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Abstract 
 

 
The concept of oceanographic provinces has existed for almost a century, providing a 

useful framework for understanding the mechanisms controlling biological, 

physical and chemical processes in the ocean and their interactions. This work is 

an attempt to identify and map marine provinces using satellite observations 

related to biological processes such as phytoplankton primary production. The 

approach is based on fuzzy logic as a means of classifying the European Seas into 

objectively defined areas. The analysis has identified nine domains based on three 

important variables, surface chlorophyll concentration, sea surface temperature, 

and available radiation for photosynthesis. These domains were subsequently 

mapped over the European geographical window using satellite ocean colour and 

temperature data. The method displays correctly most important productive and 

unproductive zones, as well as captures the dynamic nature of the marine systems. 

This study has been conducted in the frame of the institutional project ECOMAR 

(Monitoring and Assessment of Marine Ecosystems, Action # 2121) within the 

Inland and Marine Unit of the Institute for Environment & Security. 
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INTRODUCTION 

 

 

 

The global configuration of the Earth system with respect to land and water has lead, in 

the ancient time, to a quasi natural division of the global ocean into five different oceans, 

and a plethora of marginal seas recognized from the shape of the coastlines as having 

unique characteristics due to more or less restricted connections with open oceanic 

waters. From this, further delineation of provinces/regions in the oceanic and coastal 

environment has been undertaken on various occasions and based on different criteria. 

Although some degree of success and consensus has been reached to classify benthic 

ecosystems and habitats along a narrow fringe of the coastal system, pattern recognition 

within the pelagic realm ran into a lot of frustration mainly because of the dynamic nature 

of the oceans and seas, and the difficulty to conduct regular surveys at an adequate time 

scale, using traditional ship campaigns. 

At the same time by mid-twentieth century, a sudden socio-economic interest on the 

commercial value of marine resources due, partly, to new technological development for 

their exploitation call into question the concept of freedom-of-the-seas, pleading instead 

for an extension of nations’  rights over, notably, offshore lucrative fisheries.  As a result, 

the coastal ocean was further divided into the so-called Exclusive Economic Zones (EEZ, 

see UNCLOS 1982) setting maritime (rather than marine or oceanic) boundaries at 200 

nautical miles from each nation’s coastlines. Together with such geo-political decision, 



 6 

other partition schemes of the marine environment were rapidly developed to face urgent 

requirements to monitor, control and eventually manage the invaluable richness of marine 

ecosystems, being under continuous threats from both human activities and climate 

change.  In most cases, however, the technical challenge to perceive tangible structures 

over large oceanic areas has inclined people to draw arbitrary lines on the basis of 

arguments reflecting human convenience rather true physical and biological 

discontinuities.  As an example, 27 major fishing areas have been established globally as 

early as the late 50’s (FAO, 1956) for statistical purposes. Even though it is claimed that 

these areas have been identified accounting for distribution of aquatic species and 

environmental conditions, much stronger weight was given to pre-existing conventions 

with managerial fisheries, national boundaries and fishing practices. In the same way, the 

International Council for the Exploration of the Sea (ICES) has agreed since the early 

20th century on the division and sub-division of the North Atlantic. This partition has 

evolved through time at few occasions to accommodate for more political requirements 

regarding fishing statistics. 

Another common property of most existing provinces in the ocean is the immutability of 

their boundaries in time and space.  While this may be useful for many administrative 

purposes (management reporting, socio-economic statistics), fixed boundaries obviously 

fail to capture the highly dynamic nature of ocean systems.  Unlike the terrestrial domain, 

the interactions between a given community of marine organisms with the chemical and 

physical factors making up their environment, i.e. an ecosystem, vary at all time scale 

from less than a day up to multiple decades. Therefore any ecosystem-based studies or 

management practices aiming at the conservation and protection of the marine 
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environment require the identification of spatial units or provinces, with boundaries 

reflecting the dynamic changes of the major processes involved.   

One way to fulfill that condition is to select environmental (or others) criteria that can be 

measured remotely, e.g. with Earth Observation satellites.  The advantage of satellite data 

is to produce synoptic field of a wide range of bio-physical parameters at regional and 

global scales.  Even if a set of parameters defining a particular province are not amenable 

to remote sensing (e.g. nutrient concentration, trophic complexity), satellite observations 

(e.g., ocean colour, temperature, wind) can still be instrumental to guide a classification 

system, where other attributes of that province or class may have to be inferred from 

other database or statistical associations with an incumbent degree of uncertainty.  For 

example, multi-annual time series of chlorophyll maps from satellite-based optical 

sensors inspired Longhurst (1995) to partition the global ocean into 57 provinces based 

on the actual knowledge of relevant physical features and of the typical responses of the 

pelagic organisms (i.e. indexed from chlorophyll values) to physical forcing.  In spite of 

being associated with fixed boundaries, the distribution of the global ocean into provinces 

was used successfully to estimate marine productivity accounting for a real regional 

diversity in ocean ecology (Longhurst et al. 1995). The fantastic potential of satellite data 

was then further exploited to reproduce the dynamic dimension of marine provinces, 

using sequential images of bio-physical variables collected by multiple sensors to 

construct decision-trees for a classification system (Brock et al. 1998; Watts et al. 1999).  

 

An alternative approach, based on fuzzy logic, has been implemented in this study to 

identify and map oceanic provinces using satellite observations of various properties over 
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the European Seas. The method takes into account the uncertainty associated with 

incomplete information and produces a set of maps depicting the distribution of provinces 

in terms of a probability-like membership function.  The membership maps, with values 

ranging from 0 to 1, indicate the likelihood that a pixel (location and time) belongs to a 

particular province. Fuzzy logic has already been used to classify ocean satellite pixels 

and to blend different algorithms to retrieve chlorophyll concentration from space (Moore 

et al. 2001).  In this latter case, the assignment of partial or graded class memberships to 

different water types, hence, different algorithms, has the overall effect to accommodate 

pixels with mixture of different water types and to smooth out the transitions between 

water types in the output image.    Simpson and Keller (1995) used fuzzy logic to classify 

sea ice, clouds, and water pixels from AVHRR data, allowing for situations with mixed 

ice-water signals.   

The properties used in this work for zonal classification are the surface chlorophyll 

concentration (CHL), sea surface temperature (SST), and the above-water incident 

photosynthetic available radiation (PAR). These are important determinants controlling 

primary production in marine waters. The chlorophyll level stands as an index of the 

trophic state of the water (Herbland et al. 1983, Morel and Berthon, 1989), but would 

account for about 30% of the variability in productivity (Campbell and O’Reilly, 1988).  

In light-limited environments, the instantaneous rate of production (P) is proportional to 

PAR, up to a light-saturated value, Pmax. Finally, the maximum rate of photosynthesis 

(Pmax) is also influenced, in part, by the temperature. However, the response of 

phytoplankton to changes in these variables cannot be easily quantified using a single 

universally reliable model, as it depends on the community species, their physiological 
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state and capacity to adapt.  On the other hand, a partition of the marine environment into 

provinces, each of them calibrated against a satellite-derived combination of CHL, PAR, 

and SST, would improve the computational scheme of the photosynthesis rate in these 

distinct environmental domains.   

 

 

THEORETICAL METHOD: FUZZY LOGIC 

 

 

 

Fuzzy logic was first introduced by Zadeh (1965) as a mathematical way to represent 

vagueness and imprecision inherent in the data.  Within conventional set theory, every 

element/object/property of a system (i.e. data) is either a member or a non-member of a 

given set of that system.  This concept is clearly restrictive when applied to the natural 

systems and the environment, where properties and populations evolve also through 

ambiguous and unresolved continuous functions from one state to another, or one 

condition to another, reflecting processes of adaptation and/or bio-geographical change 

along physical and chemical gradients. As a result, natural systems are organized into 

patches or fragmented features, connected through boundaries of which the extension 

depends on the capacity of the property / population under study to progress or not from 

one patch characteristics to another. To account for that unclear transitional situation, a 

classification scheme based on fuzzy logic simply states that an object/data can have 

partial membership to more than one set. Note that a full membership to exclusively one 
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set is still permitted, representing a particular case within the entire probability field of 

the system.  

  

In more formal terms, let U denote a system-ensemble containing x elements, (U = { x} ).  

In conventional set theory, given a subset A of U, each element x would either belong or 

not belong to A.   Accordingly, membership of x in A is defined by the simple step 

function: 
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where fA is called the membership function.    

 

Under fuzzy set theory, the membership function is altered to allow for graded 

memberships such that: 

 

 1)(0 ≤≤ xf A  (2) 

 

It expresses the degree of natural imprecision in associating x to a particular subset A, or 

the probability that x belongs partly (partial membership) to the subset A.   

According to Bensaid et al. (1996), a system of c fuzzy sets is constrained if: 
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In some situations, the c sets may not represent all possible ranges of variability in the 

system, and thus a given observation might have low probability of belonging to any of 

the sets, and the sum of fi’s would be less than 1.  The system becomes then 

unconstrained as it is the case with satellite data (Moore et al. 2001).  

 

 

 

APPLICATION SCHEME 

 

 

The overall application scheme is partitioned into two main steps (Fig. 1): one involving 

in-situ data and the other satellite data.  In the first step, applied strictly to in-situ data, 

distinct classes in the oceanic realm are defined on the basis of sea surface temperature 

(SST), photosynthetically active radiation (PAR), and surface chlorophyll concentration 

(CHL).  The choice of these variables (Prod_Var thereafter) is dictated by their direct 

influence on the productivity of marine waters.  Most of the productivity algorithms to be 

applied with satellite data (Campbell et al. 2002) are combining at least two of these 

variables in addition to other information related to the efficiency of phytoplankton to 

conduct photosynthesis.       

In a second step, membership functions are given to satellite data with respect to each of 

these distinct classes. 
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In-situ Database

CHL, SST, PAR

Cluster analysis 
(FCM)

Nutrients, P vs E
POC, Chl (z) ...

Station data
sorted by class

Class based
relationships

c classes

Class
Mi, Σ i Satellite Measurements

Individual class
derived products

Merged Global
Product

Calculate
membership

CHL, SST, PAR

 

 

 

Figure 1: Schematic representation of the fuzzy logic procedure adopted. Top half of the 

flow chart shows analysis related to in-situ data and the bottom half shows that related to 

satellite data (adapted from Moore et al. 2001) 
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Fuzzy c-means clustering algorithm 

 

The field measurements were collected from existing database representing a wide range 

of environmental marine conditions.  Surface chlorophyll values, sea surface temperature 

and photosynthetic radiation were extracted from three different databases:  

• A large database assembled by Behrenfeld and Falkowski (1997) to develop and test 

their light-dependent, depth-resolved model for phytoplankton carbon fixation.  It 

includes measurement from both case 1 and case 2 waters, from oligotrophic gyres to 

highly productive upwelling regions.  

• A dataset collected in the Southern Baltic (ULISSE, Dowell et al. 1997) as the result 

of a collaborative work between the Institute of Oceanology of the Polish Academy 

of Science (IO-PAS) and the Joint Research Centre of the European Commission 

(EC-JRC). Four cruises were conducted on board r/v Oceania in 1993 and 1994 to 

investigate bio-optical and biogeochemical processes in the Gulf of Gdansk, along the 

Polish coast as far west as the Pomeranian Bay, and the southern part of the Baltic 

Proper. 

• Finally, another dataset from the Coastal Ocean Processes Experiment of the East 

China Sea (COPEX-ECS, see http://copex.kordi.re.kr/) project was used as 

representative of a turbid coastal environment. The project was launched in 1993 for a 

10-years period to collect physical and biological data in the East China Sea and 

Yellow Sea.  
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A total of 1153 stations were blended (Fig. 2) and analyzed in terms of ecological 

grouping through an unsupervised cluster analysis (FCM, Bezdek 1981). 

The FCM algorithm produces a fuzzy clustering of the data into a specified number of 

clusters or classes (herein denoted as c). The basic function of this algorithm is to choose 

clusters that minimize the distance between the data points and the prototype cluster 

centers (or cluster means). Cluster centers are iteratively adjusted until optimization 

criteria are met (e.g., maximum number of iterations or minimum change residual).  The 

clustering routine then returns the mean Prod_Var vectors for the c classes, and a matrix 

containing the memberships of each point to each class. 

 

 

 

0 0.5 1 1.5-0.5-1-1.5
Log Chl

SST (degC)

PAR (einstein/m2)
 

Figure 2:  Statistical diagram showing the 
distribution of each of the three variables(Prod_Var) 
used for the cluster analysis: surface chlorophyll, sea 
surface temperature, and photosynthetically active 
radiation 
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An intitial guess number of clusters, c, ranging from 3 to 25 was first given to the FCM 

clustering routine, and the results were evaluated using so-called cluster validity 

measures (Bezdek et al. 1997).  Four validity measures used to objectively assess the 

optimal number of clusters were used: the partition coefficient and partition entropy 

(Bezdek, 1981), the compactness and separation index (Xie and Beni, 1991), and the 

Davies-Bouldin index (Davies and Bouldin, 1979).   All of them converged to yield an 

optimum number of clusters, c = 9 classes, each represented by a given range of CHL, 

SST, and PAR (Table 1). 

 

 

 

Table 1.  Characteristic tendencies for SST, PAR, and CHL within each class, and description of 

the associated provinces. 

 

 

 

 SST PAR CHL Province 

Class 1 high high very low Oligotrophic Tropical 

Class 2 high high low Temperate shallow MLD 

Class 3 medium low low Temperate Deep MLD 
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Class 4 medium high medium Temperate Stratified 

Class 5 low medium medium Polar Stratified 

Class 6 medium very low medium High Lat, Low Light 

Class 7 medium low high Mid-,High Lat. Overturning 

Class 8 medium high high Mid-, High Lat. High Nutrient 

Class 9 low medium very high High Lat. Spring Blooms 

 

 

 

 

Once the clusters were identified, the individual stations were sorted according to the 

cluster (class) with the highest membership value, and the mean Prod_Var vector, Mi, 

and covariance matrix, ΣΣΣΣi, were calculated for each class i.  The statistical properties (Fig. 

3) of these three variables for each class then become the basis for defining membership 

to each class found in the satellite data.  
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Fuzzy membership function 

 

The second step, depicted in the lower box in Figure 1, illustrates the application of the 

method to satellite data.  At each ocean pixel x, we have satellite observations of CHL, 

SST, and PAR. A membership function, fi(x), is computed for each x to each class i (i = 

1, 2,...c).  The membership function (ranging from 0 to 1) expresses the likelihood that 

the vector of observations V = (Prod_Var) at pixel x was “sampled”  from the distribution 

of class i.  Membership values are then used to weight variables derived from the 

Figure 3:  Plots showing the mean values of the 
three variables in each of the nine classes. The 
classes themselves have been ordered such that 
chlorophyll values increase from class 1 to class 9.  
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corresponding class-specific models. In practice, only those classes with membership 

values above a certain threshold are plausible. 

 

For any measured V = (Prod_Var), the fuzzy membership is defined in terms of the 

squared distance between V and the ith class mean Mi.  For this, we use the squared 

Mahalanobis distance given by: 

 

Zi
2 = (V - Mi)

t ΣΣΣΣi
 -1(V - Mi) (4) 

 

where t indicates the matrix transpose. The Mahalanobis distance is a generalized 

distance from V to Mi in units of standard deviations adjusted for covariance. 

 

If the V vectors belonging to class i are multivariate normal, and if the observation was 

“sampled”  from class i, then Zi
2 has a χ2 distribution with n degrees of freedom (where n 

is the dimension of the set).  Thus, we define the membership function to be: 

 

 fi = 1 - Fn(Zi
2) (5)  

   

where Fn(Z
2) is the cumulative χ2 distribution function with n degrees of freedom. When 

V = Mi, then Zi
2 = 0, and fi = 1.  In that particular case, the pixel has full or ‘crisp’  

membership in class i.  As V becomes more distant from Mi, fi decreased from 1 to 0, 

indicating a reduced likelihood that the pixel belongs to class i.  
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RESULTS:  EUROPEAN MARINE ECOLOGICAL PROVINCES 

 

Using the class statistics defined from the field dataset, fuzzy memberships to each class 

are calculated for all valid pixels included in monthly composite satellite images of CHL, 

PAR, and SST.  All satellite data used to generate the space and time dynamic in the 

distribution of the eco-provinces in European Seas are obtained from publicly available 

data bases, and selected so as to guarantee the long-term potential for generating province 

distributions. Chlorophyll concentration (CHL) and Photosynthetically Available 

Radiation (PAR) data are both accessible from the SeaWiFS project web site at the 

NASA/DAAC (http://daac.gsfc.nasa.gov/oceancolor/panorama.shtml). On the other hand, 

Sea Surface Temperature (SST) data are obtained from the Pathfinder project at the 

following web site (http://podaac.jpl.nasa.gov/sst/). Details on the algorithms and 

processing of these data are available through the websites provided above. The datasets 

were obtained for global coverage with the spatial resolution of 9 km and a monthly 

temporal increment. The 9-km spatial resolution was chosen as it is compatible for all 

datasets, and also because it limited the size (and therefore data volume) required for this 

investigation. The data were all available in identical mapped projections and no 

remapping was required. An ancillary dataset, day length, was also used in the analysis, 

and calculated using standard geometrical sun-earth equations (e.g. Iqbal 1983). A 

European subset was extracted from the global dataset to fit a region of 1000 by 700 

pixels centered on European Regional Seas and other marine waters of European interest. 
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The geographical window includes a large portion of the Eastern North Atlantic so as to 

cover the entire region defined by the OSPAR Marine Convention. 

 

Europe is surrounded by a large number of seas, all differing with respect to their 

physical structure and water content. Typical morphologies range from quasi-enclosed 

basins (Mediterranean Sea, Black Sea, Baltic Sea) to water masses widely open to the 

deep ocean (Celtic Sea, Gulf of Biscay). Such a variety is also reflected in the ecological 

status of the marine waters and the distribution of provinces (Figs. 4 ) showing all nine 

classes represented during most of the year. Oligotrophic situations (class 1 and 2) are 

concentrated in the lower half of the window, i.e. up to 40° N of latitude, with an 

significant shift of the very low chlorophyll region (class 1) toward the African coast and 

Mediterranean Sea during spring and summer.  In that part of the geographical window, 

seasonal variations of the provinces are also restricted to change between class 1 and 2 

only.  An exception is the northwest African upwelling system, which is adequately 

represented by class 8 (High nutrient) characterized by lower mean temperature (~ 15°C) 

than the surrounding waters (~21°C and ~17°C for class 1 and 2 respectively, see fig. 3) 

and high chlorophyll concentration (~2.5 mg.m-3) along the coast line. This province 

extends further offshore from January to May with maximum coverage in April and May, 

in agreement with maximum strength of upwelling events in this area (Nykjaer and Van 

Camp 1994). A narrow class-4 province (Temperate stratified) acts for some months as 

transitional water between the productive coastal upwelling system and the open 

oligotrophic ocean. 

 



 21 

The Mediterranean Sea is dominated by a bi-province system during most of the year, 

varying between class 1 and 2 during summer months (April- October) and between class 

2 and 3 from November to February. The boundary between these two provinces is, 

however, highly dynamic in space and time. The border line extends either east-west as 

shown from September to January, thus dividing the basin into a northern and a southern 

part along a line stretching from the northern tip of Tunisia to the Syrian coast. During 

summer months, the transition is rather meridional, thus dividing the basin into a western 

and eastern part along a line connecting the Sicily Channel, the Strait of Messina and the 

Strait of Otranto. The Adriatic Sea and northern region of the Aegean Sea have northern 

or western Med Sea characteristics rather than southern or eastern ones.  The 

Mediterranean Sea is known to be one of the most oligotrophic seas.  In summer, 

relatively nutrient-poor Atlantic water flows into the Mediterranean basin, becoming 

even more impoverished as it reaches the eastern part of the basin (Berland et al. 1988).  

The oligotrophy in the eastern part is even more accentuated by the lack of nutrient 

supply from rivers.  The completion of the Aswan Dam in 1965 has considerably reduced 

the supply of biogenic material in the eastern Med, with large impact in the upper trophic 

levels and fisheries (Dowidar 1984).  

 

Such marked difference between eastern and western part of the Med has been already 

evidenced from satellite-derived chlorophyll analyses, either using the Coastal Zone 

Color Scanner time series (Barale and Zin 2000) or the operating SeaWIFS sensor (Bosc 

et al. 2004).   
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Figure 4A:  Spatial and temporal variations of the ecological provinces in European waters for 

January to June 1999, as resulting from unsupervised classification based on chlorophyll 

biomass, temperature and photosynthetic irradiance.   
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Figure 4B:  Spatial and temporal variations of the ecological provinces in European waters for 

July to December1999 , as resulting from unsupervised classification based on chlorophyll 

biomass, temperature and photosynthetic irradiance.   
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Figure 4C:  Spatial and temporal variations of the ecological provinces in European waters for 

January to June 2000 , as resulting from unsupervised classification based on chlorophyll 

biomass, temperature and photosynthetic irradiance.   
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Figure 4D:  Spatial and temporal variations of the ecological provinces in European waters for 

July to December 2000, as resulting from unsupervised classification based on chlorophyll 

biomass, temperature and photosynthetic irradiance.   
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On the other hand, monthly SST maps as derived from AVHRR analyses tend to display 

a north-south division of the basin, except for the summer months (June to October) 

where the thermal structure at the surface tends to become homogenous over the entire 

Mediterranean basin (Barale and Zin 2000).  

 

The cluster analysis has also generated two other classes (4 and 8, Temperate stratified 

and High Nutrient, respectively) in the northwest Mediterranean Sea, corresponding to 

the Liguro-Provencal basin and the Gulf of Lions, and to a lesser extent the Alboran sea.  

These are short-lived provinces with strong signature in March and April corresponding 

to the phytoplankton spring bloom. In this area, intense vertical convections usually occur 

during winter carrying nutrients in the upper layer, but maintaining phytoplankton cells in 

unsuitable light conditions for photosynthesis. With increasing seasonal air temperature 

and stratification of the water column, phytoplankton and nutrients are trapped in the 

upper lighted zone, thus optimizing phytoplankton growth.   
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Figure 6:  Monthly composite of surface chlorophyll concentrations as derived from SeaWiFS 

images for the northwestern Mediterranean Sea in March and April 99 and 2000 (data source: 

http://marine.jrc.cec.eu.int/) 

 

 

Note that the fuzzy method to select eco-provinces accounts accurately for the inter-

annual variability of the various input fields. In this particular case, for example, highly 

productive province (e.g. class 8) in the northwest Mediterranean Sea in spring 2000 is 

shifted westward compared to its position in 1999.  This reflects a major change in the 

phytoplankton community and biomass occurring at the same periods, as observed from 

satellite images (fig.6).   

 

North of 40°N of latitude, the marine provinces are more diversified with a strong 

seasonal variability in all seas, including the Black Sea (see fig. 4 and 5).  The temperate 
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�	�
����

��������

�	�
����



 32 

open North Atlantic is dominated by a class-3 province (Deep mixed layer depth) during 

all winter and autumn seasons, with typical characteristics of low productive waters 

mostly due to low irradiance input (fig.3), whereas the temperature remains within a 

medium range value of 11°C.  Starting in March, a bloom situation is progressively 

occurring as the water column becomes startified from the southern limit of the area.  The 

‘Stratified’  province spreads all over the North Atlantic in April and May (fig. 4), with 

patches of really high productive regions (class 8, High Nutrient) in June and August.  

Substitution back to low productive temperate waters can be observed in July through 

October.  Note that the identification of provinces in high latitude regions during winter 

and autumn is significantly affected by the lack of satellite optical data during these low 

solar radiation periods.  

 

During summer time, another province is identified along the Greenland coast with 

productivity similar to surrounding North Atlantic waters, but with characteristics of a 

cold water community.  This province extends up to the Barents Sea where, occasionally, 

coccolithophores have been particularly abundant in the recent years (Vance et al. 1998, 

Napp and Hunt 2001) during summer, and recognized with a very clear milky signature 

on satellite true color images (Brown and Yoder 1994).  The presence of coccolithophore 

blooms can be associated with patches of higher productive waters differentiated in 

figures 4 as class-9 (High Lat. Spring bloom) provinces.  This phytoplankton community 

has an important biogeochemical impact in the greenhouse gases cycling, acting as a sink 

for atmospheric CO2 on the one hand, and releasing dimethylsulphide to the atmosphere 

on the other hand. 
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In the eastern North Atlantic, along the north European coast, class-9 and class-8 

provinces are dominating in figures 4.  March, April and May are the most productive-

low-temperature coastal waters spreading all around the British Isles, northern Europe, 

the Norwegian coast, and in the entire Baltic.  Starting in May, however, slightly less 

productive waters with medium range temperature (typically class-8 province) are 

observed along the eastern coast of France and England to propagate quickly the next 

month to the southern North Sea, the Baltic and along the Scandinavian coast. The 

extension of class-8 province is even more drastic in July and August. Note that with 

respect to forcing factors for productivity, such class- 8 provinces in the north seas are 

equivalent to the province identified in the northwest African upwelling system, 

suggesting that this combination of light, temperature and phytoplankton biomass could 

represent an ideal situation for the production of organic carbon.  In September and 

October, class-8 province is progressively substituted by a class-7 type of province, 

which is half-less productive in term of phytoplankton biomass in response to a 

significant reduction in solar radiation at that time of the year and deepening of the mixed 

layer. 

 

The situation in the North Sea deserves special attention. The water budget and 

circulation in the North Sea is driven by a combination of tides, wind, and density 

gradients, leading to a cyclonic circulation with Atlantic salt water entering from the 

north (Norwegian Sea) along the British coast, and warmer waters from the Channel 

flowing along the French/Dutch/Belgian coasts.  This description is well depicted in the 

distribution of the provinces during March to June, with the penetration into the North 
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Sea of the water type identified along the Norwegian coast.  In July, August and 

September, the central part of the North Sea becomes however, completely isolated from 

the northern Atlantic provinces.  During that period, the classification scheme includes a 

central class-2 unproductive province (Temperate shallow MLD) surrounded by a 

mesotrophic class-4 water type, itself bounded by a very productive class-8 province 

extending along the coastline, the northern entrance of the North Sea, and in the English 

Channel.  In that case, the cluster is undoubtedly dominated by the input variable of 

chlorophyll biomass, as similar pattern can be observed with SeaWiFS images for the 

North Sea (fig.7).  Class-2 and class-4 provinces are characterized by similar amount of 

solar radiation and not so much difference with respect to SST.  On the other hand, the 

phytoplankton biomass ranges from 0.1 mg Chl.m-3 in the central North Sea up to 5-10 

mgChl.m-3 along the coast of England and Belgium (fig.7).       

 

 

 

 

 

 

 

 

 

Figure 7:  Monthly composite of surface chlorophyll concentrations as derived from SeaWiFS 

images for the North Sea in July, August and September 1999 (data source: http://marine.jrc 

.cec.eu.int/). 

July 99 Aug. 99 Sept. 99
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In the Baltic during most of the year, membership functions for valid pixels of all three 

variables evolve within two closely-related provinces, a typical ‘High Lat. Spring bloom’  

from March to May changing to a ‘High Nutrient’  conditions (class-8) from June to 

September.  Most of the variation between both provinces results from a drastic change in 

temperature, averaging 5°C or less in one case to 15°C in class 8 (fig.3). The difference 

in temperature is such that the associated change in the mean chlorophyll biomass 

observed between class-8 and class-9 provinces would also be combined with a shift in 

the phytoplankton species community.  The spring phytoplankton bloom, which usually 

occurs around April in the Baltic when the temperature of surface waters exceeds 3°C, is 

dominated by Diatoms assemblage.  A second peak of chlorophyll, and to a lesser extent 

primary production, is observed in summer associated with the growth of nitrogen-fixing 

cyanobacteria, mainly Nodularia spumigena but also other species such as 

Aphanizomenon spp. and Anabaena spp. These ‘anomalous’  [by contrast with naturally-

occuring spring bloom] and often toxic blooms are recurrent phenomena in the Baltic Sea 

since the late 60s, in response to an increasing nutrient loads in coastal waters from 

human activities on land (Finni et al 2000).       

 

Note that a seasonal transition between class-9 and class-8 provinces is not specific to the 

Baltic.  It is also observed along the coast of northern Europe and western Black Sea, in 

close relation with changes in the phytoplankton community structure for most of the 

cases.  In the Southern Bight of the North Sea, the temperature ranges from 0°C in winter 
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to 22°C in summer and controls the phytoplankton species succession from small diatoms 

in spring to dinoflagellates in summer (Peperzak 2003).   

 

Within the Black Sea, the classification scheme and membership functions tend to 

discriminate between the North and Western coastal areas from the rest of the basin. The 

northwestern ecological region includes the Azov Sea, the Golf of Odessa and the area 

influenced by the Danube inflow.  It is also a province characterized by a wide and 

shallow continental margin limited off shore by the 200m isobathic line.  As for the 

Baltic Sea, this province varies annually from a class-9 blooming situation starting in 

February and extending through April-May, to a class- 8 summer ecosystem affected by 

heavy nutrient load from the adjacent river basins. On the contrary, the central and 

eastern part of the Black Sea shows less variations, remaining from April to October as 

class-4 province with typical characteristics of temperate and stratified waters. A patch of 

class-2 unproductive stratified water is even noticeable in the eastern Black Sea during 

July and August.  During late autumn and winter, most of the Black Sea remains at a 

High- and Mid-latitude Overturning (class 7) situation with some differences, however, 

in the central part of both the western and eastern areas. Analyzing CZCS data, 

Nezlin(1997) also observed a quasi-homogenous chlorophyll concentration in most of the 

Black Sea during December and January. 

 

Considering the water circulation at the surface, the properties of water masses in the 

Black Sea and the bathymetry would tend to divide the basin into three systems: a coastal 

region bounded offshore by a steep slope and characterized by a cyclonic water current, 
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so-called the Rim current following the margin all around the basin.  In addition, the 

Crimea peninsula is affecting the water circulation in the central part of the basin, 

dividing the western and eastern area into two distinct gyres.  Except for a month or two 

in winter, this physical structure does not correspond to the present classification based 

on factors controlling the productivity where both eastern and western gyres are 

identified as a unique ecological region, suggesting similar community structure for these 

waters.   

 

DISCUSSION AND CONCLUSION 

 

The method implemented in this work enables the differentiation of 9 ‘eco-regions’  

varying in time and space over all European Seas and beyond.  Each of the provinces is 

associated with a common set of variable, i.e. temperature, light, and biomass 

concentration, but with different combination with respect to their magnitude.  In turn, 

these variables are major factors controlling the primary production and carbon cycle in 

the upper layer, as well as the community structure at the base of the food chain.  In 

addition, the variables are accessible from satellite remote sensing, allowing the province 

boundaries to be defined in a functional and dynamic manner.    

In general, open oligotrophic ocean is dominated by very small organisms, ranging from 

picoplankton (0.2-2µm in diameter) to nanoplankton (2-20µm) size category.  They 

likely constitute most of the algal community in class 1, 2 and 3, very much adapted to 

low light and low nutrient conditions.   As a result, they are also efficient producers, 

accounting for a major part of the photoautotrophic carbon reduction in the world’s 
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ocean.  Small sized cells are capable of higher photon absorption rate per unit cell volume 

than similar cells but with larger diameter.  That property allows them to take full benefit 

of local nutrient burst occurring at depth under low light conditions.  The microbial food 

chain predominates in that system where microbes are regenerating dissolved organic 

matter into the system via small autotrophs production and consumption by flagellates 

and ciliate organisms. 

Upon seasonal stratification of the water column in response to an increase in solar 

irradiance and temperature, large amount of nutrient get trapped within the mixed layer 

favoring the growth of larger cells typically represented by Diatoms assemblage.  This 

process is represented in our study through seasonal substitution of class 3 by classes 4, 5 

and 6, taking over most of the northern Europe in April , May and June.  Such a change 

in the phytoplankton biomass and species composition is accompanied by changes in the 

physiological state and in the combination of factors regulating growth and biomass.  

Although Diatoms have a lower photosynthetic efficiency and lesser turnover rate 

compared with small picoplankton cells, they can produce a large amount of biomass, 

proportional to the amount of nutrient, specifically silica entering the composition of the 

organism frustules.  The capacity to increase 100 fold the biomass concentration rapidly 

is an asset to re-shape the marine food pyramid into a more traditional system, where 

micro-phytoplankton is grazed by macro-zooplankton, themselves consumed by small 

pelagic fishes and larger predators. 

As the availability of nutrient in the upper productive layer decreases, a new community 

of phytoplankton is taking place with smaller sized diatoms and prymnesiophytes with 

higher turnover rates, more adapted to highly stratified summer conditions and to a 
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background amount of nutrient regenerated within the top mixed layer.  Under some 

circumstances (high temperature, low wind, appropriate elemental stochiometry), this 

situation could drive to anomalous blooms, monospecific, and potentially toxic for the 

rest of the organisms, including humans (so-called Harmful Algal Booms).  

Cyanobacterial blooms are, for example, recurrent in the Baltic during summer time, 

whereas phaeocystis cells tend to develop large colonies in the Channel and the North 

Sea.  The proposed classification accounts for these particular situations with the classes 

7, 8 and 9 which also include regions of high production due to permanent, or quasi 

permanent, upwelling of nutrient –rich deep waters (e.g. along the coast of West Africa in 

fig.4). 

The distribution of the provinces in 1999 and 2000 are not significantly different, 

suggesting that the oceanographic factors that have been chosen for this classification are 

sufficiently recurrent on some time scale (monthly) to characterize typical regions at 

some distinct spatial scales.  It also gives confidence in the method, with the possibility to 

investigate inter-annual changes in the distribution of these eco-regions and shifts from 

an ecosystem to another in response to, e.g., climate change.  
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