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ARTICLE

Identification of 3-chymotrypsin like protease
(3CLPro) inhibitors as potential anti-SARS-CoV-2
agents
Vicky Mody1,3, Joanna Ho1, Savannah Wills1, Ahmed Mawri1, Latasha Lawson1, Maximilian C. C. J. C. Ebert2,

Guillaume M. Fortin2, Srujana Rayalam1 & Shashidharamurthy Taval 1,3✉

Emerging outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)

infection is a major threat to public health. The morbidity is increasing due to lack of SARS-

CoV-2 specific drugs. Herein, we have identified potential drugs that target the 3-

chymotrypsin like protease (3CLpro), the main protease that is pivotal for the replication of

SARS-CoV-2. Computational molecular modeling was used to screen 3987 FDA approved

drugs, and 47 drugs were selected to study their inhibitory effects on SARS-CoV-2 specific

3CLpro enzyme in vitro. Our results indicate that boceprevir, ombitasvir, paritaprevir, tipra-

navir, ivermectin, and micafungin exhibited inhibitory effect towards 3CLpro enzymatic

activity. The 100 ns molecular dynamics simulation studies showed that ivermectin may

require homodimeric form of 3CLpro enzyme for its inhibitory activity. In summary, these

molecules could be useful to develop highly specific therapeutically viable drugs to inhibit the

SARS-CoV-2 replication either alone or in combination with drugs specific for other SARS-

CoV-2 viral targets.
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The major pandemic outbreak of the 21st century due to
severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) has become a global threat to public health because

of its high rate of infection leading to mortality. As of 24
December 2020, there are a total of 13,881,620 COVID-19 posi-
tive cases and 272,820 deaths in the United States alone and
64,326,880 confirmed cases and 1,488,992 deaths globally (https://
coronavirus.jhu.edu/). The death toll is increasing at an alarming
rate because of the lack of COVID-19 specific drugs or vaccines.
Development, validation, and approval of COVID-19 specific
drugs takes years1. Therefore, the idea of drug repositioning, also
known as repurposing, is an important strategy to control the
sudden outbreak of life-threatening infectious agents that spread
rapidly. FDA approved anti-viral drugs are known to be safe for
use in humans2, but their effectiveness against SARS-CoV-2
needs to be experimentally validated. Several FDA approved anti-
viral drugs such as favipiravir, danoprevir, darunavir, lopinavir,
oseltamivir, ritonavir, remdesivir, and umifenovir are in clinical
trials to study anti-COVID-19 activity3. However, the effective-
ness of these drugs for preventing or reducing the severity of
symptoms of COVID-19 has not yet been completely established.
Therefore, there is an urgent need to identify additional drug
candidates to target different SARS-CoV-2 proteins for enhanced
efficacy in the treatment of COVID-19.

Recently, Wu et al.4 sequenced and compared SARS-CoV-2
genome with other coronaviruses (CoVs) and confirmed that
novel SARS-CoV-2 belongs to β-CoVs, which were originally
found in bats and have now adapted to infect humans. CoVs are
RNA viruses with positive-sense single stranded RNA (+ssRNA)
as their genetic material5 and recent studies have shown that
SARS-CoV-2 shares ~89% sequence similarity with other SARS-
CoVs4. Additionally, SARS-CoV-2 has similar genetic organiza-
tion as other SARS-CoVs with a 5′-untranslated region followed
by 16 non-structural proteins (open reading frame; ORF1a and
ORF1b complex) also called as replicase complex, and the
structural proteins such as spike (S), envelop (E), membrane (M),
and nucleocaspid (N) protein along with other accessory proteins
present towards the 3′ end6. The life cycle of the virus begins with
the binding of the S protein of the virus to its receptor on the host
cells, the ACE2. The binding is then followed by the fusion of the
viral envelop with host cell membrane and the release of the viral
genome into the cytoplasm7. The viral genome (+ssRNA) hijacks
the host ribosomes and gets translated into ̴ 800KDa large
polypeptide (PP) chain. The newly generated PP chain is auto-
proteolytically cleaved by two proteases such as papain like
proteases (PLpro) and 3-chyomotrypsin like protease (3CLpro),
encoded by the viral genome, to generate several non-structural
proteins (NSPs) required for the viral replication. 3CLpro is also
called the main protease (Mpro) and plays a major role in the
viral replication. PLpro and 3CLpro cleaves the PP chain into 16
NSPs and out of the 16 NSPs generated, 11 NSPs are generated by
the 3CLpro, making this protease one of the major targets for
developing anti-SARS-CoV drugs8,9. On the other hand, struc-
tural and other accessary proteins are generated through a unique
mechanism called sub-genome (Sg) translation. Sg’s are produced
through discontinuous transcription from 5′ end of the anti-sense
viral RNA10–13. After successful genome replication and trans-
lation, NSPs, structural proteins and accessory proteins assemble
along with positive-sense viral RNA genome to form a new vir-
ion. The CoVs genome and proteolytic cleavages by PLpro and
3CLpro is illustrated in Fig. 1.

The genomic and protein sequences for SARS-CoV-2 are
publicly available from the NIH gene data bank4,6,14. Herein, we
have selected 3CLpro of SARS-CoV-2 as a target to identify
potential inhibitors since this protease is indispensable for viral
replication and hence an excellent drug target9. The structure of

3CLpro protein of SARS-CoV-2 in complex with an inhibitor N3
is available in the PDB database (ID: 6LU7). To identify the FDA
approved drugs as inhibitors for 3CLpro, in silico drug screening
studies were carried out. In all, 3987 FDA approved drugs
(SuperDrugs2 database) were sorted as viral protease inhibitors
(PIs), viral non-protease inhibitors (VNIs) and off-target drugs
(OTDs), and screened for the anti-3CLpro activity using the
Molecular Operating Environment (MOE) software. The protein
structure-based drug design using computational methods is an
alternative for screening of currently approved drugs to rapidly
identify potential drug candidates for the treatment of emerging
infectious diseases such as COVID-1915–17. However, the poten-
tial for false positives with computational modeling is one of the
most common limitation of docking studies18. Therefore, we have
established SARS-CoV-2 3CLpro enzymatic assays for selected
drugs using commercially available 3CLpro protease inhibitor
screening assay kits to evaluate the in vitro inhibitory activity of
the drugs and investigated whether any correlation exist between
the computational binding score and the in vitro inhibitory
activity. In this report, we have selected 47 from the list of 3987
FDA approved drugs based on binding score, side effects, half-life,
active form, immunosuppressant properties, autofluorescence, and
availability for an in vitro 3CLpro enzymatic inhibitor-screening
assay. We observed that, boceprevir, ombitasvir, paritaprevir,
tipranavir, and micafungin exhibited partial inhibitory effect
whereas, ivermectin blocked more than 85% of 3CLpro activity of
SARS-CoV-2. Although the anti-viral activity of ivermectin
mediated through the blocking of α/β1 importin19–23 is estab-
lished, herein we report the inhibitory effects of ivermectin on
3CLpro enzyme of SARS-CoV-2, suggesting additional anti-viral
mechanism of ivermectin towards SARS-CoV-2.

Results
In silico screening of FDA approved drugs for potential
binding to SARS-CoV-2 3CLpro enzyme. All the 3987 FDA
approved drugs (downloaded from SuperDrugs2) were sorted as
PIs, VNIs, and OTDs and docked with monomeric form of
3CLpro protein using the Molecular Operating Environment
(MOE) software. Drugs were ranked according to the highest
binding energy (S score). S score was calculated using the London
dG score for placement and GBVI/WSA dG score for refinement
of poses. A binding energy with ≤−6.5 kcal/mol (S score) was
selected as a cutoff to rank the drugs with highest binding affi-
nity16. The list was further narrowed down based on the criteria
listed in the Methods section. We found that 56 drugs have a
binding affinity of <−6.50 kcal/mol for the 3CLpro enzyme
(Table 1). The computational study suggested that the list of
drugs identified might inhibit the SARS-CoV-2 viral replication
by targeting the viral 3CL protease. However, the potential for
false positives with the predicted binding score is one of the most
common limitation of docking studies24,25. Hence, to rule out any
ambiguity in false prediction, we carried out the in vitro enzy-
matic assay to identify potential therapeutics and investigate
correlation between the binding score and the in vitro activity. In
the current study, we did not find any correlation between the
in vitro results of selected drugs and their computational inhi-
bition constants. Even though, computational studies are being
widely used to predict the initial protein-drug interactions,
in vitro screening of the drugs is necessary to confirm the inhi-
bitory activities of the drugs.

Inhibition of SARS-CoV-2 3CLpro enzymatic activity by
selected drug candidates. To further validate the SARS-CoV-2
3CLpro inhibitory activity of the selected drugs from computa-
tional studies, we performed an in vitro enzymatic inhibitory
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assay using commercially available assay kits. The background
autofluorescence of the selected 56 compounds was measured by
excitation/emission wavelength of 360/460 nm. Nine out of 56
drugs exhibited extremely high autofluorescence (Supplementary
Fig. 2) and were therefore eliminated from the in vitro protease
inhibitor enzymatic assay. The remaining 47 drugs were sorted as
PI, VNIs, and OTDs. The specific mechanism of action and their
clinical uses are listed in Supplementary Table 1. The 3CLpro
inhibitory activity was screened at 50 µM concentration of the
drugs. Among the 17 PIs screened, boceprevir, paritaprevir and
tipranavir significantly inhibited the 3CLpro enzymatic activity by
45, 70, and 64%, respectively (Fig. 2). Out of the 17 VNIs, only
ombitasvir was able to partially block (65%) the 3CLpro enzy-
matic activity (Fig. 3). Interestingly, as shown in Fig. 4, out of 13
OTDs only ivermectin completely blocked (>80%) the 3CLpro
activity at 50 µM concentration. Additionally, micafungin
exhibited partial inhibitory activity (57%) against 3CLpro of
SARS-CoV-2.

The compounds that exhibited more than 50% inhibitory
activity were subjected to subsequent dose-dependent studies to
calculate the concentration required to inhibit 50% of the 3CLpro
enzymatic activity (IC50). Boceprevir, ivermectin, micafungin,
ombitasvir, paritaprevir, and tipranavir were subjected to dose-
dependent inhibitory activity studies. As shown in the Fig. 5,
ivermectin inhibited more than 85% of the enzymatic activity at
50 µM concentration, whereas micafungin and paritaprevir
inhibited around 80% of the enzymatic activity at 100 µM
concentration. Both tipranavir and ombitasvir were able to inhibit
only 50% of the enzymatic activity even at 100 µM concentration
(Fig. 5). The percent enzymatic activity versus the log
concentration of the inhibitors was used to calculate the IC50

values using non-linear curve fit model as described under
Methods section. The calculated IC50 values for ivermectin,
tipranavir, boceprevir, micafungin, paritaprevir, and ombitasvir
were found to be 21.5, 27.7, 31.4, 47.6, 73.4, and 75.5 µM,
respectively (Table 2). Taken together, these studies suggest that
the molecules listed above exhibited inhibitory activity against
3CLpro enzyme of SARS-CoV-2.

Structural interaction of boceprevir, paritaprevir ombitasvir,
tipranavir, ivermectin, and micafungin with the enzymatic
active site of 3CLpro. The presence of an unconventional

catalytic cysteine residue in 3CLpro makes it unique as compared
to other chymotrypsine like enzymes and other Ser (or Cys)
hydrolases26. In addition, the 3CLpro consist of a catalytic
Cys145-His41 dyad instead of a canonical Ser(Cys)-His-Asp(Glu)
triad27. This catalytic dyad is activated in the presence of the
substrate containing Leu-Gln↓Ser-Ala-Gly (↓ marks the cleavage
site)26. Structurally the catalytic residues Cys145 and His41 in
3CLpro are buried in an active site cavity located on the surface of
the protein (Supplementary Fig. 1) and both residues are at a
distance of 3.8 Å26,28. This distance might be long enough to
prevent formation of any intermolecular hydrogen bond between
Cys145 and His41 at physiological pH. Additionally, the Cys145 is
protonated at physiological pH and His41 is present in the neutral
state. The substrate binding triggers the intramolecular proton
transfer from Cys145 to His41 triggered via the attack of Cys145-
Sulfur onto the (C=O) of the substrate peptide bond27. During
catalytic activity, the protonated His41 is stabilized by the pre-
sence of H2O molecule close to His41. Thus, the ability to form a
hydrogen bond with both Cys145 and His41 residues or either
with one of these residues might be a characteristic of a good
inhibitor.

Using computational modeling, the structural interaction of
boceprevir, paritaprevir ombitasvir, tipranavir, ivermectin, and
micafungin with 3CLpro SARS-CoV-2 enzyme was studied. We
found that carbonyl (C=O) group in ivermectin and boceprevir
forms a hydrogen bond with Cys145 which might explain their
inhibitory activity (Fig. 6a, e; panel I and II). Similar type of
hydrogen bonding was also observed between carbonyl (C=O)
group in paritaprevir next to the sulfonamide and Cys145 and also
between sulfonamide group in tipranavir and Cys145 (Fig. 6b, c:
panel I and II). In addition, same carbonyl (C=O) group in
paritapavir also shows hydrogen bonding interaction with His41

(Fig. 6b; panel I and II). However, ombitasvir and micafungin
show a hydrogen bonding interaction with Glu166 (Fig. 6d, f;
panel I and II). The hydrogen bonding interaction of Glu166 with
ombitsavir and micafungin is very important, as the Glu166 is
responsible for the formation of the homodimer of 3CLpro in
SARS-CoV-228. This dimer form is important for its enzymatic
activity and any interaction with Glu166 can result in the
formation of an inactive monomer which interferes with the
enzyme activity of 3CLpro28. Computational modeling illustra-
tions are presented in Fig. 6a–f; panel-III shows the interaction of
the drugs with the lipophilic pocket of the 3CLpro enzymatic site.

1    2           3           4       5     6  78 91011    12    13      14    15     16
S           E   M      NPLP 3CL

PLP cleavage site 3CLpro cleavage site

Non-structural proteins (NSP)
Structural and 

accessary proteins

S           E   M      NORF 1a               ORF 1b5’ 3’
Positive-strand of SARS-CoV-2 RNA genome

Translation by host ribosomes
Sg Translation 
Mechanism

Mature proteins

Assembly of viral proteins and genome to from new virion

Fig. 1 Representation of SARS-CoV-2 genome arrangement and protease cleavage sites. Genetic material (RNA) of SARS-CoV-2 enters the host cell and
borrows ribosome to translate into 16 nonstructural proteins upon auto-proteolytic cleavage by PLpro and 3CLpro enzymes. Structural proteins (S, E, M,
and N) are translated by sg translation mechanism. All mature proteins assemble along with positive-sense single stranded RNA genome to form new
virion. Arrows indicates the protease cleavage sites. ORF open reading frame, PLP papain like protease, 3CLP 3-chymotrypsin like protease, S spike protein,
E envelop protein, M membrane protein, N nucleocaspid protein.
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100 nanosecond (ns) Molecular Dynamics simulations for
micafungin and ivermectin. To investigate the stability of these
docking poses, 100 ns molecular dynamics (MD) simulation
studies were performed for two compounds, ivermectin and
micafungin. Figure 7a panel I–III shows the MD simulations of
micafungin with the monomer form of 3CLpro. The MD

simulation data suggests that micafungin was stable and remained
bound in the active site pocket throughout the 100ns simulated
time (compare Fig. 7a I–III). The analysis of protein-ligand
interaction fingerprints between the monomeric 3CLpro enzyme
and micafungin (Fig. 7a, panel-IV) shows that micafungin has a
predominant interaction with Glu166. It is possible that the
micafungin remained bound in the pocket of the monomeric
form of 3CLpro for the entire length of the 100-ns trajectory via a
hydrogen bonding with Glu166. As noted earlier, interaction with
Glu166 suggests interference with the dimerization of the 3CLpro
in SARS-CoV-2, which is required for its activity28 thus
explaining the inhibitory activity of micafungin against 3CLpro
enzyme. Supplementary Movie 1 presents the real-time interac-
tion of micafungin with the active site of monomeric 3CLpro
indicating the stability of micafungin in the catalytic pocket of
monomer.

The MD simulations for ivermectin are shown in Fig. 7b (panel
II–III), where ivermectin diffuses out of the catalytic pocket of
3CLpro monomer after 85 ns. It is evident from the protein-
ligand fingerprint map that ivermectin interacts with both Cys145

and His41 of the 3CLpro monomer for about 14 ns (Fig. 7b,
panel-IV). Later, ivermectin loses its interaction with His41 and
does not show interaction with any amino acids of interest
(Cys145, His41, and Glu166) and eventually diffuses out of the
pocket at 85 ns (Fig. 7b, panel-II). Supplementary Movie 2 shows
the instability of the ivermectin in the catalytic pocket of the
monomeric form of 3CLpro. Since the homodimer is the active
form of 3CLpro enzyme28, we hypothesized that the homo-
dimeric form of 3CLpro is required to stabilize ivermectin in the
catalytic pocket and hence is responsible for the inhibitory
activity of ivermectin. To test our hypothesis, MD simulations of
ivermectin with the homodimer form of 3CLpro was performed.
Interestingly, we observed that ivermectin remained bound in the
catalytic pocket of the homodimer (compare Fig. 7c, panel I–III)
throughout the period of the simulation. The detailed analysis of
the homodimer 3CLpro-ivermectin fingerprint region (Fig. 7c,
panel-IV) shows that ivermectin interacts with both Cys145 and
His41 for 2 ns, then with His41. After 85 ns, ivermectin contacts
with Ser1 of the neighboring monomer, suggesting that this
amino acid residue assists in the stabilization of ivermectin in the
catalytic binding pocket (Fig. 7c, panel IV). Supplementary
Movie 3 exhibits the real-time MD simulation interaction and the
stability of ivermectin in the catalytic pocket with homodimer of
3CLpro from 0–100ns.

Further, Supplementary Fig. 3 shows the binding affinity (S-
score) over the course of the MD simulation for ivermectin with
the monomer and homodimer form of 3CLpro, and micafungin
with monomer form of 3CLpro. We observed that the S-score for
micafungin was stable over the period of computation whereas,
ivermectin with monomer form of 3CLpro fluctuated from −9.64
to −2.2 kcal/mol. As shown in the Supplementary Fig. 3, upon
leaving the active site ~85 ns ivermectin exhibited an increase in
S-score after (~−2.0 kcal/mol). This is in stark contrast to the S-
score of ivermectin in complex with the homodimer form of
3CLpro, which remained stable throughout the simulation with
an average of −5.64 kcal/mol. Taken together, this computational
model provides a framework for the possible interaction between
these inhibitors and 3CLpro. However, the structural interaction
of these drugs with SARS-CoV-2 3CLpro needs to be validated by
X-ray crystallographic studies.

Discussion
COVID-19 is a disease caused by the SARS-CoV-2 and is a major
threat to public health globally because of the high rates of
infection and mortality. Morbidity and mortality continue to rise

Table 1 List of all the drugs with highest S score for 3CL
protease calculated by computational studies (S score).

SL. No. Drug Binding affinity (Kcal/mol)
to 3CLpro

1 Abacavir −6.6178
2 Amprenavir −8.29197
3 Asunaprevir −9.64249
4 Atazanavir −8.51517
5 Atrovastatin −7.98771
6 Beclabuvir −8.45563
7 Boceprevir −8.4209
8 Camostat −7.66508
9 Candicidin −9.05496
10 Chloroquine −6.7514
11 Daclatasvir −8.47852
12 Danoprevir −9.26908
13 Darunavir −8.59002
14 Delavirdine (mesylate) −7.3092
15 Elbasvir −8.77218
16 Elvitegravir −7.48581
17 Etravirine −6.91494
18 Favipiravir −4.23592
19 Fumagillin −7.25118
20 Gabexate −7.24702
21 Glecaprevir −8.70897
22 Grazoprevir −8.85946
23 Hydroxychloroquine −7.03572
24 Indinavir −8.39968
25 Itraconazole −7.99098
26 Ivermectin −7.74053
27 Ledipasvir −9.52825
28 Lopinavir −9.10074
29 Maraviroc −8.19033
30 Methylprednisolone −6.42667
31 Micafungin −9.60339
32 Nelfinavir −8.55575
33 Ombitasvir −8.96571
34 Oseltamvir Phosphate −7.04549
35 Paritaprevir −7.43470
36 Peramivir −6.7811
37 Pibrentasvir −9.87502
38 Pimodivir −6.79098
39 Pleconaril −7.16664
40 Posaconazole −7.95234
41 Quinine −6.67637
42 Raltegravir −7.76854
43 Remdesivir −5.9488
44 Ribavirin −6.3251
45 Ribostamycin −7.28802
46 Rilpivirine −7.09415
47 Ritonavir −9.94965
48 Saquinavir −9.25575
49 Simeprevir −9.50916
50 Sofosbuvir −8.4513
51 Telaprevir −8.96481
52 Temsavir −8.33862
53 Tenofovir Diphosphate −6.557
54 Tipranavir −7.47819
55 Umifenovir −7.23012
56 Velpatasvir −9.33025
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due to the lack of a specific vaccine and drugs that prevent
COVID-19 disease progression. There is an urgent need to
identify and test potential therapeutics for this disease. One
approach that may lead to a more rapid increase in treatment
options is to repurpose currently approved FDA drugs for their
ability to prevent or reduce the spread of virus and severity of
COVID-19 pathogenesis. Many of the FDA approved drugs are
being repurposed in clinics to treat COVID-19. However, the
effectiveness of these drugs and their specific targets for pre-
venting or reducing the severity of symptoms of COVID-19 has
not yet been completely established2,29–31. Therefore, several
laboratories are identifying specific drugs for many targets of
SARS-CoV-2. Herein, we have investigated 47 FDA approved
drugs that inhibit the SARS-COV-2 3CLpro enzymatic activity,
the main enzyme for viral replication and the preferred drug
target for COVID- 1932. We used MOE computational studies for
the initial screening to select the drugs that have high affinity for
3CLpro and further functional inhibitory activity of the 47 selec-
ted drugs was confirmed using in vitro enzymatic assay. As noted
in the previous studies24,25, our data suggests that inhibitory

effects of drugs predicted from the computational screening as
defined by the S-score do not agree with our experimental in vitro
studies. Thus, additional in vitro screening for all the drugs is
warranted.

Among 17 PIs tested here, boceprevir, paritaprevir, and
tipranavir were able to partially inhibit the 3CLpro enzymatic
activity at 50 µM drug concentration (Fig. 2). It has been shown
that boceprevir and paritaprevir inhibit the hepatitis-C virus by
inhibiting protease activity of nonstructural protein 3 and 4A
(NS3/4A)33,34. Tipranavir is a retroviral protease inhibitor that
binds to active site of HIV protease and prevents proteolytic
cleaving of precursor polyproteins into mature functional pro-
teins thereby inhibiting the viral replication35. Apart from these
drugs, known PIs lopinavir and ritonavir did not exhibit any
3CLpro inhibitory activity (Fig. 2); thus explaining the ineffec-
tiveness of these drugs in clinical trials of COVID-19 treatment31.
Our observation with lopinavir and ritonavir are in agreement
with Ma et al.34. Further, the VNI agent such as ombitasvir which
targets the nonstructural proteins (NS5A) of hepatitis-C virus to
inhibit the viral replication and assembly36 was also able to
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Fig. 2 Protease inhibitors boceprevir, paritapravir, and tipranavir exhibited partial inhibitory activity against SARS-CoV-2 3CLpro enzyme. The
selected FDA approved viral-protease inhibitors were screened for their inhibitory activity against SARS-CoV-2 3CLpro enzyme as described under
Methods section. The fluorescence units were converted to percent enzymatic activity considering DMSO treated control as 100% activity. Blank values
were subtracted from all the readings before calculating the percent activity. Representative of three individual experiments with triplicate values were
presented graphically (n= 3). P value < 0.001 considered as statistically significant. One-way ANOVA with Dunnett’s Multiple Comparison post-hoc test
was used to calculate the statistical significance.
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Fig. 3 Non protease inhibitor ombitasvir inhibited SARS-CoV-2 3CLpro activity partially. The non-protease anti-viral drugs selected by computational
studies were screened for their inhibitory activity against SARS-CoV-2 3CLpro enzyme as described under Methods section. The percent enzymatic
activity was calculated as described in Fig. 1 legend. Blank values were subtracted from all the readings before calculating the percent activity.
Representative of three individual experiments with triplicate values were presented graphically (n= 3). P value < 0.001 considered as statistically
significant. One-way ANOVA with Dunnett’s Multiple Comparison post-hoc test used to calculate the statistical significance.
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partially inhibit the 3CLpro enzymatic activity in vitro. In addi-
tion to the anti-viral drugs, micafungin, one of the OTDs tested,
also inhibited 66% of 3CLpro activity. Micafungin is a broad
spectrum anti-fungal drug which belongs to the class of echino-
candin and acts by targeting fungal β-1–3 glucan synthase37.

While the reason for the partial inhibitory effect of the agents
boceprevir, ombitasvir, paritaprevir, tipranavir, and micafungin
towards 3CLpro is not clearly understood, it is possible that the
strength of the hydrogen bonding interactions between these
agents and Cys145/His41/Glu166 of 3CLpro may explain differ-
ential inhibitory effect. Nonetheless, our studies provide avenues
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Fig. 4 Ivermectin exhibited complete inhibition of SARS-CoV-2 3CLpro enzymatic activity whereas micafungin partially inhibited the enzyme. The off-
target drugs that are being used to treat non-viral ailments selected by in silico studies were screened for their inhibitory activity against SARS-CoV-2
3CLpro enzyme as described under Methods section. The percent enzymatic activity was calculated as described in Fig. 1 legend. Blank values were
subtracted from all the readings before calculating the percent activity. Representative of three individual experiments with triplicate values were presented
graphically (n= 3). P value < 0.001 considered as statistically significant. One-way ANOVA with Dunnett’s Multiple Comparison post-hoc test used to
calculate the statistical significance.
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Fig. 5 Dose-dependent inhibition of SARS-CoV-2 3CLpro activity by selected PIs, VNIs, and OTDs. The drug candidates that exhibited more than 50%
of inhibitory activity at 50 µM concentration were selected for dose-dependent and IC50 calculation studies. A serial dilution of drugs ranging from 0 to
100 µM in assay buffer was used. The percent activity was calculated as described in Fig. 1 legend. Representative of three individual experiments with
triplicate values were presented graphically (n= 3). Non-linear regression (curve fit) with four variable dose vs inhibition was used to calculate the IC50

values using GraphPad Prism.

Table 2 IC50 values of non-viral protease inhibitor drugs for
SARS-CoV-2 3CL protease.

SL. No. Drug name IC50 values

1 Ivermectin 21.53
2 Tipranavir 27.66
3 Boceprevir 31.36
4 Micafungin 47.63
5 Paritaprevir 73.38
6 Ombitasvir 75.49
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to use the scaffold of these molecules to design highly potent and
specific inhibitors for SARS-CoV-2 3CLpro enzyme.

Interestingly, one of the OTD, ivermectin was able to inhibit
more than 85% (almost completely) of 3CLpro activity in our

in vitro enzymatic assay with an IC50 value of 21 µM. These
findings suggest the potential of ivermectin to inhibit the SARS-
CoV-2 replication. In support of this, a recent finding suggested
that ivermectin (5 µM) inhibited the replication of live
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Fig. 6 Structural analysis and interaction of the potential inhibitors with SARS-CoV-2 3CLpro enzyme. Inhibitors were docked with active site of 3CLpro
protein. Panel-I: ligand interaction map. Panel-II: interaction of inhibitors specific amino acids of 3CLpro at active site. Panel-III: lipophilic cavity of active site
with drugs interacting with specific amino acids. Boceprevir (a), partapravir (b), tipranavir (c), ombitasvir (d), ivermectin (e), and micafungin (f) are
arranged in columns for comparison. Drugs are represented in green color with ball and stick model. Arrows indicate the C–H, N–H, and C–O bonds
between drugs and with Cys145, His41, and Glu166 residues since they are essential for the enzymatic activity of 3CLpro enzyme. However, we also
observed the drugs interacting with neighboring amino acid residues.

I. 0 ns II. 85 ns III. 100 ns IV. Protein-Ligand Fingerprint
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Fig. 7 MD 100 ns simulation studies for ivermectin and micafungin.MD simulation studies were carried as described under Methods section. Interaction
of micafungin (a), and ivermectin (b) with monomeric form of 3 CLpro enzyme. c Interaction of ivermectin with active site of 3CLpro homodimer. Panel I–III
represents the interaction of ligand at different time points in nano second (ns). Panel-IV represents the ligand-binding fingerprint of micafungin and
ivermectin with specific amino acids of 3CLpro enzymes.
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SARS-CoV-2 isolated from Australia (VIo1/2020) in Vero/
hSLAM cells23. They found that >5000-fold viral counts were
reduced in 48 hr in both culture supernatant (release of new
virion: 93%) as well as inside the cells (unreleased and unas-
sembled virion: 99.8%) when compared to DMSO treated infected
cells. Interestingly, this study reported the IC50 value of iver-
mectin as 2.5 µM23, whereas, we observed an IC50 value of 21 µM
(10-fold increase). The variability in the IC50 values reported
could be attributed towards the differences in the assay conditions
such as the use of live virus vs enzymatic assay with purified
3CLpro protein. Further, preclinical studies need to be established
to validate the in vivo inhibitory activity and IC50 values of
ivermectin.

Ivermectin is known to be effective against many positive-
sense, single stranded RNA viruses such as Zika, Dengue, Yellow
fever, West nile, Venezuelan equine encephalitis, Chikungunya,
Semliki forest, Sindbis, Rorcine Reproductive and Respiratory
Syndrome, and Human immunodeficiency-1 viruses38. The list of
anti-viral effects of ivermectin against other RNA and DNA
viruses were summarized in a recent review38. Earlier studies have
demonstrated that the possible anti-viral mechanism of iver-
mectin was through the blockage of viral-protein transportation
to the nucleus by inhibiting the interaction between viral protein
and α/β1 importin heterodimer, a known transporter of viral
proteins to the nucleus especially for RNA viruses19–23. However,
in this study, we have reported that ivermectin inhibits the
enzymatic activity of SARS-CoV-2 3CLpro and thus may
potentially inhibit the replication of RNA viruses including
SARS-CoV-2. These studies suggest that ivermectin could be a
potential drug candidate to inhibit the SARS-CoV-2 replication
and the proposed anti-viral mechanism of ivermectin presented
in Fig. 8 and in vivo efficacy of ivermectin towards COVID-19 is
currently been evaluated in clinical trials (ClinicalTrials.gov
Identifier: NCT04438850).

In conclusion, the SARS-CoV-2 specific 3CLpro enzyme was
used as a target to screen the potential drugs that have high
binding affinity for 3CLpro since it plays a major role during viral
replication. We have identified that boceprevir, micafungin,
ombitasvir, paritaprevir, and tipranavir exhibited partial inhibi-
tory effect, whereas ivermectin was able to completely inhibit the
SARS-COV-2 3CLpro enzymatic activity in vitro at the tested
doses. The 100 ns MD simulation studies suggest that the iver-
mectin may require homodimeric form of 3CLpro enzyme for its
inhibitory activity. This could be due to the interaction of the
amino acid residue, Ser1, from the neighboring monomer. On the

other hand, micafungin remained bound in the catalytic pocket of
the monomeric from of 3CLpro throughout the period of simu-
lation. The list of drugs that are reported in this study provides a
rationale to prioritize these potential drugs to be tested pre-
clinically followed by clinical studies to target the SARS-Cov-2
pathogenesis.

Methods
Reagents and drugs. Molecular biology grade DMSO was purchased from Sigma
Aldrich (St. Louis, MO, USA), Sterile PBS was from ThermoFisher Scientific
(Waltham, MA, USA). 3CLpro inhibitor screening enzymatic assay kits (Catalog
#79955-1) were from BPS Biosciences (San Diego, CA, USA). Amprenavir, Ata-
zanavir sulfate, Candicin, Chloroquine Phosphate, Hydroychloroquine Sulfate, and
Lopinavir were purchased from Sigma Aldrich (Saint Louis, MO). Beclabuvir,
Temsavir were from Medchem Express (Monmouth Junction, NJ). Abacavir
(sulfate), Arbidol hydrochloride, Asunaprevir, Atrovastatin, Boceprevir, Dacla-
tasvir, Danoprevir, Darunavir, Delavirdine (mesylate), Edoxudine, Elbasvir, Elvi-
tegravir, Etravirine, Favipiravir, Fumagillin, Glecaprevir, Grazoprevir, Indinavir
sulfate, Itraconazole, Ivermectin, Ledipasvir (G-5885), Maraviroc, Methylpredni-
solone, micafungin sodium, ombitasvir, Oseltamivir phosphate, Paritaprevir, Per-
amivir, Pibrentasvir, Pimodivir, Pleconaril, Posaconazole, Quinine, Raltegravir
(potassium salt), Remdesivir, Ribavirin 5’-monophosphate (lithium salt), Ribosta-
mycin sulfate, Rilpivirine, Saquinavir, Telaprevir, Tenofovir diphosphate (sodium
salt), and Velpatasvir were purchased from Cayman Chemicals (Ann Arbor, MI).

Preparation of working solution of ligands. One mg of drug was used to prepare
8 mM stock solution using either DMSO or PBS as solvent. This stock solution was
used to prepare the working solution of 250 μM and 500 μM of drugs in PBS.

3CLpro protein preparation. The crystal structure of COVID-19 main protease
was retrieved from the protein data bank (www.rcsb.org) with PDB format (ID:
6LU7). Any structural issues if present in the protein were corrected using
QuickPrep option in MOE. The QuickPrep option performs a protonation and
calculates the minimum energy conformation of the protein. Default parameters of
MOE software was used for QuickPrep function.

Preparation of ligands. The drug list of 3987 FDA approved drug molecules and
active ingredients were downloaded from SUPERDRUGS2 database in sdf format.
The database of these 3987 drugs were imported into Molecular Operating
Environment MOE and were cleaned using wash function in MOE. This function
rebalances protonation states and regenerate 3D coordinates to their minimum
energy conformations. Default parameters of MOE software was used for wash
function.

Protein:drug docking studies. Integrated Computer-Aided Molecular design
computing method Molecular Operating Environment (MOE) software was used
to dock the drugs with 3CLpro protein. Briefly, docking was performed on the
ligand site of 6LU7 protease using washed dataset of 3987 drugs. 30 poses for
London dG and 20 poses of GBVI/WSA dG were used for final docking. All
docking results were sorted by the binding energy using S Score function and they
were viewed for accuracy using the ligand interaction function in MOE. The drugs
with a binding score (S-Score) of ≤−6.5 were considered for further studies. The
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Fig. 8 Schematic representation of anti-viral mechanism of ivermectin. Hypothetical model illustrating the inhibition of SARS-CoV-2 replication by
ivermectin mediated through the blocking of α/β1-importin (imp) as well as 3CLpro enzymatic activity.
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list was further narrowed down based on the listed criteria (1) All peptidomimetic
drugs were eliminated as they tend to elicit immune response in the body; (2) Drugs
used as immunosuppressants or for the treatment of cardiovascular disorders were
eliminated as they tend to be in high risk categories; (3) All prodrugs were elimi-
nated unless the active form was readily available as our in vitro assay is specific for
SARS-COV-2 3CLpro and does not provide an option to activate drugs in vitro; and
(4) Drugs with a shorter half-life of <30min were also eliminated. In addition, we
also ensured that small molecules which are part of any current Phase I, II, or III
clinical trials were included in this study irrespective of their S-Score. For e.g
favipiravir has an S score of −4.23 and since it is under clinical trials for COVID-19,
we have included favipiravir in the study. This screening led to the database of 56
drugs, which were selected to study their inhibitory effect on SARS-CoV-2 specific
3CLpro enzyme using an in vitro 3CLpro enzymatic assay.

3CLpro enzymatic assay. SARS-CoV-2 specific 3CLpro assay kits were purchased
from BPS Biosciences (CA) and enzymatic assay was carried out as per the
manufacturer’s protocol using 96 well plates. Briefly, 4 ng 3CLpro-MBP tagged
enzyme in 30 µl of assay buffer was pre-incubated with 10 µl of (250 µM) drugs for
1 h. The enzymatic reaction was initiated by adding 10 µl (250 µM) fluorescent
substrate. The final volume of the assay samples was 50 µl. The final concentration
of drugs and substrate in the reaction mixture was 50 µM. Incubation was con-
tinued at room temperature for 16–18 h. Fluorescence reading was taken at 360/40
excitation and 460/40 nm emission using Synergy HT fluorescent plate reader. For
IC50 calculation, drugs were screened from 0 to 100 µM dose range. Wells with 1%
DMSO with 4 ng of enzyme and 50 µM of substrate served as positive control with
no enzyme inhibition. Wells with 50 µM of GC367 compound (provided by the
BPS Biosciences) served as standard inhibitor and negative control. Wells with 1%
DMSO with 50 µM of substrate without enzyme served as blank. All the values
were subtracted from blank values.

Molecular dynamic simulation studies. The structure of COVID-19 main pro-
tease 6LU7 (PDB ID: 6LU7) was prepared in its monomeric and functional dimeric
form using the QuickPrep application of MOE2019 with default parameters. This
atomistic model was used for generating the input files for all MD simulations.

The best dock pose of micafungin was placed into the binding pocket of the
prepared monomeric 3CLprotease structure. The best pose of ivermectin was
placed into the monomeric and dimeric protease structure to test which form can
stabilize the inhibitor. The simulation cell and NAMD 2.1439 input files were
generated using MOE2019. The crystallographic water molecules were removed
prior to solvation. Next, the protein/ligand complexes were embedded in a TIP3P
water box with cubic periodic boundary conditions, keeping a distance of 10 Å
between the boundaries and the protein. The net charge of the protein was
neutralized with 100 mM NaCl. For energy minimization and MD simulations, the
AMBER10:EHT force field was used and the electrostatic interactions were
evaluated by the particle-mesh Ewald method. Each system was energy-minimized
for 5000 steps using the Steepest Descent and Conjugate Gradient method. For
equilibration the system was subjected to a 100-ps simulation to gradually heating
the system from 10 K to 300 K. Next, a 100-ps NVT ensemble was generated at
300 K followed by an NPT ensemble for 200 ps at 300 K and 1 bar. Then, for each
complex, a 100-ns production trajectory was generated for further analysis. The
trajectory analysis was done using scripts shared by the CCG support group.

Identification of ligand-binding mode. The protein ligand interaction fingerprint
application in MOE2019 was used to study the average binding mode of each
inhibitor bound to the monomer or dimer of 6LU7. The calculation used the
default parameters on the recorded MD trajectories.

Statistics and reproducibility. One-way analysis of variance (ANOVA) with
Dunnett’s Multiple Comparison post-hoc test was performed with 99.9% con-
fidence intervals to compare the statistical significance and represented as the
mean ± SEM. P values < 0.001 considered statistically significant. Non-linear
regression (curve fit) with four variable dose vs inhibition was used to calculate the
IC50 values. Statistical analysis was performed using GraphPad Prism (version 6.07;
La Jolla, CA, USA). All the experiments were carried out minimum three times
with triplicates for reproducibility and the representative of three individual
experiments is presented in this report. The data generated at different time points
were combined to make the final graphs. Investigators performing the assay were
blinded for the drugs being tested in the assay.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Supplementary Data 1 provides the data set for Figs. 2–5, and Supplementary Figure 2
and 3. Supplementary Data 2 and 3 provides data set for 3CLpro-OTDs docking study
and Supplementary Data 4 for PIs and VNIs (S score for Table 1 and structural analysis
for Fig. 6). Supplementary Data 5 provides data set for MD simulation study of 3CLPro
homodimer with ivermectin, Supplementary Data 6 for 3CLPro monomer with

ivermectin and Supplementary Data 7 for 3CLPro monomer with micafungin (Fig. 7).
Supplementary Data 5–7 provides data set for Supplementary Fig. 3 (S score comparison
from MD simulation study). Any remaining information can be obtained from the
corresponding author upon reasonable request.
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