

mutants, with A–B doublets extending along the length of the axoneme and not splaying to 

A-tubule and B-tubule singlets in middle sections (Figure 6 A). Cilia were visible in the 

cuticular pore of all genotypes, and were therefore full-length (data not shown). These 

results indicate that loss of the TTLL-11 glutamylase is epistatic to loss of the deglutamylase 

CCPP-1, and that MT glutamylation by TTLL-11 promotes formation of A- and B-tubule 

singlets via splaying of MT doublets in cilia (Figure 6C).

Discussion

The Tubulin Code posits that tubulin isotypes and PTMs encode information on MTs needed 

for specific cytoskeletal functions [12, 13]. In many organisms, ciliary MTs are decorated 

with PTMs, including polyglutamylation and polyglycylation [13]. C. elegans lacks MT 

polyglycylation and polyglycylase homologs [15, 23, 27], and therefore may use a simplified 

Tubulin Code. We demonstrate here that writers and erasers of the tubulin code – the 
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TTLL-11 positive and CCPP-1 negative regulators of glutamylation – specialize the form 

and function of EV-releasing neuronal sensory cilia in C. elegans.

An initially surprising result of this study was that loss of the tubulin glutamylase TTLL-11, 

which has hypoglutamylated MTs, results in a PKD-2∷GFP ciliary localization defect 

similar to ccpp-1, which has hyperglutamylated MTs. In fact, attempts to “balance” 

glutamylation by creating ccpp-1;ttll-11 double mutants demonstrated that these genes 

interact for some, but not all, functions in male-specific sensory cilia (Table S1). We suggest 

that exquisitely balanced glutamylation is essential for specialization of EVN cilia.

The influence of the Tubulin Code on ciliary motor traffic is not well understood [12]. The 

use of maleimide chemistry to attach glutamate side chains to tubulins at common 

polyglutamylation sites was shown to increase the processivity and velocity of kinesin-2 in 
vitro [14]. Our data indicate that tubulin isotypes and MT glutamylation regulate ciliary 

motors in specific manners in vivo. α-tubulin TBA-6 regulates the velocities and cargo of 

the IFT kinesin-2 motors kinesin-II and OSM-3/KIF17 without affecting kinesin-3 KLP-6 

velocity [24]. Conversely, we show here that glutamylation regulates the velocity of the 

kinesin-3 KLP-6 and the kinesin-2 OSM-3/KIF17 without impacting heterotrimeric kinesin-

II.

Microtubule doublets consist of complete A-tubules with 13-protofilaments and attached 

incomplete 10-protofilament B-tubules [40]. B-tubules are considered to be the predominant 

site of glutamylation in doublet microtubules [41] and navigated by heterotrimeric kinesin-II 

in Chlamydomonas flagella [42]. Intriguingly, MT glutamylation impacts OSM-3 in CEM 

cilia, which is capable of travel on A-tubule singlets in C. elegans chemosensory amphid and 

phasmid cilia [37, 43]. In C. elegans phasmid cilia, localization of heterotrimeric kinesin-II 

and kinesin-2 OSM-3 is attributed to motor turnaround frequencies rather than MT 

composition or structure [43]. Therefore, the preferences of particular motors for A- or B-

tubules remain an open question. Moreover, glutamylation enzymes and/or ciliary motors 

may follow different rules for A–B microtubule doublets found in “canonical cilia” versus 

13 protofilament A-tubule and 10 protofilament B-tubule singlets observed in CEM cilia.

Might glutamylation on B-tubules affect A-tubule-mediated transport indirectly? Although 

this hypothesis seems unlikely, polyglutamylation can seemingly exert structural effects on 

different doublets. For example, loss of the glutamylase TTLL9 in mouse sperm flagella 

causes reduction of glutamylation on doublet 5 but selective loss of doublet 7 [3]. Perhaps 

even minimal A-tubule glutamylation is sufficient to regulate A-tubule-mediated transport. 

Alternatively, A-tubule glutamylation may be more prevalent in sensory cilia than previously 

appreciated from studies in motile cilia. MT glutamylation may regulate motors both 

directly and indirectly, for example, by altering the charge of tubulin C-terminal tails and 

motor affinities, and by sculpting the ultrastructure of MTs.

A striking finding in this work is that TTLL-11, CCPP-1, and MT glutamylation regulate 

axonemal structure at a fundamental level. In wild-type CEM cilia, MT doublets splay into 

A-tubule and B-tubule singlets that remain joined as doublets at proximal and distal ends 

[24]. In ccpp-1 mutant CEM cilia, hyperglutamylation may cause abnormally aggressive 
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splaying as demonstrated by loss of some singlets and C-shaped MTs that may be B-tubule 

singlets that fail to seal [23]. In contrast, ttll-11 and ccpp-1; ttll-11 mutants contain 

hypoglutamylated doublet MTs that fail to splay, indicating that mutation of ttll-11 acts 

epistatically to ccpp-1. We propose that MT glutamylation regulates splaying of A–B 

doublets to 13-protofilament A-tubule and 10-protofilament B-tubule singlets in CEM cilia. 

This implies the existence of MT-associated proteins that promote sealing of B-tubule 

singlets that have transiently separated from A-tubule partners.

The mechanisms by which TTLL enzymes are transported and located to discrete 

subcellular compartments remain relatively unexplored. However, a recent report suggested 

that pathological loss of dendritic spines and synapse activity may be caused by 

mislocalization of TTLL6 (and possibly of TTLL1, 5, or 11), leading to abnormal 

glutamylation patterns and excessive spastin-mediated severing of dendritic MTs [44].

In this first characterization of TTLL-11 transport and localization to cilia, we find that 

TTLL-11 moves bidirectionally in CEM cilia. TTLL-11 undergoes anterograde transport at a 

rate that is faster than IFT-A or B components (~0.5μm/s) in CEM cilia [35], but similar to 

both OSM-3∷GFP and GFP∷KLP-6 in ccpp-1 mutants. Because both loss of CCPP-1 and 

overexpression of TTLL-11 could lead to hyperglutamylated microtubules (Table 1), we 

therefore propose that TTLL-11∷GFP overexpression affects the PTM readers, namely the 

OSM-3 and KLP-6 accessory ciliary motors. In CEM cilia, loss of kinesin-II accelerates 

IFT-A and IFT-B components from 0.5 – 0.6 μm/s to approximately 0.9 – 1.06 μm/s [35] and 

TTLL-11∷GFP from 0.87 to 1.0 μm/s (Table 1). These data suggest that IFT-A, IFT-B, and 

the TTLL-11 glutamylase can associate with OSM-3 and KLP-6 motors. Our observations 

also suggest a mechanism whereby transport of TTLL-11 (a writer of the code) by ciliary 

kinesins (readers of the code) may provide feedback to regulate MTs upon which the 

kinesins move.

TTLL and CCPP enzymes may be evolutionarily conserved regulators of ciliary 

specialization. For example, splaying of axonemal doublets into singlets reminiscent of MTs 

in C. elegans CEM cilia has also been described in mammalian sperm [24, 45]. TTLLs and 

tubulin glutamylation are required for normal sperm MT structure and motility in mice [46]. 

TTLL9 [3] and TTLL5 [46] are required for normal mammalian sperm flagella 

ultrastructure, which supports this hypothesis. We speculate that mutations affecting 

glutamylation may impact human sperm motility and fertility.

What are the MT substrates of glutamylation? The most highly enriched tubulins in the EV-

releasing ciliated neurons are α-tubulin TBA-6 and β-tubulin TBB-4 [8]. TBA-6 is essential 

for normal morphology and MT ultrastructure of the CEM cilia [24]. In tba-6 mutants, the 

CEM cilium has a middle segment with nine doublet microtubules followed by abrupt 

termination of the B-tubule and extension of nine A-tubule singlets distally. TBA-6 might be 

a non-glutamylatable tubulin subunit due to its unusual C-terminal tail that lacks glutamate 

residues [24]. Conversely, the C-terminal tail of TBB-4 may be a substrate for 

glutamylation. Possibly, TBA-6 insertion into the MT lattice in CEM cilia fine-tunes 

glutamylation to regulate the doublet-to-singlet transition. Particular tubulins have been 

found to be important for protofilament number and MT structure in C. elegans non-ciliated 
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touch receptor neurons [47, 48]. Our results, together with previous findings, support the 

Tubulin Code hypothesis [12], in that tubulin function can be specialized by PTMs such as 

glutamylation. Therefore, both PTMs and particular tubulin isotypes may sculpt axonemes 

for diverse forms and functions. Further research is needed to determine which tubulins are 

true substrates for glutamylation in vivo.

In addition to TBA-6 and KLP-6, CCPP-1 and TTLL-11 regulate EV shedding and release, 

with mutants accumulating excessive amounts of lumenal EVs and failing to release EVs to 

the environment [7, 24]. Combined, these data suggest that writers, erasers, and readers of 

the Tubulin Code regulate EV-based signaling. EVs are sub-micron sized membrane-

enclosed packages of proteins, lipids, and nucleic acids [7] used for internal communication 

between distant cells [49] and external communication between conspecific animals [7]. EV 

shedding and release is an evolutionarily conserved function of cilia and observed in 

Chlamydomonas, C. elegans, and mammals [6, 7, 9–11]. Mechanisms controlling formation, 

shedding and release of these ciliary EVs called ectosomes are poorly understood.

Loss of either the TTLL-11 glutamylase or the CCPP-1 deglutamylase virtually abolishes 

release of PKD-2∷GFP-labeled EVs with concomitant accumulation of EVs shed into the 

cephalic lumen. The kinesin-3 klp-6 mutant displays a similar EV phenotype [7]. In ccpp-1 
mutants, GFP∷KLP-6 localization is defective, suggesting that KLP-6 may not be fully 

functional in hyperglutamylated cilia [23]. Furthermore, GFP∷KLP-6 velocity is affected by 

either ccpp-1 or ttll-11 single mutants. Therefore, the effect of ccpp-1 and ttll-11 single 

mutants on EV shedding and release may depend on KLP-6 function. The ccpp-1;ttll-11 
double mutant fails to release PKD-2∷GFP-labeled EVs to the environment, but lumenal 

EVs do not accumulate. Therefore, EV shedding into the lumen might also be perturbed 

when both positive and negative regulation of MT glutamylation are lost.

TTLL-11∷GFP is an EV cargo. Glutamylases and deglutamylases have both tubulin and 

non-tubulin substrates [16, 50, 51]. Hence, TTLL-11 could act locally in EVs in addition to 

its role modifying ciliary MTs. N-myristoylation can anchor proteins to membranes and 

target proteins to cilia or EVs [30, 52, 53]. In C. elegans EVNs, the EV regulator CIL-7 

requires an N-terminal myristoylation sequence for its localization and function in 

PKD-2∷GFP-labelled EV release [30]. The TTLL-11B isoform is expressed in the EVNs 

and possesses a predicted myristoylation site, which may target and package this isoform 

into EVs.

Both positive and negative regulators of tubulin glutamylation are implicated in human 

ciliopathies. Examples of hyperglutamylation leading to disease include mutations in the 

deglutamylase AGBL5, associated with retinal degeneration in humans [54], and loss of the 

deglutamylase Ccp1, which causes progressive neurodegeneration and sperm immotility in 

mice [20]. A growing list of reports links hypoglutamylation to disease. A chromosomal 

abnormality leading to loss of TTLL11 may contribute to schizophrenia [19]. A cause of 

Joubert syndrome is proposed to be hypoglutamylation of ciliary MTs, indirectly caused by 

mutation of the CEP41, which is needed for ciliary trafficking of the TTLL6 glutamylase 

[17]. Hypoglutamylation in mice also causes defects in synaptic function [55]. Recent work 

also identified TTLL5 mutation as a cause of recessive retinal dystrophy in humans [18] and 
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sperm immotility in mice [46]. Ciliary specialization and diversity, mediated at least in part 

by Tubulin Code-based mechanisms, may play important roles as modifiers of ciliopathic 

genetic diseases. Our work, elucidating functions of the writers, erasers, and readers of the 

Tubulin Code at the cellular and molecular level, will have important impacts on our 

understanding of their effects on human health.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Dr. Robert O’Hagan (ohagan@dls.rutgers.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Culture of C. elegans nematodes—Nematodes were cultured on Nematode Growth 

Media (NGM) agar plates containing a lawn of E. coli (strain: OP50). All animals were 

incubated at room temperature or 20°C. In all experiments in which males were tested, we 

used animals in either the him-5(e1490) or myIs1 0pkd-2(sy606);him-5(e1490) background 

to generate a supply of males. These backgrounds were considered wild type. Males with the 

him-5(e1490) mutation exhibit normal mating behaviors and are commonly used as wild-

type controls for mating assays. We also used males that were heterozygous for 

him-5(e1490) and made no distinction from homozygous him-5(e1490) males.

METHOD DETAILS

Molecular Biology and Transgenes—pRO125 was constructed using Gateway cloning 

(www.thermofisher.com) using genomic sequence of the ttll-11b promoter amplified using 

primers RO-P218F/RO-P220R (see Key Resources Table). pRO132 was constructed by 

Gibson assembly [56] fusing a PCR product generated with primers RO-P307F/RO-P305R 

with a plasmid backbone including the pkd-2 promoter, green fluorescent protein, and the 

unc-54 3′UTR, which was amplified using primers RO-P308F/RO-P306R. The Pttll-11a∷gfp 
PCR product was amplified using primers RO-P341F/RO-P344R.

We created transgenic strains by injection of plasmids and/or PCR products dissolved in M9 

(22 mM KH2PO4, 42 mM Na2HPO4, 85 mM NaCl) into the germline in young adult 

hermaphrodites. We created PT3161 by injecting the Pttll-11a∷gfp PCR product, comprising 

1122 bp upstream of the ttll-11a start codon fused to GFP coding sequence and unc-54 3′ 
UTR. PT3166 was created by germline injection of pRO125, which encodes a ttll-11b 
promoter of 1027 bp upstream of the start codon fused to GFP coding sequence and unc-54 
3′ non-coding sequence. We created PT3159 by germline injection of pRO132, which 

encodes a pkd-2 promoter plus genomic ttll-11b sequence fused in-frame with gfp and the 

unc-54 3′ UTR. We used three transformation markers, individually or in combination, for 

each transgenic strain: 1) pBX, a plasmid containing the rescuing pha-1 transformation 

marker; 2) Punc-122∷gfp, which produces green fluorescence in coelomocytes visible in both 

males and hermaphrodites; and 3) Punc-122∷rfp, which produces red fluorescence in 

coelomocytes visible in both males and hermaphrodites. All other transgenes (noted in Key 

Resources Table) were introduced into ccpp-1 and ttll-11 mutant backgrounds by crossing.
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Epifluorescence Microscopy—Nematodes were anaesthetized with 10 mM levamisole 

and mounted on agarose pads for imaging at room temperature. Epifluorescence images 

were acquired with Metamorph software (www.moleculardevices.com) using either a Zeiss 

Axio Imager.D1M (Zeiss, Oberkochen, Germany) or a Zeiss Axioplan2 microscope with 

10×, 63× (NA 1.4), and 100× (NA 1.4) oil-immersion objectives, equipped with either a 

Retiga-SRV Fast 1394 digital camera (Q-Imaging, Surrey, BC, Canada), a Photometrics 

Cascade 512B CCD camera, or a Hamamatsu C11440-42U ORCA-Flash4.0 LT Digital 

CMOS camera (www.hamamatsu.com). We imported images into FIJI/ImageJ 2.0 

(imagej.net/Fiji/) using the Bioformats 5.5.3 plugin (www-legacy.openmicroscopy.org/) to 

quantify fluorescence in some images, and to create optical Z-stack projections, add scale 

bars, rotate, and adjust contrast. Images were then exported as jpegs to Adobe Photoshop 

CS4 for cropping and saving as layered PSD files for assembly into figures in Adobe 

Illustrator CS5.

For analyzing expression patterns, subcellular localization of fluorescently tagged proteins, 

and quantification of GFP-labeled EV release, we isolated L4 (fourth larval stage) males 

from hermaphrodites 20–24 hours before observation by transferring them to plates seeded 

with OP50 bacteria. At the time of observation, all animals were young adult males. Still 

images were captured as Z-stacks. No blind analysis was performed. No sample size 

estimations were performed. Sample sizes are indicated in figures or legends where 

appropriate.

For PKD-2∷GFP localization, we used PT443, PT2168, PT2169, PT2170, PT2171, PT2172, 

PT2433, PT2488, PT2497, PT2498, PT2988, PT2499, PT2500, PT2666, PT2667, PT2668, 

PT2670, PT2920, PT2921, PT2958, and PT2988. The PKD-2∷GFP ciliary localization 

defective (Cil) phenotype was characterized by visible PKD-2∷GFP in dendrites and ciliary 

bases, especially in rays in the tail. Images of PKD-2∷GFP localization were captured as Z-

stacks using the Zeiss Axio Imager.D1M with 100X objective and Retiga SRV camera with 

200ms exposure. In wild-type CEMs, ciliary PKD-2∷GFP is very dim, but in the mutants, 

the cilia and ciliary bases are more clearly seen. We increased the brightness and contrast 

equally for all PKD-2∷GFP images, but to avoid oversaturation in mutant images, we 

increased contrast only to the point that wild-type cilia are dimly visible. We used the 

Bioformats plugin to import TIFF stacks into FIJI/ImageJ to quantify this phenotype from Z-

projections of epifluorescence images by tracing along visible patches of PKD-2∷GFP from 

the tips of neuronal cilia into dendrites, and comparing the average length of the 

PKD-2∷GFP accumulation patches across genotypes.

For GFP∷KLP-6 localization, we used strains: PT2102, PT2149, PT2713, PT2715. Images 

were captured as Z-stacks using the 100X objective and 200ms exposure on the Zeiss Axio 

Imager.D1M with 100X objective and Retiga SRV camera with 200ms exposure. We used 

FIJI to quantify GFP∷KLP-6 localization defects from Z-projections of TIFF stacks of 

epifluorescence images by capturing the maximum pixel value from regions of interest 

(ROIs) containing the distalmost 10μm of dendrites in head (CEM and IL2), and from ROIs 

containing CEM and IL2 cilia. The ratio of ciliary maximum/dendrite maximum pixel value 

represents fold enrichment in cilia compared to dendrites.
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For counting numbers of PKD-2∷GFP-labeled environmentally released EVs in 

synchronized adult males, we used strains: PT443, PT2168, PT2497, PT2498, PT2988. We 

acquired Z-stacks using the 100X objective on the Zeiss Axio Imager.D1M with the Retiga 

digital camera. We also counted EVs trapped in the molting cuticle of late L4 males as a 

means to unambiguously identify EVs that were released from individual animals. We 

picked late L4 males immediately before mounting for imaging, and imaged only those with 

molting cuticles visible on their tails. Although cuticles were in various stages of molting, as 

males gradually emerged from the old cuticle, we measured the area enclosed by the old 

cuticle of the Z-projected stacks to ensure that we compared EV counts of similarly aged 

animals. The enclosed areas (in square pixels) were indistinguishable by one-way ANOVA 

performed in IGOR 6 software (Wavemetrics, Inc.) across genotypes. For both young adult 

males and molting late L4 males, EVs were counted in FIJI/ImageJ using the ROI manager 

tool.

To determine the expression pattern of TTLL-11A and TTLL-11B, we crossed adult PT1722 

males expressing Pklp-6∷tdTomato to mark EVNs (extracellular vesicle-releasing neurons) 

with PT3161 (Pttll-11b∷gfp) or PT3166 (Pttll-11a∷gfp) hermaphrodites and picked F1 

males. We observed overlap of GFP and tdTomato cellular expression patterns (to identify 

Pttll-11b∷gfp expression in EVNs). Where patterns did not overlap, we used tdTomato-

illuminated EVNs as landmarks to identify cells expressing Pttll-11a∷gfp by relative 

position. Images were acquired as Z-stacks using the 63X objective on the Axio 

Imager.D1M with the Orca-Flash 4.0 camera.

In vivo Motor Velocity Analysis—For all motor velocity experiments, except as noted 

for GFP∷KLP-6, we isolated L4 (fourth larval stage) males from hermaphrodites 20–24 

hours before observation by transferring them to fresh plates seeded with OP50 bacteria. 

Animals were mounted on slides for imaging as young adult males. Velocities of motile 

particles were scored by a researcher blinded as to genotype. Blinding was done by another 

researcher, who renamed data files with numbers. For all motor velocity experiments, 

number of animals and motile particles analyzed are presented with the data. For all motor 

velocity experiments, CEM cilia that did not lie entirely within a focal plane were excluded 

from analysis. No sample size estimations were performed. Sample sizes are indicated 

where appropriate.

Motor velocity experiments for OSM-3∷GFP were conducted using time-lapse microscopy 

for 100–200 frames, each with 100ms exposure, Gain 1, on the Axio Imager.D1M/ Retiga-

SRV camera, using the 100X objective. We used Metamorph software to convert the 

streaming video to kymographs and calculate the velocity of moving particles. For 

OSM-3∷GFP velocity experiments, strains used were PT2065, PT2098, PT2669, PT2678.

GFP∷KLP-6 motor velocity experiments were conducted using time-lapse microscopy for 

100–200 frames, each with 100ms exposure, Gain 1, on the Axio Imager.D1M/ Retiga-SRV 

camera, using the 100X objective. Strains used: PT2102, PT2149, PT2713, PT2715 for 

GFP∷KLP-6 motility. Because of intense ciliary accumulation of GFP∷KLP-6 in ccpp-1 
mutant CEM neurons, it was not possible to analyze how MT glutamylation affected 

kinesin-3 velocity using males isolated 20 – 24 hours prior to the experiment. Therefore, we 

O’Hagan et al. Page 14

Curr Biol. Author manuscript; available in PMC 2018 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tested motility of GFP∷KLP-6 in CEM cilia at an earlier time point by isolating L4 males 

and analyzing only those males that had molted into mature adults four hours later. 

GFP∷KLP-6 accumulation was less severe in these very young adult males, making it 

possible to visualize moving GFP∷KLP-6 particles in cilia. We used Metamorph software to 

convert the streaming video to kymographs and calculate the velocity of moving particles.

KAP-1∷GFP velocity experiments were conducted using time-lapse microscopy to acquire 

200 frames with 200 ms exposure, Gain 20, on the Axio Imager.D1M/ Retiga-SRV camera, 

using the 100X objective. Strains used: PT2108, PT3179, PT3180, PT3181. For 

KAP-1∷GFP, we used FIJI/ImageJ with the Kymograph Clear macro toolset [57] to generate 

kymographs from streaming videos of CEM cilia and to manually trace lines on moving 

particles. Kymographs and traced lines were analyzed using Kymograph direct software [57] 

to calculate the velocity of moving particles.

To analyze TTLL-11∷GFP localization and motility, we used the following strains: PT3159, 

PT3256, PT3257, PT3258. Images were captured using the Axio Imager.D1M/Orca camera 

using the 100X objective. For localization of TTLL-11∷GFP in neurons and in EVs, Z-

stacks were processed using FIJI/ImageJ and Photoshop. To analyze ciliary and dendritic 

motility, we acquired time-lapse 100 – 200 frame video streams (200ms exposure, Axio 

Imager.D1M/Orca-Flash 4.0 camera) using the 100X objective. Dendritic kymographs were 

created and analyzed using Metamorph software. For our blinded analysis of ciliary 

movement of TTLL-11∷GFP, we used FIJI/ImageJ with the Kymograph Clear macro toolset 

[57] to generate kymographs from streaming videos of CEM cilia and to manually trace 

lines on moving particles. Kymographs and traced lines were analyzed using Kymograph 

direct software [57] to calculate the velocity of moving particles. Scoring of motile 

TTLL-11∷GFP puncta was challenging because of a low signal-to-noise ration. Therefore, in 

our blinded analysis of TTLL-11∷GFP motility in wild-type, osm-3, klp-6, and kap-1 
backgrounds, we also included a strain that expresses soluble GFP in CEM and other 

neurons. Our analysis revealed that the frequency at which we detected moving 

TTLL-11∷GFP particles was on average 0.15–0.2 particles per second of video in wild-type 

and mutant genotypes, but only approximately 0.002 per second for soluble GFP. Therefore, 

although scoring motile TTLL-11∷GFP puncta was challenging, we detected their 

movement 100X more frequently than spurious movement of soluble GFP.

Immunofluorescence Imaging—For immunofluorescence imaging, we synchronized 

animals (Strains PT443, PT2168, PT2497, PT2498, PT2988) by bleaching and fixed as 1-

day-old adults. Fixation was accomplished by washing animals from 3 NGM plates using 

M9 buffer, then washing animals in a 15 ml conical tube 3 more times with M9 over one 

hour. Worms were chilled on ice before washing in ice-cold Ruvkun buffer (80 mM KCl, 20 

mM NaCl, 10 mM EGTA, 5 mM spermidine-HCl, 15 mM Pipes, pH 7.4 and 25% methanol) 

plus 2% formaldehyde in 1.6ml centrifuge tubes. The tubes were immersed in liquid 

nitrogen, and melted under tap water to crack the worms’ cuticles. Worms were then washed 

with Tris-Triton buffer (100 mM Tris-HCl, pH 7.4, 1% Triton X-100 and 1 mM EDTA), 

suspended in Tris-Triton buffer+1% β-mercaptoethanol, and incubated overnight at 37°C. 

The next day, worms were washed with 1X BO3 buffer (50 mM H3BO3, 25 mM NaOH) 

+ 0.01% Triton, and suspended in 1X BO3 + 0.01% Triton buffer + 10 mM DTT for 15 

O’Hagan et al. Page 15

Curr Biol. Author manuscript; available in PMC 2018 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



minutes with gentle agitation at room temperature. Worms were then washed with 1X BO3 

buffer (50 mM H3BO3, 25 mM NaOH) + 0.01% Triton, and suspended in 1X BO3 + 0.01% 

Triton buffer + 0.3% H2O2 for 15 minutes with gentle agitation at room temperature. After 

washing once with 1X BO3 + 0.01% Triton buffer, worms were washed for 15 minutes in 

Antibody buffer B (1X PBS, 0.1% BSA, 0.5% Triton X-100, 0.05% sodium azide, 1mM 

EDTA) with gentle agitation at room temperature. Fixed worms were stored in Antibody 

buffer A (1X PBS, 1% BSA, 0.5% Triton X-100, 0.05% sodium azide, 1mM EDTA) at 4°C 

for up to one month before antibody staining.

Animals were stained overnight at room temperature with a 1:600 dilution (in Antibody 

Buffer A) of GT335, a monoclonal antibody which binds the branch point of both 

monoglutamylated and polyglutamylated substrates [34] or with a polyclonal 

polyglutamylation (polyE) antibody IN105 (both obtained from www.adipogen.com), which 

recognizes chains of 3 or more glutamates [33]. Stained worms were washed with several 

changes of Antibody B Buffer with gentle agitation at room temperature over several hours. 

After rinsing with Antibody Buffer A, either Alexa-fluor 568-conjugated donkey anti-mouse 

(for GT335) or Alexa-Fluor 568-conjugated anti-rabbit (for polyE) secondary antibodies 

(Invitrogen) were added at a dilution of 1:2000 and incubated for 2 hours at room 

temperature with gentle agitation. Worms were then washed with several changes of 

Antibody Buffer B over several hours before mounting on 2% agarose pads for imaging.

Male Mating Behavior—We conducted mating assays using strains CB1490, CB169, 

PT2281, PT3032, and PT3149. L4 males were picked to a fresh plate ~24 hours before 

behavior experiments to be assayed as young adults. CB169 hermaphrodites were also 

picked as L4 larvae ~24 hours before experiments. Male mating assays were conducted on a 

fresh NGM agar plate with a spot of E. coli (OP50) containing 25 young adult CB169 

uncoordinated mutant hermaphrodites. One, two, or three males were placed in the center of 

the OP50 and observed for 4 minutes. Mating behavior requires a series of substeps [26] 

including “response,” in which the male senses the presence of a hermaphrodite mate and 

moves backwards, pressing his tail against her body, and “location of vulva,” in which males 

stop at the hermaphrodite vulva and prod with their spicules. A “response” was scored only 

if a male began scanning a hermaphrodite with his tail rays and maintained contact for at 

least 10 seconds. “Location of vulva” was scored if a male stopped at the hermaphrodite 

vulva and began prodding with his spicules, but insertion of spicules was not a requirement. 

For both response and vulva location assays, males were scored in random order with 

respect to genotype. Genotypes of males assayed were cycled over time on assay days so 

that individual genotypes were not scored in a single block of time. No blind analysis was 

performed. No sample size estimations were performed. No blind analysis was performed. 

Number of trials and sample size are indicated in Figure 1 legend.

Serial Section Transmission Electron Microscopy—We analyzed ciliary 

ultrastructure using the following strains: PT443, PT2168, PT2497, PT2498. Young adult 

animals were subjected to high-pressure freeze fixation and freeze substituted, in 0.5% 

glutaraldehyde, 0.25% tannic acid and 2% water in acetone at −90°C for 104 hours. Samples 

were then gradually warmed to −25°C over 13 hours, and held at that temperature for 16 
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hours. Samples were then warmed gradually to 0°C, over 5 hours and held for 2 hours. After 

this final warming, specimens were rinsed in cold acetone. Samples were re-stained in 

filtered 1% uranyl acetate in acetone in the cold, then rinsed 3X in pure acetone, stained 

again in filtered Reynold’s lead mixture in acetone, rinsed in acetone, and transferred to 

microporous type C holders for processing into plastic resin [58]. Samples were infiltrated 

into Embed812 plastic resin and embedded in an 8-well chamber slide for curing at 60°C for 

24 hrs. Serial sections (70 nm thickness) of fixed animals were collected on copper slot grids 

and stained with 4% uranyl acetate in 70% methanol, followed by washing and incubating 

with aqueous lead citrate. Images were captured on a Philips CM10 transmission electron 

microscope at 80kV with a Morada 11 megapixel TEM CCD camera driven by iTEM 

software (Olympus Soft Imaging Solutions).

The trakEM2 suite in FIJI [59] was used to quantify EVs shed into a lumen formed by glial 

cells. Serial TEM sections images were stacked, aligned, and annotated before spheres were 

manually fitted to each EV in cephalic sensilla to count EV abundance through all ciliary 

sections. No blind analysis was performed. No sample size estimations were performed. 

Serial TEM sections were included only when an entire sensillum could be reconstructed 

from a single animal per genotype. Number of cilia examined is indicated in Figure 4 

legend.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data values are expressed as mean ± standard error unless indicated. To determine the 

statistical significance of differences in experimental results, we conducted statistical tests 

(as indicated) in IGOR 6 (Wavemetrics, Inc.) or Prism (Graphpad Software). Statistical tests 

used and P values are indicated for each comparison. P ≤ 0.05 was considered to indicate 

significant difference.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-Polyglutamylation Modification, mAb (GT335) www.adipogen.com AG-20B-0020-C100

anti-Polyglutamate chain (polyE), pAb (IN105) www.adipogen.com AG-25B-0030

Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, 
Alexa Fluor 568

www.thermofisher.com Cat # A10037

Donkey-anti-Rabbit-IgG-H-L-Highly-Cross-Adsorbed-Secondary Antibody, 
Alexa Fluor 568

www.thermofisher.com Cat # A10042

Bacterial and Virus Strains

E. coli, OP50 strain cgc.umn.edu OP50

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

Levamisole www.acros.com Cat # 187870100

Bovine Serum Albumin (BSA) Fraction V; Protease Free www.sigmaaldrich.com Cat # 3117332001

PIPES www.sigmaaldrich.com Cat # P6757-100G

Triton X-100 www.sigmaaldrich.com Cat # X100-500ML

Formaldehyde Solution 37% www.sigmaaldrich.com Cat # F1635-500ML

Embed812 plastic resin www.emsdiasum.com Cat # 14900
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REAGENT or RESOURCE SOURCE IDENTIFIER

Tannic Acid www.sigmaaldrich.com Cat # 16201-500G

Glutaraldehyde Solution 25% www.emsdiasum.com Cat # 16200

Uranyl Acetate www.emsdiasum.com Cat # 22400

Lead Citrate www.emsdiasum.com Cat # 17800

Critical Commercial Assays

Deposited Data

Experimental Models: Cell Lines

Experimental Models: Organisms/Strains

C. elegans Strain CB169: unc-31(e169) IV CGC RRID:WB-STRAIN:CB169

C. elegans Strain CB1490: him-5(e1490) V CGC RRID:WB-STRAIN:CB1490

C. elegans Strain PT443: myIs1[pkd-2∷gfp + Punc-122∷gfp] pkd-2(sy606) 
IV;him-5(e1490) V

[34] RRID:WB-STRAIN:PT443

C. elegans Strain PT1722: pha-1(e2123) III; him-5(e1490) V; 
myEx632[Pklp-6∷tdTomato + pha-1(+)]

This paper RRID:WB-STRAIN:PT1722

C. elegans Strain PT2065: ccpp-1(ok1821) I;pha-1(e2123) III;him-5(e1490) 
V;myEx685[Pklp-6∷osm-3∷gfp + pha-1(+)]

This paper RRID:WB-STRAIN:PT2065

C. elegans Strain PT2098: pha-1(e2123) III;him-5(e1490) 
V;myEx685[Pklp-6∷osm-3∷gfp + pha-1(+)]

[48] RRID:WB-STRAIN:PT2098

C. elegans Strain PT2102: pha-1(e2123) III;him-5(e1490) 
V;myEx686[gfp∷klp-6+ pha-1(+)]

[48] RRID:WB-STRAIN:PT2102

C. elegans Strain PT2108: pha-1(e2123) III;him-5(e1490) 
V;myEx687[Ppkd-2∷kap-1∷gfp + pha-1(+)]

[48] RRID:WB-STRAIN:PT2108

C. elegans Strain PT2149: ccpp-1(ok1821) I;pha-1(e2123) III;him-5(e1490) 
V;myEx686[gfp∷klp-6+ pha-1(+)]

This paper RRID:WB-STRAIN:PT2149

C. elegans Strain PT2168: ccpp-1(ok1821) I; myIs1[pkd-2∷gfp + 
Punc-122∷gfp] pkd-2(sy606) IV;him-5(e1490) V

This paper RRID:WB-STRAIN:PT2168

C. elegans Strain PT2169: myIs1[pkd-2∷gfp + Punc-122∷gfp] pkd-2(sy606) 
IV;him-5(e1490) ttll-9(tm3889) V

[34] RRID:WB-STRAIN:PT2169

C. elegans Strain PT2170: ccpp-1(ok1821) I;myIs1[pkd-2∷gfp + Punc-122∷gfp] 
pkd-2(sy606) IV;him-5(e1490) ttll-9(tm3889) V

[34] RRID:WB-STRAIN:PT2170

C. elegans Strain PT2171: ttll-4(tm3310) III;myIs1[pkd-2∷gfp + Punc-122∷gfp] 
pkd-2(sy606) IV;him-5(e1490) V

[34] RRID:WB-STRAIN:PT2171

C. elegans Strain PT2172: ccpp-1(ok1821) I;ttll-4(tm3310) 
III;myIs1[pkd-2∷gfp + Punc-122∷gfp] pkd-2(sy606) IV;him-5(e1490) V

[34] RRID:WB-STRAIN:PT2172

C. elegans Strain PT2281: ccpp-1(ok1821) I;him-5(e1490) V [34] RRID:WB-STRAIN:PT2281

C. elegans Strain PT2433: myIs1[pkd-2∷gfp + Punc-122∷gfp] pkd-2(sy606) IV; 
ttll-5(tm3360) him-5(e1490) V

[34] RRID:WB-STRAIN:PT2433

C. elegans Strain PT2488: ccpp-1(ok1821) I; myIs1[pkd-2∷gfp + 
Punc-122∷gfp] pkd-2(sy606) IV; ttll-5(tm3360) him-5(e1490) V

[34] RRID:WB-STRAIN:PT2488

C. elegans Strain PT2497: ccpp-1(ok1821) I; myIs1[pkd-2∷gfp + 
Punc-122∷gfp] ttll-11(tm4059) IV;him-5(e1490) V

This paper RRID:WB-STRAIN:PT2497

C. elegans Strain PT2498: myIs1[pkd-2∷gfp + Punc-122∷gfp] ttll-11(tm4059) 
IV;him-5(e1490) V

This paper RRID:WB-STRAIN:PT2498

C. elegans Strain PT2499: ccpp-1(ok1821) I; myIs1[pkd-2∷gfp + 
Punc-122∷gfp] pkd-2(sy606) IV;ttll-15(tm3871) him-5(e1490) V

This paper RRID:WB-STRAIN:PT2499

C. elegans Strain PT2500: myIs1[pkd-2∷gfp + Punc-122∷gfp] pkd-2(sy606) 
IV;ttll-15(tm3871) him-5(e1490) V

This paper RRID:WB-STRAIN:PT2500

C. elegans Strain PT2613: pha-1(e2123) III;ttll-11(tm4059) IV;him-5(e1490) V This paper RRID:WB-STRAIN:PT2613

C. elegans Strain PT2666: myIs1[pkd-2∷gfp + Punc-122∷gfp] ttll-11(tm4059) 
IV; ttll-5(tm3360) him-5(e1490) V

This paper RRID:WB-STRAIN:PT2666

C. elegans Strain PT2667: myIs1[pkd-2∷gfp + Punc-122∷gfp] ttll-11(tm4059) 
IV;him-5(e1490) ttll-9(tm3889) V

This paper RRID:WB-STRAIN:PT2667

C. elegans Strain PT2668: myIs1[pkd-2∷gfp + Punc-122∷gfp] ttll-11(tm4059) 
IV;ttll-15(tm3871) him-5(e1490) V

This paper RRID:WB-STRAIN:PT2668

C. elegans Strain PT2669: ccpp-1(ok1821) I;pha-1(e2123) III;ttll-11(tm4059) 
IV;him-5(e1490) V;myEx685[Pklp-6∷osm-3∷gfp + pha-1(+)]

This paper RRID:WB-STRAIN:PT2669

C. elegans Strain PT2670: ttll-4 (tm3310) III; myIs1[pkd-2∷gfp + 
Punc-122∷gfp] ttll-11 (tm4059) IV; him-5 (e1490) V

This paper RRID:WB-STRAIN:PT2670
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REAGENT or RESOURCE SOURCE IDENTIFIER

C. elegans Strain PT2678: pha-1(e2123) III;ttll-11(tm4059) IV;him-5(e1490) 
V;myEx685[Pklp-6∷osm-3∷gfp + pha-1(+)]

This paper RRID:WB-STRAIN:PT2678

C. elegans Strain PT2713: pha-1(e2123) III;ttll-11(tm4059) IV;him-5(e1490) 
V;myEx686[gfp∷klp-6+ pha-1(+)]

This paper RRID:WB-STRAIN:PT2713

C. elegans Strain PT2715: ccpp-1(ok1821) I;pha-1(e2123) III;ttll-11(tm4059) 
IV;him-5(e1490) V;myEx686[gfp∷klp-6+ pha-1(+)]

This paper RRID:WB-STRAIN:PT2715

C. elegans Strain PT2920: ttll-4(tm3310) III; myIs1[pkd-2∷gfp + 
Punc-122∷gfp] ttll-11(tm4059) IV; ttll-5(tm3360) him-5(e1490) V

This paper RRID:WB-STRAIN:PT2920

C. elegans Strain PT2921: ccpp-1(ok1821) I; ttll-4(tm3310) III; 
myIs1[pkd-2∷gfp + Punc-122∷gfp] ttll-11(tm4059) IV; ttll-5(tm3360) 
him-5(e1490) V

This paper RRID:WB-STRAIN:PT2921

C. elegans Strain PT2958: ccpp-1(ok1821) I;myIs1[pkd-2∷gfp + Punc-122∷gfp] 
ttll-11b(gk482) IV;him-5(e1490) V

This paper RRID:WB-STRAIN:PT2958

C. elegans Strain PT2988: myIs1[pkd-2∷gfp + Punc-122∷gfp] ttll-11b(gk482) 
IV;him-5(e1490) V

This paper RRID:WB-STRAIN:PT2988

C. elegans Strain PT3032: ttll-11(tm4059) IV;him-5(e1490) V This paper RRID:WB-STRAIN:PT3032

C. elegans Strain PT3149: ccpp-1(ok1821) I;ttll-11(tm4059) IV;him-5(e1490) 
V

This paper RRID:WB-STRAIN:PT3149

C. elegans Strain PT3159: pha-1(e2123) III;him-5(e1490) 
V;myEx899[Ppkd-2∷ttll-11b∷gfp + pha-1(+) + Punc-122∷rfp]

This paper RRID:WB-STRAIN:PT3159

C. elegans Strain PT3161: pha-1(e2123) III;him-5(e1490) 
V;myEx900[Pttll-11a∷gfp pcr product + pha-1(+) + Punc-122∷rfp]

This paper RRID:WB-STRAIN:PT3161

C. elegans Strain PT3166: pha-1(e2123) III;him-5(e1490) 
V;myEx902[Pttll-11b∷gfp + pha-1(+)]

This paper RRID:WB-STRAIN:PT3166

C. elegans Strain PT3179: ccpp-1(ok1821) I;pha-1(e2123 ) III;him-5(e1490) 
V;myEx687[Ppkd-2∷kap-1∷gfp + pha-1(+)]

This paper RRID:WB-STRAIN:PT3179

C. elegans Strain PT3180: pha-1(e2123) III;ttll-11(tm4059) IV;him-5(e1490) 
V;myEx687[Ppkd-2∷kap-1∷gfp + pha-1(+)]

This paper RRID:WB-STRAIN:PT3180

C. elegans Strain PT3181: ccpp-1(ok1821) I pha-1(e2123) III;ttll-11(tm4059) 
IV;him-5(e1490) V;myEx687[Ppkd-2∷kap-1∷gfp + pha-1(+)]

This paper RRID:WB-STRAIN:PT3181

C. elegans Strain PT3256: pha-1(e2123) III;osm-3(p802) IV; him-5(e1490) V; 
myEx899[Ppkd-2∷ttll-11b∷gfp + pha-1(+) + Punc-122∷rfp]

This paper RRID:WB-STRAIN:PT3256

C. elegans Strain PT3257: pha-1(e2123) III; klp-11(tm324) IV; him-5(e1490) 
V; myEx899[Ppkd-2∷ttll-11b∷gfp + pha-1(+) + Punc-122∷rfp]

This paper RRID:WB-STRAIN:PT3257

C. elegans Strain PT3258: pha-1(e2123) III; klp-6(my8) IV; him-5(e1490) V; 
myEx899[Ppkd-2∷ttll-11b∷gfp + pha-1(+) + Punc-122∷rfp]

This paper RRID:WB-STRAIN:PT3258

Oligonucleotides

GGGGACAACTTTGTACAAAAAAGTTG cgtgtgctgtgaaggagaag This paper RO-P218F

GGGGACAACTTTGTACAAGAAAGTTG taatcatattatcaccggttttaaatgaaatatc This paper RO-P220F

ggtcctcctgaaaatgttctatgttatg TGCAAGTCGCTCGTTGATTTTTG This paper RO-P305R

TTCTGTTGATATCTTGCAGCCCAT ggatatgttgtgttttacagtattatgtagtc This paper RO-P306R

gactacataatactgtaaaacacaacatatcc ATGGGCTGCAAGATATCAACAGAA This paper RO-P307F

CAAAAATCAACGAGCGACTTGCA cataacatagaacattttcaggaggacc This paper RO-P308F

cgaaatcacttggcattaacaca This paper RO-P341F

ACGGCCGACTAGTAGGAAAC This paper RO-P344R

Recombinant DNA

plasmid [Pttll-11∷gfp] This paper pRO125

plasmid [Ppkd-2∷ttll-11∷gfp] This paper pRO132

pcr product [Pttll-11a∷gfp] This paper N/A

Software and Algorithms

Metamorph www.moleculardevices.com N/A

FIJI/ImageJ 2.0 www.imagej.net/Fiji/ N/A

Kymograph Clear www.nat.vu.nl/~erwinp/downloads.html N/A

Kymograph Direct www.nat.vu.nl/~erwinp/downloads.html N/A

Prism 6 www.graphpad.com N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

IGOR 6 www.wavemetrics.com N/A

iTEM software OLYMPUS SOFT IMAGING 
SOLUTIONS GmbH
Johann-Krane-Weg 39 48149 Münster, 
Germany

N/A

Other

microporous type C holders www.emsdiasum.com Cat # 70187-20

copper slot grids www.emsdiasum.com Cat # G2010-Cu

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• TTLL-11 and CCPP-1 fine-tune ciliary microtubule glutamylation

• Velocity of OSM-3/KIF17 and KLP-6/KIF28 motors sensitive to 

glutamylation defects

• TTLL-11 and CCPP-1 required for ciliary extracellular vesicle release

• TTLL-11 and CCPP-1 and microtubule glutamylation specialize ciliary 

ultrastructure
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Figure 1. ttll-11 regulates PKD-2∷GFP ciliary localization and encodes two TTLL family 
glutamylase isoforms with non-overlapping expression patterns
(A) Diagrams (adapted from [23]) of male-specific extracellular vesicle-releasing neurons 

(“EVNs”: CEMs in head, and HOB and RnBs, where n=1–9, except 6 in tail), which express 

PKD-2∷GFP. In the diagram of the nose, only the left side CEM neurons of the two bilateral 

pairs is shown. Boxed area indicates region shown in micrographs. Abbreviations: d, 

dendrite; cb, ciliary base; c, cilium. Cell bodies are further posterior, out of view. In the tail, 

each ray is innervated by a single RnB neuron; the dendrite and cilium of R3B are shown as 

an example. Panels show PKD-2∷GFP localization in nose and tail for indicated genotypes. 

See also Figure S1 and Table S1. (B) Genomic structure of ttll-11 locus, which encodes two 
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isoforms. Bars below the diagram show the gk482 and tm4059 deletion alleles used in this 

study. Both TTLL-11B and TTLL-11A contain a TTL domain of 364 amino acids (black 

region). MYR indicates a predicted myristoylation site [29] in TTLL-11B. By analogy with 

other TTLL proteins, the C-terminal gray area is expected to bind microtubules. (C, D) A 

ttll-11b promoter drove GFP expression in the EVNs, marked by klp-6 promoter-driven 

tdTomato. Expression of both transgenes was somewhat mosaic, and therefore did not 

completely overlap; for example, one of the CEM ventral neurons in the head was not 

labeled by tdTomato. (E, F) GFP expression driven by the ttll-11a promoter was not visible 

in the EVNs, marked by expression of Pklp-6∷tdTomato. (G) Behavioral response to 

hermaphrodites in male mating was scored. ccpp-1 and ccpp-1;ttll-11 mutant males 

responded significantly less frequently than wild-type. Data represents mean ± sem; N = 4 or 

5 trials, n = 35 – 56 males tested for each genotype. ***indicates p<0.0001 by ANOVA and 

Tukey post-hoc tests. (H) Vulva location behavior was scored for 10 – 25 males for all 

genotypes. ** p<0.001, *** p<0.0001 by Kruskal-Wallis and Dunn’s Multiple Comparison 

Test.
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Figure 2. TTLL-11 was required for ciliary MT glutamylation
Fixed young adult males expressing PKD-2∷GFP (green) stained with monoclonal antibody 

GT335 (red), which detects the branch point of glutamylation side-chains. Cartoon depicts 

cilia observed in the nose and tail. In the tail, each ray B-type neuron is equipped with a 

sensory cilium, but cartoon only shows cilium for the left R3B neuron. For each genotype, 

left panel shows ciliated endings in the tip of the nose; middle panel shows male tail fan, and 

right panel shows enlargements of the boxed areas in tails to show ray cilia. In wild type 

panels, GT335 staining of amphid ciliary MS (middle segments, which contain doublet 

MTs), CEP cilia, and IL cilia in the head, and phasmid cilia in the tail, are indicated. NS 

indicates puncta of non-specific staining, where antibody stuck to the cuticle or cellular 

debris on some animals. See also Figure S2 and Table S1.
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Figure 3. Loss of TTLL-11 function suppressed GFP∷KLP-6 kinesin-3 ciliary accumulation of 
ccpp-1 mutants
(A) Localization of the kinesin-3 motor GFP∷KLP-6 was diffuse in wild type and ttll-11 
single mutants. In ccpp-1 mutants, GFP∷KLP-6 accumulated in cilia of EVNs in the head 

(CEMs and IL2s) and tail (HOB and RnBs). Mutation of ttll-11 suppressed the abnormal 

ciliary enrichment of GFP∷KLP-6 in ccpp-1 mutants. (Tail images were normalized so that 

brightness of autofluorescent posterior tip of acellular tail fan was similar across genotypes. 

c, cilium; d, dendrite.) (B) The enrichment of GFP∷KLP-6 was quantified across genotypes 

by calculating the ratio of the maximum pixel value in cilia over the maximum pixel value in 

the distalmost 10 μm of dendrites for the head neurons only. Data represents Mean ± sem for 

N = 3 animals for each genotype; ** indicates significantly different from wild type with p= 

0.002 by ANOVA and post-hoc Tukey test. See also Table S1.
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Figure 4. The MT glutamylase TTLL-11 and deglutamylase CCPP-1 were required for release of 
PKD-2∷GFP-labeled extracellular vesicles (EVs)
(A) Cartoon (modified from [7] shows CEM EV “shedding,” which produces the EVs 

surrounding the CEM ciliary base inside a lumen formed by the sheath and socket glial cells; 

and EV “release” from CEM ciliated neurons to the environment. (B) Diagram shows 

PKD-2∷GFP-labeled EVs released from CEMs float and accumulate at the cover slip. (C) 

Abundant PKD-2∷GFP-labeled EVs were released outside from CEM neurons in wild-type 

adult males (several EVs indicated by arrowheads). Few EVs were seen in ttll-11 mutants. 

(D) Quantification of EVs released to the local environment by sensory ciliated CEM 

neurons in adult male head. N animals scored in parentheses for each genotype. See Figure 

S4 for images of additional genotypes, as well as images of PKD-2∷GFP-labeled EVs 

released by neurons in the male tail in adults and L4 larvae. (E) EVs shed into the glial 

lumen were reconstructed and counted from serial TEM sections. Representative sections 

are shown in Fig. S5. See also Table S1. In parentheses, N = cilia scored. (Mean ± sem;* 

p=0.0153; ** p=0.0065; ***p<0.001 by ANOVA and post-hoc Tukey tests.)

O’Hagan et al. Page 29

Curr Biol. Author manuscript; available in PMC 2018 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. TTLL-11∷GFP was enriched in cilia and a cargo of environmentally released EVs
(A) TTLL-11∷GFP expressed under the pkd-2 promoter was enriched in CEM cilia and 

ciliary bases. TTLL-11∷GFP appeared in puncta in dendrites and cell bodies of C. elegans 
males. CEM cilia and ciliary base are indicated by a bracket and arrow, respectively. (B, C) 

TTLL-11∷GFP was observed in EVs released from CEM neurons in the head (B) and RnB 

neurons in the tail (C). Yellow arrowheads point to TTLL-11∷GFP-labeled EVs. (D) 

Kymograph and histograms of TTLL-11∷GFP movement in CEM dendrites. Mean ± sem 

dendritic velocities shown for 15 animals, 153 anterograde particles; 98 retrograde particles. 

(E) Mean ± sem anterograde velocity of TTLL-11∷GFP in CEM cilia for genotypes shown, 

and representative kymographs created using Kymograph Direct [43]. See also Table S1.
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Figure 6. CCPP-1 and TTLL-11 regulators of MT glutamylation were required for normal CEM 
neuronal ciliary ultrastructure
(A) Representative TEM sections through middle regions of CEM cilia in genotypes 

indicated, characterized by singlets in the wild type. Illustrations indicate position of CEM 

cilium and MTs, as well as the CEP cilium. Scale bar = 250nm. (B) A series of CEM middle 

sections from ccpp-1 mutants. Open “C-shaped” tubules in section 2 are indicated by arrows. 

Approximate locations of numbered sections indicated by red dotted lines in panel C. Scale 

bar = 50nm. (C) Cartoon model of a single outer doublet microtubule along the ciliary 

length for wild type (WT), ttll-11, ccpp-1, and ccpp-1; ttll-11 double mutant genotypes. See 

also Table S1.
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Table 1

CCPP-1 and TTLL-11 Regulate Velocities of GFP-tagged Kinesin-2 (OSM-3), Kinesin-3 (KLP-6), but not 

Heterotrimeric Kinesin-II, in CEM cilia

Genetic Background Anterograde IFT velocity (μms−1 + sd) N worms/n particles

Kinesin-3 Wild type 0.80 + 0.15 9/51

GFP∷KLP-6 ccpp-1(*vs wt) 0.88 + 0.15 5/48

ttll-11 (*vs wt;***vs ccpp-1) 0.71 + 0.13 6/41

ccpp-1; ttll-11(***vs ccpp-1) 0.77 + 0.14 8/43

Kinesin-2 Wild type 0.74 + 0.21 7/53

OSM-3∷GFP ccpp-1 (*** vs wt) 0.92 + 0.24 6/46

ttll-11 (*** vs ccpp-1) 0.67 + 0.22 8/63

ccpp-1; ttll-11 (*** vs ccpp-1) 0.65 + 0.21 6/60

Heterotrimeric Wild type 0.55 + 0.08 16/125

Kinesin-II ccpp-1 0.57 + 0.13 20/133

KAP-1∷GFP ttll-11 0.56 + 0.11 10/79

ccpp-1; ttll-11 0.63 + 0.17 14/154

We used ANOVA and post-hoc Tukey comparisons to determine the statistical significance of velocity differences.

*
represents P<0.05;

***
represents P<0.001. Refer to Figure S3 for representative kymographs; see also Table S1.
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