

ULTRASONIC INSPECTION RESULTS OBTAINED IN THE ENIQ 2nd PILOT STUDY

ENIQ Report nr. 33

Mission of the Institute for Energy

The Institute for Energy provides scientific and technical support for the conception, development, implementation and monitoring of community policies related to energy. Special emphasis is given to the security of energy supply and to sustainable and safe energy production.

European Commission

Directorate-General Joint Research Centre (DG JRC) http://www.jrc.ec.europa.eu/

Institute for Energy, Petten (the Netherlands) <u>http://ie.jrc.ec.europa.eu/</u>

Contact details: Arne Eriksson Tel: +31 (0) 224 56 5383 E-mail: arne.eriksson@jrc.nl

Legal Notice

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

The use of trademarks in this publication does not constitute an endorsement by the European Commission.

The views expressed in this publication are the sole responsibility of the author(s) and do not necessarily reflect the views of the European Commission.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server <u>http://europa.eu/</u>

EUR 22907 EN ISSN 1018-5593 Luxembourg: Office for Official Publications of the European Communities

© European Communities, 2007 Reproduction is authorised provided the source is acknowledged. *Printed in the Netherlands* European Commission Directorate General Joint Research Centre Institute for Energy Petten, The Netherlands

ULTRASONIC INSPECTION RESULTS OBTAINED IN THE ENIQ 2nd PILOT STUDY

November 2007

ENIQ Report nr. 33 EUR 22907 EN

Approved for publication by the ENIQ Task Group for Qualification

Documents published by ENIQ, the European Network for Inspection and Qualification, belong to one of the following 3 types:

Type 1 – Consensus Document

A *consensus document* contains harmonised principles, methodologies, approaches and procedures, and stresses the degree of harmonisation on the subject among ENIQ members.

Type 2 – **Position/Discussion Document**

A *position/discussion document* may contain compilations of ideas, expressions of opinion, reviews of practices, or conclusions and recommendations from technical projects.

Type 3 – **Technical Report**

A *technical report* is a document containing results of investigations, compilations of data, reviews and procedures without expressing any specific opinion or valuation on behalf of ENIQ.

The present document "Ultrasonic inspection results obtained in the ENIQ 2nd pilot study" (ENIQ Report nr. 33) is a Type 3 document.

FOREWORD

The present work is one outcome of the activity of the ENIQ Task Group for Qualification (TGQ) on the ENIQ Second Pilot Study.

ENIQ, the European Network for Inspection and Qualification, is driven by the nuclear utilities in the European Union and Switzerland and managed by the European Commission's Joint Research Centre (JRC). It is active in the field of in-service inspection (ISI) of nuclear power plants by non-destructive testing (NDT), and works mainly in the areas of qualification of NDT systems and risk-informed in-service inspection (RI-ISI). This technical work is performed in two task groups: TG Qualification and TG Risk.

A key achievement of ENIQ has been the issue of a European Qualification Methodology Document, which has been widely adopted across Europe. This document defines an approach to the qualification of inspection procedures, equipment and personnel based on a combination of technical justification (TJ) and test piece trials (open or blind). The TJ is a crucial element in the ENIQ approach, containing evidence justifying that the proposed inspection will meet its objectives in terms of defect detection and sizing capability. A Qualification Body reviews the TJ and the results of any test piece trials and it issues the qualification certificates.

ENIQ has previously conducted a pilot study to assess the feasibility of the ENIQ Methodology in practice. This first pilot study was successful but, because the component chosen for the study was an austenitic weld, could not fully explore the use of TJs. This is because techniques such as mathematical modelling, at the time of the study, tended to be applicable only to isotropic materials. Assessment of the inspectability of austenitic welds usually requires the use of test pieces with the same metallurgical structure. Accordingly, ENIQ decided to conduct a second pilot study using a ferritic nozzle to shell weld.

The main objective of the 2nd pilot study was to show how to fully exploit the potential of TJs in the qualification of inspection procedures and thereby reduce the number of test piece trials on full-scale components. As the subject of the study, a ferritic BWR-type nozzle to shell weld was selected. A TJ was produced, partly relying on modelling, to predict whether a designated ultrasonic inspection would be successful in detecting the specified defects. In parallel, a mock-up (ENIQ 21) with deliberately introduced defects was fabricated and inspected with the inspection system specified in the TJ. Predictions and inspection results were compared.

This report is a compilation of the ultrasonic non-destructive inspections results obtained on the ENIQ 21 BWR-type nozzle to shell weld mock-up. The report has been divided into three different sections

- 1) Inspection results from **Inside** inspection of the **Un-clad** test piece
- 2) Inspection results from <u>Outside</u> inspection of the <u>Clad</u> test piece
- 3) Inspection results from **Inside** inspection of the **Clad** test piece

The two first series of measurements was carried out at the premises of Westdyne TRC (Sweden) in 2002 and 2004, the final part was carried out at the JRC of the European Commissions in the Netherlands in 2005.

This study has been conducted within the frame of ENIQ Task Group for Qualification. The contributors, in alphabetical order, are listed below:

l Atkinson J-A Berglund R Booler	Kande, United Kingdom Ringhals NPP, Sweden Serco, United Kingdom, Chairman of Task Crown Qualification
R Chapman	Chairman of Task Group Qualification British Energy, United Kingdom
Ph Dombret	Suez-Tractebel, Belgium
A Eriksson	Directorate General JRC, European Commission
L Horáček	NRI- Řež, Czech Republic
A Jonsson	Forsmark NPP, Sweden
P Kelsey	Rolls-Royce Marine Power, United Kingdom
P Krebs	Engineer Consulting, Switzerland
L Le Ber	M2M, France
B Neundorf	Vattenfall Europe Nuclear Energy, Germany
T Seldis	Directorate General JRC, European Commission, Co-chairman of Task Group Qualification
H Söderstrand	SQC Swedish NDT Qualification Centre, Sweden
C Waites	Serco, United Kingdom
A Walker	Rolls-Royce Marine Power, United Kingdom
J Whittle	John Whittle & Associates, United Kingdom,
H Wirdelius	Chalmers University of Technology, Sweden

This ENIQ Type 3 document was approved for publication by the ENIQ Task Group on Qualification.

Disclaimer

ENIQ is a network of interested European organisations developing methodologies for inspection qualification and risk-informed in-service inspection. ENIQ does not review, endorse or accredit individual qualifications carried out on plant belonging to member utilities, nor does ENIQ operate an accreditation system for Qualification Bodies. Statements by utilities and others that a specific qualification is compliant with the ENIQ methodology should not therefore be taken as implying approval or endorsement of that qualification by the ENIQ network as a whole.

TABLE OF CONTENT

Part I: Inside inspection of the un-clad test piece

1	INT	RODUCTION	11
2	SC	OPE OF WORK	11
3	REI	FERENCE DOCUMENTS	12
4	EQ	JIPMENT	12
	4.4	SCANNING SYSTEM CABLES TRANSDUCERS CALIBRATION BLOCKS TEST BLOCK	12 12 12 13 14
5	INS	PECTION	14
	5.1 5.2 5.3 5.4 5.5	TRANSDUCER CALIBRATION AND INSPECTION SETTINGS SENSITIVITY TRANSFER MEASUREMENTS SCAN PATTERNS DATUM CONVENTION	14 14 15 15 15
6	EV	ALUATION	15
7	DEI	FECTS TO BE DETECTED AND SIZING REQUIREMENTS	16
8	SUI	MMARY OF RESULTS	16
	8.1 8.2 8.3 8.4 8.5	COMMENTS ON THE DETECTION RESULTS COMMENTS ON LENGTH SIZING COMMENTS ON HEIGHT SIZING FALSE CALLS COMMENTS AND RECOMMENDATIONS	17 18 18 18 18

Part II: Outside inspection of the clad test piece

9	INTRODUCTION	21
10	SCOPE OF WORK	21
11	REFERENCE DOCUMENTS	21
12	EQUIPMENT	22
		22 22

12.4	TRANSDUCERS CALIBRATION BLOCKS TEST BLOCK	22 23 23
13 INS	PECTION	23
13.2 13.3 13.4	TRANSDUCER CALIBRATION AND INSPECTION SETTINGS SENSITIVITY TRANSFER MEASUREMENTS SCAN PATTERNS DATUM CONVENTION	23 23 24 24 24 24
14 EV	ALUATION	24
15 SU	MMARY OF RESULTS	25
15.1	COMMENTS ON THE DETECTION RESULTS	25
Part I	II-	
	e inspection of the clad test piece	
16 INT	RODUCTION	27
17 SC	OPE OF WORK	27
18 RE	FERENCE DOCUMENTS	28
19 EQ	UIPMENT	28
19.2 19.3 19.4	SCANNING SYSTEM CABLES TRANSDUCERS CALIBRATION BLOCKS COMPONENT TO BE INSPECTED	28 28 28 29 29
20 INS	PECTION	29
20.3 20.4 20.5	EQUIPMENT CALIBRATION TRANSDUCER CALIBRATION AND INSPECTION SETTINGS SENSITIVITY TRANSFER MEASUREMENTS SCAN PATTERNS DATUM CONVENTION	29 29 29 30 30 30
21 EV	ALUATION	31
21.3	DETECTION ACCORDING TO PROCEDURE DETECTION OF SIGNALS OUTSIDE PROCEDURE UNINTENDED DEFECTS / FALSE CALLS LENGTH AND HEIGHT SIZING	31 31 31 31
22 DE	FECTS TO BE DETECTED	31
23 SU	MMARY OF RESULTS	31
23.1	COMMENTS ON THE DETECTION RESULTS	32

List of Tables

Part I:	Inside inspection of the un-clad test piece	
Table 1	Scannining System	
Table 2	Cables	
Table 3	Detection and length sizing probes (f.d. = focal depth)	
Table 4	Height sizing probes	
Table 5	Sensitivity settings for detection probes	14
Table 6	Sensitivity settings for height sizing probes	
Table 7	Evaluation criteria	16
Table 8	Sizing requirements	16
Table 9	Summary of results	16
Table 10	Summary of false calls	
Part II:	Outside inspection of the clad test piece	
Table 11	Scannining System	22
Table 12	Cables	22
Table 13	Detection and length sizing probes	
Table 14	Sensitivity settings for detection probes	24
Table 15	Evaluation criteria	24
Table 16	Summary of results	25
Table 17	Scanning system	
Part III:	Inside inspection of the clad test piece	
Table 18	Cables	
Table 19	Detection probes (FD = focal depth)	
Table 20	Sensitivity settings for detection probes	
Table 21	Procedure evaluation criteria	
Table 22	Summary of maximum amplitude responses	

APPENDICIES

APPENDIX 1: DRAWING JRC-10692 B, ENIQ ASSEMBLY 21

- APPENDIX 2: TABULATED RESULTS FOR THE INSIDE INSPECTION OF THE UN-CLAD TEST PIECE
- APPENDIX 3: TABULATED RESULTS FOR THE OUTSIDE INSPECTION OF THE CLAD TEST PIECE
- APPENDIX 4: TABULATED RESULTS FOR THE INSIDE INSPECTION OF THE CLAD TEST PIECE

PART I:

INSIDE INSPECTION OF THE UN-CLAD TEST PIECE

1 INTRODUCTION

This part of the report documents the ultrasonic non-destructive testing results obtained from the detection and sizing performed on the ENIQ nozzle assembly 21. The inspection was carried out from the inside surface on the un-clad assembly at the TRC premises in 2002. The objective of the trials was to assess the feasibility of the proposed inspection procedure for the ultrasonic inspection of the nozzle to shell weld from the inner surface.

The trials employed Tandem technique, shear and longitudinal waves as the primary detection techniques, and Time of Flight Diffraction (TOFD) as the primary sizing technique.

2 SCOPE OF WORK

The scope of work consisted of

- Scanning test block ENIQ assembly 21 from the inside surface using the pulse echo tandem technique at a frequency of 1,5 MHz, with one focal depth.
- Scanning test block ENIQ assembly 21 from the inside surface using the pulse echo 45°, 60° and 70° shear wave technique at a frequency of 1,5MHz.
- Scanning test block ENIQ assembly 21 from the inside surface using the pulse echo 70TRL technique at a frequency of 2MHz, with focus depth 8 and 12mm.
- Scanning test block ENIQ assembly 21 from the inside surface using the TOFD technique having 4 different focal depths within the inspection zone at a single frequency of 5MHz.
- To analyse the results and make an assessment of the detection capability
- To analyse the results and make an assessment of the sizing capability
- To report, comment and make recommendations for further improvements and developments of the inspection procedure.

3 REFERENCE DOCUMENTS

- Inspection procedure for the 2nd ENIQ Pilot Study, 1st Draft
- Method Of Working, MOW version 1,0
- Technical Justification for the 2nd Pilot Study, Draft for Discussion.

4 EQUIPMENT

The inspection was performed using the following equipment:

4.1 Scanning system

Table 1Scanning System

Ultrasonic System	R/D Tech Tomo S/V Seria Software version	l No 15297-05 1.4R7
Manipulator	Force ATS1	Serial No JRC
Drive Control Software	MCDU-02	Serial No 16497-04
Analysis Software	R/D Tech TomoView Version	on 1.3R0
Pre Amplifier	Panametrics 5670	Serial No 1648
Couplant	Water	

4.2 Cables

Table 2 Cables

Item	Cable Length	Cable Type	Connector Type
1	10.0 Metres	Coax RG174 - 50 Ω	Lemo 00 plug – Lemo 00 plug
2	5.0 Metres	Coax RG174 - 50Ω	Lemo 00 plug – MCX 50-2-5c/111
3	2.0 Metres	Coax RG174-50Ω	MCX 50-2-5c/111 – Lemo 00 plug

4.3 Transducers

Table 3Detection and length sizing probes (f.d. = focal depth)

Probe Identity	Probe Type and Frequency	Crystal Size [mm]	Probe size [mm]	Probe Function
RTD01-3	T 45° 1.5 MHz	32x25	40x40x30	Detection Length sizing
RTD01-5	T 60° 1.5 MHz	32x22	40x40x30	Detection Length sizing

RTD01-7	T 70° 1.5 MHz	32x18	40x40x30	Detection Length sizing
RTD01-3	TANDEM	32x25	40,40,20	Detection
RTD01-4	1.5 MHz	32823	40x40x30	Length sizing
RTD01-9	TRL 70°	2(25x15)	40,40,40	Detection
RID01-9	2 MHz	f.d.12mm	40x40x30	Length sizing
RTD01-10	TRL 70°	2(Ø18)	40,40,20	Detection
	2 MHz	f.d.8mm	40x40x30	Length sizing

Table 4Height sizing probes

Probe Identity	Probe type and Frequency	Crystal size [mm]	Probe size [mm]	Probe Function
27100115	L 0°	<i>0</i> 6	Shoes	TOFD
27100116	5 MHz	Ø6	20x20x15	Height sizing

4.4 Calibration blocks

50mm wide A	2	
	Material Radius	Carbon Steel 100 mm
	Surface	Flat
	Purpose	Shear transducers: delay, index, and angle
50mm wide A	1	
John Wide A	Material	Carbon Steel
	Radius	25/50 mm
	Surface Purpose	Flat Longitudinal transducers: delay, index, and angle
	i dipose	
JRC-10722A	Matarial	Carbon Staal
	Material Thickness	Carbon Steel 100 mm
	Surface	Flat
	Purpose	Shear and longitudinal sensitivity
JRC-10729A		
	Material	Carbon Steel
	Thickness Surface	165 mm Flat
	Purpose	TANDEM delay and sensitivity
JRC-10720 JRC-10721		
0110 10121	Material	Carbon Steel
	Thickness	60 mm
	Surface Purpose	Flat TOFD delay and sensitivity
	. aipeee	

4.5 Test Block

ENIQ assembly 21, drawing JRC-10692B, see appendix 1.

The test block is of ferritic material with a nozzle to shell weld, containing a total of 11 induced defects. All defects are of a longitudinal orientation with respect to the weld direction.

Note: At present 11 defects exist in the block, while the drawing stating 17. Further 6 defects will be manufactured in the block after cladding.

Relevant flaws: no. 1, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

5 INSPECTION

5.1 Transducer Calibration and Inspection Settings

All transducers were calibrated according to the ENIQ procedure. Inspection settings as defined under appendix D in the procedure was used.

5.2 Sensitivity

Since the cladding of the nozzle will be performed at a later stage, no gain compensation was added to the inspection sensitivity as stated in the procedure (these values will be derived from parametric studies).

However, a general 6 dB was added to all the detection transducers. See also chapter 5.3 regarding transfer measurements.

Probe Identity	Angle	Ref. block	Reference reflector	Calibration sensitivity	Inspection sensitivity
	45°	JRC-	OC 4 at 25mm	80% of full	Calibration
RTD01-3	Shear	10722	Ø6,4 at 35mm	screen height	+6dB
RTD01-3	Tandem	JRC-	Ø8 at	80% of full	Calibration
RTD01-4		10729	40mm	screen height	+6dB
	60°	JRC-	QC 4 at 25mm	80% of full	Calibration
RTD01-5	Shear	10722	Ø6,4 at 35mm	screen height	+6dB
	70°	JRC-	QC 4 at 25mm	80% of full	Calibration
RTD01-9	Shear	10722	Ø6,4 at 35mm	screen height	+6dB
RTD01-9	70°	JRC-	(2) 2 at 10mm	80% of full	Calibration
	Long	10722	Ø3,2 at 10mm	screen height	+6dB
RTD01-10	70°	JRC-	Ø3,2 at 5mm	80% of full	Calibration
	Long	10722		screen height	+6dB

Table 5Sensitivity settings for detection probes

Probe Identity	Angle ^{#1}	Ref. block	Reference Notch	Calibration sensitivity	Inspection sensitivity
27100115	(50°)	JRC-	Notch 3 Depth	80% of full	Lateral wave 30-
27100116	(50°)	10720	10mm	screen height	50%
27100115	(E0°)	JRC-	Notch 5 Depth	80% of full	Lateral wave 30-
27100116	(50°)	10720	20mm	screen height	50%
27100115	(50°)	JRC-	Notch 3 Depth	80% of full	Lateral wave 30-
27100116	(50°)	10721	35mm	screen height	50%
27100115	(50°)	JRC-	Notch 1 Depth	80% of full	Lateral wave 30-
27100116	(50°)	10721	50mm	screen height	50%

Table 6Sensitivity settings for height sizing probes

^{#1} The angle indicated is with the with the angle shoe

In cases with saturated signals, a complementary inspection scan was performed with the gain reduced to reference level. Table 5and Table 6 document all transducers with relevant settings.

5.3 Transfer measurements

Transfer measurements were performed using the two 45° transducers, comparing signal amplitudes from the calibration block JRC-10729A and the ENIQ assembly 21.

The nozzle base material did not show any divergences, but for the weld material a difference of 4 to 6dB was measured, compared with the calibration block.

The measurements was performed in a 'static mode', it is assumed that in a 'dynamic mode' (i.e. scanning) there would also be a measurable difference in the base material, due to the rougher surface on the nozzle.

5.4 Scan patterns

Scanning was performed using a series of bi-directional stepped raster patterns with a step of 0,5° which equals just over 3 mm at the weld centre line.

The scan axis was defined as being perpendicular to the weld centre line and the index axis along the weld centre line.

5.5 Datum Convention

Co-ordinate system specified in the ENIQ procedure was slightly modified to correspond to the defect drawing JRC 10692, so that the circumferential reading was comparable without mirroring the index axis position.

6 EVALUATION

Evaluation was done according to the ENIQ procedure with evaluation criteria as below. An indication must exceed reference level on three consecutive scan-lines to be reported.

Transducer type	Evaluation criteria
Shear wave probes	20% of reference level = 16% of full screen height
Longitudinal probes	50% of reference level = 40% of full screen height

Table 7Evaluation criteria

7 DEFECTS TO BE DETECTED AND SIZING REQUIREMENTS

According to the Technical Justification, the maximum acceptable defect is 30x15 mm. The required sizing performance is specified as in Table 8. The tolerances are applicable to any defects, which exceeds the validation defect size.

The validation defect is one that must be detected with a high degree of confidence and which, when account is taken of the maximum uncertainty in the measured size, does not exceed the maximum acceptable defect size.

	1
Sizing Accuracy Length	±25mm
Sizing Accuracy Height	±5mm
Location Accuracy Circumferential	±40mm
Location Accuracy Radial	±20mm
Location Accuracy Throughwall	±5mm
Validation defect Length	20mm
Validation defect Height	10mm

Table 8Sizing requirements

8 SUMMARY OF RESULTS

A summary of the results, following the evaluation criteria according to the ENIQ procedure, can be found in Table 9. Detailed results from each flaw and transducer can be found in appendix 2.

	EFECT JMBER	POSITION [mm]	LENGTH [mm]	HEIGHT [mm]	Defect tilt and skew Probe and % of FSH
Flaw	Real	69-89	20	5(0-5)	Tilt 0° Skew 0°
1	Measured	-	-	-	Less than 3 scans
Flaw	Real	870-890	20	5(0-5)	Tilt 10° Skew 5°
8	Measured	864-883	19	5,8	TRL8>100%

Table 9Summary of results

Real	970-1010	40	10(0-10)	Tilt 4° Skew 0°
Measured	968-1002	34	10,0	TRL8 71,5%
Real	1016-1156	40	10(0-10)	Tilt 20° Skew 5°
Measured	1118-1148	30	9,4	TRL8/12>100%
Real	1259-1319	60	15(0-15)	Tilt 10° Skew 0°
Measured	1261-1316	55	15,5	TRL8 87,8%
Real	1424-1484	60	15(0-15)	Tilt 0° Skew 5°
Measured	1420-1475	55	15,6	TRL8 55%
Real	1570-1590	20	10(3-13)	Tilt 4° Skew 0°
Measured	1561-1585	24	11,7(3,4-15,1)	TRL8/12>100%
Real	1698-1728	30	15(13-28)	Tilt 4° Skew 0°
Measured	1689-1744	55	24,4(13,4-37,8)	Tandem>100%
Real	1845-1875	30	15(23-38)	Tilt 4° Skew 0°
Measured	1829-1866	37	17(21,8-38,8)	Tandem>100%
Real	1979-2029	50	5(3-8)	Tilt 4° Skew 0°
Measured	1979-2043	64	5,3(3,7-9,0)	TRL 44%, Tand. 65%
Real	2138-2198	60	5(8-13)	Tilt 4° Skew 0°
Measured	2138-2196	58	6,6(7,0-13,6)	TRL 90%, Tand. 84%
	Measured Real Measured Real Measured Measured Real Measured Real Measured Real Measured Real	Measured 968-1002 Real 1016-1156 Measured 1118-1148 Real 1259-1319 Measured 1261-1316 Real 1261-1316 Real 1424-1484 Measured 1420-1475 Real 1570-1590 Measured 1561-1585 Real 1698-1728 Measured 1689-1744 Real 1845-1875 Measured 1829-1866 Real 1979-2029 Measured 1979-2043 Real 1978-2043	Measured968-100234Real1016-115640Measured1118-114830Real1259-131960Measured1261-131655Real1424-148460Measured1420-147555Real1570-159020Measured1561-158524Real1698-172830Measured1829-186637Real1979-202950Measured1979-204364Real1979-204364	Measured968-10023410,0Real1016-11564010(0-10)Measured1118-1148309,4Real1259-13196015(0-15)Measured1261-13165515,5Real1424-14846015(0-15)Measured1420-14755515,6Real1570-15902010(3-13)Measured1561-15852411,7(3,4-15,1)Real1698-17283015(13-28)Measured1689-17445524,4(13,4-37,8)Real1845-18753015(23-38)Measured1829-18663717(21,8-38,8)Real1979-2029505(3-8)Measured1979-2043645,3(3,7-9,0)Real2138-2198605(8-13)

8.1 Comments on the detection results

70°-TRL probes, inspection range 0-20 mm in depth

All defects positioned in the inspection range have been detected, except defect 1, a PISC type-A notch 5x20mm, with no tilt or skew. This defect has only been detected on 2 scan-lines over reporting level.

<u>45°-shear wave probe, inspection range 20-60 mm in depth</u> No indications have been reported with this transducer.

60°-shear wave probe, inspection range 20-60 mm in depth

Two defects were in the inspection range for the 60°-shear wave transducer, flaw 14 and 15. Both defects were detected, with amplitudes just less than 30% of full screen height(compared with a reporting level of 16%).

70°-shear wave probe, inspection range 20-60 mm in depth

Two defects were in the inspection range for the 70°-shear wave transducer, flaw 14 and 15. Both defects were detected with high amplitudes, but there is a general high noise level in the area of interest, exceeding reporting level, due to this it was decided to exclude the data from the 70°-shear wave probe.

TANDEM set-up, inspection range 20-60 mm in depth

The procedure states an inspection range of 20 to 60 mm for the TANDEM. However, since the technique can not give any position in depth, the inspection range will more or less depend on chosen focus depth and the size of the soundbeam field. Due to this all

defects except 1 and 10, were detected. These two defects are surface breaking PISC type-A notches (at present stage).

8.2 Comments on Length Sizing

All defects are length sized within the stated tolerances of ± 25 mm. All PISC type-A notches are within ± 10 mm, but in some cases the signal response from the middle of the notch is under reporting level, though over the reporting level in both edges. Still the defect has been reported as one defect.

8.3 Comments on Height sizing

The TOFD technique gives an accurate height sizing within the stated tolerances of \pm 5mm, except defect 14. Due to satellite indications, recognition of true/intended bottom tip signals was difficult. The total measured error was 9,4mm (measured to 24,4mm instead of 15mm according to defect drawing). With a conservative judgement a bottom tip at 37,8mm was chosen, instead of 30,3mm which resulted in a bottom tip error of 9,8mm instead of 2,3mm.

8.4 False calls

Two false calls were reported with TANDEM set-up. Both were positioned in the area where the lack of fusion defects had been introduced.

File	Circ Pos (x)			(y) Pos.	Max.	No. Scan
Name	Start °/mm	Stop °/mm	Length °/mm	mm	Amp.% FSH	Lines #
45tanneg	267.5/1634	271.5/1658.5	4/24.5	-33	59	12
45tanneg	295/1802	299.5/1829.5	4.5/27.5	-30	26	8

Table 10Summary of false calls

8.5 Comments and Recommendations

The procedure fulfils the required inspection performance for detection and length sizing, even though defect 1, a 20x5 mm notch was not detected. The detection goal for a maximum acceptable defect is 30 x15mm (validation defect 20x10mm).

However, it should be noted that for several of the surface breaking defects, the amplitude response is fairly low. Without the increased inspection gain of 6dB the signal response is around reporting level.

The 45°-shear transducer does not detect any defects, and its relevance can be discussed. With the actual defect situation it is believed that this transducer is not going to add any information.

The 70°-shear transducer has been excluded due to the high noise level in the area with the lack of fusion defects. The transducer could give valuable information if the criteria for noise level was adjusted or/and the inspection gain decreased.

The TANDEM technique shows a good detection rate over the whole inspection range, from 0-60mm

The procedure does not handle the curvature of the nozzle when applying the TANDEM technique. This means that the axial position for the defect is not correct, and the projected position is in some cases outside the inspection area.

The procedure does not fulfil the required inspection performance for height sizing since defect number 14 is oversized.

The TOFD technique gives an accurate sizing within $\pm 2mm$ for all flaws (required $\pm 5mm$), except number 14. A number of satellite indications that cannot be explained as geometric or volumetric gives a bottom tip value 10mm lower than what is expected. The 'correct' bottom tip response is also present, but a 'worst case' value has been chosen.

The inspection results for location accuracy (see *Table 8*) are well inside the requirements.

There are two false calls and a significantly higher noise level in the area of 265-345°. This is the same area where the lack of fusion defects is positioned. It is highly likely that these false calls originate from the manufacturing of the weld and defects in this area. Appendix 3 includes all false calls exceeding 20% FSH in this area. The remaining weld has not given any false calls and the noise level is also lower. Moreover, the whole 360° of the weld have been inspected with TOFD PCS 20 and 40, but only the area with lack of fusion is showing satellite signals.

General comments made during inspection, and suggested improvements on the procedure can be found in Protocol T.100.440-1.

PART II:

OUTSIDE INSPECTION OF THE CLAD TEST PIECE

9 INTRODUCTION

This part of the report documents the ultrasonic non-destructive testing results obtained from the detection performed on the ENIQ nozzle assembly 21. The inspection was carried out from the outside surface on the clad assembly at the TRC premises in 2004. The objective of the trials was to assess the detection capabilities of the proposed inspection procedure. The trials employed shear pulse-echo and Tandem technique, as detection technique.

10 SCOPE OF WORK

The scope of work consisted of

- Scanning the clad test block ENIQ assembly 21 from the outer surface using the pulse echo tandem technique at a frequency of 1,5 MHz, with a focal depth of 140 mm.
- Scanning the clad test block ENIQ assembly 21 from the outer surface using the pulse echo 45° and 60° shear wave technique at a frequency of 1,5MHz.
- Analysis of the inspection data.

11 REFERENCE DOCUMENTS

- Inspection procedure for the 2nd ENIQ Pilot Study, 1st Draft
- Method Of Working, MOW version 1,0
- Technical Justification for the 2nd Pilot Study, Draft for Discussion.

12 EQUIPMENT

12.1 Scanning system

The inspection was performed using the following equipment:

Table 11 Scannining System

Ultrasonic System	R/D Tech Tomo S/V Software version	Serial No 15297-05 1.4R7
Manipulator	Force ATS1	Serial No JRC
Drive Control Software	MCDU-02	Serial No 16497-04
Analysis Software	R/D Tech TomoView	Version 1.3R0
Pre Amplifier	Panametrics 5670	Serial No 1648
Couplant	Water	

12.2 Cables

Table 12 Cables

Item	Cable Length	Cable Type	Connector Type
1	10.0 Metres	Coax RG174 - 50 Ω	Lemo 00 plug – Lemo 00 plug

12.3 Transducers

 Table 13
 Detection and length sizing probes

Probe Identity	Probe Type and Frequency	Crystal Size [mm]	Probe Size [mm]	Probe Function
RTD01-3	T 45°	32x25	40x40x30	Detection
RIDUI-3	1.5 MHz	32823	40X40X30	Length sizing
	T 60°	32x22	40,40,420	Detection
RTD01-5	1.5 MHz	32822	40x40x30	Length sizing
RTD01-3	TANDEM	20,405	40×40×20	Detection
RTD01-4	1.5 MHz	32x25	40x40x30	Length sizing

Note: The TANDEM configuration was set to PCS 56, achieving a focal depth of 140 mm on a flat surface.

12.4 Calibration blocks

50mm wide A	2 Material Radius Surface Purpose	Carbon Steel 100 mm Flat Shear transducers: delay, index, and angle
JRC-10722A	Material Thickness Surface Purpose	Carbon Steel 100 mm Flat Shear and longitudinal sensitivity
JRC-10729A	Material Thickness Surface Purpose	Carbon Steel 165mm Flat TANDEM delay and sensitivity

12.5 Test Block

ENIQ assembly 21, drawing JRC-10692B, see appendix 1.

The test block is of ferritic material with a nozzle to shell weld, containing a total of 17 induced defects. All defects are of a longitudinal orientation with respect to the weld direction.

13 INSPECTION

13.1 Transducer Calibration and Inspection Settings

All transducers were calibrated according to the ENIQ procedure. Inspection settings as defined under appendix D in the procedure was used.

13.2 Sensitivity

The inspection sensitivity includes the reference/calibration sensitivity and the transfer losses between the calibration block and the inspection object. 13.3 describes the procedure to establish the transfer differences.

In cases with saturated signals, a complementary inspection scan was performed with the gain reduced to reference level. *Table 14* documents all transducers with relevant settings.

Probe Identity	Angle	Ref. block	Reference reflector	Calibration sensitivity	Inspection sensitivity
RTD01-3	45°	JRC-	Ø8 DAC	80% of full	Calibration
	Shear	10729		screen height	+6dB
RTD01-3	Tandem	JRC-	Ø8 at	80% of full	Calibration
RTD01-4	PCS 56	10729	125mm	screen height	+7,5dB
RTD01-5	60°	JRC-	Ø8 DAC	80% of full	Calibration
	Shear	10729		screen height	+6dB

 Table 14
 Sensitivity settings for detection probes

13.3 Transfer measurements

Transfer value was determined by performing a comparison (in dB) between the response from the 125 mm deep Ø8 mm SDH in calibration block JRC 10729 and the 120 mm deep Ø8 mm SDH in test sample ENIQ 21.

The largest value from the four transfer values (two SDH's, each evaluated from two sides) was added to the base/reference gain before the start of data collection.

13.4 Scan patterns

Scanning was performed by a bi-directional step raster pattern with a step of 0,5°.

The scan axis was defined as being perpendicular to the weld centre line and the index axis along the weld centre line.

13.5 Datum Convention

Co-ordinate system specified in the ENIQ procedure was slightly modified to correspond to the defect drawing JRC 10692 (appendix 1), so that the circumferential reading was comparable without mirroring the index axis position.

14 EVALUATION

Evaluation was done according to the ENIQ procedure with evaluation criteria as below. An indication must exceed reference level on three consecutive scan-lines to be reported.

Table 15Evaluation criteria

Transducer type	Evaluation criteria
Shear wave probes	20% of reference level = 16% of full screen height

15 SUMMARY OF RESULTS

A summary of the results, following the evaluation criteria according to the ENIQ procedure, can be found in *Table 16*. Detailed results from each flaw and transducer can be found in appendix 3.

DEFECT NUMBER		POSITION In mm	LENG TH In mm	HEIGTH In mm	Defect tilt and skew Transducer and % of FSH
Flaw	Real	69-89	20	5(7-12)	Tilt 0° Skew 0°
1	Measured	67-101	34		
Flaw	Real	167-187	20	5(0-5)	Tilt 0° Skew 0°
2	Measured	177-202	25		
Flaw	Real	255-275	20	5(0-5)	Tilt 10° Skew 5°
3	Measured	250-272	22		
Flaw	Real	365-405	40	10(0-10)	Tilt 10° Skew 0°
4	Measured	376-421	45		
Flaw	Real	481-521	40	10(0-10)	Tilt 0° Skew 0°
5	Measured	489-531	42		
Flaw	Real	599-659	60	15(0-15)	Tilt 0° Skew 5°
6	Measured	602-660	58		
Flaw	Real	733-793	60	15(0-15)	Tilt 20° Skew 5°
7	Measured	733-794	61		
Flaw	Real	870-890	20	5(7-12)	Tilt 10° Skew 5°
8	Measured	-	-		
Flaw	Real	970-1010	40	10(7-17)	Tilt 4° Skew 0°
9	Measured	962-1011	49		
Flaw	Real	1016-1156	40	10(7-17)	Tilt 20° Skew 5°
10	Measured	1121-1161	40	, ,	
Flaw	Real	1259-1319	60	15(7-22)	Tilt 10° Skew 0°
11	Measured	1274-1329	55		
Flaw	Real	1424-1484	60	15(7-22)	Tilt 0° Skew 5°
12	Measured	1429-1488	58		
Flaw	Real	1570-1590	20	10(10-20)	Tilt 4° Skew 0°
13	Measured	1561-1594	33		
Flaw	Real	1698-1728	30	15(20-35)	Tilt 4° Skew 0°
14	Measured	1695-1738	43		
Flaw	Real	1845-1875	30	15(30-45)	Tilt 4° Skew 0°
15	Measured	1820-1857	37		
Flaw	Real	1979-2029	50	5(10-15)	Tilt 4° Skew 0°
16	Measured	1973-2031	58		
Flaw	Real	2138-2198	60	5(15-17)	Tilt 4° Skew 0°
17	Measured	2147-2196	49		

Table 16Summary of results

15.1 Comments on the detection results

• For defect number 2, 3, 4, 5, 6 and 7. The given position stated on the drawing JRC-100692B seems to be inaccurate, and should be confirmed by the manufacturer

- Defect number 8 was not detected by any of the three techniques applied
- A large number of 'false calls' was noted, originating both from the clad interface end the weld volume.
- The defect position in 'Y' (noted in the report forms in app.2) give a rather large error due to a number of reasons: long ultrasonic sound paths, the curvature of the object will affect both the incident angle and the Y-arm positioning.

PART III:

INSIDE INSPECTION OF THE CLAD TEST PIECE

16 INTRODUCTION

This report documents the results obtained regarding detection from the inspection performed on the clad test block ENIQ nozzle assembly 21. The inspection was carried out from the inside surface on the clad assembly at the JRC's premises in The Netherlands. The measurements were carried out in June 2005, except for the tandem technique, which was carried out in September 2005. This inspection was carried out in line with *"Inspection procedure for the 2nd ENIQ Pilot Study, Issue 3"* which covers both detection and sizing. However, based on a decision of the ENIQ TGQ only the part for detection was followed. The objective of the trials was to assess the detection capabilities of the proposed inspection procedure. The trials employed shear pulse-echo and Tandem technique, as detection technique

17 SCOPE OF WORK

The scope of work consisted of

- Scanning test block ENIQ assembly 21using the pulse echo 70TRL technique at a frequency of 2MHz, with focus depth 8 and 12mm.
- Scanning test block ENIQ assembly 21 using the pulse echo 60° and 70° shear wave technique at a frequency of 1,5MHz.
- Scanning test block ENIQ assembly 21 using pulse echo 45° tandem technique at a frequency of 1,5 MHz, with a approximately focal depth of 40 mm.
- To analyse the obtained results relating to detection according to the inspection procedure
- To analyse the obtained results relating to detection at higher sensitivity levels than specified in the inspection procedure (see 20.3)

18 REFERENCE DOCUMENTS

 ENIQ.PILOT2 (04) 4 – Inspection procedure for the 2nd ENIQ pilot study - Draft 3. Date: 17-03-2004

19 EQUIPMENT

19.1 Scanning system

Table 17 Scanning system

Ultrasonic System	R/D Tech Tomo S/V Software version	Serial No 15297-05 1.4R7		
Manipulator	Force			
Drive Control Software	Mcdu-02	Serial No 16497-04		
Analysis Software	R/D Tech TomoView	Version 2.2R9		
Couplant	Water			

19.2 Cables

Table 18 Cables

ltem	Cable Length	Cable Type	Connector Type
1	10.0 Metres	Coax RG174 - 50Ω	Lemo 00 plug – Lemo 00 plug
2	10.0 Metres	Coax RG174 - 50 Ω	Lemo 00 plug – Lemo 00 plug

19.3 Transducers

Table 19Detection probes (FD = focal depth)

Probe Identity	Probe Type	Freq [MHz]	Crystal Size [mm]	Probe Size [mm]	Probe Function
RTD01-9	TRL 70°	2.0	2x (25x15) FD.12mm	40x40x30	Detection
RTD01-10	TRL 70°	2.0 2x (Ø18) FD 8mm		40x40x30	Detection
RTD01-5	T 60°	1.5	32x22	40x40x30	Detection
RTD01-7	T 70°	1.5	32x18	40x40x30	Detection
RTD01-3 RTD01-4	T 45° TANDEM	1.5	32x25	40x40x30	Detection

19.4 Calibration blocks

50mm wide A2		
	Material	Carbon Steel
	Radius	100 mm
	Surface	Flat
	Purpose	Shear transducers: delay, index, and angle
50mm wide A1		
	Material	Carbon Steel
	Radius	25/50 mm
	Surface	Flat
	Purpose	Longitudinal transducers: delay, index, and angle
JRC-10722A		
	Material	Carbon Steel
	Thickness	100 mm
	Surface	Flat
	Purpose	Shear and longitudinal sensitivity
JRC-10729A		
	Material	Carbon Steel
	Thickness	165 mm
	Surface	Flat
	Purpose	TANDEM delay and sensitivity

19.5 Component to be inspected

ENIQ assembly 21, drawing JRC-10692B, see appendix 1. The test assembly contains 17 intended defects.

20 INSPECTION

20.1 Equipment Calibration

A comprehensive self-test routine was performed and evaluated in accordance with the inspection procedure (see 18) before and after the inspection. The recorded data files are stored together with the inspection data.

20.2 Transducer Calibration and Inspection Settings

All transducers were calibrated according to the ENIQ procedure. Inspection settings as defined under appendix D in the procedure was used.

20.3 Sensitivity

The inspection procedure requires that gain shall be added to the inspection sensitivity to compensate for the cladding. However, due to lack of information regarding the gain needed, no gain compensation was added to the inspection sensitivity. Instead, recordings were carried out at a number of different sensitivities in order to have data, which would compensate for the damping in the cladding.

In cases with saturated signals, a complementary inspection scan was performed with the gain reduced to reference level. Table 4 documents all relevant calibration reflectors, settings and inspection sensitivities.

		<u> </u>			
Probe Identity	Angle	Cal. block	Cal. reflector	Cal. Sensitivity	Inspection sensitivity
RTD01-9	70° TRL	JRC-	Ø3,2	80%	1) Cal + TM ^{#1}
	FD12	10722	at 10mm	of FSH	2) Cal + TM ^{#1} + 6 dB
RTD01-10	70° TRL	JRC-	Ø3,2	80%	1) Cal + TM ^{#1}
RIDUI-IU	FD8	10722	at 5mm	of FSH	2) Cal + TM ^{#1} + 6 dB
RTD01-5	T 60°	JRC-	Ø6,4	80%	1) Cal + TM ^{#1}
RID01-5		10722	at 35mm	of FSH	2) Cal + TM ^{#1} + 9 dB
RTD01-7	T 70°	JRC-	Ø6,4	80%	1) Cal + TM ^{#1} - 6 dB
RIDUI-7		10722	at 35mm	of FSH	2) Cal + TM ^{#1} + 6 dB
	459		~	00%	1) Cal + TM ^{#1}
RTD01-3	45°	JRC-	Ø8	80%	2) Cal + TM ^{#1} + 9 dB
RTD01-4	Tandem	10729	at 40mm	of FSH	3) Cal + TM ^{#1} + 15 dB

Table 20Sensitivity settings for detection probes

^{#1} TM = Transfer Measurement (see 20.4)

A general 6 dB (TM) was added to all the detection transducers. See also chapter 5.3, regarding transfer measurements.

20.4 Transfer measurements

It is not possible to make transfer measurements for the clad component as no clad calibration block exists.. Consequently the transfer measurements from the unclad block were used.

These measurements were performed using the two 45° transducers, comparing signal amplitudes from the calibration block JRC-10729A and the unclad ENIQ assembly 21. The nozzle base material did not show any divergences, but for the weld material a difference of 4 to 6dB was measured, compared with the calibration block. The measurements were performed in a 'static mode', it is assumed that in a 'dynamic mode' (i.e. scanning) there would also be a measurable difference in the base material, due to the rougher surface on the nozzle.

As for the inspection of the unclad ENIQ assembly 21 a transfer measurement factor TM of + 6 dB was added to all inspection sensitivities, see Table 20.

20.5 Scan patterns

The scan axis was defined as being perpendicular to the weld centre line and the index axis along the weld centre line. Scanning was performed using a series of bi-directional stepped raster patterns with a step of 0,5° in circumferential direction which equals just over 3 mm at the weld centre line.

20.6 Datum Convention

Co-ordinates are specified in the ENIQ procedure

21 EVALUATION

21.1 Detection according to procedure

Evaluation of detection was done according to the ENIQ procedure with evaluation criteria as below.

Table 21Procedure evaluation criteria

Transducer type	Evaluation criteria				
Shear wave probes	25% of reference level = 20% of full screen height				
Longitudinal probes	50% of reference level = 40% of full screen height				

An indication must exceed reference level on three consecutive scan-lines to be reported.

21.2 Detection of signals outside procedure

The inspection data is also evaluated for signals below the inspection procedure evaluation criteria in order to allow comparison with modelling results.

21.3 Unintended defects / false calls

As the main objective of the inspection was to get as much information from the intended defects as possible - at different sensitivity levels in order to compare with results from modelling - signals from unintended defects / false calls have not been examined.

21.4 Length and height sizing

No length and height sizing has been performed.

22 DEFECTS TO BE DETECTED

According to the Technical Justification, the maximum acceptable defect is 30 mm x 15 mm. The validation defect is one that must be detected with a high degree of confidence and which, when account is taken of the maximum uncertainty in the measured size, does not exceed the maximum acceptable defect size. The validation defect size is 20 mm in length and 10 mm in height.

23 SUMMARY OF RESULTS

A summary of the results can be found in Table 22. Detailed results from each flaw and transducer can be found in appendix 2.

23.1 Comments on the detection results

70°-TRL probes, inspection range 0-20 mm in depth

All defects positioned in the inspection range of the transducers have been detected, except defect 1, 2 and 3. These three defects are all PISC type-A notches with a size of 20 mm x 5 mm. For defect 1 a signal was detected below the evaluation criteria of the inspection procedure procedure.

60°-shear wave probe, inspection range 20-60 mm in depth

Two defects were fully in the inspection range for the 60° shear wave transducer, defect 14 and 15. Only defect 14 was detected, with amplitude just above the procedure reporting level (- 12 dB).

70°-shear wave probe, inspection range 20-60 mm in depth

Two defects were in the inspection range for the 70° shear wave transducer, defect 14 and 15. Both defects were detected within the evaluation criteria of the procedure

TANDEM set-up, inspection range 20-60 mm in depth

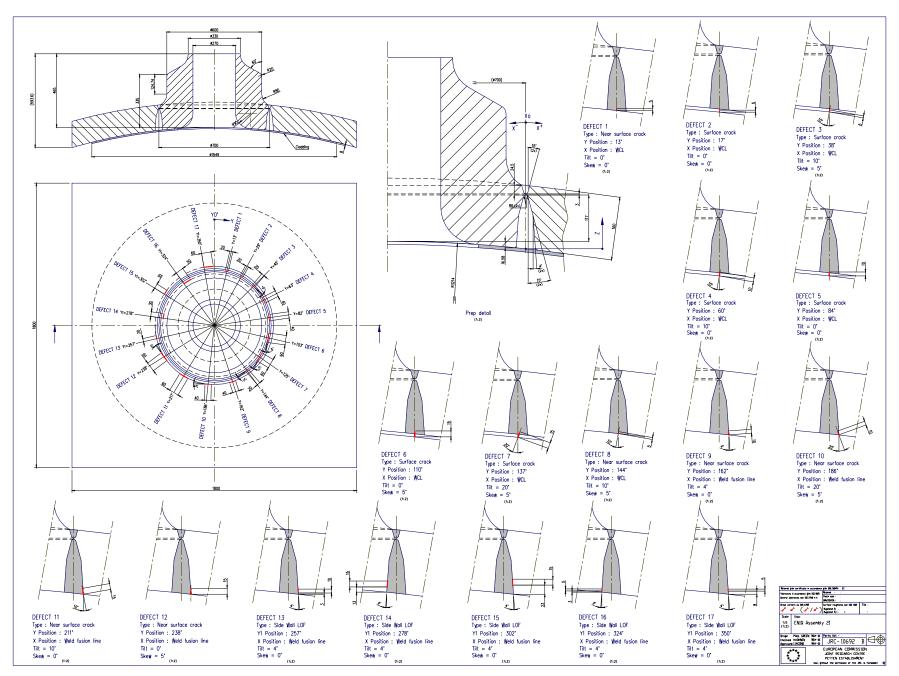
The procedure states an inspection range of 20 to 60 mm for the TANDEM. However, since the technique cannot give any position in depth, the inspection range will more or less depend on chosen focus depth and the size of the soundbeam field. Only defects 13, 14, 15 and 17 were detected within the evaluation criteria of the procedure.

Probe	Defect 1 (20 x 5 mm)	Defect 2 (20 x 5 mm)	Defect 3 (20 x 5 mm)	Defect 4 (40 x 10 mm)	Defect 5 (40 x 10 mm)	Defect 6 (60 x 15 mm)	Defect 7 (60 x 15 mm)	Defect 8 (20 x 5 mm)	Defect 9 (40 x 10 mm)
70 TRL FD8 NEG	- 9.1 dB	ND	ND	- 8.8 dB	- 6.8 dB	- 12.0 dB	<u>+ 4.5 dB</u>	<u>- 2.4 dB</u>	- 6.2 dB
70 TRL FD8 POS	- 8.0 dB	ND	ND	<u>- 0.3 dB</u>	<u>- 4.8 dB</u>	<u>- 1.6 dB</u>	ND	- 8.8 dB	<u>- 0.2 dB</u>
70 TRL FD12 NEG	- 6.2 dB	ND	ND	- 11.5 dB	<u>- 2.6 dB</u>	- 9.9 dB	<u>+ 4.8 dB</u>	+ 1.0 dB	- 6.4 dB
70 TRL FD12 POS	- 7.5 dB	ND	ND	<u>+ 1.4 dB</u>	<u>- 1.9 dB</u>	<u>- 1.3 dB</u>	- 10.4 dB	- 10.1 dB	<u>- 4.0 dB</u>
T60 NEG									
T60 POS									
T70 NEG									
T70 POS									
T45 TANDEM NEG	- 24.1 dB	ND	ND	- 24.8 dB	- 19.1 dB	- 14.7 dB	ND	ND	- 26.3 dB

Table 22Summary of maximum amplitude responses

Probe	Defect 10 (40 x 10 mm)	Defect 11 (60 x 15 mm)	Defect 12 (60 x 15 mm)	Defect 13 (20 x 10 mm)	Defect 14 (30 x 15 mm)	Defect 15 (30 x 15 mm)	Defect 16 (50 x 5 mm)	Defect 17 (60 x 5 mm)
70 TRL FD8 NEG	<u>- 5.5 dB</u>	- 7.7 dB	- 10.7 dB	- 7.9 dB	ND	ND	<u>- 0.9 dB</u>	- 10.5 dB
70 TRL FD8 POS	<u>+ 6.1 dB</u>	+ 1.9 dB	<u>- 2.1 dB</u>	<u>- 0.2 dB</u>	ND	ND	<u>- 3.5 dB</u>	- 11.9 dB
70 TRL FD12 NEG	- 7.7 dB	- 6.2 dB	- 15.7 dB	- 8.2 dB	- 10.1 dB	ND	<u>- 3.2 dB</u>	- 7.0 dB
70 TRL FD12 POS	<u>+ 7.9 dB</u>	- 0.8 dB	- 8.1 dB	<u>+ 3.7 dB</u>	<u>- 4.4 dB</u>	<u>- 4.6 dB</u>	<u>- 4.8 dB</u>	<u>- 6.0 dB</u>
T60 NEG					- 17.2 dB	- 13.6 dB	<u>- 7.2 dB</u>	-12.3 dB
T60 POS					- 11.5 dB	- 17.0 dB	ND	ND
T70 NEG					ND	<u>- 6.7 dB</u>	<u>- 5.4 dB</u>	<u>- 7.5 dB</u>
T70 POS					<u>- 9.1 dB</u>	- 15.0 dB	<u>- 10.1 dB</u>	- 14.1 dB
T45 TANDEM NEG	ND	- 23.9 dB	- 17.4 dB	<u>- 11.2 dB</u>	<u>+ 4.1 dB</u>	<u>- 5.3 dB</u>	- 16.9 dB	<u>- 11.4 dB</u>

ND: No Detection


Bold Underline: Detection within the procedure criteria (TRL: Ref level ÷ 6 dB, Shear: Ref level ÷ 12 dB)

Other numbers Detection under procedure evaluation criteria

APPENDICIES

APPENDIX 1

Drawing JRC-10692 B, ENIQ Assembly 21

APPENDIX 2

TABULATED RESULTS FOR THE INSIDE INSPECTION OF THE UN-CLAD TEST PIECE

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.		Circ Pos	s (x)	Axial (y)		Depth	Tilt	Skew		Commer	nts
No.	Start °/m	nm Stop °/r	nm Length %	/mm ^{mm}	Тор Тір і	nm Btm Tip	mm °	0			
1	11.36/69	9.4 14.64/8	9.4 3.28/20	0.0	0	5.0	0	0			
DETEC	TION	·				-	-				
File			Circ Pos (x)		(y) Pos.	Max. Amp.%	Probe Pos @	No. Scan	Est.	Depth	Signal/Noise
Nam	ne	Start °/mm	Stop °/mm	Length °/mm	mm	fsh	Max. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
Eniq2170tr	18neg01	11/67.2	14/85.5	3/18.3	1	47	13/19	2	-	6.5	20
Eniq2170tr	18pos01	11.5/70	14/85.5	2.5/15.5	2	36	13.5/-18	0	-	7.1	17.5
Eniq2170trl	12neg01	12.5/76	14/85.5	1.5/9.5	1	37	13/16	0	-	5.5	24
Eniq2170trl		12/73	14/85.5	2/12.5	2	37	13/-13	0	-	5.6	23
Eniq2145ta	anneg01	10.5/64	15.5/95	5/31	-17	19	14.5/121	1	_	-	15
0/7/1/0											
SIZING File	e		Circ Pos (x)		(y) Pos.	Tip	Pos.	Circ Pos (x)	°/mm	Comn	nents
Nam	ne	Start °/mm	Stop °/mm	Length °/mm		Top μs/mm	Btm μs/mm	##			
Eniq2120)pcs01	11.3/69	14/85.5	2.5/16.5	1.5	-	3.79/5.4	13/79		Lat. @	3.29µs
Eniq2140	-	11.4/69.6	14.4/88	3/18.4	2	-	7.0/5.1	12.9/78	.8	Lat. @	

Comments:

Number of consecutive scan lines above reporting threshold (16% fsh shear/40% fsh TRL). ## Circumferential cursor positions at where depth measurements were obtained.

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(x)		Axial (y)		Depth		Tilt	Skew		Commer	its
No.	Start °/m	nm	Stop °/m	Im Length °/	'mm	mm	Top Tip n	nm Btm Tip	mm	0	0			
8	142.36/86	69.6	145.64/88	39.6 3.28/20	0.0	0	0	5.0		10	5			
DETEC	TION			-				-						
File				Circ Pos (x)			(y) Pos.	Max. Amp.%		be Pos @	No. Scan	Est.	Depth	Signal/Noise
Nam	ne	Star	rt °/mm	Stop °/mm	Len	gth °/mm	mm	fsh	Ма	ax. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
Eniq2170tr	18neg01	141.	5/864.4	144/880	2	.5/15.6	0.5	+100		-	8	-	6.0	<28
Eniq2170tr	l8neg02*	14	2/867	144/880		2/13	1	65	14	43.5/16	4	-	5.6	25
Eniq2170trl	12neg01	14	2/867	145.5/883	2	.5/15.3	2	85	14	43.5/16	5	-	5.0	31
Eniq2145ta	anneg01	140).5/858	145.5/889		5/31	-19.5	17	14	4.5/121	1	-	-	14
SIZING														
File				Circ Pos (x)			(y) Pos.	Tip	Pos.		Circ Pos (x)	°/mm	Comn	nents
Nam	ne	Star	rt °/mm	Stop °/mm	Len	igth °/mm	mm	Top μs/mm	Btr	m μs/mm	##			
Eniq2120	0pcs01	141.	7/865.6	144.4/882	2	.7/16.4	1.5	-	3	8.76/5.3	143.1/87	74	Lat. @	3.31µs
Eniq2140)pcs01	141.	7/865.6	144.7/883.9	;	3/18.3	4	-	7	.06/5.8	143.2/87	4.8	Lat. @	6.78μs

Comments:

Number of consecutive scan lines above reporting threshold (16% fsh shear/40% fsh TRL). ## Circumferential cursor positions at where depth measurements were obtained.

* Scan performed @ reference to 80% fsh only i.e. no +6dB correction.

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.		Circ Pos	s (x)	Axial (y)		Depth	Tilt	Skew		Commer	nts
No.	Start °/m	nm Stop °/r	nm Length °/	mm ^{mm}	Top Tip r	nm Btm Tip	mm °	0			
9	158.73/96	69.6 165.3/10	09.6 6.55/40	.0 +FF (+25)	0	10.0	4	0			
DETEC						_		-			
File			Circ Pos (x)		(y) Pos.	Max. Amp.%	Probe Pos @	No. Scan	Est.	Depth	Signal/Noise
Nam	ne	Start °/mm	Stop °/mm	Length °/mm	mm	fsh	Max. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
Eniq2170tr	l8neg01	158/965	164/1002	6/37	24	37	159.5/40	0	-	6.0	18
Eniq2170tr	18pos01	158.5/968	164/1002	5.5/34	23	71.5	163.5/5	11	-	6.7	23.5
Eniq2170trl	12nea01	159/971	165/1008	6/37	24	23	159.5/37	0	_	4.7	19
Eniq2170trl		163/996*	164.5/1005	1.5/9	20	57	164/5	2	-	5.7	29
Eniq2145ta	anneg01	160/977.4	165.7/1012	5.7/34.6	-2.4	32	162.5/138	12	-	-	20
SIZING											
File			Circ Pos (x)		(y) Pos.	Tip	Pos.	Circ Pos (x)	°/mm	Comn	nents
Nam	ne	Start °/mm	Stop °/mm	Length °/mm	mm	Top μs/mm	Btm μs/mm	##			
Eniq2120)pcs01	158.4/968	164.1/1002.4	5.7/34.4	24	-	4.62/9.5	161.4/9	86	Lat. @	3.31µs
Eniq2140)pcs01	158.7/969.4	164.4/1004.3	5.7/34.9	25	-	7.58/10.0	161.7/98	7.8	Lat. @	
			 								

Comments:

Number of consecutive scan lines above reporting threshold (16% fsh shear/40% fsh TRL).
Circumferential cursor positions at where depth measurements were obtained.
* Low signal amplitude @ start of flaw hence short length recorded from –6dB measurement.

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(x)	Axial (y)	Depth	Tilt	Skew		Commer	nts
No.	Start °/m	ım	Stop °/m	m Length °/	mm ^{mm}	Top Tip r	nm Btm Tip	mm °	0			
10	182.7/101	16.2 1	189.2/115	6.2 6.55/40	.0 +FF (+25)	0	10.0	20	5			
DETEC		1					-					-
File				Circ Pos (x)		(y) Pos.	Max. Amp.%	Probe Pos @	No. Scan	Est.	Depth	Signal/Noise
Nam	ne	Start	t °/mm	Stop °/mm	Length °/mn	ו mm	fsh	Max. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
Eniq2170tr	18neg01	184/	/1124	188/1148	4/24	24	17	186/42	0	-	6.4	12.5
Eniq2170tr			1117.9	187/1142	4/24.1	21.5	+100	-	13	-	7.1	<28
Eniq2170tr	18pos02*	183.5	5/1121	187/1142	3.5/21	21	62	185/1	6	-	7.5	28
Eniq2170trl	12neg01	183/	/1118	187.5/1145	4.5/27	21	13	185.5/43	0	-	8.0	16
Eniq2170trl	12pos01	183.5	5/1121	187.5/1145.4	4/24.4	22	+100	-	12	-	5.8	<28
Eniq2170trl	12pos02*	184/	/1124	188/1148	4/24.4	23	55	185.5/7	5	-	5.9	27
SIZING												
File	9			Circ Pos (x)		(y) Pos.	Tip	Pos.	Circ Pos (x)	°/mm	Comn	nents
Nam	ne	Start	t °/mm	Stop °/mm	Length °/mn	n mm	Top μs/mm	Btm μs/mm	##			
Eniq2120)pcs01	182.3/	/1113.6	188/1148.4	5.7/34.8	24	-	4.56/9.2	185.5/11	33	Lat. @	3.31µs
Eniq2140)pcs01	182.8/	/1116.7	188.5/1151.5	5.7/34.8	24	-	7.5/9.4	185.8/11	35	Lat. @	6.78µs

Comments:

Number of consecutive scan lines above reporting threshold (16% fsh shear/40% fsh TRL).
Circumferential cursor positions at where depth measurements were obtained.
* Scan performed @ reference to 80% fsh only i.e. no +6dB correction.

INTENDED FLAW DIMENSIONS/POSITIONS

	Circ F	Pos (x)		Axial (y)		Depth				Commer	nts
Start °/m	nm Stop	°/mm	Length °/	mm ^{mm}	Top Tip r	mm Btm Tip	mm °	0			
	63.9 215.9/	1318.9	9.82/60	.0 +FF (+25)	0	15.0	10) 0			
						-			-		-
		Ci	rc Pos (x)					•	Est.	Depth	Signal/Noise
ne	Start °/mn	n Si	top °/mm	Length °/mm	mm	fsh	Max. °/m	m Lines #	Top mm	Btm mm	Ratio dB's
18neg01	205.5/125	5 21	4.5/1310	9/55	30	32	210.5/46	6 0	-	6.0	17
rl8pos01	208.5/127	4 21	4.5/1310	6/36	24	87.8	210.5/-2	. 13	-	9.4	27
12neg01	209 5/128	0 21	4 5/1310	5/30	25	26	210 5/6	0		13.2	22
				9/55	24	69			-	16.7	29
anneg01	208/1270.	6 21	3.5/1304	5.5/33.4	4	20	210/143	6 4	-	-	19
		Ci	rc Pos (x)		(y) Pos.	Tip	Pos.	Circ Pos (x) °/mm	Comr	nents
ne	Start °/mn	n Si	top °/mm	Length °/mm	mm	Top μs/mm	Btm μs/m	ım ##			
0pcs02	206.4/126	1 21	4.8/1312	8.4/51	27	-	5.51/13	3 210.7/1	1287	Lat. @	3.31µs
0pcs01	206.1/125	9 21	4.8/1312	8.8/53	28	-	8.58/15	5 210.4/12	285.3	Lat. @	6.78µs
	206.9/120 TION ene rl8neg01 rl8pos01 l12neg01 l12pos01 anneg01	Start °/mm Stop 206.9/1263.9 215.9/ TION 215.9/ TION Start °/mn Start °/mn 205.5/125 rl8pos01 205.5/125 rl8pos01 209.5/128 112pos01 206.5/126 anneg01 208/1270. anneg01 208/1270. anneg01 208/1270. Start °/mn Start °/mn Dpcs02 206.4/126	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Start °/mm Stop °/mm Length °/ 206.9/1263.9 215.9/1318.9 9.82/60 TION Circ Pos (x) ne Start °/mm Stop °/mm Start °/mm Stop °/mm 18neg01 205.5/1255 214.5/1310 rl8neg01 205.5/1255 214.5/1310 12120001 208.5/1274 214.5/1310 rl12neg01 209.5/1280 214.5/1310 1215.5/1316 14.5/1310 nameg01 208/1270.6 213.5/1304 14.5/1304 14.5/1310 nameg01 208/1270.6 213.5/1304 14.5/1310 14.5/1310 ne Start °/mm Stop °/mm 15.	$\begin{array}{ c c c c c } \hline Start \ ^{\circ}/mm & Stop \ ^{\circ}/mm & Length \ ^{\circ}/mm & P.82/60.0 & +FF & (+25) \\ \hline 206.9/1263.9 & 215.9/1318.9 & 9.82/60.0 & +FF & (+25) \\ \hline $1200 \\ \hline $1200 \\ Pe & $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Comments:

Number of consecutive scan lines above reporting threshold (16% fsh shear/40% fsh TRL). ## Circumferential cursor positions at where depth measurements were obtained.

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.		Circ Pos	(x)	Axial (y)		Depth	Tilt	Skew		Commer	nts
No.	Start °/n	nm Stop °/n	nm Length %	mm ^{mm}	Top Tip r	nm Btm Tip	°	0			
12	233.1/142	23.9 242.9/14	83.8 9.82/60	0.0 +FF (+25)	0	15.0	0	5			
DETEC					-		-		-		-
File	-		Circ Pos (x)		(y) Pos.	Max. Amp.%	Probe Pos @	No. Scan	Est.	Depth	Signal/Noise
Nan	ne	Start °/mm	Stop °/mm	Length °/mm	mm	fsh	Max. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
Eniq2170t	rl8neg01	232.5/1420.3	241.5/1475	9/55	31	48	240.5/53	3	-	8.0	20
Eniq2170t	rl8pos01	233/1423	238.5/1457	5.5/34	26	55.4	236/8	4	-	6.5	23
Eniq2170tr	12nea01	233/1423	241/1472	8/49	30	35	240.5/47	0	_	6.1	23.5
Eniq2170tr		233/1423	240.5/1469	7.5/46	28	46	233.5/19	1	-	3.3	25
Eniq2145t	anneg01	232/1417	240/1466	8/49	0	37	238.5/136	6	-	-	24
SIZING											
File			Circ Pos (x)		(y) Pos.	Tip	Pos.	Circ Pos (x)) °/mm	Comn	nents
Nan	ne	Start °/mm	Stop °/mm	Length °/mm	mm	Top μs/mm	Btm μs/mm	##			
Eniq212	Dpcs02	232.7/1421.5	241.7/1476.5	9/55	26	-	5.56/13.2	237.6/14	51.5	Lat. @	3.31µs
Eniq2140	Opcs01	232.9/1422.7	241.3/1474	8.4/51.3	28	-	8.6/15.6	237.1/144	48.4	Lat. @	

Comments:

Number of consecutive scan lines above reporting threshold (16% fsh shear/40% fsh TRL). ## Circumferential cursor positions at where depth measurements were obtained.

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.		Circ Pos	; (x)	Axial (y)		Depth	Tilt	Skew		Commer	nts
No.	Start °/n	nm Stop °/n	nm Length °/	mm ^{mm}	Top Tip r	nm Btm Tip	mm °	0			
13	257/156	9.9 260.3/15	90.1 3.27/20	.0 +FF (+25)	3.0	13.0	4	0			
DETEC										.	
File			Circ Pos (x)		(y) Pos.	Max. Amp.%	Probe Pos @	No. Scan		Depth	Signal/Noise
Nam	le	Start °/mm	Stop °/mm	Length °/mm	mm	fsh	Max. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
Eniq2170tr	l8neg01	255.5/1561	258.5/1579	3/18	23	21	257/40	0	-	6.0	13
Eniq2170tr		255.5/1560.8	259/1582.1	3.5/21.3	21.5	+100	-	9	-	8.4	<28
Eniq2170tr	8pos02*	256.5/1567	259.5/1585	3/18	23	82	258.5/0	7	-	8.2	26
Enig2170trl	12neg01	256/1564	258.5/1579	2.5/15	20	30	258/57	0	-	13.5	23.5
Eniq2170trl		255.5/1560.8	259.5/1585.2	4/24.4	22.5	+100	-	10	6.4	16.6	<28
Eniq2170trl	12pos02*	256.5/1567	259.5/1585	3/18	22	72	258/5 & -24	6	6.3	16.6	29
Eniq2145ta	anneg01	255.5/1560.8	258.5/1579	3/18.2	-3	44	257.5/136	8	-	-	24
SIZING											
File)		Circ Pos (x)		(y) Pos.	Tip	Pos.	Circ Pos (x)) °/mm	Comn	nents
Nam	ne	Start °/mm	Stop °/mm	Length °/mm	mm	Top μs/mm	Btm μs/mm	##			
Eniq2120	pcs02¤	255.8/1562.6	258.8/1580.9	3/18.3	22	3.51/3.4	-	257.6/157	73.6	Lat. @	3.31µs
Eniq2140p	ocs01¤¤	255.3/1559.5	258.6/1579.7	3.3/20.2	22	-	8.5/15.1	257.4/157	72.4	Lat. @	

Comments:

Number of consecutive scan lines above reporting threshold (16% fsh shear/40% fsh TRL).

Circumferential cursor positions at where depth measurements were obtained. * Scan performed @ reference to 80% fsh only i.e. no +6dB correction.

¤ Top tip in lateral wave depth estimated.

xx Tip identification difficult satellite indications present (phases used to identify btm tip response).

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(x)		Axial (y)		Depth		Tilt	Skew		Commen	ts
No.	Start °/n	nm	Stop °/m	nm Length	°/mm	mm	Top Tip r	nm Btm Tip	mm	o	0			
14	278/169	8.2	282.9/172	28.1 4.91/	30	-FF (-25)	13.0	28.0		4	0			
DETEC	TION													
File	-			Circ Pos (x)			(y) Pos.	Max. Amp.%		be Pos @	No. Scan	Est.	Depth	Signal/Noise
Nam	ne	St	art °/mm	Stop °/mm	Ler	ngth °/mm	mm	fsh	Ma	ax. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
Eniq2170tr	rl8pos01	27	79/1704	283.5/1732		4.5/28	-15	46	28	30.5/-45	2	10.9	-	22
Eniq2170trl	12neg01	27	8.5/1701	284/1735	_	5.5/34	-20	22	2	283/26	0	16.7		9
Eniq2170trl			79/1704	284/1735		5/31	-17	70		32.5/-52	10	12.6	-	21
)mag01	07	9.5/1707	284/1735		4.5/27	-18	27		82.5/40	8		32.9	15.5
Eniq2160 Eniq2160			9.5/1707 8/1698.2	284.5/1738		4.5/27 6.5/40	-10 -17	27		52.5/40 2/-42&-68	0 13	- 14.3	29.3	15.5
Lingzioc	/p0001	21	0/1000.2	204.0/1700		0.0/+0	17	20	202	. 420 00	10	14.0	20.0	
Eniq2145ta	anneg01	27	6.5/1689	285.5/1744		9/55	-33	+100		-	21	-	-	<28
Eniq2145ta	nneg03*	27	78/1698	284.5/1738		6.5/40	-33	79	2	82/116	18	-	-	24
SIZING														
File				Circ Pos (x)			(y) Pos.	Tip	Pos.		Circ Pos (x)	°/mm	Comm	nents
Nam	ne	St	art °/mm	Stop °/mm	Ler	ngth °/mm	mm	Top μs/mm	Btr	m μs/mm	##			
Eniq2120p	ocs02 <mark>¤¤</mark>	279	.2/1705.5	284.9/1740.4	5	5.7/34.9	-21	5.61/13.4		-	282.7/17	'27	Lat. @ 3	3.31µs
Eniq2140p	ocs01¤¤	278	5.5/1701.3	285.1/1741.6	6	6.6/40.3	-18	8.28/14.0		-	282.7/17	27	Lat. @ (6.78μs
Eniq2170p	ocs01¤¤		-	-		-	-20	-		5.51/30.1	281.6/17	20	Lat. @ 1	1.69µs
"			"	"		"	"	"		.23/37.3¤	"		"	
Eniq21110	pcs03¤¤		-	-		-	-22	-		.29/30.3	282.2/172	23.9	Lat. @ 1	8.64µs
-			"	"		"	"	"	22.	.63/37.8 <mark>¤</mark>	"			

Comments:

Number of consecutive scan lines above reporting threshold (16% fsh shear/40% fsh TRL).

Circumferential cursor positions at where depth measurements were obtained. * Scan performed @ reference to 80% fsh –3dB correction.

^a Possible alternative tip measurements due to satellite indications.

ⁿⁿ Tip identification difficult satellite indications present (phases used to identify btm tip response).

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(x)	Axial (y)		Depth	Tilt	Skew		Commer	nts
No.	Start °/m	nm	Stop °/m	nm Length °/	mm ^{mm}	Top Tip r	nm Btm Tip	°	0			
15	302/184	4.8	306.9/187	74.7 4.91/3	0 +FF (+25)	23.0	38.0	4	0			
DETEC	TION			-								
File				Circ Pos (x)		(y) Pos.	Max. Amp.%	Probe Pos @	No. Scan	Est.	Depth	Signal/Noise
Nam	ne	Sta	art °/mm	Stop °/mm	Length °/mm	mm	fsh	Max. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
Eniq2170trl	12pos01	300	0.5/1836	305/1863	4.5/27	23	54	302/-24	8	17.1	-	18
Eniq2160)pos01	299	9.5/1829	305/1863	5.5/34	20	28	301.5/-45	6	-	38.0	15
Eniq2145ta	anneg01	300)/1832.6	305.5/1866.2	5.5/33.6	9.5	+100	-	16	-	-	<28
Eniq2145ta	inneg02*	30	1/1839	305/1863	4/24	12	85	303.4/166	13	-	-	31
SIZING												
File				Circ Pos (x)		(y) Pos.	Tip	Pos.	Circ Pos (x	:) °/mm	Com	ments
Nam	ne	Sta	art °/mm	Stop °/mm	Length °/mm	mm	Top μs/mm	Btm μs/mm	##			
Eniq2170p	ocs01¤¤		-	-	-	22	13.91/22.2	17.54/38.6	302.8/1850		Lat. @	11.69µs
" 	0.1		"	"	"	"	"	"	303.3/1853			"
Eniq21110	pcsu4¤¤		-	-	-	21	20.06/21.8	22.74/38.8	304.4/1859	top tip	Lat. @	18.64µs

Comments:

"

Number of consecutive scan lines above reporting threshold (16% fsh shear/40% fsh TRL).

Circumferential cursor positions at where depth measurements were obtained.

* Scan performed @ reference to 80% fsh only i.e. no +6dB correction.

¤ Different cirumferential positions used for top and bottom tip identification.

xx Tip identification difficult satellite indications present (phases used to identify btm tip response).

303.8/1856 btm ¤

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(X)		4	Axial (y)		Dep	pth		Tilt	Skew	v		Commen	its
No.	Start °/m	nm	Stop °/m	nm	Length °/	mm	mm	Top Tip r	nm	Btm Tip	mm	0	0				
16	324/1979	9.2	332.2/202	29.2	8.2/50) –	FF (-25)	3.0		8.0		4	0				
DETEC	TION			-													
File				Circ	Pos (x)			(y) Pos.	Max	. Amp.%		Pos @	No. Sca		Est. [Depth	Signal/Noise
Nam	ne	Sta	art °/mm	Sto	p °/mm	Leng	th °/mm	mm		fsh	Max.	°/mm	Lines a	# -	Top mm	Btm mm	Ratio dB's
Enig2170tr	l8neg01	32	23/1973	332	2/2028	ç	9/55	-20		45	328	.5/6	2		_	9.3	13
Eniq2170tr	18pos01	324	4/1979.2	334	.5/2043	10).5/64	-20		38	331.	5/-44	0		-	8.5	14
Eniq2170trl	12neg01	32	3.5/1976	332	.5/2031	Ę	9/55	-18		45	325	5/19	0		-	13.3	12
Eniq2170trl	12pos01	32	4/1979.2	334	.5/2043	10).5/64	-18		44	333.	5/-59	3		-	15.4	11
Eniq2145ta	anneg01	32	5.5/1988	332	.5/2031	7	7/43	-39		65	328.1	1/102	19		-	-	29
SIZING																	
File	9			Circ	Pos (x)			(y) Pos.		Tip	Pos.		Circ Pos	(x) °/	/mm	Comm	nents
Nam	ne	Sta	art °/mm	Sto	p °/mm	Leng	ith °/mm	mm	То	p μs/mm	Btm (us/mm		ŧ#´			
Eniq2120pc	cs03¤/¤¤	320	.9/1960.3	323.3	3/1974.9	2.4	4/14.6	-21	3	.54/3.7		-	322.1/	1967	.6	Lat. @ 3	3.31µs
Eniq2140pc	cs01¤/¤¤	32	0.2/1956	342.9	9/2094.7	22.7	7/138.7	-19	Lat.[Disturbanc e	7.4	3/9.0	326.5/	1994	.5	Lat. @	

Comments:

Number of consecutive scan lines above reporting threshold (16% fsh shear/40% fsh TRL).
Circumferential cursor positions at where depth measurements were obtained.
¤ Top tip in lateral wave depth estimated.
¤¤ Tip identification difficult in a blind situation due to satellite indications.

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(x)		Axial (y)		Depth	Tilt	Skew		Commer	nts
No.	Start °/n	nm	Stop °/m	m Lengt	n °/mm	mm	Top Tip r	mm Btm Tip	°	0			
17	350/213	38	359.8/219	7.9 9.8	/60	+FF (+25)	8.0	13.0	4	0			
DETEC	TION												
File				Circ Pos (x	()		(y) Pos.	Max. Amp.%	Probe Pos @		Est.	Depth	Signal/Noise
Nam	ne	Sta	rt °/mm	Stop °/mn	n Lei	ngth °/mm	mm	fsh	Max. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
Eniq2170tr	18neg01	349	.5/2135	359/2193		9.5/58	17	49	350.5/39	2	-	7.9	22
Eniq2170tr	rl8pos01	350	0/2138	359.5/219	6	9.5/58	19	54	355/-4	3	-	8.5	23.5
Eniq2170trl	12neg01	350	0/2138	359/2193		9/55	17	41	351.5/50	0	-	12.0	26
Eniq2170tr	12pos01	350	.5/2141	359.5/219	6	9/55	20	90	357/-19	19	-	14.4	28
Eniq2145ta	anneg01	350	.5/2141	359/2193		8.5/52	2	84	357/145	22	-	-	31
SIZING													
File				Circ Pos ()	()		(y) Pos.	Tip	Pos.	Circ Pos (x)) °/mm	Comr	nents
Nam	ne	Sta	rt °/mm	Stop °/mn	n Lei	ngth °/mm	mm	Top μs/mm	Btm μs/mm	##´			
Eniq2120	0pcs03	349	.5/2135	360/2199		10.5/66	18	4.07/7.0	-	359.2/21	94	Lat. @	3.31µs
Eniq2140)pcs01	349.0	6/2135.6	359.5/219	6 9	9.9/60.4	21	Lat.Disturbanc e	8.2/13.6	355.6/217	72.2	Lat. @	

Comments:

Number of consecutive scan lines above reporting threshold (16% fsh shear/40% fsh TRL). ## Circumferential cursor positions at where depth measurements were obtained. ADDITONAL ANALYSIS OF DEFECT 14 AND 15.

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.		Circ P	os (x)		Axial (y)		Depth	Tilt	Skew		Commer	ts
No.	Start °/m	nm Stop ^c	/mm Len	gth °/mn	n ^{mm}	Top Tip r	nm Btm Tip	°	0			
14	278/169	8.2 282.9/1	728.1 4	.91/30	-FF (-25)	13.0	28.0	4	0			
DETEC	TION	-	-					-				
File			Circ Pos	s (x)		(y) Pos.	Max. Amp.%	Probe Pos @		Est.	Depth	Signal/Noise
Nam	ne	Start °/mm	Stop °/r	nm L	ength °/mm	mm	fsh	Max. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
Eniq2170tr	18pos01	279/1704	283.5/1	732	4.5/28	-15	46	280.5/-45	2	10.9	-	22
Eniq2170trl	12neg01	278.5/1701	284/17	35	5.5/34	-20	22	283/26	0	16.7	-	9
Eniq2170trl		279/1704	284/17		5/31	-17	70	282.5/-52	10	12.6	-	21
Eniq2170	~	277/1692	283.5/1		6.5/40	-19	55	282/58	19#		28.3	10
Eniq2170		279/1704	284/17		5/31	-16	82	282/-52	16#	13.0		12
Eniq2160	•	279.5/1707			4.5/27	-18	27	282.5/40	8	-	32.9	15.5
Eniq2160		278/1698.2			6.5/40	-17	29	282/-42&-68		14.3	29.3	17
Eniq2145ta	ÿ	276.5/1689			9/55	-33	+100	-	21	-	-	<28
Eniq2145ta	inneg03*	278/1698	284.5/1	738	6.5/40	-33	79	282/116	18	-	-	24
SIZING												
File			Circ Pos	s (x)		(y) Pos.	Tip	Pos.	Circ Pos (x)	°/mm	Comn	nents
Nam	ne	Start °/mm	Stop °/r	nm L	ength °/mm	mm	Top μs/mm	Btm μs/mm	##			
Eniq2120p	ocs02¤¤	279.2/1705.	5 284.9/17	40.4	5.7/34.9	-21	5.61/13.4	-	282.7/17	27	Lat. @	3.31µs
Eniq2140p	ocs01¤¤	278.5/1701.	3 285.1/17	41.6	6.6/40.3	-18	8.28/14.0	-	282.7/17	'27	Lat. @	6.78μs
Eniq2170p	ocs01¤¤	-	-		-	-20	-	15.51/30.1	281.6/17	'20	Lat. @ 1	1.69µs
"			"		"	"	"	17.23/37.3¤	"		"	<u>.</u>
Eniq21110	pcs03¤¤	-	-		-	-22	-	21.29/30.3	282.2/172	23.9	Lat. @ 1	8.64µs
"		-	"		"	"	"	22.63/37.8¤	"		"	

Comments:

Number of consecutive scan lines above reporting threshold (16% fsh shear/40% fsh TRL).

Number of consecutive scan lines above reporting threshold (16% fsh shear/40% fsh TRL) down to noise level (21% fsh for pos and 17% fsh for neg)

Circumferential cursor positions at where depth measurements were obtained.

* Scan performed @ reference to 80% fsh –3dB correction.

^a Possible alternative tip measurements due to satellite indications.

^{xx} Tip identification difficult satellite indications present (phases used to identify btm tip response).

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.		Circ Pos (x)		Axial (y)	De	pth	Tilt	Skew	Comments
No.	Start °/mm	Stop °/mm	Length °/mm	mm	Top Tip mm	Btm Tip mm	0	0	
14	278/1698.2	282.9/1728.1	4.91/30	-FF (-25)	13.0	28.0	4	0	

DEFECT LENGTH SIZING SUMMARY TABLE

File		Circ Pos (x)		Circ F	Pos / Length (x)	Error	Comments
Name	Start °/mm	Stop °/mm	Length °/mm	Start °/mm	Stop °/mm	Length °/mm	
Eniq2145tanneg01	276.5/1689	285.5/1744	9/55	-1.5/-9.2	+2.6/+15.9	+4.09/25	

DEFECT HEIGHT SIZING/Y POSITION SUMMARY TABLE

File	(y) Pos.	(y)	Tip I	⁵ 0S.	Tip Pos	s. Error	Comments
Name	mm	Pos.Error mm	Top mm	Btm mm	Top mm	Btm mm	
Eniq2120pcs02	-21	4	13.4	-	+0.4	-	
Eniq21110pcs03	-22	4	-	37.8	-	+9.8	

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(x)		Axial (y)		Depth	Tilt	Skew		Commer	nts
No.	Start °/m	nm	Stop °/m	nm Lengt	h °/mm	mm	Top Tip r	nm Btm Tip	mm °	0			
15	302/1844	4.8	306.9/187	74.7 4.9	1/30	+FF (+25)	23.0	38.0	4	0			
DETEC	TION												
File	-			Circ Pos (x)		(y) Pos.	Max. Amp.%	Probe Pos @		Est.	Depth	Signal/Noise
Nam	ne	Sta	art °/mm	Stop °/mr	n Le	ength °/mm	mm	fsh	Max. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
Eniq2170tr	112pos01	30	0.5/1836	305/1863	;	4.5/27	23	54	302/-24	8	17.1	-	18
Eniq2160)pos01	29	9.5/1829	305/1863	3	5.5/34	20	28	301.5/-45	6	-	38.0	15
Eniq2170)neg01	30	0.5/1836	305/1863	5	4.5/27.5	22	41	303/142	11	25.0	44.0	9
Eniq2170	pos02*	30	0.5/1836	305/1863		4.5/27.5	18	60	303/-76	12	-	-	12
Eniq2145ta	5		0/1832.6	305.5/1866		5.5/33.6	9.5	+100	-	16	-	-	<28
Eniq2145ta	anneg02*	30	01/1839	305/1863	3	4/24	12	85	303.4/166	13	-	-	31
SIZING								1					I
File				Circ Pos (x)		(y) Pos.	Tip	Pos.	Circ Pos (x)) °/mm	Comn	nents
Nan	ne	Sta	art °/mm	Stop °/mn	n Le	ength °/mm	mm	Top μs/mm	Btm μs/mm	##			
Eniq2170	ocs01¤¤		-	-		-	22	13.91/22.2	17.54/38.6	302.8/185 tip	0 top	Lat. @ 1	I1.69μs
"			"	"		"	"	"	"	303.3/1853	btm ¤	"	1
Eniq21110	pcs04¤¤		-	-		-	21	20.06/21.8	22.74/38.8	304.4/185 tip	9 top	Lat. @ 1	l8.64μs
"			"	=		"	"	"	"	303.8/1856	btm ¤	"	

Comments:

Number of consecutive scan lines above reporting threshold (16% fsh shear/40% fsh TRL).

Circumferential cursor positions at where depth measurements were obtained.

* Scan performed @ reference to 80% fsh only i.e. no +6dB correction. ¤ Different cirumferential positions used for top and bottom tip identification.

^{xx} Tip identification difficult satellite indications present (phases used to identify btm tip response).

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.		Circ Pos (x)		Axial (y)	De	pth	Tilt	Skew	Comments
No.	Start °/mm	Stop °/mm	Length °/mm	mm	Top Tip mm	Btm Tip mm	0	0	
15	302/1844.8	306.9/1874.7	4.91/30	+FF (+25)	23.0	38.0	4	0	

DEFECT LENGTH SIZING SUMMARY TABLE

File		Circ Pos (x)		Circ I	Pos / Length (x)	Error	Comments
Name	Start °/mm	Stop °/mm	Length °/mm	Start °/mm	Stop °/mm	Length °/mm	
Eniq2160pos01	299.5/1829	305/1863	5.5/34	-2.5/-15.8	-1.9/-11.7	+0.59/+4.0	

DEFECT HEIGHT SIZING/Y POSITION SUMMARY TABLE

File	(y) Pos.	(y)	Tip	Pos.	Tip Po:	s. Error	Comments
Name	mm	Pos.Error mm	Top mm Btm mm		Top mm	Btm mm	
Eniq21110pcs04	21	-4	21.8	38.8	-1.2	+0.8	

FALSE CALLS

File		Circ Pos (x)		(y) Pos.	Max. Amp.%	Probe Pos @	No. Scan	Est. I	Depth	Signal/Noise
Name	Start °/mm	Stop °/mm	Length °/mm	mm	fsh	Max. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
Eniq2145tanneg01	267.5/1634	271.5/1658.5	4/24.5	-33	59	270/119	12	-	-	16
Eniq2170trl8pos01	285.5/1744	287.5/1756	2/12	27	20	287/7	3	-	7.2	10.5
Eniq2145tanneg01	295/1802	299.5/1829.5	4.5/27.5	-30	26	296.6/117	8	-	-	21
Eniq2170trl8pos01	320.5/1957.8	322.5/1970	2/12.2	-14	19.5	321/-40	3	-	9.4	9
Eniq2170trl8neg01	340/2076.9	342/2089.2	2/12.3	-24	24	341.5/0	3	-	8.8	13
Eniq2170trl12pos01	342/2089.2	343.5/2098	1.5/9.2	23	34	343/-23	3	-	16.8	20.5

UNINTENTED FLAWS / FALSE CALLS

APPENDIX 3

TABULATED RESULTS FOR THE OUTSIDE INSPECTION OF THE CLAD TEST PIECE

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(x)			Axial (y)		Dep	oth		Tilt	Skew		Commer	nts
No.	Start °/m	m	Stop °/m	ım	Length °/mm		mm	Top Tip r	nm	Btm Tip	mm	0	0			
1	11.36/69	.4	14.64/89).4	3.28/20	0.0	0	155.0		160.0)	0	0			
DETEC	TION	· · · ·							-							
File	e		c Pos (x)			(y) Pos.	. Max. Amp.%		-		No. Scan	Est. I	Depth	Signal/Noise		
Nam	Name Start °/mm Stop °/mm Le					Len	igth °/mm	mm		fsh		ix. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
ENIQ_04_4	_04_45_sh_03 12.5/76.4 15.0/91.6				2	.5/15.3	-2.0	-2.0 97.5		14	.0/85.5	12	-	164.5	14.0	
			.0/67.2	16	6.0/97.7	5	.0/30.5	+3.0		31.3	13	8.5/82.5	6	-	156.4	11.0
ENIQ_04_45 1	NIQ_04_60_sh_03 11.0/67.2 16.0/97		.5/100.8	5.0/30.5		-12.0		46.3	14.0/85.5		7	-	-	15.0		

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(x)			Axial (y)		De	pth		Tilt	Skew		Commer	its
No.	Start °/m	ım	Stop °/m	m	Length °/mm		mm	Top Tip r	nm	Btm Tip	mm	o	o			
2	27.36/16	7.1	30.64/187	7.2	3.28/20	.0	0.0	163.0		168.0)	0	0			
DETEC	TION															
File	è			Circ	: Pos (x)			(y) Pos.	Max	x. Amp.%	Prot	be Pos @	No. Scan	Est. [Depth	Signal/Noise
Nam	Name Start °/mm Stop °/mm Le					Len	ngth °/mm	mm	fsh		Ma	ix. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
ENIQ_04_4	IQ_04_45_sh_03 30.0/183.3 33.0/201.6				3	5.0/18.3	+5.0				.5/192.4	6.0	-	170.3	8.0	
ENIQ_04_6		29.	.0/177.2	31.	5/192.4	2	5/15.3	+18.0		47.4	30	.5/186.3	6.0	-	172.0	11.0
ENIQ_04_45 1	5_56tan_0		-		-		-	-		-		-	-	-	-	-
 																

Comments:

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(x)			Axial (y)		Dep	pth		Tilt	Skew		Commer	ts
No.	Start °/m	nm	Stop °/m	ım	Length °/	mm	mm	Top Tip r	nm	Btm Tip	mm	0	0			
3	41.72/25	4.9	45.0/274	1.9	3.28/20	.0	0.0	163.0		168.0)	10	5			
DETEC																
File	File Circ Pos (x)							(y) Pos.	Max	. Amp.%	Prot	be Pos @	No. Scan	Est. [Depth	Signal/Noise
Nam	Name Start °/mm Stop °/mm Le					Len	igth °/mm	mm		fsh		ix. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
	NIQ_04_45_sh_03		0/250.5	44.	5/271.8	3	.5/21.4	+26.0	28.2		43.	.0/262.7	5.0	-	168.3	6.0
ENIQ_04_6			-		-		-	-		-		-	-	-	-	-
ENIQ_04_45 1	5_56tan_0		-		-	-		-		-		-	-	-	-	-

Comments:

INTENDED FLAW DIMENSIONS/POSITIONS

Start °/m	m Ston			Axial (y)	Depth				Tilt	Skew		Commer	its	
					mm	Top Tip r	mm	Btm Tip	mm	0	o			
59.73/364	.8 66.28	404.9	6.55/40	0.0	0.0	158.0		168.0)	10	0			
ON														
		Ci	rc Pos (x)			(y) Pos.	Max.	Amp.%	Prob	be Pos @	No. Scan	Est. [Depth	Signal/Noise
Name Start °/mm Stop °/mm Ler					gth °/mm	mm		fsh		ix. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
				2.5	5/15.3	+22.0	6	65.1	68.	.0/415.4	9.0	-	170.2	10.0
sh_03	61.5/375.7	69	9.0/421.5	7.5	5/45.8	+26.0	2	27.4	65.	.5/400.1	7.0	-	167.0	10.0
04_60_sh_03 61.5/375.7 69.0/421.5 04_45_56tan_0 1 66.5/406.2 69.0/421.5		2.5	5/15.3	+7.0	3	33.1	67.	.5/412.3	4.0	-	-	10.0		
	Sh_03 sh_03	Start °/mm sh_03 66.5/406.2 sh_03 61.5/375.7	Start °/mm Start °/mm sh_03 66.5/406.2 69 sh_03 61.5/375.7 69	Start °/mm Stop °/mm sh_03 66.5/406.2 69.0/421.5 sh_03 61.5/375.7 69.0/421.5	Start °/mm Stop °/mm Leng sh_03 66.5/406.2 69.0/421.5 2.3 sh_03 61.5/375.7 69.0/421.5 7.3	Start °/mm Stop °/mm Length °/mm sh_03 66.5/406.2 69.0/421.5 2.5/15.3 sh_03 61.5/375.7 69.0/421.5 7.5/45.8	Start °/mm Stop °/mm Length °/mm (y) Pos. mm sh_03 66.5/406.2 69.0/421.5 2.5/15.3 +22.0 sh_03 61.5/375.7 69.0/421.5 7.5/45.8 +26.0	Circ Pos (x) (y) Pos. mm Max. mm sh_03 66.5/406.2 69.0/421.5 2.5/15.3 +22.0 66 sh_03 61.5/375.7 69.0/421.5 7.5/45.8 +26.0 22	Circ Pos (x) (y) Pos. mm Max. Amp.% fsh sh_03 66.5/406.2 69.0/421.5 2.5/15.3 +22.0 65.1 sh_03 61.5/375.7 69.0/421.5 7.5/45.8 +26.0 27.4	Circ Pos (x) (y) Pos. Max. Amp.% Prot Start °/mm Stop °/mm Length °/mm Max. Amp.% Prot sh_03 66.5/406.2 69.0/421.5 2.5/15.3 +22.0 65.1 68 sh_03 61.5/375.7 69.0/421.5 7.5/45.8 +26.0 27.4 65	Circ Pos (x) (y) Pos. Max. Amp.% Probe Pos @ Start °/mm Stop °/mm Length °/mm mm Max. Amp.% Probe Pos @ sh_03 66.5/406.2 69.0/421.5 2.5/15.3 +22.0 65.1 68.0/415.4 sh_03 61.5/375.7 69.0/421.5 7.5/45.8 +26.0 27.4 65.5/400.1	Start °/mm Stop °/mm Length °/mm Max. Amp.% mm Probe Pos @ fsh No. Scan Max. °/mm sh_03 66.5/406.2 69.0/421.5 2.5/15.3 +22.0 65.1 68.0/415.4 9.0 sh_03 61.5/375.7 69.0/421.5 7.5/45.8 +26.0 27.4 65.5/400.1 7.0	ON Circ Pos (x) (y) Pos. Max. Amp.% Probe Pos @ No. Scan Est. I Start °/mm Stop °/mm Length °/mm mm fsh Max. ^/mm No. Scan Est. I sh_03 66.5/406.2 69.0/421.5 2.5/15.3 +22.0 65.1 68.0/415.4 9.0 - sh_03 61.5/375.7 69.0/421.5 7.5/45.8 +26.0 27.4 65.5/400.1 7.0 -	Start °/mm Stop °/mm Length °/mm Max. Amp.% mm Probe Pos @ fsh No. Scan Lines # Est. Depth sh_03 66.5/406.2 69.0/421.5 2.5/15.3 +22.0 65.1 68.0/415.4 9.0 - 170.2 sh_03 61.5/375.7 69.0/421.5 7.5/45.8 +26.0 27.4 65.5/400.1 7.0 - 167.0

Comments:

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.		Circ Pos (x)							Dep	th		Tilt	Skew		Commer	its
No.	Start °/m	ım	Stop °/m	im Len	Length °/mm		mm T		nm	Btm Tip	mm	0	0			
5	5 6.55/40.0				0.0		158.0	168)	0	0				
DETEC	TION															
File	è			Circ Pos	s (x)		(y) Pos.		Max.	Amp.%	Prot	be Pos @	No. Scan	Est. [Depth	Signal/Noise
Nam	ne	Start °/mm		Stop °/r	mm	Length °/mm		mm		fsh	Ма	ix. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
ENIQ_04_4	5_sh_03	82.	0/500.9	86.5/52	28.4	4.5/27.5		+18.0		35.2	83.	.5/510.1	8.0	-	168.8	7.0
ENIQ_04_6			.0/488.7	87.0/53	31.5	7.0/42.8		+33.0		26.7	82.	.5/504.0	10.0	-	172.1	8.0
ENIQ_04_45 1	5_56tan_0	-		-		-		-	-		-		-	-	-	-

Comments:

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos ((x)		Axial (y)		Dep	oth		Tilt	Skew		Commen	its
No.	Start °/m	m	Stop °/m	m Length °	Length °/mm		nm Top Tip n		Btm Tip	mm	0	o			
6		9.82/60.0				0.0	153.0		168.0)	0	5			
DETEC	TION														
File	;			Circ Pos (x)		(y) Pos. M		lax. Amp.%	Prob	be Pos @	No. Scan	Est. [Depth	Signal/Noise	
Nam	ne	Start °/mm Stop °/m		Stop °/mm	Ler	ngth °/mm	mm		fsh		x. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
ENIQ_04_4	5_sh_03	100.	0/610.9	108.0/659.7	8	8.0/48.9	+26.0		40.9	103	5.5/632.3	16.0	-	173.5	8.0
ENIQ_04_6	0_sh_03	98.5	5/601.7	106.5/650.6	06.5/650.6 8		+21.0	35.3	35.3	104	4.5/638.4	14.0	-	168.8	11.0
ENIQ_04_45 1	5_56tan_0	99.5	5/607.8	104.0/635.3	4	.5/27.5	+4.0		52.0	100	0.5/613.9	13.0	-	-	14.0

Comments:

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(x)			Axial (y)		De	pth		Tilt	Skew		Commen	ts
No.	Start °/m	nm	Stop °/m	ım	Length °/mm		mm	mm Top Tip n		Btm Tip	mm	o	o			
7		9.82/60.0				0.0	153.0		168.0		20	5				
DETEC	TION															
File	è	Circ Pos (x)						(y) Pos.	Мах	k. Amp.%	Prot	be Pos @	No. Scan	Est. [Depth	Signal/Noise
Nam	ne	Start °/mm S		Sto	p °/mm	Len	gth °/mm	mm		fsh	Ма	ix. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
ENIQ_04_4	5_sh_03	120).0/733.0	130.	.0/794.1	10	0.0/61.1	+17.0		54.3	126.0/769.7		24.0	-	166.3	8.0
ENIQ_04_6	0_sh_03	121	.5/742.2	126.	.5/772.7	5	.0/30.5	+23.0		80.3	123	8.0/751.4	14.0	-	168.9	17.0
ENIQ_04_45 1	5_56tan_0	123	8.0/751.4	129.	9.0/788.0 6		.0/36.7	+6.0		36.2	125.5/766.6		11.0	-	-	10.0

Comments:

INTENDED FLAW DIMENSIONS/POSITIONS

		Circ Pos (Axial (y)					Tilt	Skew		Commer	ts		
Start °/m	m	Stop °/m	m Len	gth °/mm	mm	Top Tip r	nm I	Btm Tip	mm	0	o			
140.72/85	9.6	144.0/879).7 3.2	28/20.0	0.0	155.0		160.0)	10	5			
TION														
е			Circ Pos	(x)		(y) Pos.	Max.	Max. Amp.%	Probe F	Pos @	No. Scan	Est. Depth		Signal/Noise
ne	Star	rt °/mm	Stop °/mm Lei		ength °/mm	mm		fsh		°/mm	Lines #	Top mm	Btm mm	Ratio dB's
		-	-		-	-		-	-		-	-	-	-
		-	-		-	-		-	-		-	-	-	-
5_56tan_0	-		-		-	-		-	-		-	-	-	-
		e	Start °/mm Stop °/mi 140.72/859.6 144.0/879 TION - ne Start °/mm 45_sh_03 - 50_sh_03 - 5 56tan 0	Start °/mm Stop °/mm Leng 140.72/859.6 144.0/879.7 3.2 TION Circ Pos ne Start °/mm Stop °/n 45_sh_03 - - 50_sh_03 - -	Start °/mm Stop °/mm Length °/mm 140.72/859.6 144.0/879.7 3.28/20.0 TION	Start °/mm Stop °/mm Length °/mm mm 140.72/859.6 144.0/879.7 3.28/20.0 0.0 TION Circ Pos (x) ne Circ Pos (x) Start °/mm Stop °/mm Length °/mm 45_sh_03 - - 5 56tan 0 -	Start °/mm Stop °/mm Length °/mm mm Top Tip r 140.72/859.6 144.0/879.7 3.28/20.0 0.0 155.0 TION Circ Pos (x) (y) Pos. mm Start °/mm Stop °/mm Length °/mm 45_sh_03 - - - - 50_sh_03 - - - - -	Start °/mm Stop °/mm Length °/mm mm Top Tip mm I 140.72/859.6 144.0/879.7 3.28/20.0 0.0 155.0 7 TION Circ Pos (x) 0.0 155.0 Max. ne Circ Pos (x) (y) Pos. Start °/mm Stop °/mm Length °/mm Max. 45_sh_03 - - - - 50_sh_03 - - - - -	Start °/mm Stop °/mm Length °/mm mm Top Tip mm Btm Tip 140.72/859.6 144.0/879.7 3.28/20.0 0.0 155.0 160.0 TION Circ Pos (x) (y) Pos. Max. Amp.% ne Circ Pos (x) (y) Pos. Max. Amp.% Start °/mm Stop °/mm Length °/mm Max. Amp.% 45_sh_03 - - - - 50_sh_03 - - - - 5 56tan 0 - - - -	Start °/mm Stop °/mm Length °/mm mm Top Tip mm Btm Tip mm 140.72/859.6 144.0/879.7 3.28/20.0 0.0 155.0 160.0 TION Circ Pos (x) (y) Pos. Max. Amp.% Probe F ne Start °/mm Stop °/mm Length °/mm Max. Amp.% Probe F 45_sh_03 - - - - - - 50_sh_03 - - - - - - 5 56tan 0 - - - - - -	Start °/mm Stop °/mm Length °/mm mm Top Tip mm Btm Tip mm ° 140.72/859.6 144.0/879.7 3.28/20.0 0.0 155.0 160.0 10 TION Circ Pos (x) (y) Pos. Max. Amp.% Probe Pos @ ne Start °/mm Stop °/mm Length °/mm Max. Amp.% Max. °/mm 45_sh_03 - - - - - - 50_sh_03 - - - - - - - 5 56tan 0 - - - - - - -	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Comments:

Number of consecutive scan lines above reporting threshold (20% fsh shear). Not detected by any of the three techniques applied.

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(X)			Axial (y)		Depth		Tilt	Skew		Commen	ts
No.	Start °/m	nm	Stop °/mm		Length °/mm		mm Top Tip m		nm Btm T	Γip mι	m°	0			
9			165.3/100	9.6	9.6 6.55/40.		+FF (+25)	150.0	16	0.0	4	0			
DETEC	TION									-					-
File	Э			Ciro	c Pos (x)			(y) Pos.	Max. Amp	.% F	Probe Pos @	No. Scan	Est. [Depth	Signal/Noise
Nam	ne	Sta	art °/mm	Sto	op °/mm	Len	ngth °/mm	mm	fsh		Max. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
ENIQ_04_4	15_sh_03	158	3.5/968.2	163	3.5/998.8	5	0.0/30.5	+29.0	64.1		159.5/974.3	14.0	-	165.3	10.0
ENIQ_04_6			7.5/962.1	165	.5/1011.0	5/1011.0 8		+32.5	30.6		162.0/989.6	12.0	-	159.1	9.0
ENIQ_04_48 1	5_56tan_0	161	.0/983.5	163.5/998.8 2		5/15.3	+10.0	53.4		162.0/989.6	7.0	-	-	12.0	
										-					

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(x)			Axial (y)		Depth		Tilt	Skew		Commen	ts
No.	Start °/m	nm	Stop °/mm		Length °/mm		mm	mm Top Tip m		ip mr	m°	o			
10	182.7/1016.2 189.2/11		56.2 6.55/40		.0	+FF (+25)	150.0	150.0 160.0		20	5				
DETEC	TION														
File	e			Circ	Pos (x)			(y) Pos.	Max. Amp.	% F	Probe Pos @	No. Scan	Est. [Depth	Signal/Noise
Nam	ne	Start °/mm S		Stop	o °/mm	Length °/mm		mm	fsh		Max. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
ENIQ_04_4	5_sh_03		-		-		-	-	-		-	-	-	-	-
ENIQ_04_6			.5/1120.9	190.0	/1160.6	0.6 6.5/39.7		+33.0	36.0	1	185.5/1133.2	12.0	-	164.7	10.0
ENIQ_04_48 1	5_56tan_0	184.5/1127.1 189		189.0	9.0/1154.5 4.5/		.5/27.5	+21.0	50.2	1	186.0/1136.2	11.0	-	-	12.0
										╉					

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(X)			Axial (y)		Depth		Tilt	Skew		Commen	ts
No.	Start °/mm		Stop °/mm		Length °/mm		mm	Top Tip n	nm Btm Tip	mm	0	0			
11	206.9/1263.9 215.9/13		18.9 9.82/60.0		.0	+FF (+25)	145.0	160.	0	10	0				
DETEC	TION									1					
File	е			Circ	c Pos (x)			(y) Pos.	Max. Amp.%	Pro	be Pos @	No. Scan	Est. Depth		Signal/Noise
Nam	ne	Sta	art °/mm Stop °/mm		op °/mm	Len	ngth °/mm	mm	fsh	Ma	ax. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
ENIQ_04_4		210	.5/1285.9	215.	.5/1316.4	5	0.0/30.5	+43.0	84.5	213	3.5/1304.2	19.0	-	165.9	11.0
ENIQ_04_6			.5/1273.7	217.	.5/1328.6	9	.0/55.0	+44.5	32.6	210).5/1285.9	11.0	-	163.2	10.0
ENIQ_04_48	5_56tan_0	210	.0/1282.8	214.5/1310.3 4		.5/27.5	+24.5	43.2	213	3.5/1304.2	9.0	-	-	14.0	

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(x)			Axial (y)		Depth		Tilt	Skew		Commer	its
No.	Start °/m	ım	Stop °/m	۱m	Length °/	ength °/mm mm		Top Tip n	nm Btm Tip	mm	0	0			
12			.0	+FF 145.0 (+25)		160.0		0	5						
DETEC															
File	File Circ Pos (x)					(y) Pos.			be Pos @	No. Scan	Est. Depth		Signal/Noise		
Nam	Name		art °/mm	Ste	op °/mm	Len	igth °/mm	mm	fsh	Ma	ax. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
	ENIQ_04_45_sh_03 ENIQ_04_60_sh_03		.0/1429.4	242	.5/1481.4	8	.5/51.9	+56.0	53.1	240	.5/1469.1	19.0	-	168.5	9.0
			.5/1438.6	243	.5/1487.5	8	.0/48.9	+54.6	34.5	238	8.0/1453.9	14.0	-	162.1	10.0
ENIQ_04_48	5_56tan_0	235	.0/1435.5	241	.0/1472.2	6	.0/36.7	+30.4	73.0	236	5.5/1444.7	18.0	-	-	18.0

Comments: # Number of consecutive scan lines above reporting threshold (20% fsh shear).

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(x)		Axial (y)		Depth		Tilt	Skew		Commen	ts
No.	Start °/m	ım	Stop °/m	m Length	Length °/mm mm		Top Tip n	nm Btm Tip	mm	0	0			
13	257/1569	9.9 2	260.3/159	0.1 3.27/2	.1 3.27/20.0		147.0	157.	157.0		0			
DETEC	TION													
File	File Circ Pos (x)				(y) Pos.		Max. Amp.%	Prol	be Pos @	No. Scan	Est. [Depth	Signal/Noise	
Nam	Name		t °/mm	Stop °/mm	Ler	ngth °/mm	mm	fsh		ax. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
	NIQ_04_45_sh_03 NIQ_04_60_sh_03		5/1560.8	261.0/1594.4			+59.0	38.3		.5/1579.1	12.0	-	172.1	8.0
		256.5	5/1566.9	261.0/1594.4	4	1.5/27.5	+57.6	34.7	259	.0/1582.1	8.0	-	159.7	10.0
ENIQ_04_45 1	5_56tan_0	256.0)/1563.8	259.0/1582.1	3	3.0/18.3	+31.4	+100	258	.5/1579.1	10.0	-	-	+18.0
ENIQ_04_45 2	5_56tan_0	256.0)/1563.8	259.0/1582.1	3	3.0/18.3	+27.4	62.0	257	.5/1573.0	6.0	-	-	22.0

Comments:

Number of consecutive scan lines above reporting threshold (20% fsh shear).

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(x)			Axial (y)		Depth		Tilt	Skew		Commer	its
No.	Start °/m	nm	Stop °/m	nm	Length °/	mm	mm	Top Tip n	nm Btm T	p mm	0	0			
14	278/1698	8.2	282.9/172	28.1	4.91/30	0	-FF (-25)	132.0	14	7.0	4	0			
DETEC	TION														
File	File Circ Pos (x)				(y) Pos. Max. Amp.% Pro		be Pos @	No. Scan	Est. Depth		Signal/Noise				
Nam	ne	Sta	art °/mm	Sto	p °/mm	Len	gth °/mm	mm	fsh	M	ax. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
ENIQ_04_4	5_sh_03	278.	.5/1701.3	284.5	5/1737.9	6	.0/36.7	+4.0	33.8	280).0/1710.4	8.0	-	169.5	8.0
ENIQ_04_6	60_sh_03	277.	.5/1695.2	284.0	0/1734.9	6	.5/39.7	+27.5	35.4	280	0.0/1710.4	11.0	-	176.1	11.0
ENIQ_04_45 1	5_56tan_0	277.	.5/1695.2	284.5	5/1737.9	7	.0/42.8	-13.7	+100	283	8.0/1728.8	16.0	-	-	+18.0
ENIQ_04_45 2	5_56tan_0	278.	.5/1701.3	283.5	5/1731.8	5	.0/30.5	-17.7	73.6	281	.0/1716.5	14.0	-	-	24.0
										_					
										_					

Comments: # Number of consecutive scan lines above reporting threshold (20% fsh shear).

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(X)			Axial (y)		Depth		Tilt	Skew		Commen	ts
No.	Start °/m	nm	Stop °/m	۱m	Length °/mm		Top Tip mm Btm Tip		o mm	0	o				
15	302/1844.8 306.9/1874.7 4.91/30		0	+FF 122.0 (+25)		137	137.0		0						
DETEC															
File	File Circ Pos (x)		1		(y) Pos.	Max. Amp.%	Pro	obe Pos @	No. Scan	Est. Depth		Signal/Noise			
Nam	Name		art °/mm	Sto	op °/mm	Len	gth °/mm	mm	fsh	Μ	/lax. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
ENIQ_04_4			.0/1838.7	303.	.5/1854.0	2	.5/15.3	+22.0	27.7	30	2.5/1847.9	4.0	-	144.9	8.0
ENIQ_04_6	0_sh_03	299	.5/1829.5	304.	.0/1857.0	4	.5/27.5	+46.5	32.2	30	2.0/1844.8	8.0	-	142.7	12.0
ENIQ_04_45 1	5_56tan_0	298	.0/1820.4	304.	.0/1857.0	6	.0/36.7	+17.4	33.7	30	3.0/1850.9	12.0	-	-	10.0
							-								

Comments: # Number of consecutive scan lines above reporting threshold (20% fsh shear).

INTENDED FLAW DIMENSIONS/POSITIONS

Flaw Ident.			Circ Pos	(x)			Axial (y)		Dep	th		Tilt	Skew		Commen	ts
No.	Start °/m	nm	Stop °/m	nm	Length °/mm		mm	Top Tip mm Btm		Btm Tip	mm	o	o			
16	324/1979	9.2	332.2/202	29.2	8.2/50		-FF (-25)	152.0		157.0)	4	0			
DETEC	DETECTION															
File	File Circ Pos (x)				(y) Pos.	Max.	Amp.%	Prob	be Pos @	No. Scan	Est. D	Depth	Signal/Noise			
Nam	ie	Sta	art °/mm	Sto	op °/mm	Len	gth °/mm	mm		fsh .	Ma	ax. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
ENIQ_04_4	5_sh_03	324	.5/1982.3	332.	0/2028.1	7.	.5/45.8	-8.0	+	-100	327.	.0/1997.5	22.0	-	166.3	+16.0
ENIQ_04_4		325	.0/1985.3	332.	5/2031.1	7.	.5/45.8	-12.0	6	69.0	326.	.0/1991.4	16.0	-	165.7	18.0
ENIQ_04_6	0_sh_03	323	.0/1973.1	332.	5/2031.1	9	.5/58.0	-24.8	4	42.1	327.	.0/1997.5	19.0	-	145.1	14.0
ENIQ_04_45 1	5_56tan_0	324	.5/1982.3	328.	0/2003.6	3	.5/21.4	-26.7	8	33.7	326.	.5/1994.5	11.0	-	-	16.0

Comments:

Number of consecutive scan lines above reporting threshold (20% fsh shear).

INTENDED FLAW DIMENSIONS/POSITIONS

	Circ Pos	(x)	Axial (y)		Depth	Tilt	Skew	Comme		its
Start °/m	nm Stop °/n	nm Length °/	Length °/mm		nm Btm Tip	mm °	0			
17 350/2138 DETECTION		97.9 9.8/60) +FF (+25)	147.0	152.0) 4	0			
TION				-			-	_		
File Circ Pos (x)				(y) Pos.	Max. Amp.%	Probe Pos @	No. Scan	Est. Depth		Signal/Noise
Name Sta		Stop °/mm	Length °/mm	mm	fsh	Max. °/mm	Lines #	Top mm	Btm mm	Ratio dB's
5_sh_03	351.5/2147.2	359.0/2193.0	7.5/45.8	+19.0	+100	354.5/2165.5	18.0	-	168.3	+15.0
5_sh_04	352.0/2150.3	359.0/2193.0	7.0/42.8	+20.0	58.7	353.0/2156.4	16.0	-	168.0	18.0
		359.5/2196.1	8.0/48.9	+6.0	44.2	354.0/2162.5	20.0	-	145.5	12.0
5_56tan_0	349.0/2131.9	358.5/2190.0	9.5/58.0	+6.4	+100	357.5/2183.8	22.0	-	-	+18.0
1 ENIO 04 45 56tap 0		358.0/2186.9	6.5/39.7	+7.4	72.9	353.0/2156.4	19.0	-	-	24.0
	350/213 FION e 5_sh_03 5_sh_04 0_sh_03 5_56tan_0	Start °/mm Stop °/n 350/2138 359.8/213 7/ON	350/2138 359.8/2197.9 9.8/60 Circ Pos (x) e Start °/mm Stop °/mm 5_sh_03 351.5/2147.2 359.0/2193.0 5_sh_04 352.0/2150.3 359.0/2193.0 0_sh_03 351.5/2147.2 359.5/2196.1 5_56tan_0 349.0/2131.9 358.5/2190.0	Start °/mm Stop °/mm Length °/mm mm $350/2138$ $359.8/2197.9$ $9.8/60$ +FF (+25) TION Circ Pos (x) e Start °/mm Stop °/mm Length °/mm 5 sh_03 $351.5/2147.2$ $359.0/2193.0$ $7.5/45.8$ $5.sh_04$ $352.0/2150.3$ $359.0/2193.0$ $7.0/42.8$ 0 sh_03 $351.5/2147.2$ $359.5/2196.1$ $8.0/48.9$ $5.56tan_0$ $9.5/58.0$	Start °/mm Stop °/mm Length °/mm mm Top Tip r $350/2138$ $359.8/2197.9$ $9.8/60$ +FF (+25) 147.0 TION e Circ Pos (x) Start °/mm Length °/mm (y) Pos. mm 5_sh_03 $351.5/2147.2$ $359.0/2193.0$ $7.5/45.8$ +19.0 5_sh_04 $352.0/2150.3$ $359.0/2193.0$ $7.0/42.8$ +20.0 0_sh_03 $351.5/2147.2$ $359.5/2196.1$ $8.0/48.9$ +6.0 5_56tan_0 $349.0/2131.9$ $358.5/2190.0$ $9.5/58.0$ +6.4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Comments:

Number of consecutive scan lines above reporting threshold (20% fsh shear).

DEFECT LENGTH SIZING SUMMARY TABLE

Defect	Start	Stop	Measured	Stated	Δ Length	Comments
No.	°/mm #	°/mm #	Length º/mm	Ŭ	mm	
1	11.0/67.2	16.5/100.8	5.5/33.6	3.28/20.0	+13.6	
2	29.0/177.2	33.0/201.6	4.0/24.4	3.28/20.0	+4.4	
3	41.0/250.5	44.5/271.8	3.5/21.4	3.28/20.0	+1.4	
4	61.5/375.7	69.0/421.5	7.5/45.8	6.55/40.0	+5.8	
5	80.0/488.7	87.0/531.5	7.0/42.8	6.55/40.0	+2.8	
6	98.5/601.7	108.0/659.7	9.5/58.0	9.82/60.0	-2.0	
7	120.0/733.0	130.0/794.1	10.0/61.1	9.82/60.0	+1.1	
8	-	-	-	3.28/20.0	-	Not detected by any of the three techniques applied
9	157.5/962.1	165.5/1011.0	8.0/48.9	6.55/40.0	+8.9	
10	183.5/1120.9	190.0/1160.6	6.5/39.7	6.55/40.0	-0.3	
11	208.5/1273.7	217.5/1328.6	9.0/55.0	9.82/60.0	-5.0	
12	234.0/1429.4	243.5/1487.5	9.5/58.0	9.82/60.0	-2.0	
13	255.5/1560.8	261.0/1594.4	5.5/33.6	3.27/20.0	+13.6	
14	277.5/1695.2	284.5/1737.9	7.0/42.8	4.91/30.0	+12.8	
15	298.0/1820.4	304.0/1857.0	6.0/36.7	4.91/30.0	+6.7	
16	323.0/1973.1	332.5/2031.1	9.5/58.0	8.2/50.0	+8.0	
17	351.5/2147.2	359.5/2196.1	8.0/48.9	9.8/60	-11.1	

Scan File List

File	Index F	os.º (x)	Scan Po	s. mm (y)	Comments
Name	Start	Stop	Start	Stop	Commente
ENIQ_04_45_sh_03	0.0	363.0	50.0	280.0	Scanned at reference+DAC+6dB transfer (defects 16 and 17 saturated)
ENIQ_04_45_sh_04	310.0	363.0	50.0	280.0	Scanned at reference+DAC ie no transfer (defects 16 and 17 only)
ENIQ_04_60_sh_03	0.0	363.0	149.0	370.0	Scanned at reference+DAC+6dB transfer
ENIQ_04_45_56tan_01	0.0	363.0	62.5	280.0	Scanned at reference+DAC+7.5dB transfer (defects 13,14 and 17 saturated)
ENIQ_04_45_56tan_02	250.0	290.0	62.5	280.0	Scanned at reference+DAC ie no transfer (defects 13 and 14 only)
ENIQ_04_45_56tan_03	340.0	363.0	62.5	280.0	Scanned at reference+DAC ie no transfer (defect 17 only)

APPENDIX 4

TABULATED RESULTS FOR THE INSIDE INSPECTION OF THE CLAD TEST PIECE

DEFECT 1, POSITION: 13°

LENGTH: 20 mm

HEIGHT: 5 mm

TILT: 0°

SKEW: 0°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL FD8 NEG	13.0	16.0	7	14.5	19	28.1	- 9.1	
70TRL_FD8_NEG + 6dB								
70TRL_FD8_POS	12.0	15.0	7	15.0	-20	32.0	- 8.0	
70TRL_FD8_POS + 6dB								
70TRL_FD12_NEG	12.5	14.5	5	13.5	41	39.4	- 6.2	
70TRL_FD12_NEG + 6dB								
70TRL_FD12_POS	12.5	15.5	7	14.0	-21	33.6	- 7.5	
70TRL_FD12_POS + 6dB								
60T NEG	ND							Out side inspection area for probe
60T_NEG + 9dB	ND							Out side inspection area for probe
60T POS	ND							Out side inspection area for probe
60T_POS + 9dB	ND							Out side inspection area for probe
70T NEG - 6dB	ND							Out side inspection area for probe
70T_NEG + 6dB	ND							Out side inspection area for probe
70T POS - 6dB	ND							Out side inspection area for probe
70T_POS + 6dB	ND							Out side inspection area for probe
45TANDEM NEG	ND							
45TANDEM_NEG + 9dB	ND			1				
45TANDEM_NEG + 15dB	11.5	16	10	13.0	108.5	28.1	- 24.1	

DEFECT 2, POSITION: 29°

LENGTH: 20 mm

HEIGHT: 5 mm

SKEW: 0°

TILT: 0°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL_FD8_NEG	ND							G ^{#1} : amp=63%, Y=2.0, X=31.0
70TRL_FD8_NEG + 6dB	ND							G ^{#1} : amp>100%, Y=2.0, X=31.0
70TRL FD8 POS	ND							G ^{#1} : amp=62.5, Y=0.0, X=30.5
70TRL_FD8_POS + 6dB	ND							G ^{#1} : amp>100%, Y=0.0, X=30.5
	ND							G ^{#1} : amp=40%, Y=0.0, X=30.0
70TRL_FD12_NEG 70TRL_FD12_NEG + 6dB	ND ND							$G^{\#1}$: amp=65%, Y=0.0, X=30.0
70TRL_FD12_POS	ND							G ^{#1} : amp=15%, Y=6.0, X=30.0
70TRL_FD12_POS + 6dB	ND							G ^{#1} : amp=35%, Y=6.0, X=31.0
60T NEG	ND							Out side inspection area for probe
60T_NEG + 9dB	ND							Out side inspection area for probe
60T POS	ND							Out side inspection area for probe
60T_POS + 9dB	ND							Out side inspection area for probe
70T NEG - 6dB	ND							Out side inspection area for probe
70T_NEG + 6dB	ND							Out side inspection area for probe
70T_POS - 6dB	ND							Out side inspection area for probe
70T_POS + 6dB	ND							Out side inspection area for probe
45TANDEM_NEG	ND							
45TANDEM_NEG + 9dB	ND							
45TANDEM_NEG + 15dB	ND							

COMMENTS: ^{#1:} G = Ghost indication appearing when the probe is right above the defect.

DEFECT 3, POSITION: 45°

LENGTH: 20 mm

HEIGHT: 5 mm

SKEW: 5°

TILT: 10°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL_FD8_NEG	ND							G ^{#1} : amp=43%, Y=1.0, X=47.0
70TRL_FD8_NEG + 6dB	ND							G ^{#1} : amp>100%, Y=1.0, X=47.0
70TRL FD8 POS	ND							G ^{#1} : amp=60.0, Y=0.0, X=46.5
70TRL_FD8_POS + 6dB	ND							G ^{#1} : amp>100%, Y=0.0, X=46.5
70TRL FD12 NEG	ND							G ^{#1} : amp=20%, Y=0.0, X=46.5
70TRL_FD12_NEG + 6dB	ND							G ^{#1} : amp=45%, Y=0.0, X=46.5
70TRL FD12 POS	ND							G ^{#1} : amp=20%, Y=5.0, X=47.0
70TRL_FD12_POS + 6dB	ND							G ^{#1} : amp=30%, Y=5.0, X=47.0
60T_NEG	ND							Out side inspection area for probe
60T_NEG + 9dB	ND							Out side inspection area for probe
60T POS	ND							Out side inspection area for probe
60T_POS + 9dB	ND							Out side inspection area for probe
70T NEG - 6dB	ND							Out side inspection area for probe
70T_NEG + 6dB	ND							Out side inspection area for probe
70T POS - 6dB	ND							Out side inspection area for probe
70T_POS + 6dB	ND							Out side inspection area for probe
45TANDEM NEG	ND							
45TANDEM_NEG 45TANDEM_NEG + 9dB	ND ND							
45TANDEM_NEG + 15dB	ND							

COMMENTS: ^{#1:} G = Ghost indication appearing when the probe is right above the defect.

DEFECT 4, POSITION: 63°

LENGTH: 40 mm

H

HEIGHT: 10 mm

TILT: 10° SKEW: 0°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL_FD8_NEG	63.5	66.5	7	64.5	10	29.1	- 8.8	G ^{#1} : amp>100%, Y=-4.0, X=65.5
70TRL_FD8_NEG + 6dB								
70TRL_FD8_POS	62.5	66.5	9	65.0	-25	77.3	- 0.3	G ^{#1} : amp=50, Y=0.0, X=65
70TRL_FD8_POS + 6dB								
70TRL_FD12_NEG	62.5	64.5	5	64.0	16	20.5	- 11.8	G ^{#1} : amp=70%, Y=0.0, X=64.5
70TRL_FD12_NEG + 6dB	62.0	65.0	7	64.0	8	42.5	- 11.5	G ^{#1} : amp>100%, Y=0.0, X=64.5
70TRL_FD12_POS	62.5	66.5	9	65.0	-24	94.5	+ 1.4	G ^{#1} : amp=30%, Y=6.0, X=65.5
70TRL_FD12_POS + 6dB								
60T_NEG	ND							Out side inspection area for probe
60T_NEG + 9dB	ND							Out side inspection area for probe
60T_POS	ND							Out side inspection area for probe
60T_POS + 9dB	ND							Out side inspection area for probe
70T_NEG - 6dB	ND							Out side inspection area for probe
70T_NEG + 6dB	ND							Out side inspection area for probe
70T_POS - 6dB	ND							Out side inspection area for probe
70T_POS + 6dB	ND							Out side inspection area for probe
45TANDEM_NEG	ND							
45TANDEM_NEG + 9dB	ND							
45TANDEM_NEG + 15dB	61.5	64	6	63.0	128.6	26	- 24.8	

COMMENTS:

#1: G = *Ghost indication appearing when the probe is right above the defect.*

DEFECT 5, POSITION: 82°

LENGTH: 40 mm

HEIGHT: 10 mm

TILT: 0° SKEW: 0°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL_FD8_NEG	82.0	85.0	7	83.5	15	36.7	- 6.8	G ^{#1} : amp>100%, Y=-2.0, X=85.0
70TRL_FD8_NEG + 6dB								
70TRL_FD8_POS	82.0	84.5	6	83.0	-28	46.1	- 4.8	G ^{#1} : amp=78.0, Y=0.0, X=84.5
70TRL_FD8_POS + 6dB								
70TRL_FD12_NEG	81.0	85.5	10	83.5	32	59.1	- 2.6	G ^{#1} : amp>100%, Y=0.0, X=83.5
70TRL_FD12_NEG + 6dB								
70TRL_FD12_POS 70TRL_FD12_POS + 6dB	81.5	85.0	10	82.5	-24	64.1	- 1.9	G ^{#1} : amp=20%, Y=5.0, X=83.5
60T_NEG	ND							Out side inspection area for probe
60T_NEG + 9dB	ND							Out side inspection area for probe
60T_POS	ND							Out side inspection area for probe
60T_POS + 9dB	ND							Out side inspection area for probe
70T_NEG - 6dB	ND							Out side inspection area for probe
70T_NEG + 6dB	ND							Out side inspection area for probe
70T_POS - 6dB	ND							Out side inspection area for probe
70T_POS + 6dB	ND							Out side inspection area for probe
45TANDEM_NEG	ND							
45TANDEM_NEG + 9dB 45TANDEM_NEG + 15dB	ND 80	83.5	8	82.5	107.5	50	- 19.1	

COMMENTS:

#1: **G** = Ghost indication appearing when the probe is right above the defect.

DEFECT 6, POSITION: 103°

LENGTH: 40 mm

HEIGHT: 10 mm

TILT: 0° SKEW: 0°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL_FD8_NEG	100.5	108	16	104.5	18	19.7	- 12.2	G ^{#1} : amp>100%, Y=-2.0, X=107.5
70TRL_FD8_NEG + 6dB	100.0	107.5	16	104.0	21	40.2	- 12.0	
70TRL_FD8_POS 70TRL_FD8_POS + 6dB	100.5	107.5	15	106.0	-28	66.9	- 1.6	G ^{#1} : amp=57.8, Y=0.0, X=106.5
70TRL_FD12_NEG 70TRL_FD12_NEG + 6dB	100.0	107.5	16	105.0	38	25.5	- 9.9	G ^{#1} : amp>100%, Y=0.0, X=106
70TRL_FD12_POS 70TRL_FD12_POS + 6dB	100.5	108	16	104.0	-32	68.7	- 1.3	G ^{#1} : amp=45%, Y=5.0, X=105.5
60T NEG	ND							Out side inspection area for probe
60T_NEG + 9dB	ND							Out side inspection area for probe
60T_POS	ND							Out side inspection area for probe
60T_POS + 9dB	ND							Out side inspection area for probe
70T_NEG - 6dB	ND							Out side inspection area for probe
70T_NEG + 6dB	ND							Out side inspection area for probe
70T_POS - 6dB	ND							Out side inspection area for probe
70T_POS + 6dB	ND							Out side inspection area for probe
45TANDEM_NEG	ND							
45TANDEM_NEG + 9dB	98.5	104.5	13	102.0	115.5	41.4	- 14.7	
45TANDEM_NEG + 15dB	100.5	107.5	15	102.0	111.5	67.5	- 16.5	

COMMENTS:

#1: **G** = Ghost indication appearing when the probe is right above the defect.

DEFECT 7, POSITION: 125°

LENGTH: 60 mm

HEIGHT: 15 mmTILT: 20°SKEW: 5°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL_FD8_NEG	122.5	130.0	16	126.5	18	>100		G ^{#1} : amp=41%, Y=-2.0, X=123.5
70TRL_FD8_NEG + 6dB								
70TRL_FD8_NEG - 6dB	122.5	129.0	14	124.5	12	67.2	+ 4.5	
70TRL FD8 POS	ND							G ^{#1} : amp=65%, Y=-6.0, X=122.5
70TRL_FD8_POS + 6dB	ND							G ^{#1} : amp>100%, Y=-6.0, X=122.5
70TRL_FD12_NEG	121.0	129.0	17	124.0	15	>100		G ^{#1} : amp=25%, Y=-8.0, X=122
70TRL_FD12_NEG + 6dB								
70TRL_FD12_NEG - 6dB	122.0	129.0	15	125.5	11	69.5	+ 4.8	G ^{#1} : amp=50%, Y=-8.0, X=122
70TRL_FD12_POS	126.0	127.0	3	126.5	-30	12.6	- 16.1	G ^{#1} : amp=60%, Y=-5.0, X=122.5
70TRL_FD12_POS + 6dB	126.0	127.0	3	126.5	-25	48.0	- 10.4	G ^{#1} : amp>100%, Y=-5.0, X=122.5
60T_NEG	ND							Out side inspection area for probe
60T_NEG + 9dB	ND							Out side inspection area for probe
60T_POS	ND							Out side inspection area for probe
60T_POS + 9dB	ND							Out side inspection area for probe
70T NEG - 6dB	ND							Out side inspection area for probe
70T_NEG + 6dB	ND							Out side inspection area for probe
70T POS - 6dB	ND							Out side inspection area for probe
70T_POS + 6dB	ND							Out side inspection area for probe
45TANDEM NEG	ND							
45TANDEM_NEG + 9dB	ND							
45TANDEM_NEG + 15dB	ND							

COMMENTS: ^{#1:} G = Ghost indication appearing when the probe is right above the defect.

DEFECT 8, POSITION: 144°

LENGTH: 20 mm HEIGHT: 5 mm TILT: 10° SKEW: 5°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL_FD8_NEG	143.0	146.0	7	144.0	18	60.6	- 2.4	
70TRL_FD8_NEG + 6dB								
70TRL_FD8_POS	143.5	144.5	3	144.0	-16	28.9	- 8.8	
70TRL_FD8_POS + 6dB								
70TRL_FD12_NEG	142.0	145.0	7	144.0	20	89.8	+ 1.0	
70TRL_FD12_NEG + 6dB								
70TRL_FD12_POS	142.0	144.0	5	143.5	-21	25	- 10.1	
70TRL_FD12_POS + 6dB								
60T_NEG	ND							Out side inspection area for probe
60T_NEG + 9dB	ND							Out side inspection area for probe
60T_POS	ND							Out side inspection area for probe
60T_POS + 9dB	ND							Out side inspection area for probe
70T NEG - 6dB	ND							Out side inspection area for probe
70T_NEG + 6dB	ND							Out side inspection area for probe
70T POS - 6dB	ND							Out side inspection area for probe
70T_POS + 6dB	ND							Out side inspection area for probe
45TANDEM NEG	ND							
45TANDEM NEG + 9dB	ND							
45TANDEM_NEG + 15dB	ND							

DEFECT 9, POSITION: 162°

LENGTH: 40 mm HEIGHT: 10 mm TILT: 4° SKEW: 0°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL FD8 NEG	160.0	165.5	12	164.0	43	39.1	- 6.2	
70TRL_FD8_NEG + 6dB								
70TRL_FD8_POS	159.0	165.5	14	164.5	1	78.1	- 0.2	
70TRL_FD8_POS + 6dB								
70TRL_FD12_NEG	159.0	164.5	12	163.5	37	38.3	- 6.4	
70TRL_FD12_NEG + 6dB								
	159.0	165.5	14	164.5	0	50.4	10	
70TRL_FD12_POS 70TRL_FD12_POS + 6dB	159.0	105.5	14	104.5	0	50.4	- 4.0	
70TRL_FD12_POS + 60B								
60T NEG	161.0	165.0	9	163.5	27	43.0	- 5.4	Out side inspection area for probe
60T_NEG + 9dB	ND							Out side inspection area for probe
60T POS	ND							Out side inspection area for probe
60T_POS + 9dB	ND							Out side inspection area for probe
70T_NEG - 6dB	ND							Out side inspection area for probe
70T_NEG + 6dB	ND							Out side inspection area for probe
70T POS - 6dB	ND							Out side inspection area for probe
701_POS - 60B 70T_POS + 6dB	ND							Out side inspection area for probe
45TANDEM_NEG	ND							
45TANDEM_NEG + 9dB	ND							
45TANDEM_NEG + 15dB	160	164	9	164.5	143.7	21.9	- 26.3	

LENGTH: 40 mm HEIGHT: 10 mm TILT: 20° SKEW: 5°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL_FD8_NEG	184.5	190.0	12	185.0	38	42.5	- 5.5	
70TRL_FD8_NEG + 6dB								
70TRL_FD8_POS	183.5	189.0	12	186.0	-2	> 100		
70TRL_FD8_POS + 6dB								
70TRL_FD8_POS - 6dB	184.0	189.0	11	185.5	0	80.5	+ 6.1	
70TRL_FD12_NEG	183.5	186.0	6	184.0	32	33.1	- 7.7	
70TRL_FD12_NEG + 6dB								
70TRL FD12 POS	183.5	190.0	14	186.5	-11	> 100		
70TRL_FD12_POS + 6dB								
70TRL_FD12_POS - 6dB	183.5	190.0	14	185.5	-5	100	+ 7.9	
60T_NEG	ND							Out side inspection area for probe
60T_NEG + 9dB	ND							Out side inspection area for probe
60T_POS	ND							Out side inspection area for probe
60T_POS + 9dB	ND							Out side inspection area for probe
70T NEG - 6dB	ND							Out side inspection area for probe
70T_NEG + 6dB	ND							Out side inspection area for probe
70T POS - 6dB	ND							Out side inspection area for probe
70T_POS + 6dB	ND							Out side inspection area for probe
45TANDEM NEG	ND							
45TANDEM_NEG + 9dB	ND							
45TANDEM_NEG + 15dB	ND							

DEFECT 11, POSITION: 211°

LENGTH: 60 mm HEIGHT: 15 mm TILT: 10° SKEW: 0°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL_FD8_NEG	209	216.5	16	210.5	41	32.8	- 7.7	
70TRL_FD8_NEG + 6dB								
70TRL_FD8_POS	207.5	216.0	18	207.5	- 3	100	+ 1.9	
70TRL_FD8_POS + 6dB								
70TRL FD12 NEG	208.5	215.0	14	209.0	38	39.1	- 6.2	
70TRL_FD12_NEG + 6dB							0.2	
70TRL FD12 POS	206.5	216.5	21	208.5	- 7	72.7	- 0.8	
70TRL FD12 POS + 6dB	200.5	210.5	21	200.5	- /	12.1	- 0.0	
60T_NEG	ND							
60T_NEG + 9dB	ND							
60T POS	ND							
60T_POS + 9dB	ND							
70T_NEG - 6dB	ND							
70T_NEG + 6dB	ND							
70T_POS - 6dB 70T_POS + 6dB	ND ND							
45TANDEM_NEG	ND							
45TANDEM_NEG + 9dB	ND							
45TANDEM_NEG + 15dB	209.0	211.0	5	211.0	132.6	28.8	- 23.9	

LENGTH: 60 mm HEIGHT: 15 mm TILT: 0° SKEW: 5°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL_FD8_NEG	234.5	242.5	18	239.5	41	23.4	- 10.7	
70TRL_FD8_NEG + 6dB								
70TRL_FD8_POS	234.0	240.0	13	239.0	6	63	- 2.1	
70TRL_FD8_POS + 6dB								
70TRL_FD12_NEG	ND							
70TRL_FD12_NEG + 6dB	234.0	242.0	17	238.5	30	26.3	- 15.7	
70TRL_FD12_POS	234.5	243.0	19	240.0	-39	31.5	- 8.1	
70TRL_FD12_POS + 6dB								
60T_NEG	ND							
60T_NEG + 9dB	237.5	241.5	9	240.0	23	39.8	- 15.1	
60T_POS	ND							
60T_POS + 9dB	ND							
70T_NEG - 6dB	ND							
70T_NEG + 6dB	ND							
70T_POS - 6dB	ND							
70T_POS + 6dB	ND							
45TANDEM_NEG	ND							
45TANDEM_NEG + 9dB	233.5	240.5	15	236.0	130.6	30.5	- 17.4	
45TANDEM_NEG + 15dB	234.0	241.5	16	236.0	138.6	60.2	- 17.5	

LENGTH: 20 mm HEIGHT: 10 mm TILT: 4° SKEW: 0°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL_FD8_NEG	258.0	260.5	6	259.5	37	32.3	- 7.9	
70TRL_FD8_NEG + 6dB								
70TRL_FD8_POS	257.5	260.5	8	258.5	- 6	78	- 0.2	
70TRL_FD8_POS + 6dB								
70TRL_FD12_NEG	ND							
70TRL_FD12_NEG + 6dB	257.5	260.0	6	259.0	39	31.2	- 8.2	
70TRL_FD12_POS	257.0	261.0	9	260.0	- 40	> 100		
70TRL_FD12_POS + 6dB								
70TRL_FD12_POS - 6dB	257.0	262.0	11	260.0	- 39	61.1	+ 3.7	
60T_NEG	ND							
60T_NEG + 9dB	ND							
60T_POS	ND							
60T_POS + 9dB	ND							
70T_NEG - 6dB	ND							
70T_NEG + 6dB	ND							
	ND							
70T_POS + 6dB	ND							
45TANDEM_NEG	ND							
45TANDEM_NEG + 9dB	257.0	262.5	12	258.0	149.7	62.2	- 11.2	
45TANDEM_NEG + 15dB	257.0	263.5	14	258.0	145.7	> 100		

DEFECT 14,

LENGTH: 30 mm

HEIGHT: 15 mm

TILT: 4° SKEW: 0°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL FD8 NEG	ND							
70TRL_FD8_NEG + 6dB	ND							
70TRL_FD8_POS	ND							
70TRL_FD8_POS + 6dB	ND							
70TRL_FD12_NEG	281.5	285.0	8	282.5	18	22.7	- 10.9	
70TRL_FD12_NEG + 6dB	281.5	285.0	8	282.5	17	50	- 10.1	
70TRL_FD12_POS 70TRL_FD12_POS + 6dB	281.0	287.0	13	283.5	- 72	48	- 4.4	Second signal #2
60T_NEG	ND							
60T_NEG + 9dB	282.5	286.5	9	283.5	19	31.3	- 17.2	
60T_POS	ND							
60T_POS + 9dB	282.0	286.0	9	283.0	- 95	60.2	- 11.5	
70T_NEG - 6dB	ND							
70T_NEG + 6dB	ND							
70T_POS - 6dB	ND							
70T_POS + 6dB	281.0	286.5	12	282.5	- 95	56.2	- 9.1	
45TANDEM_NEG	279.5	288.0	18	284.0	103.5	> 100		
45TANDEM_NEG + 9dB	ND							
45TANDEM_NEG + 15dB	ND 270.5	288.0	10	284.0	100 F	64.1		
45TANDEM_NEG - 6dB	279.5	288.0	18	284.0	100.5	64.1	+ 4.1	

COMMENTS:

#2 Second tip signal visible (Ampl 58% [- 2.7 dB], Y= - 87mm, X=283.5°)

DEFECT 15, POSITION: 302°

LENGTH: 30 mm HEIGHT: 15 mm TILT: 4° SKEW: 0°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL_FD8_NEG	ND							
70TRL_FD8_NEG + 6dB	ND							
70TRL FD8 POS	ND							
70TRL_FD8_POS + 6dB	ND							
70TRL_FD12_NEG	ND							
70TRL_FD12_NEG + 6dB	ND							
70TRL_FD12_POS	303.0	307.0	9	306.0	- 47	46.9	- 4.6	
70TRL_FD12_POS + 6dB								
60T_NEG	ND							
60T_NEG + 9dB	303.0	306.5	8	304.5	70	46.9	- 13.6	
60T_POS	ND							
60T_POS + 9dB	302.0	308.0	13	305.0	-57	32.0	- 17.0	
70T NEG - 6dB	ND							
70T_NEG + 6dB	303.0	306.5	8	305.0	89	73.4	- 6.7	
70T POS - 6dB	ND							
70T_POS + 6dB	302.5	304.0	4	303.5	- 76	28.3	- 15.0	
45TANDEM_NEG	300.5	309.0	18	304.5	157	43.3	- 5.3	
45TANDEM_NEG + 9dB	ND ND							
45TANDEM_NEG + 15dB	UN							

DEFECT 16, POSITION: 324°

LENGTH: 50 mm HEIGHT: 5 mm TILT: 4° SKEW: 0°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL_FD8_NEG	327.0	334.5	16	331.5	4	71.8	- 0.9	
70TRL_FD8_NEG + 6dB								
70TRL_FD8_POS	323.0	334.0	19	329.0	- 39	53.5	- 3.5	
70TRL_FD8_POS + 6dB								
70TRL_FD12_NEG	326.0	334.0	17	332.5	27	55.1	- 3.2	
70TRL_FD12_NEG + 6dB								
70TRL_FD12_POS 70TRL_FD12_POS + 6dB	324.0	334.0	21	329.5	- 41	46.1	- 4.8	
60T_NEG	ND							
60T_NEG + 9dB	325.0	333.5	18	330.0	0	98	- 7.2	
60T_POS	ND							
60T_POS + 9dB	ND							
70T_NEG - 6dB	ND							
70T_NEG + 6dB	325.0	335.0	21	332.5	- 1	85.8	- 5.4	
70T_POS - 6dB	ND							
70T_POS + 6dB	328.0	332.0	9	329.0	- 62	50.0	- 10.1	
45TANDEM_NEG	ND							
45TANDEM_NEG + 9dB	326.0	334.0	17	333.0	103.5	32.0	- 17.0	
45TANDEM_NEG + 15dB	325.5	334.0	18	333.0	103.5	64.1	- 16.9	

DEFECT 17, POSITION: 350°

LENGTH: 60 mm HEIGHT: 5 mm TILT: 4° SKEW: 0°

DETECTION:

File name	X Start [°]	X Stop [°]	No. Scan Lines	X Probe Pos @ max. ampl [°]	Y Probe Pos @ max ampl [mm]	Max. Amp. [% FSH]	Max. Amp. [dB]	Comment
70TRL_FD8_NEG	353.0	357.0	9	355.0	47	19.5	- 12.3	
70TRL_FD8_NEG + 6dB	352.0	356.5	10	354.0	47	47.7	- 10.5	
70TRL_FD8_POS	ND							
70TRL_FD8_POS + 6dB	351.5	359.5	17	353.0	- 10	40.6	- 11.9	
70TRL_FD12_NEG 70TRL_FD12_NEG + 6dB	351.0	360.0	19	352.5	54	35.9	- 7.0	
70TRL_FD12_POS 70TRL_FD12_POS + 6dB	352.0	360.0	17	353.5	- 26	40.2	- 6.0	
60T NEG	ND							
60T_NEG + 9dB	353.0	358.0	11	355.5	49	54.7	- 12.3	
60T POS	ND							
60T_POS + 9dB	ND							
70T NEG - 6dB	ND							
70T_NEG + 6dB	352.0	359.0	15	355.5	59.3	67.2	- 7.5	
70T POS - 6dB	353.0	359.5	14	353.5	- 52.3	31.5	- 14.1	
70T_POS + 6dB	353.0	359.5	14	353.5	- 53.5	> 100		
45TANDEM NEG	ND							
45TANDEM_NEG + 9dB	351.0	360.0	19	358.5	150.7	60.9	- 11.4	
45TANDEM_NEG + 15dB								

European Commission

EUR 22907 EN – DG JRC – Institute for Energy ULTRASONIC INSPECTION RESULTS OBTAINED IN THE ENIQ 2ND PILOT STUDY

Author

M.Melbi

B. Eriksen DG-JRC-IE

Editors	
A. Eriksson	
T. Seldis	

R. Houghton

DG-JRC-IE DG-JRC-IE Westdyne TRC, Sweden DG-JRC-IE

Luxembourg: Office for Official Publications of the European Communities 2007 – 96 pp. – 21 x 29.7 cm EUR - Scientific and Technical Research Series; ISSN 1018-5593

Abstract

This report is a compilation of the ultrasonic non-destructive inspections results obtained on the ENIQ 21 BWR-type nozzle to shell weld mock-up. The report has been divided into three different sections

- 1) Report on inspection results obtained on the unclad mock-up
- 2) Report on inspection results obtained on the clad mock-up
- 3) Relevant appendices to these inspection reports

The first series of measurements was carried out at the premises of Westdyne TRC (Sweden) in 2002 and the second part was carried out at the JRC of the European Commissions in the Netherlands in 2005.

The mission of the Joint Research Centre is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national.

EUROPEAN COMMISSION DIRECTORATE GENERAL Joint Research Centre

