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1. Introduction 
 
Performance Assessment (PA) is a main component to show the feasibility and safety of High Level 
Radioactive Waste (HLW) repositories. PA uses complex models, usually called system models, 
which integrate several submodels and simulate the behaviour of the system along large time periods. 
PA involves, among other activities, Uncertainty Analysis (UA) and Sensitivity Analysis (SA). UA 
consists in identifying relevant uncertainties (model uncertainties, scenario uncertainties and parameter 
uncertainties) affecting the behaviour of the system and propagating them correctly into the output 
space, in order to characterise appropriately the uncertainty in the output variables used to determine if 
the system is either safe enough or not.  
 
SA helps PA users to study the impact of input uncertainties on output variables. Following Saltelli et 
al. (2000), the main purposes of a sensitivity analysis in the context of modelling, are: 
 

1. To decide whether a model is accurate with respect to the process it models. If, for instance, the 
sensitivity analysis finds that a factor is very influent, while in reality it is not, then the model 
should be changed because it doesn’t describe correctly the process. 
2. To classify the factors starting from the most influent to the least influent.  

 The most influent factors are the ones that most contribute to the variation of the output; 
hence they might require additional research to improve their estimation.   

 On the contrary, the least influent factors (i.e. the ones that are less affecting the 
variation of the output) might eventually be removed from the model or considered as 
deterministic (and fixed to their mean value for instance). 

3. To detect whether there exists some region in the input factors space where the output variation 
is maximum. 
4. To determine the optimal regions of the input factors space to be used in a calibration study 
(i.e. to calibrate a model against field and laboratory data).  
5. To detect the interaction between factors or groups of factors. 
 

In the following, sensitivity analysis will be considered in the context of PA models which, from the 
point of view of mathematics, are models represented by a (possibly complex) function : kf IR IR→  
which links the input of the model 1( , , )kX X= KX  to its output Y = f(X). The function f is evaluated 
by a numerical code, which may be very time consuming (i.e. several hours of CPU time). The input of 
the model X is considered to be random and, without any loss of generality, the output Y is one-
dimensional (scalar). In many cases, scalar outputs will evolve over time. 
 
SA methods may be divided into three broad types: local methods, screening methods and global 
methods.  
 Local methods focus on the study of the system model behaviour under very specific system 

conditions (the vicinity of an input space point) and are based on the partial derivatives of the 
output with respect to the inputs. Chapter 5 in Saltelli et al. (2000) is dedicated to those methods, 
and new advances based on the SVD method (Singular Value Decomposition) have been recently 
developed in Marchand (2007). As the local methods are concerned with first order sensitivities, 
when applied to non-linear problems, the results will be valid only for small variations (depending 
on the amplitude of the non-linearity of the model) around a specified value of the input. Other 



 

 5

references on this topic are Cacuci (2003), Turanyi (1990) and Rabitz et al. (1983). We will not 
discuss about these methods in this report. 

 Screening methods focus on the functional relation between inputs and outputs disregarding input 
parameter distributions. They are used to identify a subset of inputs that controls most of the 
variability of the output. 

 Global methods focus on how the whole input space (taking into account input distributions) maps 
into the output space.  

 
The target of this work is to provide a summary of most useful methods to perform SA in the context 
of a PA and to provide some advise about their use. In this context, though local methods, screening 
methods and global methods provide relevant information about the system model, screening methods 
and global methods fit better within the structure of a PA, and that is the reason to focus all efforts on 
them. In order to illustrate the use and peculiarities of some specific techniques, a couple of simplified 
PA models will be used extensively along the whole text. When deemed necessary, well-known 
mathematical functions and examples from other areas of nuclear safety will be used. Additionally, 
some examples coming from applications developed within other tasks performed under PAMINA 
will also be used. 
 

2. Notation 
 
rv : random variable; iid : independent, identically distributed (for random variables) 
X, Y :   random variables;  

),...,,( 21 nXXX  : a random sample ;  

),...,,( )()2()1( nXXX  : a random ordered sample ;  
),...,,( ][]2[]1[ nXXX  : a random re-ordered sample according to another variable;  

),...,,( 21 nxxx :  the corresponding realization of the random sample;  

),...,,( )()2()1( nxxx :  the corresponding ordered realization of the random sample; 
),...,,( ][]2[]1[ nxxx :  the corresponding re-ordered sample according to another variable; 1( , , )kX X= KX  : 

a random vector of size k (generally representing the input of the 
numerical model) ; 

1( , , )kx x= Kx  : a realization of a random vector of size k ; 

Y = f(X) : the output of the numerical model   : kf IR IR→  
y = f )(x : the output of the numerical model for the sample  
μ : mean of a random variable; E(X) : mathematical expectation of the rv X; 

2σ : variance of a random variable; Var(X), V(X) : variance of the rv X; 
x : sample mean; 

2
xσ , 2s : sample variance; xσ , s : sample standard deviation; 

3. Factors and interactions 
 
In general, the model studied is a function of the input parameters, Y = f(X). Each 
component of the vector 1( , , )kX X= KX  is called (input) parameter, main effect or 
(input) factor. The target of SA techniques is to identify which factors are important. 
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Nevertheless, as it was said in the introduction, the function Y = f(X) may be very 
complex. The effect of a single factor may be very complex. A model may depend only 
on one factor but that dependence could have a very complex structure, which would 
make difficult the study of such a model. Additionally, models may have and may not 
have interactions. We say that two parameters or factors do not interact when the effect 
of increasing one of them a given quantity does not depend on the values that the other 
actually takes. If the effect of increasing one of the parameters does depend on the value 
of the second parameter, then both factors do interact. In order to understand this 
concept more easily, let us consider the following two models whose support is the 
square [0,1]×[0,1] 
 

 1 20.2y x x= +                                                                 (3.1) 

and 
1 2 1 20.2 2y x x x x= + + .                                                   (3.2) 

 
Both are plotted in figures 3.1 and 3.2. As it can be seen, in the first model, the effect of 
increasing 2x in one unit is increasing y  in one unit, independently of the value of 1x , while in 
the second model the increase of the output is one unit when 1x  takes value 0 and three units 
when 1x  takes value 1. When performing SA studies, it is important to identify important 
factors and to estimate the single effect of each factor, but it is also very important to identify 
important interactions between factors. The interaction shown in this example is a second order 
interaction because involves only two input factors, but a model that contains k input factors 
may contain interactions up to order k. Section 5.3.1 contains the High Dimensional Model 
Representation (HDMR) of any integrable function, which introduces in a more formal 
(mathematical) way the concept of factor and interaction of any order. 
 

  
Figure 3.1.- Mathematical model 
with two input parameters with no 
interaction 

Figure 3.2.- Mathematical model 
with two input parameters with 
interaction 

  

4. Screening methods 
 
Screening methods proceed from the field of design of experiments, which was originally developed 
by statisticians working in the area of agriculture improvement and industrial processes, in both cases 
to optimise production. Typically they were applied to problems that involved from a few input factors 
to a few tens. Screening methods are widely used because whenever we deal with problems involving 
a large number of inputs it is quite reasonable to think that only a few of them are really influent. This 
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is known as the principle of parsimony or Occam’s razor. Recently, its use has been promoted in the 
area of SA of computer codes, extending their application to models that have many input parameters.  
 
In the next pages we develop the following screening methods: full factorial design, fractional factorial 
design, Morris’ OAT design, and sequential bifurcation. 
 

4.1. Full factorial designs 
 
In many studies developed to find the most important input factors or input parameters in a computer 
code, the approach used by researchers was the ‘one at a time approach’ (OAT). Usually, in this type 
of study, a reference point is considered, usually in the middle of the range of variation of the input 
factors involved, and one by one, the value of each parameter is changed, getting the value of the 
output variable of interest for each case. This way, the impact of each input factor may be estimated. 
Nevertheless, long ago, see Box and Draper (1987) and Box et al. (1978), this method was shown to be 
inefficient from two points of view, firstly because interactions are ignored and secondly because 
estimation errors are larger (this second issue is only important in the case of real experimentation, 
where experimental variability plays an important role, not being a matter of concern in the case of 
computer experiments).  

 

The theory of two level factorial experiments (2k designs) was developed in the late 1950’s and early 
1960’s and was further improved with the introduction of fractions (2k-p designs). Though it got its 
maturity in the late 1980’s, it is still nowadays a fertile area of research in Statistics. In a 2k design of 
experiments we consider that our computer model has k parameters and we are interested in studying 
its behaviour at two different levels. Those levels are called lower and upper level, or levels –1 and +1 
respectively. In principle, those levels may be either quantitative or qualitative. In a numeric 
continuous parameter, levels –1 and +1 could represent the minimum and the maximum values in its 
range; in a qualitative parameter it could be, for example, the use of two different competing available 
submodels to simulate a given physicals or chemical phenomenon. Let us consider a computer model 
with only three parameters A, B and C. In order to study it, we will assume the following structure 

 

3213231

21321

2
)(

2
)(

2
)(    

2
)(

222

XXXabcXXbcXXac

XXabXcXbXay

+++

+++++= μ
                                       (4.1.1) 

 

where μ is the mean of the output variable and X1, X2 and X3 represent respectively factors A, B and C 
and take values –1 when the factor is in its lower level and +1 when the factor is in its upper level. 
This model is completely general, its validity is restricted to the aforementioned values of the different 
parameters (-1 and +1) and has eight parameters: μ, a,…,(abc). The parameters in parentheses do not 
represent products; (ab) is the parameter associated to the interaction between factors A and B, not the 
product of a and b. Parameter (ab) accounts for the different impact of factor A depending on the level 
of factor B and vice versa. Consequently, we need at least eight runs of the computer code to be able to 
estimate all the parameters. The selection of the eight needed runs is done according to Table 4.1.1, 
crossing in all possible ways (8) the levels of the three factors. Columns headed by two or three letters 
are associated to the corresponding interactions and their elements (-1 or +1) are computed by 
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multiplying the corresponding values in the columns headed by A, B and C. The last column 
represents the results obtained when running the code, so y+1+1-1 is the value of the output variable 
obtained when running the code after setting factors A and B in their lower levels and factor C in its 
upper level. Figure 4.1.1 shows in a 3-D plot the points selected in a 23 full design. 

 

Table 4.1.1.- 23 complete design 

I A B C AB AC BC ABC Y 
+1 -1 -1 -1 +1 +1 +1 -1 y-1-1-1 
+1 +1 -1 -1 -1 -1 +1 +1 y+1-1-1 
+1 -1 +1 -1 -1 +1 -1 +1 y-1+1-1 
+1 +1 +1 -1 +1 -1 -1 -1 y+1+1-1 
+1 -1 -1 +1 +1 -1 -1 +1 y-1-1+1 
+1 +1 -1 +1 -1 +1 -1 -1 y+1-1+1 
+1 -1 +1 +1 -1 -1 +1 -1 y-1+1+1 
+1 +1 +1 +1 +1 +1 +1 +1 y+1+1+1 

  
 

In order to estimate any parameter of the statistical model we will use the following scalar product 

 

YV T
i2/

1ˆ
ki =θ                                                               (4.1.2) 

 

where Vi stands for the vector shown in Table 4.1.1 corresponding to factor or interaction i, Y stands 
for the vector of the output variable values and T stands for transpose vector. Applying equation 4.1.2 
to estimate the impact on the output of moving from the lower to the upper level of factor C, we see 
that it is the average of the four output values that have their third subindex set to +1 less the average 
of the four output values that have their third subindex set to –1 (the average of the last four values less 
the average of the four first values). Equation 4.1.2 and table 4.1.1 allow us to know how to estimate 
the effect of factors and interactions. The mean is estimated, when needed, using the column of values 
under I and using k instead of k/2 in the denominator of equation 4.1.2.  

 

Two methods are available to decide if the impact of a factor or of an interaction is relevant 
(statistically significant): The Mean Absolute Deviation (MAD), see Peña and Juan (1992), and the 
Analysis of Variance (ANOVA), see Box and Draper (1987). ANOVA is used when the number of 
factors and interactions in the statistical model is larger than the number of observations. Otherwise the 
MAD is used. Nevertheless, these tests are based on the fact that data come from experiments affected 
by random perturbations, which is not the case when working with computer models. The authors of 
this document consider that the results of such tests, when the data analysed have been obtained from 
computer codes, should be taken as indications, rather than as real statistical tests. This is due to the 
fact that the conditions under which those tests were developed are seriously violated (there is no 
experimental variability). 
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Figure 4.1.1.- Selection of design points in a 23 full factorial design 

 

 

The main problem associated to 2k experiments is the large number of computer runs demanded when 
the number of input factors increases. Just think that we will need 210 runs to analyse a ten-factor 
model. The theory of fractional factorial two level designs was developed to cope with this problem.   

 

4.2. Fractional factorial design 
 
A fraction of a design is a part of the runs considered in a complete 2k design that fulfils some specific 
conditions. We also call it 2k-p design. In this case we assume that most of the high order interactions 
are not relevant and we can dedicate the output variables to estimate the effect of factors and low order 
interactions, mainly second order interactions.  For example, in Table 4.1.1 we could consider only the 
runs where ABC takes value +1. We represent this fact by 

 

ABCI =                                                                              (4.2.1) 

 

because we have chosen the runs that have value +1 simultaneously in columns I and ABC, and we 
call it the generator of the fraction. This (half) fraction is shown in Table 4.2.1. Figure 4.2.1.a shows 
graphically what points are considered in the sample. This fraction is called half-fraction because half 
of the design points are kept.  
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 Table 4.2.1.- 23-1 design with generator I=ABC. 

I A B C AB AC BC ABC Y 
+1 +1 -1 -1 -1 -1 +1 +1 y+1-1-1 
+1 -1 +1 -1 -1 +1 -1 +1 y-1+1-1 
+1 -1 -1 +1 +1 -1 -1 +1 y-1-1+1 
+1 +1 +1 +1 +1 +1 +1 +1 y+1+1+1 

  

In Table 4.2.1 we can see that columns under A and BC are identical, and the same happens with B 
and AC, and with C and AB. This means that, when applying equation 4.1.2 to estimate the different 
factors in equation 4.1.1, the estimators, and hence the estimates, for A and BC will be equal, as will 
be for B and AC, and for C and AB. In these cases we say that those effects are aliased and we are not 
able to distinguish them from this design of experiments.  Figure 4.2.1.b shows graphically the design 
points used when the half-fraction defined by the generator I=-ABC is considered. 

 

 

 

Figure 4.2.1.a- Half fraction (23-1) defined by 
generator I=ABC 

Figure 4.2.1.b.- Half fraction (23-1) defined by 
generator I=-ABC 

 
 
The three main ideas on which the construction of these designs are based are: 
 the sparsity of effects principle (when there are many inputs, the output is likely to depend 

significantly only on few main and low-order interaction effects) 
 the projection property (they can be projected into larger designs in the subset of significant 

factors) 
 sequential experimentation (two or more fractional design can be combined into a larger design, 

getting information about the system in a sequential manner, up to the point when no more 
relevant information is expected). 

 
 
The main references on the sections concerning factorial designs are Box and Draper (1987), and 
Myers and Montgomery (2002). For specific utilisation in the SA context, see also Saltelli et al. (2008) 
or Saltelli et al. (2000). Additional important concepts not dealt with in the previous pages, as for 
example the resolution of a design, are further explained in these references. 
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4.2.1. Example of application of a fractional factorial design 
 
A fractional factorial design is used to identify, under given accident conditions in an 
advanced nuclear reactor, what factors affect more the increase of temperature in the 
hottest fuel bar (clad temperature), which is the output variable. Seven factors are 
considered in the study, which are coded as A, B, C, D, E, F and G.  Conditional on the 
expensive cost of each run in terms of computational time (the computer code used is 
the Computational Fluid Dynamics -CFD- code CFX10, which takes approximately half 
a day per run), we decided to start the analysis with a saturated 27-4 design (a saturated 
design is created by accommodating one new factor per column of interactions in an 
original full factorial design). This design allows studying the effect of seven 
parameters with only 8 runs. The order of the input parameters was not selected at 
random. In principle, the a priori most important parameters are in the first positions, 
while the a priori less important are in the last positions. 
 
Table 4.2.1.1 provides the saturated design selected for this first experiment and the 
results obtained after running the code. For creating this design, we have taken a 23 
design as a starting point for A, B and C, which will be saturated to produce a one-
sixteenth replicate of a 27 design (it is called one-sixteenth because only one-sixteenth 
of the points in the 27 design are kept). This design is created by using column AB for 
accommodating factor D, column AC for E, BC for G and ABC for F, in such a way 
that the generators of this saturated fraction will be 

 

 

ABCFBCGACEABDI ====    .                                            (4.2.1.1) 
 
By multiplying these generators in all possible ways, we get the complete set of generators that defines 
this 27-4 design. The result is  

 

 

ABCEFG
CEFGBDFGADEFDEG

AFGBEFABEGCDFACDG
BCDEABCFBCGACEABDI

=
=====

======
======

   
   
                                        (4.2.1.2) 

 

The alias structure is computed by multiplying the full set of generators by the different main factors 
and interactions. In this first step we are far more interested in main factors than in interactions. In the 
following lines we show the alias structure of main factors, considering only interactions up to order 2 
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AFDEBCG
AGBECDF

BFDGACE
CFEGABD

DFBGAEC
EFCGADB

FGCEBDA

+++→
+++→

+++→
+++→

+++→
+++→

+++→

g
f

e
d

c
b

a

ˆ

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

                                                    (4.2.1.3) 

 

So, for example, when estimating the effect of factor E, the estimation will be contaminated by the 
effect of interactions AC, DG and BF, while when estimating factor A, its estimation will be 
contaminated by the effect of interactions BD, CE and FG. 
 
Table 4.2.1.1.- 27-4 saturated design corresponding to generators given in equation 4.2.1.1. 

I A B C D=AB E=AC G=BC F=ABC Y 
+1 -1 -1 -1 +1 +1 +1 -1 1768 
+1 +1 -1 -1 -1 -1 +1 +1 1033 
+1 -1 +1 -1 -1 +1 -1 +1 1715 
+1 +1 +1 -1 +1 -1 -1 -1 1013 
+1 -1 -1 +1 +1 -1 -1 +1 1826 
+1 +1 -1 +1 -1 +1 -1 -1 1045 
+1 -1 +1 +1 -1 -1 +1 -1 1781 
+1 +1 +1 +1 +1 +1 +1 +1 1003 

 
 
The estimates of the statistical model considered are  
 

3.5   ˆ
7.5  ˆ

*       30.5-   ê
9    d̂

*      31.5   ĉ
*         40-   ˆ
#         749- ˆ

+=
−=

=
+=

+=
=

=

g
f

b

a

                                                       (4.2.1.4) 

 
The meaning of these results is that, when moving A from its lower level to its upper level, on average, 
Y decreases 749 K. In the case of B, Y decreases 40 K. The same change in C produces an average 
increase of 31.5 K in Y and so on. We can see that there are three sets of results, -749 (A), those whose 
absolute value is around 35 (B, C and E) and the rest (D, F and G). When applying the MAD method 
to determine which factors are relevant, we identify only A (#). Nevertheless, we should also pay 
attention to B, C and E, since changes of approximately 35 degrees in Y are certainly significant from 
a physical point of view. The problem we are facing now is how to proceed to get more information 
from our computer model. From equation 4.2.1.3 we know that these estimates are aliased with second 
and higher order interactions and we do not know which of them are responsible for the estimates 
obtained, or if all of them are equally responsible. In most of the models, factors are more important 
than second order interactions and these are more important than third order interactions and so on. So, 
in principle, these results are telling us that the most important factor, by far, is A, followed by B, C 
and E. Certainly, the inclusion of E among the most influent factors on Y is a surprise. We did not 
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expect this input parameter to be an important one. In order to detect if E is really important or if the 
estimate of its effect is due to interactions AC, DG or BF, and also to look for confirmation about the 
importance of the other three factors, we will take another saturated 27-4 design. In order to make 
estimable all factors, with no alias with second order interactions, we will take the following 
generators 
 

ABCFBCGACEABDI =−=−=−=                                                (4.2.1.5) 

 

The design points corresponding to this new fraction and the results obtained are shown in Table 
4.2.1.2. Both fractions together will be used as a new joint design to continue the study. This means 
putting together all the information contained in Tables 4.2.1.1 and 4.2.1.2. A peculiarity of this new 
design is that, in addition to allowing estimating all main factors with no alias with second order 
interactions, it is a full 24 design in A, B, C and any of the other four factors excluding F. The full set 
of generators of this joint design is 

 

BDFGCEFGADEFCDEG 
ABCFABEGBCDEI

====
===

  
                                              (4.2.1.6) 

 

where the three first are the original set of generators used to build up the design. 

 

Table 4.2.1.2.- 27-4 saturated design corresponding to generators given in equation 4.2.1.5. 
I A B C D=-AB E=-AC G=-BC F=ABC Y 

+1 -1 -1 -1 -1 -1 -1 -1 1768 
+1 +1 -1 -1 +1 +1 -1 +1 1038 
+1 -1 +1 -1 +1 -1 +1 +1 1701 
+1 +1 +1 -1 -1 +1 +1 -1 1009 
+1 -1 -1 +1 -1 +1 +1 +1 1824 
+1 +1 -1 +1 +1 -1 +1 -1 1038 
+1 -1 +1 +1 +1 +1 -1 -1 1783 
+1 +1 +1 +1 -1 -1 -1 +1 1010 

 
 

 

The results of this design are summarised in Table 4.2.1.3. In the first column we represent the factors, 
in the second one the sum of squares or part of the total variability of the output variable explained by 
each factor, in the third one the P-value of the associated F-test and in the fourth column the estimate 
of the effect of each factor. No interaction is shown in the table because all second order interactions 
are aliased with other second order interactions. The column under the heading P-value indicates if the 
factor produces a statistically significant effect (values under 0.05). The closer the P-value is to 1.0, the 
less important that factor is and the closer it is to 0, the more important it is. In an ANOVA table, the 
way to decide if a factor is statistically significant is to compare the variability it is able to explain with 
the residual variability.    
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Table 4.2.1.3.- Results, for A, B, C, D, E, F and G, of the design obtained by joining the two 
saturated designs in Tables 4.2.1.1 and 4.2.1.2. 

Source Sum of squares P-value Estimate 
A 2.23 E+06 0.00 *                      -747.125 
B 6601 0.01 *                        -40.625 
C 4389 0.03 *                          33.125
D 14 0.88 -1.875
E 14 0.88 1.875
F 189 0.58 -6.875
G 105 0.68 5.125

Residual 4614
 

 
From this table we can get two straightforward conclusions: 1) D, E, F and G are completely irrelevant 
factors, especially D and E and 2) comparing these results with the results in 4.2.1.4, since E has been 
shown to be irrelevant, some of the interactions AC, DG or BF could have some relevance, and could 
be responsible for the estimate obtained in 4.2.1.4. In principle, non-relevant factors only rarely could 
have important interactions, this fact bring us to consider DG a very unlikely interaction. Regarding 
BF, it could also be considered unlikely. So, the main candidate to be responsible for the non-expected 
result obtained in 4.2.1.4 is AC. This rationale brings us to consider as a likely statistical model to 
explain the sampled results obtained with our computer code a model with only A, B and C as main 
factors, plus all their interactions, formally a model exactly the same as in equation 4.1.1. Studying this 
model doesn’t demand to get new computer runs. Table 4.2.1.4 is the ANOVA table of such a study.  

 

Table 4.2.1.4.- Results, for A, B, C and all their interactions, of the design obtained by 
joining the two saturated designs in Tables 4.2.1.1 and 4.2.1.2. 

A 2.23 E+06 0.00 *                      -747.125 
B 6601 0.00 *                        -40.625 
C 4389 0.00 *                          33.125 
AB 473 0.00 *                            10.875 
AC 4193 0.00 *                          -32.375 
BC 11 0.50                                 1.625 
ABC 189 0.02 *                             -6.875 
Residual 171   
  

 

The results in Table 4.2.1.4 may be summarised as follows: 1) All main factors considered in this 
model (A, B and C) and their interactions are statistically significant, with the exception of BC, and 2) 
the residual variability is really tiny, only 171 (171+11 if we exclude BC and add the variability 
explained by this factor to the residual variability), which is less than 5% of the residual variability 
obtained with the previous model. This reduction in non-explained variability means that with only A, 
B and C and their interactions we are able to explain much more data variability. So, the statistical 
model selected in this study to explain the physical model data would be the one provided in equation 
4.1.1 with the estimates provided in Table 4.2.1.4. This means that the main factor in this model is A, 
followed by B and C. The impact of B and C on the output Y is one order of magnitude smaller than 
A’s. The interaction between A and C has shown to be almost as strong as main factors B and C. The 
only third order interaction is significant, though from a physical point of view it cannot be considered 
relevant given its impact on the output (its effect is less than one third the effect of any of the relevant 
second order interactions).   
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This example shows that fractional factorial experiments are very well suited to develop sequential 
experiments, where new design points are selected according to the information obtained in previous 
steps. Seven factors have been studied using only 16 computer runs, identifying three factors and two 
second order interactions as relevant. In our opinion, this strategy is adequate when the number of 
input factors is moderate, but it may become very difficult to implement when the number of input 
factors is large (several tens or larger). In those cases, more automatic and efficient methods should be 
used, as for example the methods that will be explained in sections 4.3 and 4.4. 

 

4.3. Morris’ one-at-a-time (OAT) design 
 
Morris (1991) thought that, for any model output Y differentiable at least once with respect to each 
input, Y’s partial derivative with respect to Xi at a given point x of Y’s support is a measure of the 
influence of Xi on Y. This way, Morris considers that if the partial derivative is 

1. 0 over all values of x. Then Xi’s effect on Y is negligible. 
2. a non-zero constant over all values of x. Then Xi’s effect on Y is linear and additive. 
3. a non-constant function of only Xi. Then Xi’s effect on Y is non-linear. 
4. a non-constant function of one or more Xj (j≠i). Then Xi’s effect on Y involves interactions 

with other input factors. 
 
Morris considers that the target of a moderate-cost experimental design should be to provide 
information to classify input factors in three sets: 

1. factors that have negligible effect on the output  
2. factors that have linear effects without interactions 
3. factors that have non-linear effects and/or interactions . 

 
In order to get this target, the author proposes to normalise the input space to the unit k-dimensional 
hypercube ([0,1]×… ×[0,1]) and create a p-level grid in this hypercube (each input Xi is allowed to 
take values in the set {0,1/(p-1),2/(p-1),…,1}). The elementary effect of a given input factor Xi at a 
given point x within the unit hypercube is defined as  
 

1 1 1( , , , , , , ) ( )( ) i i i k
i

y x x x x x yD − ++ Δ −
=

Δ
K K xx                                     (4.3.1) 

 
where xi≤1-Δ and Δ is a multiple of 1/(p-1). Under these circumstances, the number of elementary 
computable effects within the unit hypercube for each input factor is pk-1[p-Δ(p-1)], which follows a 
given discrete probability density function. A large measure of central tendency (mean) of the 
distribution corresponding to input factor Xi means that this factor has an important influence on Y. A 
large measure of spread (standard deviation) shows that either interacts strongly with other factors or 
its impact on the output is not linear, or both. In next section we describe the sampling plan designed 
by Morris to estimate both measures in an efficient manner. 
 

4.3.1. The implementation of the method 
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Morris proposed to create random sample paths along a grid like the one mentioned in last section to 
compute the distribution of elementary effects for each input factor. In order to get those random 
sampling paths, the following matrices and vectors are created 

1. the (k+1)×k matrix B, which contains one zero followed by k ones in the first column, two 
zeros followed by k-1 ones  

2. the k×k diagonal matrix D* that takes values either –1 or +1 as diagonal elements with 
probability 0.5 each. 

3. the (k+1)×k matrix Jk+1,k of ones (all its elements are 1), and the column matrix Jk+1,1 (all its 
elements are 1) 

4. the k×k random permutation matrix P*, whose columns contain all one  
5. the random vector (k components, one per input factor) x*, whose components are taken at 

random from the set {0, 1/(p-1),2/(p-1),…,1-Δ}, each with equal probability.  
 
Additionally, Morris suggests to restrict the application of the method to Δ=p/[2(p-1)], p taking an 
even value. This way, the matrix B*=(Jk+1,1x*+(Δ/2)[(2B- Jk+1,k)D*+ Jk+1,k])P* is created. This is a 
(k+1)×k matrix, which is called by Morris a random orientation of matrix B and defines k+1 points in 
the grid (each row of B* is a point). Each point is created from the previous one adding a quantity +Δ 
or -Δ to only one of its components. This way, comparing the k+1th row with the first one, their 
components will be the ones of the first row plus or less Δ. These k+1 points are used to estimate one 
elementary effect per input factor; k in total. 
 
Let us consider a specific case to see how a random orientation is created. Let us consider k=3, p=6 
and Δ=p/[2(p-1)]=2/5. Under these circumstances 
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and 
 

0 1 1
1 1 1

(1 2)[(2 ) ]
1 0 1
1 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟− + =
⎜ ⎟
⎜ ⎟
⎝ ⎠

*
k+1,k k+1,kB J D J ,                                  (4.3.1.2) 

 
 

As can be seen, each column of matrix (1 2)[(2 ) ]− +*
k+1,k k+1,kB J D J  is the same as the corresponding 

one of B or the same one substituting zeros by ones and vice versa. Observe that, while B, ΔB and J4,3 
are fixed after setting k, p and Δ, D* and P* are the result of sampling and could take different values in 
different applications (for k=3, there are 8 -23- different possibilities for D* each one with probability 
1/8 and 6 possibilities -3!- for P* each one with probability 1/6). Let us suppose that after sampling 
according to bullet 5, the vector x*T=(3/5,1/5,0) is obtained (T stands for transpose). Then B* becomes 
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The first 4×3 matrix within brackets on the right hand side is the result of Jk+1,1x*. It provides the 
starting point for selecting a sample path in input space (orientation). The second 4×3 matrix within 
brackets on the right hand side is the result of ( 2)[(2 ) ]Δ − +*

k+1,k k+1,kB J D J , which sets what 
component of the vector in the input space we have to modify (adding or subtracting a quantity 
Δ=p/[2(p-1)]=2/5) to get the next sample point. Adding both first rows, we get the first point in the 
sample path: (3/5,3/5,0). Successive rows in the second matrix within brackets indicate that the second 
point is obtained by adding 2/5 to the first component of the first point, the third point is obtained by 
subtracting 2/5 to the second component of the second point and the last one is obtained by subtracting 
2/5 to the third component of the third point. Multiplying by P* a permutation of columns is obtained, 
which introduces symmetry in the treatment given to all components of the input parameter space (in 
this example the first and the second components are exchanged, remaining the third one unchanged). 
Finally, Matrix B* becomes 
 

3 3 2
5 5 5

3 2
5 5

1 2
5 5

1
5

1
1
1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟=
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⎝ ⎠

*B                                                        (4.3.1.4) 

 
Computing the model output Y for each row of B* and applying expression 4.3.1 an elementary effect 
may be estimated for each input factor. For example, an elementary effect for the third input factor is 
estimated by applying 4.3.1 to the output obtained for the third and fourth rows of B*. In order to get 
an estimation of the whole distribution of elementary effects for each input factor, this process must be 
repeated as many times as considered necessary, for example r times. So, the design matrix will be  
   

2

...

r

⎛ ⎞
⎜ ⎟
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⎝ ⎠

*
1
*

*

B
B

X

B

  .                                                          (4.3.1.4) 

 
 
This way, the total number of code runs or design points is (k+1)×r. 
 
Morris’ design is considered a OAT design because only one factor is changed in two successive 
experiments. Examples of such designs are presented in figure 4.3.1.1:  
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• to the left,  d=2, r=5 and p=5; an individual OAT is in this case formed for instance by the 
points A, B, C. 

• to the right, d=3, r=1 and p=1, the only individual OAT design is (A, B, C, D). 
 

    
 

Figure 4.3.1.1.- Example of Morris’ OAT designs in 2 (left) and 3 (right) dimensions 
 
 
If we call },,{ 1 r

ii DD K  to the set of estimates obtained for the elementary effects of factor Xi when 
applying 4.3.1 to the adequate sample points, and use the usual estimators of the mean and the standard 
deviation (the sample mean iD  and the sample standard deviations is ), these estimates may be used as 
sensitivity estimates. The interpretation of these sensitivity indices is as follows:  

• a large measure of the central tendency (i.e. iD ) indicates an input with an important 
overall influence on the output; 

• a large measure of dispersion (i.e. is ) means that there are significantly different values in 
the corresponding elementary effect distribution and consequently the dependence of the 
output on the considered factor is either nonlinear or in interaction with other factors (just 
think that iD  is an approximation of the derivative of Y with respect to Xi). 

 
The plot of the means versus the standard deviations of these samples will indicate how to split the 
factors into the three categories mentioned at the beginning of this section: 

• low values of the means  factors with negligible effect on the output. 
• large values of the means and low values of the standard deviations  factors with linear 

effects but without interactions. 
• large values of the means and of the standard deviations  factors with non-linear effects 

and/or interactions. 
 
The main advantage of this screening method is its relatively low computational cost, (k+1)×r (linear 
function of the number of inputs factors), while the main disadvantage that it is not possible to estimate 
individual interactions among factors. Another disadvantage the presents the method is the possible 
lack of importance attributed to input factors whose variation may produce large elementary effects 
positive but also negative. In that case, cancellations made during the averaging process of computing 
a mean can render misleading results.  
 
After the publication of Morris’ original work, several authors have proposed the following 
modifications: 
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1. In order to avoid one of the disadvantages just mentioned (cancellation of terms of different 
sign in the estimation of the mean, underestimating the importance of some relevant factors), 
Campolongo et al. (2007) propose to replace the mean of the elementary effects by the mean of 
their absolute values (see also Saltelli et al. (2004)). 

2. Campolongo et al. (2007) propose to use a space filling design (SFD) for choosing the starting 
point for each individual OAT. 

3. Pujol (2008) propose to use a simplex design instead of a OAT design, which has two main 
advantages: 
• better properties in terms of projection on subspaces. 
• possibility to use a pre-existing database of simulations to form the simplex design. 

 

4.3.2. Example of application of Morris’ OAT design 
 
The classical example for this screening method is the Morris analytical function (Morris (1991)), 
which has k = 20 input factors and is defined by: 
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The rest of the first and second order coefficients were generated independently from a normal 
distribution )1,0(Ν and the rest of the third and fourth order coefficients were set to 0. The number of 
levels for each factor is p = 4, and the number of individual OAT designs is r = 4. In this case there 
will be 84421 =× code runs. Using these 84 values of y, a random sample of 4 elementary effects is 
observed for each input factor; for each of these random samples the mean of the absolute values and 
the standard deviations are computed. 
 
The plot of the means of the absolute values of the elementary effects versus their standard deviations 
is showed in figure 4.3.2.1, and allows us to separate the factors into the 3 groups:  

• the ones with negligible effect on the output : factors 11 to 20; 
• the ones with linear effects without interactions : factors 8, 9, 10; 
• the ones with non-linear effects and/or interactions :  factors 1,…, 7. 
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Figure 4.3.2.1.-  Results of the Morris’ method applied to Morris’ function, the dotted lines are separators for 

the 3 groups 
 

4.4. Sequential bifurcation 
 
This method has been developed in Bettonvil and Kleijnen (1996) and is a group screening technique. 
It allows screening a large number of factors. One of the main advantages is that the number of 
simulations to be performed is smaller than the number of factors to be screened. The drawback is that 
the relationship between each input factor and the output has to be monotonic and that the type of 
monotony has to be known a priori. Whenever this condition is fulfilled, the method is very effective. 
 

4.4.1. The method 
 
The method is a group screening one; at each iteration the most influent group is split into two 
subgroups. This is the way the most influent factors are identified. In order to measure the influence of 
each group, the method offers two alternatives: 

1. either the relationship between the inputs and the output is linear, i.e. the following model 
holds 

 
0 1 1 k kY X Xβ β β= + +K                                                (4.4.1.1) 

 
2. or the relationship is linear with interactions, i.e. the following model holds 
 

, 10 1

k k
i ji i ij i ji i j

Y X X Xβ β γ== <
= + +∑ ∑ .                                    (4.4.1.2) 
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Each factor Xi is uniformly varying on [−1,1]. The signs of the βi coefficients have to be known 
(without any loss of generality, we can suppose that they are positive). 
 
The effect of the group of factors included between the ith factor and the jth factor is denoted by eij and 
is defined as the difference between: 

 the average of the output Y knowing that the factors Xi … Xj have been fixed at the value 1 
(or the conditional expectation of Y knowing that Xi =1,…, Xj=1) and 

 the average of the output Y knowing that the factors Xi … Xj have been fixed at the value −1 
(or the conditional expectation of Y knowing that Xi = −1,…, Xj= −1). 

 
This yields: 
 

[ ] [ ] ( )jijijiij XXYEXXYEe ββ ++=−=−=−=== KKK 21,,1|1,,1|      (4.4.1.3) 
 
The way to estimate these effects is slightly different if we use the linear model or the linear with 
interactions model. For the first case (3.4.1) we use: 
 

)()( )1()( −−= ijij xfxfe                                                 (4.4.1.4) 
 

and for the second one, (3.4.2), we use: 
 

( ) ( )
2

)()()()( )1()1()()( −− −−−−−
= iijj

ij

xfxfxfxf
e ,                              (4.4.1.5) 

 
where ( )lx denotes the vector where the first l components are set to 1 and the following ones are set to 
– 1.   
 
In order to estimate the effect of one group we need 2 runs for the first type of model, and 4 runs for 
the second type. The procedure being iterative, the total number of simulations may be diminished: at 
every iteration, we split a group for which we have already estimated the effect in two subgroups for 
which we want to estimate the effects. We need then only one supplementary run for the linear model 
and two for the linear with interactions model to perform the estimations of the effects of the 
subgroups. The maximal number of runs is then k+1 for the linear model and 2k for the linear with 
interactions model. In practice, this computational cost is even lower, because the iterations should 
stop when all the influent parameters have been found. 
 

4.4.2. Example 
 
This is an analytic example available in the package sensitivity in R. It is a linear model with 
interactions:  
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There are d=50 independent input factors. The coefficients of the model are represented in figure 
4.4.1.1. There are 5 important β coefficients. As for the γ coefficients, they are varying uniformly 
between 0 and 0.1 except for two values: γ12 = 5 and γ59 = 12.  
 
After performing 15 iterations of this method, the 4 largest main effects are identified as the variables 
number 9, 14, 16, 2 (in decreasing order of the corresponding main effects) and the group formed by 
the variables 26 – 38 have the next greatest main effect (by construction, the variable number 33 has 
the next most important main effect). The results for the 1st, 2nd and 15th iteration of the method are 
given in figure 4.4.1.2. The results have been obtained using expression 4.4.1.5. 
 

 
Figure 4.4.2.1.- Coefficients of the model (4.4.2.1) 
 
 

group effect group effect group effect
1-50 278.9218 1-25 243.0556 1 0.06655364

26-50 35.8662 2 42.47244855
3-4 0.53272005
5-7 0.98734019

8 0.12394334
9 87.03867644

10 0.42195223
11-13 0.73810447

14 55.61885057
15 0.51008848
16 51.42242299

17-19 1.10861541
20-25 2.01392355
26-38 32.54224589
39-50 3.32395487

iteration 1 iteration 2 iteration 15

Figure 4.4.2.2.- Results for the sequential bifurcation example - to the left the groups of variables together with 
their estimated effects for iteration number 1, 2 and 15; to the right the same results for the 15th iteration but in a 
graphical representation. 
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5. Global methods 
 
Global methods focus on how the whole input space (taking into account input distributions) maps into 
the output space. Four sets of global methods have been considered in this study: graphical methods, 
Monte Carlo based methods, variance decomposition based methods and distribution sensitivity 
methods. In the following pages most interesting techniques are described. 
 

5.1. Graphical methods 
 
Graphical methods are important tools to support, guide and interpret the results provided by 
numerical sensitivity analysis techniques. They may also be used as standalone techniques to get 
further insights about the model under study. Widely used graphical tools to analyse relations between 
inputs and outputs are scatter-plots and cobweb plots. In this report we also include the recently 
revived and improved Contribution to the Sample Mean Plots (CSM plots). Extensions of some of 
them are also considered. 
 

5.1.1. Scatter-plots 
 
Let us call X=(X1,X2,…,Xk) the vector of input parameters and Y to a given scalar output variable. For a 
given input Xi, the scatter-plot is the projection of the sample points (X,Y) on the (Xi,Y) plane. This 
representation allows the examination of the dependence between Y and Xi. Scatter-plots are very 
helpful to identify linear relations, monotonic relations and the existence of thresholds among other 
potential trends. The use of transformations may also provide a lot of information about input/output 
relations. They may be used as supporting material to explain the results obtained by means of numeric 
sensitivity techniques, but also to prevent the use of inadequate techniques. The most frequently used 
transformations are 
 

1. Logarithmic (base 10) 
2. Ranks 

 
Both transformations are useful, though they also have their shortcomings. The logarithmic 
transformation is more intuitive, but may not be used when a fraction of the values (usually output 
values) take value 0, unless the software at hand has been designed to cope with such problem and it 
avoids null values before applying the transformation. The transformation into the ranks is not affected 
by such problem. In this transformation the smallest sample value is transformed into 1, the second 
smallest into 2 and so on until the largest value, which is transformed into n (sample size). So, the new 
scale is between 1 and n. Nevertheless, this transformation is not so intuitive (just think that two values 
separated by several orders of magnitude can get contiguous ranks, say h and h+1, the same as two 
other very close values). In case of ties, equal values are assigned the same rank. For example, if three 
values are equal, and should occupy ranks t-1, t and t+1, all of them are assigned rank [(t-
1)+t+(t+1)/3]=t. The strongest reason to use the rank transformation in SA is that this transformation 
converts any monotonic relation between two variables into a linear one. Table 5.1.1.1 provides an 
example of a transformation into ranks. In many cases, the combined information provided by scatter-
plots obtained using different transformations will help understanding the set of data under analysis. 
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Table 5.1.1.1.- Sample and corresponding ranks. 
Parameter sample 

Raw values Ranks 
18 2 
96 7 
45 5.5 
31 3 
15 1 
99 8 
45 5.5 
39 4 

 
 
Figures 5.1.1.1 to 5.1.1.6 are examples of scatter-plots obtained from the Level_E test case described 
in annex 1 using a simple random sample of size 459. Figures 5.1.1.1 to 5.1.1.3 are the scatter-plots for 
the dose at 104 y versus a composite input parameter (created ah-hoc as a function of other input 
parameters) for the raw values, the logarithms and the ranks respectively. Figure 5.1.1.1 hardly allows 
see anything related to the dependence input-output, except some kind of possible monotonocity. 
Figure 5.1.1.2 shows the same values transformed into their decimal logarithms. The software used has 
deleted all points whose x coordinate was null, keeping the ranges of the non-null values in both axes. 
In fact only the output variable contains null values, which is due to a computational threshold set to 
10-15 (all output values below this threshold are set to zero). This figure shows the spread of the non-
null part of the output over 10 orders of magnitude. Figure 5.1.1.3 shows the ranks of the output versus 
the rank of the input. Immediately, it can be recognised that around 350 out of 459 runs produced null 
output values (see the horizontal line and remind the rule given above to assign ranks in case of ties). 
Additionally, a threshold may be seen in the plot; roughly the 70 smallest input samples produced 
output values above the threshold (non-null) and no such output was obtained for input values above 
the 170th smallest one. 
 
Figures 5.1.1.4 to 5.1.1.6 describe the behaviour of the peak dose versus the input parameter W. Figure 
5.1.1.4 does not provide much information about the dependence between input and output due to the 
spread of both over several orders of magnitude. Figure 5.1.1.5s show the linear dependence between 
the logarithms of both variables. Figure 5.1.1.5 shows the monotonic relation between both. The three 
plots show that, if a regression model is used study the sensitivity of the peak dose versus W, it would 
be more convenient either to study the relation between the logarithms of both or to study their 
monotonic relation. In fact, their Pearson correlation coefficient takes value –0.25 while the Pearson 
correlation coefficient between both logarithms takes values –0.69 and their Spearman rank correlation 
is –0.71. 
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Figure 5.1.1.1.- Dose at 104 y versus composite input 
parameter (raw values in both axes). Level_E test case. 

Figure 5.1.1.2.- Dose at 104 y versus composite input 
parameter (decimal logarithm in both axes). Level_E 
test case. 

  
Figure 5.1.1.3.- Dose at 104 y versus composite input 
parameter (ranks in both axes). Level_E test case. 

Figure 5.1.1.4.- Peak dose versus W (raw values in 
both axes). Level_E test case. 

  
Figure 5.1.1.5.- Peak dose versus W (decimal 
logarithm in both axes). Level_E test case. 

Figure 5.1.1.6.- Peak dose versus W (ranks in both 
axes). Level_E test case. 

 
 
Scatter-plots may also be used to study the dependence between output variables. Though this cannot 
be considered proper SA, it may provide very useful information about the system model. Figures 
5.1.1.7 and 5.1.1.8 show, respectively, the dependence between the total peak dose and the peak dose 
due to 129I and between the total peak dose and the peak dose due to 36Cl in a given repository. In the 
upper-right corner of figure 5.1.1.7 and in the central part of figure 5.1.1.8, two rows of points set on 
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straight lines may be identified. In fact both lines are close to the straight-line y=x. This means that the 
largest peak doses are produced mostly by 129I while 36Cl is responsible for the smallest peak doses. 
  
 

  
Figure 5.1.1.7.- Total peak dose 
versus peak dose due to 129I in a 
system model (decimal logarithm 
in both axes). 

Figure 5.1.1.8.- Total peak dose 
versus peak dose due to 36Cl in a 
system model (decimal logarithm 
in both axes). 

 
 
Three-dimensional (3-D) scatter-plots or XYZ plots show the projection of the sample points (X,Y) on 
the (Xi,Xj,Y) space. The information they are able to provide is also valuable. The extraction of such 
information is limited, though challenging, due to obvious interpretation problems when a 3-D figure 
is shown on a 2-D display. Software packages that allow changing the angle of the view may enhance 
and broaden their applicability. As in the case of normal 2-D scatter-plots, the use of convenient scale 
transformations may help identifying interesting model features. Figures 5.1.1.9 and 5.1.1.10 show the 
3-D scatter-plots of the peak dose versus V1 and W. In the first one raw values are shown in the three 
axes, while both input parameters have been transformed into their decimal logarithms in the second 
one. While figure 5.1.1.10 shows clearly the effect of the interaction between both inputs on the 
output, this is not seen so clearly in figure 5.1.1.9 (largest outputs values are obtained when V1 takes 
very large values and W takes very small values). 
 
 

  
Figure 5.1.1.9.- Peak dose due to Figure 5.1.1.10.- Peak dose due 
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129I versus V1 and W (raw values in 
all axes). Level_E test case. 

to 129I versus V1 and W (decimal 
logarithm in both input axes). 
Level_E test case. 

 
 
Extensions of scatter-plots are matrices of scatter-plots and overlay scatter-plots. Matrices of scatter-
plots show simultaneously, under a matrix format, the scatter-plots of different pairs of input 
parameters/output variables. They allow identifying quite quickly the pairs with most remarkable 
relations, but they are also affected by the loss of accuracy due to including several plots in a reduced 
space, typically a fraction of a page. Overlay scatter-plots allow showing the same plot the scatter-plot 
of one output and several inputs. In order to distinguish the points corresponding to different inputs, 
different symbols (dots, circles, crosses, diamonds, etc.) and different colours are used. Frequently 
only a few inputs may be represented due to either the different scales used in the plot or to the 
difficulties to interpret correctly so many overlapped different symbols. 
 

5.1.2. Cobweb plots 
 
Cobweb plots have been designed to show multidimensional samples in a two-dimensional graph, see 
Cooke and Van Noortwijk (1999). Vertical parallel lines separated by equal distances are used to 
represent the sampled values of a given number of inputs/outputs, usually not more than ten or twelve, 
in order to keep the plot sufficiently clear. Each vertical line is used for a different input/output and 
either the raw values or the ranks may be represented (either raw values or ranks in all lines, never 
mixed). Sampled values are marked in each vertical line and jagged lines connect the values 
corresponding to the same run. Coloured lines can be used to display the different regions of any input 
parameter or output variable. Moreover, flexible conditioning capabilities enable an extensive insight 
into particular regions of the mapping. The cobweb plots are sometimes provided together with ‘cross 
densities’ showing the density of line crossings midway between the vertical axes. Therefore, an 
informed and careful analysis of cobweb plots enables the characterisation of dependence and 
conditional dependence. 
 
Figures 5.1.2.1 to 5.1.2.4 are cobweb plots that show the relation between the 9 input parameters 
considered in the Level_E test case and the output variable peak dose. All these cobweb plots are 
based on the ranks; no one is based on the raw values. Figure 5.1.2.1 is an unconditional cobweb plot, 
where coloured lines have been used to distinguish between runs related to the lower (yellow), lower-
medium (green), upper-medium (blue) and upper (black) quartile regions of the output variable. The 
output variable is represented in the last column; the rest of the columns are dedicated to each input 
parameter according to the legend behind them. Paying attention to what colours predominate in each 
region of each input parameter, we may get an idea about the complex relation between inputs and 
output.  
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Figure 5.1.2.1.- Unconditional 
cobweb plot (ranks) for the peak 
dose due to 129I and all input 
parameters. Level_E test case. 

Figure 5.1.2.2.- Conditional 
cobweb plot (ranks, condition: 10% 
largest output values) for the peak 
dose due to 129I and all input 
parameters. Level_E test case. 

  
Figure 5.1.2.3.- Conditional 
cobweb plot (ranks, condition: 10% 
intermediate output values) for the 
peak dose due to 129I and all input 
parameters. Level_E test case. 

Figure 5.1.2.4.- Conditional 
cobweb plot (ranks, condition: 10% 
smallest output values) for the 
peak dose due to 129I and all input 
parameters. Level_E test case. 

 
 
Nevertheless, the authors of this report find more convenient the use of conditional cobweb plots. In 
this type of plots only a fraction of the runs obtained are represented. Figure 5.1.2.2 shows the runs 
that produced the 10% highest peak doses. We can see in the plot that these doses are always obtained 
when W takes values below its own median and V1 takes values above its own median (with only one 
exception). For the rest of the input parameters, such a clear relation cannot be observed, in fact, what 
we see is that almost any region of the other input parameters may produce large values of the output. 
In order to produce figure 5.1.2.3, we have conditioned the plot to the 10% of intermediate values of 
the peak dose. In this case, no clear relation may be seen between that region of the output and any 
specific region of any input parameter. In figure 5.1.2.4 the 10% of smallest values of the peak dose 
have been selected to condition the plot. It may be seen that those outputs are related to small values of 
V1 and high values of W and R1. 
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5.1.3. Contribution to the sample mean plot (CSM plot) 
 
The Contribution to the Sample Mean plots (CSM plots) were developed in the early 1990’s. Sinclair 
(1993) was investigating the way infinitesimal changes to the probability density function (pdf) of an 
input variable Xi can alter overall features of performance (mean and variance of Y). The marginal 
dependence of E(Y) on the various input factors was employed and portrayed graphically. 
Nevertheless, Sinclair considered his ‘sensitivity plot’, as he called it, as a useful graphic tool for 
estimating sensitivity ‘by eye’.  
 
In order to create a Contribution to the Sample Mean Plot (CSM plot), we assume that a random 
sample S of size n of the input factors and the corresponding sample of the output variable considered 
are available. We do also assume that the random sample has been obtained via a sampling technique 
that introduces no bias. Suitable sampling schemes might be, for example, simple random sampling, 
LHS and proportional stratified sampling, while non-proportional stratified sampling (i.e.: optimal 
stratified sampling) or importance sampling would not be acceptable schemes. To build the CSM plot 
for a given input variable, let us say Xi, and the response Y, the following procedure is applied: 
 

1. the realisations of Xi are sorted generating the series of values },...,,{ )()2()1( n
iii xxx , 

2. the corresponding series of values [1] [2] [ ]{ , ,..., }ny y y is created,  
3. the ancillary variable Mi is defined, whose sampled values are obtained from the sampled 

values of Xi and Y as 
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4. Mi is normalised dividing the values q

im by the sample mean of Y, 
5. The sampled values of Mi are plotted versus the cumulative distribution of Xi. 

 
Using the approach described previously, the estimates of the following quantity are represented on the 
y-axis  
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which is the fraction of the output mean corresponding to values of Xi smaller or equal to its quantile 
of order q. The subindex (-i) indicates the exclusion of the input parameter Xi. In expression 5.1.3.2 

XΩ , )( i−ΩX  and q
ii xx ≤  mean that the respective integrals are computed on the whole input space, on the 

whole input space excluding input parameter Xi and on Xi up to its quantile of order q. Given the 
definition of the plot in step 5, each point in a CSM plot represents the fraction of the output mean due 
to any given fraction of smallest values of an input parameter. 
 
A CSM plot represents indirectly a contribution to the variance. Indeed, if for a given quantile range, 
all realisations of Y are very close to the mean, this also implies that there is a very low contribution to 
the variance. Any significantly low and significantly high contribution to the mean represents locally 
an important contribution to the variance. 
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Figure 5.1.3.1.- CSM plot for four input parameters and an output variable. The 95% confidence band around 
the diagonal is included . 
 
Figure 5.1.3.1 shows the CSM plot for one output variable and four input parameters of a simulation 
model. The sample used, a simple random sample, contains 100 Monte Carlo realisations. Each curve 
is characterised by a fairly different behaviour. Roughly speaking, each region of equal probability of 
X1 and X4 are responsible for the same percentage of the output sample mean (the line is always close 
to the diagonal). Regarding X2, its 60% smallest values are responsible for more than 99% of the 
output sample mean. Only values of X3 between its median and its quantile of order 0.85 produce 
output values significantly different from 0. This region is responsible for more than 99% of the output 
sample mean. Other similar statements could be made, as for example: values between the quantiles of 
order 0.70 and 0.80 of X3 produce more than 55% out the output sample mean. The meaning of the 
two dotted lines parallel to the diagonal will be explained later in this section. 
 
The main use of CMS plots is to identify important input parameters. In principle, an input parameter 
could be considered as non-important if knowing its value doesn’t provide much information about the 
value of the output, which means that the value of the output depends more on the values of other input 
parameters than on its own values. In this case, a completely non-important variable, in relation with a 
given output variable would be characterised by the fact that the values of both would be randomly 
associated. High, low and intermediate output values would be equally obtained in any region of a 
non-important variable, which means that a behaviour similar to the ones of X1 and X4 in figure 5.1.3.1 
could be expected (lines close to the diagonal). 
 
Input parameters could be considered as important if knowing its value provides relevant information 
about the value of the output. This means that concentrations of low, intermediate and high values of 
the output could be expected to be associated to different regions of the input parameter. This is the 
type of behaviour observed in input parameters X2 and X3 in figure 5.1.3.1, where clear departures 
from the diagonal can be observed. 
 
The most similar plot available in scientific literature is the Lorenz curve for measuring the 
concentration of wealth; see Lorenz (1905). The Lorenz curve shows the distribution of income among 
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families in a given region or country. In the y-axis the percentage of income is represented, while in 
the x-axis the percentage of poorest families is represented. Each point of the curve represents the 
percentage of the total income obtained by a given percentage of the poorest families. A potential 
Lorenz curve could show that the 50% of the poorest families obtain 10% of the total income while the 
5% wealthiest families get 40% of the income, which would be the case of a country with very unequal 
distribution of wealth. The diagonal represents an ideal situation where all families get the same 
income. These curves are frequently used to compare the situation in different countries or the 
evolution of the concentration of wealth over time in a country. The main differences between these 
plots and CMS plots are that these plots are usually created from aggregated data obtained via official 
statistics instead of using the raw sampled data and that, by construction, the Lorenz curve takes all 
their values on or below the diagonal. 
 
CMS plots should be used only when non-biasing sampling schemes have been applied to obtain the 
data. If a sampling technique that introduces biases is used (i.e.: importance sampling) regions of equal 
length in the x-axis do not represent any more equally likely regions. Under this circumstance the 
diagonal doesn’t hold as the reference to measure lack of importance, and the interpretation of the plot 
becomes really difficult and different for different input parameters since the bias introduced could 
vary among the different parameters. 
 
CSM plots as designed by Sinclair (1993) are suitable only for output variables that take positive or 
null values. Scale transformations, as for example taking the absolute value or shifting the output 
variable values by adding the opposite of its minimum value, are pertinent in case of either having 
output variables that either take only negative values or take negative and positive values.  
 
A particularly relevant feature of these plots is the possibility of representing in the same figure the 
relation of many input parameters with one output variable. This is a clear advantage with respect to 
scatter-plots. Though overlay scatter-plots provide some flexibility regarding this point, the extraction 
of relevant information from this representation is limited. CMS plots could also be used to study the 
relation between one input parameter and many output variables, even to represent the relation 
between different inputs and outputs. Nevertheless, the authors of this report consider the first use 
(several input parameters and one output variable) as the standard and most useful one. 
 
CMS plots provide interesting information about the relation between inputs and outputs but it is only 
qualitative. After the analysis of figure 1, it could be concluded that X2 and X3 are important 
parameters producing a visible impact on the output variable, while X1 and X4 are not. This is a 
statement based on our visual perception of the information contained in the plot, which is not 
supported by any numeric measure so far. In fact, no measure is available yet even to rank the input 
parameters in order of importance; who has a stronger impact on the output, X2 or X3? Could the 
behaviour shown by X3 have been obtained just by chance? 
 
Bolado et al. (2008) have proposed a test to study when the deviations from the diagonal observed in a 
CSM plot are statistically significant and when they may be obtained due to randomness. This is a 
permutations based test, which is explained in the next paragraphs 
 
The inputs plus the output of interest are grouped in a (X,Y) random vector containing k+1 components 
characterised by its joint multivariate probability density function ),(, Yf Y XX . An input parameter Xi is 
completely non-important if the value taken by the output depends only on the values of the other k-1 
input parameters. Under this hypothesis, the conditional distribution of Y given the value of Xi is 
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independent of that value. In other words, this means that the conditional distribution of Y given a 
value of Xi equals the marginal distribution of Y ( )()( yfxXyf YiiXY i

== ), whatever the values of Xi. 
 
When the factor Xi is not influential on the output Y, if a permutation is carried out on the realisations 
of Xi, since Y only depends on the other (unchanged) k-1 inputs, the realisations of Y are not altered 
and the same curve in CSM plot will be obtained.  However, when Xi is somehow influent on Y, the 
permutation will lead to 2 distinct curves.  
 
Let us consider a sample S of size n of the vector (X,Y). Computing all possible permutations (n!), all 
possible CSM curves can be drawn for the pair (Xi,Y). In order to restrict the analysis to the 
information already available in the sample (no additional model run), only one model input is 
permuted at the time. 
 
The rationale carried out in the last two paragraphs characterise the structure of the test to be 
developed. In order to set up this test, the hypothesis under which the test may be applied is specified, 
the null and the alternative hypotheses are provided and the test statistic is defined: 
 

• Assumption: a sample S of size N for the vector (X,Y) is available. The sample of X has 
been obtained via a random sampling technique which does not introduce any bias (see 
section 2). The sample of Y has been obtained via simulation using the sample of X. 

• Hypotheses (null hypothesis H0 and alternative hypothesis H1): 
o H0: iiYiiXY RxyfxXyf

i
∈∀==       )()( ,  

o H1: )'()(/', iXYiXYiii xyfxyfRxx
ii

≠∈∃ , where Ri is the support of Xi. 

• Test statistic: Dm, the maximum vertical distance (absolute value) between the line built 
according to the procedure described in section 2 and the plot diagonal. This is the measure 
of discrepancy with the null hypothesis. 

 
The distribution of the test statistic can be computed using the permutations described previously. 
However, since the total number of permutations (n!) increases rapidly with the sample size n (ex: 
10!= 3628800), only part of them are carried out in practice. The larger n and the number of 
permutations considered, the better the approximation of the “maximum distance to the diagonal” 
distribution. Note that the permutations do not imply any additional model run. It is important to 
emphasize that since the distribution is calculated from the original sample, a different sample will 
provide another estimate for the “maximum distance to the diagonal” distribution. 
 
Given a sample of (X,Y), the “sensitivity test” for a factor Xj can be summarised by the steps described 
below: 
 

1. Estimate the distribution of the test statistic via Monte Carlo:  
a. An important number (ex. 103) of permutations are carried out for the values of Xj. 
b. A CMS plot is generated for each permutation. 
c. The test statistic Dm (maximum distances to the diagonal) is computed for each CSM. 
d. The cumulative distribution function of Dm is estimated using standard statistical 

methods (empirical distribution function and all quantiles via order statistics). 
2. Set a critical level α to perform the test (typically 0.10, 0.05, 0.01) 
3. Dmα, the value of the test statistic corresponding to α (quantile 1- α of the test statistic under the 

null hypothesis) is computed. 
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4. The CMS plot is generated with the original sample and the corresponding test statistic Dmj is 
computed. 

5. The null hypothesis H0 is rejected if Dmj> Dmα, otherwise it is accepted.  
 
In order to illustrate the approach described previously, the procedure is applied in a stepwise manner 
and the parameters importance is inferred. Figure 5.1.3.2 shows the results of computing 103 
permutations and creating the corresponding lines in a CMS plot with the same data used to get figure 
5.1.3.1. The maximum distance to the diagonal has been computed for each line. Figure 5.1.3.3 shows 
the empirical cumulative distribution obtained from that set of distances. When α=0.05, Dmα=0.2548 
and the maximum distances to the diagonal obtained for X1, X2, X3 and X4 are, respectively, 0.0850, 
0.5058, 0.5692 and 0.1394. When comparing these four values with Dmα, the null hypothesis should be 
rejected for X2 and X3, and it should be accepted for X1 and X4. This means that a maximum distance 
to the diagonal like the one obtained for X1 or larger could have been quite likely achieved under the 
null hypothesis (approximate p_value=0.982). That is also the case of X4 (p_value=0.628) while that is 
not true for X2 and X3, in fact such large distances are very unlikely under the null hypothesis. The p-
values are smaller than 0.001 in both cases and the estimate of the quantile of order 0.999 of Dm under 
the null hypothesis is 0.3527. P-values for each input may be estimated by interpolation in the 
empirical distribution function of Dm.  
 
 

Figure 5.1.3.2.- 1000 CSM lines obtained by 
permuting the values of the output. The data used are 
the same used to create figure 5.1.3.1. 

Figure 5.1.3.3.- Empirical cumulative distribution 
function of Dm under the null hypothesis (non 
important input parameter). 

 
 
The result of the test may also be seen graphically in figure 5.1.3.1. The dotted lines parallel to the 
diagonal are obtained by shifting it a length Dmα upwards and downwards. They define a band in the 
plot. If a line trespasses (outwards) the limits of that band, it means that its maximum distance to the 
diagonal exceeds Dmα; in this case the null hypothesis is rejected. Figure 5.1.3.1 also emphasises that 
the null hypothesis is rejected in the case of X2 and X3 but not in the case of X1 and X4. 
 
Moreover, the four input parameters could be ranked in order of importance according to the measure 
of importance developed (maximum distance to the diagonal – test statistic). X3 would be the most 
important one (Dm=0.5692), followed by X2 (Dm=0.5058), X4 (Dm=0.1394) and by X1 (Dm=0.0580). 
The authors of this report consider that only input parameters that result in a rejection of the null 
hypothesis (Dm>Dmα), and perhaps those close to the rejection area, should actually be ranked. Usually, 
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ranking input parameters that fall clearly in the null hypothesis acceptance region is completely 
meaningless, and their ranking could dramatically change from one sample to another one. This is the 
case of X1 and X4. 
 

5.2. Monte Carlo based methods 
 
The Monte Carlo method consists in sampling at random the vector of input parameters, running the 
system model computer code for each sample of that vector and getting a sample of the vector of 
output variables. Later on, the characteristics of the output variables may be estimated using the output 
samples obtained. One of the advantages of using the Monte Carlo method is that all statistical 
standard methods we need to estimate the output variables distributions and to test any hypothesis may 
be used. This makes it the most straightforward and powerful method available in the scientific 
literature to deal with uncertainty propagation in complex models, as it is the case of PA models. This 
method is valid for models that have static and also dynamic outputs. It is adequate for working with 
discrete and continuous inputs and outputs, and the implementation of computational algorithms 
required has no fundamental complexity. SA methods adapted to Monte Carlo samples are extremely 
convenient since they allow performing SA and UA using the same sample. 
 

5.2.1. Correlation and regression – based methods 
 
Several sampling strategies are available when using Monte Carlo to propagate uncertainties and 
perform SA, but the most used are Simple Random Sampling (SRS) and Latin hypercube Sampling 
(LHS). The most commonly used analysis is the one based on the computation of the correlation 
coefficient. The correlation coefficient provides a measure of the strength of the linear relationship 
between any input factor Xj and the output Y. In this section the input factors are supposed 
independent. 
 
Correlations: Pearson correlation coefficient 
 
This coefficient is the linear correlation coefficient of the sample and it is defined as: 
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where  ∑ =

=
n

i ijj nxx
1

/  and ∑=
=

n

i i nyy
1

/  are the sample means. The values of this coefficient are 
between 1− and 1. A positive value means that both Xj and Y are increasing or decreasing together 
while a negative value means that Xj and Y tend to move in opposite directions. An absolute value of 

),( yxCC j close to one corresponds to a linear relationship, while an absolute value close to zero 
corresponds to the fact that there is no linear relationship between Xj and Y. 
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Figure 5.2.1.1.1.: Samples with strong linear relationship (left) and no linear relationship (right) between X and Y 
 
 
We present in figure 5.2.1.1.1 two examples, one with a strong linear relationship between X and Y, for 
which the Pearson correlation coefficient is equal to 0.9825 and another one with no linear relationship 
between the two variables and for which the correlation coefficient is equal to 0.0699. The Pearson 
correlation coefficient is related to the results of a linear regression for Y and X, i.e. it is equal to the 
standardized regression coefficient of the regression, and its square is equal to the coefficient of 
determination (R2) of the regression.  
 
Correlations: Spearman correlation coefficient 
 
Whenever a nonlinear but monotonic relationship between Xj and Y exists, a rank transformation can 
be used to get a linear relationship. This transformation replaces the values of Xj and Y by their 
corresponding ranks, see section 5.1.1. Spearman correlation coefficient (denoted by RCC for rank 
correlation coefficient) is computed using the same expression 5.2.1.1.1 as the Pearson correlation 
coefficient except that the ranks of each variable are used instead of the raw values. 
 
 

 
Figure 5.2.1.2.1.-  Example of data for which the Spearman and the Pearson correlation coefficients are 
compared. 
 
If we compute the Spearman and the Pearson correlation coefficients for the data in figure 5.2.1.2.1, 
we obtain: RCC=0.9792 and CC=0.8931. The Spearman coefficient is larger than the Pearson 
coefficient because it reflects the fact that the relationship between the two variables is monotonic 
instead of linear. 
 
Regression: general framework 
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Regression is a technique that allows building an approximate empirical model starting from a sample 
of the input and output variables. The simplest models are those that can be written as  
 

εβββ ++++= )()()( 110 xxx MM ffy K                                 (5.2.1.3.1)       
 
where ),0(~ 2σε N (normal distribution with null mean and variance σ2) is a white noise independent 
of xi. The model is linear in its parameters ),,,( 10 Mββββ K= . The functions Mff ,,1 K are 
predefined. They can be the input variables, some transforms of those variables (such as logarithms, 
powers, square roots…), functions of several variables, etc. 
 
Regression: first order polynomial 
 
In the class of linear models, the simplest ones are the first order polynomials: 
 

0 1 1( ) k ky x xβ β β ε= + + +Kx .                                         (5.2.1.3.2) 
 

The coefficients 0 1( , , , )T
kβ β β β= K are computed using the sample, such that the error ε  is 

minimized in the least squares sense.  
 
Let us recall the classical notations in regression: 
 

• 1( , , )kx x= Kx   a realization of the vector of input factors. 
• ),,( 1 nxx K  : a sample of n realizations; each jx has k coordinates. For simplicity sake, this 

sample is written in matrix notation as 
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• T

nyy ),,( 1 K y = : the sampled output. 
• T

n ),,( 1 εεε K  = : a vector of random errors. 
 
With the matrix notations the model 5.2.1.3.2 becomes: 
 

εβ += Xy                                                                    (5.2.1.3.3) 
 
The least squares estimator of β  is  
 

( ) y XXX TT 1ˆ −
=β                                                             (5.2.1.3.4) 

 
and the fitted regression model is  

 
β̂ˆ X y = .                                                                         (5.2.1.3.5) 
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An important feature of the linear regression is the decomposition of the total sum of squares 
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measures the extent to which the regression model matches the data and is called the coefficient of 
multiple determination. A value of 2R close to 1 indicates that the regression model is accounting for 
most of the uncertainty in y, while a value of 2R close to 0 indicates that the regression model do not 
explain the uncertainty in y.  
 
When the input factors are independent, the value of 2R can be decomposed as 2 2 2 2

1 2 kR R R R= + + +K , 
where each individual 2

jR  represents the contribution of xj to the 2R  value. 2
jR  is computed as the 

2R value for the model where the only input factor is xj.  
 
The equation 5.2.1.3.5 describes a hyper plane in the k-dimensional space of the input variables. The 
parameter 0β̂  represents the intercept of the hyper plane, while each of the parameters jβ̂  represents 
the expected change in the output y per unit change in xj when all the remaining independent variables 
are constant. With this interpretation, the parameters jβ̂  are candidates for sensitivity indicators 
except that each one is influenced by the units in which the corresponding xj is expressed, and that it 
doesn’t give any information on the distribution of Xj. To fix this problem, the regression model 
5.2.1.3.2 is replaced by a model where all the variables have been standardized: 

 

,     ,  1, ,j j
j

j
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← ← = K ,                                     (5.2.1.3.8) 

 
jss  ,  being the sample standard deviations for y and jx :  
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The regression coefficients of this new model are called standardized regression coefficients (SRC). 
They provide a sensitivity measure, or more precisely a measure of variables importance:  
 a variable Xj is more important than a variable Xl  if the absolute values of their standardized 

regression coefficients are satisfying   |SRCj| > |SRCl| 
 the sign of SRCj indicates whether Xj and Y tend to move in the same direction or in opposite 

ones.  
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Moreover if the input factors Xj are independent, the inclusion or exclusion of one factor has no effect 
on the SRCs of the other factors in the model. If the input factors are not independent, the information 
provided by the SRCs is not reliable (for the variable importance). 
 
The relationship between the standardized regression coefficients SRCj and the regression coefficients 

jβ̂  is 

j
j

j s
s

SRC β̂=                                                        (5.2.1.3.10) 

 
Taking into account all the previous considerations, a stepwise procedure to build a regression model 
can be conceived. First model is build with the most influential variable (based on 2R values for 
regression models with only one variable). Then a regression model in build with this first selected 
variable and the next most influential one (based on 2R values for regression models with the first 
selected variable and each of the remaining ones). The procedure is repeated until no more variable 
with significant change in the cumulative 2R can be found.  
 
 
Regression: example of transport of a radionuclide in a nuclear waste repository 
 
This example deals with the transport of one radionuclide (129I) in a nuclear waste repository. The 
computation is restricted to a 2-D section of the disposal site, which has three different geological 
layers; the nuclear waste being disposed in the first one (the deepest one).  
The numerical code used for this model is CAST3M (http://www-cast3m.cea.fr/).  The computations 
linked to the sensitivity computations have been performed using R. The example have been studied in 
a Momas project: (http://www.gdrmomas.org/Activites/2007/MoMaS_Frejus/Vendredi/Badea.pdf). 
 
The input of the numerical code consists of six environmental parameters: 

 Kh1 : horizontal permeability of the first layer  
 Kv1 : vertical permeability of the first layer  
 K2 : permeability of the second layer  
 K3 : permeability of the third layer  
 poro : effective porosity 
 de : effective diffusion coefficient 

 
The output y is the maximal release (concentration) of 129I up to 106 years at a predefined point located 
on the top of the third layer (and called exutory). The sampling has been done by latin hypercube 
sampling with n=60. The distributions for the input parameters are: log-normal for the permeabilities 
and the effective diffusion coefficient and uniform for the effective porosity. 
 
We consider the model  
 

εβββββββ +++++++= deporoKKKvKhy 65342312110 . 
 

The results for this regression analysis are given in table 5.2.1.5.1. The overall 2R  value is 
4657.02 =R , which is not very close to 1, meaning that the regression model is not accounting for 

most of the uncertainty in y. However, the standardized regression coefficients are indicating that the 
first most important variables are, in this order, poro, Kv1, K3. These three variables are accounting 
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for 96% of the overall 2R  value. We can also see that the signs of the SRC for poro, and K3 indicate 
that they tend to move in opposite direction as the output while Kv1 tend to move in the same 
direction as the output.  

 
 
Table 5.2.1.5.1.- Results for the regression analysis in the example of the transport of a radio nuclide. 
Variable 
name 

Regression 
coefficients 

Standardized 
regression 
coefficients 

Order of 
selection 
in 
stepwise 
regression 

Cumulated 
2R in 

stepwise 
regression 

Partial correlation 
coefficients 

 
0β̂ = 1.528e−04      

Kh1 
1β̂ = 9.252e+05  SRC1= 5.099e−03 6 0.4657 PCC1= 6.788e−03   

Kv1 
2β̂ = 5.548e+08 SRC2= 3.519e−01 2 0.3748 PCC2= 4.247e−01  

K2 
3β̂ = 4.437e+03 SRC3= 7.112e−02 5 0.4656 PCC3= 9.555e−02   

 
K3 

4β̂ = −3.86e+01 SRC4= −2.915e−01 3 0.4454 PCC4= −3.636e−01 
poro 

5β̂ = −1.03e−03 SRC5= −3.960e−01 1 0.2496 PCC5= −4.655e−01 
de 

6β̂ = 1.028e+07 SRC6= 1.320e−01   4 0.4607 PCC6= 1.711 e−01 
 
 
Regression: partial correlation 
 
Sometimes the correlation between Xj and Y may be due to a third variable. In order to avoid that, the 
partial correlation coefficient is defined as follows.  
Two regression models have to be constructed  
 

εββδαα ++=++= ∑∑
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≠
=
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with the corresponding fitted regression models 
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The partial correlation coefficient (denoted PCC) is then the Pearson correlation coefficient defined by 
expression 5.2.1.1.1, for the variables yyxx jj ˆ and  ˆ −− . 
  
Both PCCs and SRCs provide measures of variable importance. PCCj characterizes the linear 
relationship between Xj and Y after excluding the linear effects on Y of the other input factors. When 
the input factors are independent, PCCs and SRCs give the same ranking of variable importance, i.e. an 
ordering based on the absolute value of PCCs is the same as an ordering based on the absolute value of 
SRCs.  
 
One has also to keep in mind that if the input factors are correlated, the results based on SRCs or on 
PCCs may be misleading, as some authors remark, see Helton et al. (2006).  
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The PCCs for the example in the previous paragraph are also given in table 5.2.1.5.1. The ranking of 
variable importance is the same whether if we use SRCs or PCCs, though this is not always true. In 
many cases the ranking produced by both sensitivity indices is not the same, though it does not differ 
much. 
 
Regression: rank transformations 
 
In the same way as for the Spearman correlation coefficient, whenever a nonlinear but monotonic 
relationship between Xj and Y exists, a rank transformation can be used to get a linear relationship. 
Using the rank transformation leads to rank regressions and consequently to standardized rank 
regression coefficients (SRRCs) and partial rank correlation coefficients (PRCCs). The results of 
sensitivity analysis can be improved by using these coefficients when monotonic relationships between 
inputs and output exist.  The results for the rank regression analysis for the previous example are given 
in table 5.2.1.7.1. 
 

Table 5.2.1.7.1.- Results for the rank regression analysis in the example of the transport of a radionuclide. 
Variable 

name 
Standardized rank 
regression coefficients 

Partial rank correlation 
coefficients 

Order of variable 
importance  

Kh1 SRRC1= 8.29e−03 PRCC1= 2.578e−02 6 
Kv1 SRRC2= 3.362e−01 PRCC2= 7.238e−01 3 
K2 SRRC3= 8.726e−02 PRCC3= 2.626e−01 4 
K3 SRRC4= −5.325e−01 PRCC4= −8.564e−01 2 
poro SRRC5= −6.338e−01 PRCC5= −8.922e−01 1 
de SRRC6= 3.048e−02 PRCC6= 9.442 e−02 5 

 
The three most important variables are the same as in the linear regression case, even if their order of 
importance is changed; for the rank analysis the ranking is poro, K3, Kv1, while for the standardized 
regression the order was poro, Kv1, K3. Moreover the overall 2R  value for this model is 

0.89872 =R (it was 0.4657 for the model using the standardized variables). 
 
Regression: extensions 
 
Linear regression with first order polynomials is not enough in most cases under study, because the 
relationship between output and input factors is not a linear one. It is more interesting to study the 
standardized regression coefficients for different types of regression, as presented in the following. 
 
Output and input transformation 
 
In many PA applications, the variable of interest is not the output of the computer code, but a function 
of it, in other cases the relation between inputs and outputs is more easily analysed if some of them or 
both of them are transformed. In the PA area, many input parameters and output variables are spread 
over several orders of magnitude. In these cases, a logarithmic transformation of all parameters and 
variables with such spread of values could be of interest. For instance, for the previous example, we 
consider the following model: 
 

εβββββββ +++++++= deporoKKKvKhy 10653104210311021101010 loglogloglogloglog  
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(for every variable, except poro, a logarithm have been applied). The overall 2R  value is 0.91412 =R , 
which means that the quality of the model is quite good. The standardized regression coefficients are 
given in table 5.2.1.8.1. The results are more or less the same as those obtained for the rank regression. 
The order of importance changes only between variables K2 and de, which where not the most 
significant ones. 
 
Table 5.2.1.8.1.- Regression results for the transformed data in the example of the transport of a radionuclide. 

Variable 
name 

Standardized regression 
coefficients 

Order of variable 
importance  

log10(Kh1) SRC1= 6.454e−03 6 
log10(Kv1) SRC2= 3.516e−01 3 
log10(K2) SRC3= 8.783e−02 5 
log10(K3) SRC4= −5.121e−01 2 
poro SRC5= −6.278e−01 1 
log10(de) SRC6= 9.475e−02 4 

 
We can conclude that in some cases, by applying some usual transforms to the original variables, we 
can both conserve the simplest regression model and improve a lot the quality of the model (expressed 
in terms of 2R ). 
 
Second order polynomials 
 
In other cases some more complicated linear regression models may be considered, such as second 
order polynomials (or only first order and interaction terms), which are written as: 
 

εβββ +++= ∑∑
≤
=

=

d

ji
ji jiij

d

i ii xxxy 1,
10 .                                       (5.2.1.8.1) 

 
Similar interpretation as in the case of the first order polynomials might be given to the regression 
coefficients. However, one has to be aware of the fact that for instance the importance of variable x1 
will be the result of an accumulation of different coefficients of the terms in which this variable 
appears. 
 
Functional outputs 
 
Many of the output variables considered in PA models are time dependent functions. In these cases, all 
the previously described coefficients may be computed at every time step, yielding time dependent 
curves.  
 
Example (NRG) 
 
This example comes from a joint work JRC/NRG concerning the probabilistic uncertainty analysis for 
the abandonment scenario for disposal facilities in rock salt (see figure 5.2.1.8.1 (rleft)). The 
conceptual model of the generic repository design with the option to retrieve waste, as has been 
implemented in the EMOS. There are 6 input factors denoted by Aps, Brecr, F09, n, F47, F46 (with the 
following probability distributions: log uniform for Aps, Brecr, F47, F46, log normal for F09 and normal 
for n). A simple random sample of size 1000 has been used in this test case. 
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There are 4 scalar outputs, and 7 time dependent ones. We present here some time dependent results 
for only one output, “B.2, Permeability of the plug” (the 1000 realizations for this output are presented 
in figure 5.2.1.8.1 (right)): 

• correlation coefficients: Pearson (figure 5.2.1.8.2), Spearman (figure 5.2.1.8.3) and   
• regression based coefficients: SRC (figure 5.2.1.8.4), PCC (figure 5.2.1.8.5), SRRC (figure 

5.2.1.8.6), PRCC (figure 5.2.1.8.7) 
 

 
 

  

Figure 5.2.1.8.1:  The abandonment scenario for disposal facilities in rock salt (left); 1000 realizations for the 
output “Permeability of the plug” (right) 
 

  
Figure 5.2.1.8.2.- Pearson correlation coefficients 
for every input variable  

Figure 5.2.1.8.3.- Spearman correlation 
coefficients for every input variable 
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Figure 5.2.1.8.4.- SRC for every input variable and 
the corresponding R2 coefficient 

Figure 5.2.1.8.5.- PCC for every input variable 

  
Figure 5.2.1.8.6.- SRRC for every input variable 
and the corresponding R2 coefficient  

Figure 5.2.1.8.7.- PRCC for every input variable 

 
 
Several remarks may be made about this set of plots; 

• the influence of the model input factors on the permeability of the borehole plug changes 
significantly  over time. 

• the rank based regressions provide more significant results. R2 is larger in the rank based 
regressions than in the regressions based on raw values at all time steps. In fact R2 is always 
larger than 0.7 in the first case while it is below that value a large fraction of the time in the 
second case. Remind that for values of R2 smaller than 0.6, the results of the regression 
should not be taken as very reliable. Moreover, statistics based on ranks (RCC, SRRC and 
PRCC) tend to take more extreme values (closer to ±1) than statistics based on raw values 
(CC, SRC and PCC). 

• All techniques provide similar results, identifying as relevant input parameters the same set. 
• Two parameters change clearly the sign of their sensitivity indices over time (F09 and n). 

This behaviour is detected quite frequently in PA studies.  
 
These remarks remain true in many other applications, as for example the one shown in figures 
5.2.1.8.8 and 5.2.1.8.9, obtained for a French repository in clay. Pay special attention to the huge 
improvement in the value of R2 and the SRRC associated to the most relevant input parameters at early 



 

 44

and intermediate times, with respect to the corresponding SRCs . Many other similar examples may be 
seen in Prváková et al. (2008). 
 
 

  

Figure 5.2.1.8.7.- Evolution over time of SRCs 
and R2 for the molar flows of nuclides 129I 
coming out of the micro-fissured zone in a 
French repository in Clay. 

Figure 5.2.1.8.8.- Evolution over time of SRRCs 
and R2 for the molar flows of nuclides 129I coming 
out of the micro-fissured zone in a French 
repository in Clay. 

 
 

5.2.2. Monte Carlo filtering 
 
In the previous sections we could see a set of techniques that took as a base to interpret sensitivity the 
ideas of linearity and monotony. Nevertheless, sensitivity may be interpreted in different ways that 
have nothing to do with these two ideas. In some cases, we could consider an input parameter as 
important with respect to a given output variable if we are able to uncover a clear link between specific 
regions of both.  Monte Carlo Filtering (MCF) is based on dividing the output sample in two or more 
subsets according to some criterion (achievement of a given condition, exceeding a threshold, etc.) and 
testing if the inputs associated to those subsets are different or not. As an example, we could divide the 
output sample in two parts, the one that exceeds a safety limit and the rest. We could wonder if points 
in both subsamples are related to different regions of a given input or if they may be related to any 
region of that input. In the first case knowing the value of that input parameter would be important in 
order to be able to predict if the safety limit will be exceeded or not, while in the second case it would 
not be. The tools used to provide adequate answers to this type of questions are a set of parametric and 
non-parametric statistics and their associated tests, among them the most popular are 
 

• The two-sample Smirnov test 
• The Mann-Whitney (or Wilcoxon) two-sample test 
• The two-sample t-test 

 
The two-sample Smirnov test is based on comparing empirical cumulative distribution functions, the 
Mann-Whitney test is based on ranks, the two-sample t-test is based on the sampling distribution of the 
mean of normal variables. Other tests, as for example the Kruskal-Wallis test and the k-sample 
Smirnov test are also available in the Statistics literature, see Conover (1980), which are respectively 
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extensions of the Mann-Whitney and the Smirnov tests to several samples. These tests will not be 
included in this study because they have hardly ever been used with SA purposes, though formally 
they could be. 
Normally, when any of these tests is applied in other areas, two samples (Smirnov, Mann-Whitney and 
t-test) are taken via random sampling from two or more populations, as for example the height of a set 
of boys and girls 10 years old in a given country. In our case, when the test is used with SA purposes, 
the samples used to perform the test are in fact subsamples of an input parameter sample. Let us see 
how those two samples are obtained 
 
Consider the samples obtained via simulation for a given input parameter X and an output variable Y: 

),...,,( 21 nxxx  and ),...,,( 21 nyyy  

1. Then, sort ),...,,( 21 nyyy , obtaining ),...,,( )()2()1( nyyy , and re-order ),...,,( 21 nxxx  according to 
the order of the sample of Y, obtaining ),...,,( ][]2[]1[ nxxx . 

2. Set a threshold on ),...,,( )()2()1( nyyy  based on a given criterion and divide it in the 
corresponding two subsamples ),...,,( )()2()1( hyyy  and ),...,,( )()2()1( nhh yyy ++ . Let us call ‘C’ the 
criterion. 

3. Divide accordingly the sample ),...,,( ][]2[]1[ nxxx in the two subsamples ),...,,( ][]2[]1[ hxxx  and 
),...,,( ][]2[]1[ nhh xxx ++ . These two subsamples will be the samples used to perform the test.  

 
The procedure to follow is the same if three or more samples are required, just set two or more thresholds 
in step 3 and act consequently in step 4. In the next sections a detailed description of these tests is 
given. 
 
The two-sample Smirnov test 
 
The procedure to perform a test is roughly the same for every test: 1) set assumption to perform the 
test, 2) set the null (H0) and the alternative (H1) hypotheses, 3) establish a measure of discrepancy (test 
statistic) between what is expected under the null hypothesis and under different conditions and, 4) set 
a decision rule. In the case of the two-sample Smirnov test, this procedure is as follows  
 

1. Assumptions: 
• Both samples are random and mutually independent 
• The variable considered should be continuous in order to get an exact test (having a discrete 

variable does not preclude the use of the test unless it takes only a few different values). 
2. Hypotheses: 

• H0: IRxxFCxF CXCX ∈∀=       C2)()1( 21  

• H1:       C2)x'()1'(/' 21 CXCX FCxFIRx ≠∈∃ , where C1 indicates fulfilling the criterion and 

C2 means not fulfilling the criterion 
3. Discrepancy measure (test statistic): )()( 21 xSxSSupT CCxSmirnov −= , which is the maximum 

vertical distance between the empirical distribution functions ( )(1 xSC ) of ),...,,( ][]2[]1[ nhh xxx ++ , 
the subsample of the input parameter linked to the subsample of the output variable that fulfils 
the criterion, and the empirical distribution functions ( )(2 xSC ) of ),...,,( ][]2[]1[ hxxx , the 
subsample which does not. 
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4. Decision rule: set some limits for the p-values that allow the user decide if, from the result of 
the test it should be concluded that that input parameter is either important or not (reject or not 
reject the null hypothesis). Setting these limits is up to the user opinion, though, as a generally 
accepted rule, the null hypothesis is accepted if the p-value of the test is above 0.05, otherwise 
it is rejected. The distribution of the test statistic under the null hypothesis may be found in 
Conover (1980). As an alternative to this general rule, Saltelli et al. (2004) propose the 
following decision rule 
• P-value < 0.01 ==> the input parameter is critical. 
• 0.01 ≤ p-value ≤ 0.1 ==> the input parameter is important 
• p-value ≥ 0.1 ==> the input parameter is not important   

 
 

 
Figure 5.2.2.1.1.- Graphic representation of the computation of the two-sample Smirnov test for the peak dose 
due to 129I (output) and V1 (input). Level_E test case. The output sample has been divided in the largest 10% 
observations and the 90% smallest observations.  
 
 
Figure 5.2.2.1.1 represents the implementation of a Smirnov two-sample test. The sample considered 
to perform the test is a sample of size 459 obtained for the Level_E test case. The output variable is the 
peak dose due to 129I and the input parameter is V1, the velocity of ground water in the first geosphere 
layer. We have taken as a reference the 10% largest observations obtained for the output variable and 
we wish to know if these observations are related to a specific region of V1 or not. This plot shows the 
empirical cumulative distribution functions corresponding to the two subsamples of V1, the one related 
to the 10% largest observations of the output variable (dashed line) and the one relasted to the other 
90% observations (solid line). As indicated in the plot, the Smirnov statistic (maximum vertical 
distance between both curves) takes value TSmirnov=0.6733, which corresponds to a p-value=0.0. The 
result of the test is conclusive, certainly the values of V1 that produce the 10% largest values of the 
output variable and the values of V1 that produce the rest of the values of the same output variable, 
belong to two subpopulations of V1 that have very different properties (distributions). The p-value 
shows no ambiguity in the result. This can be observed in the same figure, all the values of the the 
subsample of V1 related to C1 are above the median of the values of V1 related to C2. Observe the 
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similarity between the results of this test, included figure 5.2.2.1.1, and the information contained in 
figure 5.1.2.2. 

 
Mann-Whitney two-sample test 
 
As in the case of the Smirnov two-sample test, the assumptions, hypotheses, test statistic and decision 
rule are as follows 
 

1. Assumption: Both samples are random and mutually independent. 
2. Hypotheses: As for the Smirnov two-sample test. 
3. Discrepancy measure (test statistic):  
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where )( ][ixR  is the rank associated to observations ][ix  of the input parameter corresponding to 
the output values that satisfy condition C1. If there are many ties, which may happen only if the 
input parameter is discrete, the Mann-Whitney test statistic is 
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4. Decision rule: As for the Smirnov two-sample test. 

 
Figure 5.2.2.2.1 represents the implementation of a Mann-Whitney two-sample test. The sample 
considered to perform the test and the question at stake is the same as in the previous section. This plot 
shows ranks corresponding to the two subsamples of V1, the one related to the 10% largest 
observations of the output variable (represented by symbol ‘*’in figure 5.2.2.2.1) and the ones related 
to the other 90% observations (represented by symbol ‘o’in figure 5.2.2.2.1). The value of the test 
statistic is TMann-Whitney= 17534 , which corresponds to a p-value=0.0. The result of the test is again 
conclusive, certainly the values of V1 that produce the 10% largest values of the output variable and 
the values of V1 that produce the rest of the values of the same output variable, belong to two 
subpopulations of V1 that have very different properties (ranks). The p-value shows no ambiguity in 
the result. This can be observed in the same figure, all the ranks of the subsample of V1 related to C1 
overlap only with the largest ranks of the subsample of V1 related to C2. Observe the similarity 
between the results of this test, included figure 5.2.2.2.1, the results obtained in previous section with 
the Smirnov two-sample test and the information contained in figure 5.1.2.2. 
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Figure 5.2.2.2.1.- Graphic representation of the computation of the two-sample Mann-Whitney test for the peak 
dose due to 129I (output) and V1 (input). Level_E test case. The output sample has been divided in the largest 
10% observations and the 90% smallest observations. 

 
Two-sample t test 
 
As in the case of the Smirnov two-sample test and the Mann-Whitney test, the assumptions, 
hypotheses, test statistic and decision rule are as follows 
 

1. Assumption:  
• Both samples are random and mutually independent. 
• Both samples come from normal (Gaussian) populations with equal variances. 

2. Hypotheses: As for the Smirnov and Mann-Whitney two-sample tests. 
3. Discrepancy measure (test statistic):  
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where 1x  is the sample mean of ),...,,( ][]2[]1[ nhh xxx ++ , 2x  is the sample mean of 

),...,,( ][]2[]1[ hxxx , and TŜ is the weighted common estimator of the variance of both subsamples 
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where 2

1Ŝ  and 2
2Ŝ  are, respectively, the estimators of the variance of ),...,,( ][]2[]1[ nhh xxx ++  and of 

),...,,( ][]2[]1[ hxxx . 

4. Decision rule: As for the Smirnov two-sample test. 
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Figure 5.2.2.3.1.- Graphic representation of the computation of the two-sample t test for the peak dose due to 
129I (output) and V1 (input). Level_E test case. The output sample has been divided in the largest 10% 
observations and the 90% smallest observations. 
 
 
Figure 5.2.2.3.1 represents the implementation of a two-sample t test. The sample considered to 
perform the test and the question at stake is the same as in the previous two sections. This plot shows 
the raw values corresponding to the two subsamples of V1, the one related to the 10% largest 
observations of the output variable (represented by symbol ‘*’in figure 5.2.2.3.1) and the ones related 
to the other 90% observations (represented by symbol ‘o’in figure 5.2.2.3.1). The value of the test 
statistic is t=9.33, which corresponds to a p-value=0.0. The result of the test is again conclusive, 
certainly the values of V1 that produce the 10% largest values of the output variable and the values of 
V1 that produce the rest of the values of the same output variable, belong to two subpopulations of V1 
that have very different properties (means). The p-value shows no ambiguity in the result. This can be 
observed in the same figure, all the raw values of the subsample of V1 related to C1 overlap only with 
the largest ranks of the subsample of V1 related to C2. Observe the similarity between the results of 
this test, included figure 5.2.2.3.1, the results obtained in previous sections with the Smirnov two-
sample test and the Mann-Whitney two-sample test, and the information contained in figure 5.1.2.2. 
 
Nevertheless, in this case, results should be taken cautiously. Figures 5.2.2.3.2 and 5.2.2.3.3 show 
respectively the histograms of samples ),...,,( ][]2[]1[ nhh xxx ++  and ),...,,( ][]2[]1[ hxxx . Though the first 
histogram resembles reasonably well the shape of a normal distribution, the second one is certainly far 
from being close to such a shape. This means that, under such violation of one of the assumptions of 
the test, the validity of the result is under question. Under these circumstances, the best option is to 
discard this test. It is also worthwhile to realise that the assumptions for the Smirnov test and the 
Mann-Whitney test are so broad and generic that it is difficult to find a situation in a PA when they 
cannot be applied. As a general conclusion, Smirnov and Mann-Whithney test have a much broad 
applicability in the framework of PA studies than the t test.  
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Figure 5.2.2.3.2.- Histogram of the subsample of 
V1 corresponding to the 10% largest values of the 
peak dose due to 129I.  Level_E test case.  

Figure 4.2.2.3.3.- Histogram of the subsample of V1 
corresponding to the 90% smallest values of the 
peak dose due to 129I.  Level_E test case. 
 

5.3. Variance decomposition based methods 
 
The main measure to quantify the uncertainty affecting any output variable is its variance V(Y), as for 
any other random variable. In a PA model, as in many other simulation models, the uncertainty of any 
output variable is the result of propagating uncertainties from the input space into the output space. So, 
each input parameter is responsible for a fraction of the output variance. Variance based methods take 
this fraction as the reference sensitivity measure and provide the means to estimate it. In the next pages 
we describe the main variance based methods.  
 

5.3.1. HDMR decomposition 
 
Variance based methods are linked to the HDMR (High Dimensional Model Representation) which 
consists in decomposing ),,( 1 dXXfY K= in the form: 
 

1 0 1 1( , , ) ( ) ( , ) ( , , )k i i ij i j k k
i i j

Y f X X f f X f X X f X X
<

= = + + + +∑ ∑ KK K K .           (5.3.1.1) 

 
This decomposition exists and is unique.  
 
The term f0 is the mean of Y (a constant). The first order function )( ii Xf  of the decomposition 
represents the effect of the input factor iX acting independently (and generally in a nonlinear way) 
upon the output Y. The second order function ),( jiij XXf  represents the joint effect of the input 

factors iX and jX  upon the output Y. Higher order functions represent the joint effect of the input 
factors upon the output. The last term of the decomposition gives the residual influence of all the input 
factors together. 
 
The HDMR formulation is very efficient whenever the high-order variable correlations are weak, 
allowing the physical model to be captured by the first few low-order terms.  Very often the HDMR 
expression to 2nd order provides a satisfactory description of ),,( 1 dXXfY K= , which does not imply 
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that a small number of input factors are significant nor does it limit the nonlinear structure of the 
relationship input-output. 
 
The component functions of the HDMR (5.3.1.1) are a set of projectors that are mutually orthogonal to 
one another (the integral of the product of any pair of them over the whole input space is null); their 
expressions are: 
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Where ]|[ iXYE  is the expectation of Y conditional on iX , [ | , ]i jE Y X X  is the expectation of Y 

conditional on iX  and jX  and so on. The details for obtaining these formulas may be found in Sobol 
(1993). 
 
 

5.3.2. Variance decomposition  
 
For independent input factors and using the fact that any two different components of the HDMR 
decomposition are orthogonal, the variance of the model ),,( 1 dXXfY K=  can be written as: 
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It can be shown (see for instance Sobol (1993), Jacques (2005)) that the individual terms in expression 
5.3.1.2 are the variances of the functions of the corresponding indices in the HDMR decomposition 
5.3.1.1, which means that: 
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5.3.3. Sobol sensitivity indices 
 
Using the variance decomposition 5.3.2.1, Sobol sensitivity indices are defined as: 

• first order sensitivity indices 
 

V
VS i

i =                                                                            (5.3.3.1) 

 
• second order sensitivity indices, which gives the sensitivity of the variance of the output to 

the interaction between the input factors iX , jX  
 

V
V

S ij
ij =                                                                            (5.3.3.2) 

 
• and so on until the order k.  

 
We can divide both sides of 5.3.2.1 and obtain a very useful relation: 
 

11 i ij k
i i j

S S S
<

= + + +∑ ∑ KK .                                                   (5.3.3.3) 

 
The interpretation of the sensitivity indices is straightforward, as the sum of all indices is 1 and as they 
are all positive: the larger the sensitivity index (close to 1), the more influent the corresponding input 
(or group of inputs). However, the number of all these indices is 12 −d  and when the number of input 
factors is too large their computation and interpretation becomes impossible. This is why Homma and 
Saltelli (1996) introduced the total sensitivity indices which assess the sensitivity of the variance of the 
output with respect to the standalone and every interaction of the considered input factor, by: 
 

∑
∈

=

i

k
kT SS

i

index  the
 containing indices

 of sets  theall

.                                                      (5.3.3.4) 

 
For a model with three input factors, we have 123131211

SSSSST +++= , and similar expressions for the 
two other total indices. There is a simpler definition of the total indices: 
 

V
VS i

Ti

−−=1 ,                                                          (5.3.3.5) 

 
where ])|[( ii XYEVarV −− =  represents the variance explained by all the factors except iX . This 
definition makes the total indices as easy to estimate as the first order indices. 
 

5.3.4. Example : the Ishigami function 
 
The Ishigami function is defined in Ishigami and Homma (1990) as:  
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1
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1 sinsinsin XBXXAXY ++= , 

 
with all input factors independent and following uniform distributions in the interval (-π, π), i.e. 

),(~ ππ−UX i . 
 
Taking into account expressions 5.3.1.1 and 5.3.1.2, the HDMR decomposition the Ishigami function 
is as follows: 
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The three non zero functions, ),( ),( ),( 31132211 XXfXfXf , if the Ishigami function are represented in 
figure 5.3.4.1. 
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Figure 5.3.4.1.- Representation of the functions forming the HDMR decomposition of the Ishigami function. 
 
 
This leads to the following expressions for the variances 
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the other variances being equal to 0. 
 
For the case 7=A  and 1.0=B  (which is the one presented in Ishigami and Homma (1990)) the 
values for the previous variances are 8446.13  ;3737.3  ;125.6  ;3459.4 1321 ==== VVVV  and the 
values for the sensitivity indices are: 

• first order sensitivity indices: 
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3
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2
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V
VS

V
VS

V
VS                                 (5.3.4.1) 

 
• second order sensitivity indices:  

 

2437.0  ;0  ;0 13
13

23
23

12
12 ======

V
VS

V
VS

V
VS                          (5.3.4.2) 

 
• third order sensitivity index: 
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• total sensitivity indices: 
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                                             (5.3.4.4) 

 
If we only compute the first order indices, the effect of 3X is not visible and we can also conclude that 
24% of the variance is due to interactions. 
  

5.3.5. Estimation of the sensitivity indices 
 
The computation of Sobol indices is based on the computation of the variances of conditional 
expectations, which are very time consuming. The following methods are generally used in this 
purpose: 

• Sobol/Saltelli methods 
•  FAST (Fourier Amplitude Sensitivity Test) / E (extended) FAST method / Random 

balanced design method 
• Correlation ratios 
• McKay method 
• Alternatively, a response surface may be built for the initial model and the Sobol indices 

may be either analytically computed or estimated for the response surface. 
 
Sobol/Saltelli estimation method 
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This method, due to Sobol (1993) and addressed by Archer et al. (1997), Saltelli (2002), allows the 
computation of all the terms in the variance decomposition 5.3.2.1.  
Let us consider a sample of size n of the input vector, nkkdk xx ,,11 ),,( KK = . The expectation f0 and the 
variance V of Y are estimated as usual by: 
 

∑
=

=
n

k
kdk xxf

n
f

1
10 ),,(1ˆ K ,                                       (5.3.5.1.1) 
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To estimate the first order sensitivity indices we need to estimate ])|[( ii XYEVarV = . This variance 
can be written under the form : 
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                    (5.3.5.1.3) 

 
(using the fact that ][]]|[[ YEXYEE i = ) . The quantity ][YE  is estimated by 5.3.5.1.1, and for iU , 
Sobol (1993) has given the following estimation: 
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where nkkdk xx ,,11 ),,( KK =′′  represents a second sample of size n of the input vector and the conditioning 
is taken into account by “resampling” all the variables except kix . 
 
The first order sensitivity indices are then estimated by 
 

V
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In the same way, for the second order sensitivity indices, the conditional variance is written as 
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and the quantity ijU is estimated by  
 

),,,,,,,,,,(                

),,,,,,,,,,(1ˆ

)1()1()1()1(1

1
)1()1()1()1(1

kdjkkjjkikkiikk

n

k
kdjkkjjkikkiikkij

xxxxxxxxf

xxxxxxxxf
n

U

′′′′′′×

=

+−+−

=
+−+−∑

KKK

KKK
.                  (5.3.5.1.6) 

 
The second order sensitivity indices are then estimated by 
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with 2

0̂
ˆˆ fUV ii −= . The procedure continues for the estimation of all the indices.  The total sensitivity 

indices are estimated by  
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with  
 

),,,,,,(),,,,,,(1ˆ
)1()1(1

1
)1()1(1~ kdikkiikk

n

k
kdikkiikki xxxxxfxxxxxf

n
U KKKK +−

=
+− ′= ∑ .      (5.3.5.1.9) 

 
Saltelli (2002) extends the method such that the number of n(2d+1) model evaluations needed to 
estimate all the first order and total indices is reduced to n(d+2). 

Example (The Ishigami function continued) 
 
For the Ishigami function we get, using the package sensitivity in R: 
 

• with Sobol method for 1000=n : 7000 model evaluations for estimation of 6 indices 
 

076.0ˆ ,1533.0ˆ ,0076.0ˆ ,025.0ˆ ,439.0ˆ ,3754.0ˆ
231312321 ====== SSSSSS           (5.3.5.1.10) 
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Figure 5.3.5.1.1.- First and second order sensitivity indices and their 95% confidence interval for Ishigami 
function (Sobol method) 
 

• with Saltelli method for 1000=n : 5000 model evaluations for 6 indices 
 

226.0ˆ ,434.0ˆ ,5.0ˆ ,043.0ˆ ,4289.0ˆ ,3128.0ˆ
321321 ====== TTT SSSSSS        (5.3.5.1.11) 
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Figure 5.3.5.1.2.-  First order and total sensitivity indices and their 95% confidence interval for Ishigami function 
(Saltelli method) 
 
 
Estimation by FAST method 
 
This method is due to Cukier et al. (1973, 1975, 1978) and Schaiby and Shuler (1975) and different 
algorithms have been developed in Koda et al. (1979), and Saltelli and Bolado (1998). 
This method is based on the fact that it is possible to convert the k-dimensional integrals defining the 
variances in the variance decomposition 5.3.2.1 into one-dimensional integrals, by using the 
transformation functions , 1,...,iG i k= defined as: 
 

))(sin( sGx iii ω=                                                     (5.3.5.2.1)                 
 

where s is a scalar variable ] [ππ ,−∈s  and }{ iω  is a set of integer angular frequencies.  
Cukier et al showed (using the properties of Fourier series) that for properly chosen iω and iG , the 
expectation and the variance of Y can be approximated respectively by: 
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with 1 1( ) ( (sin( )),..., (sin( )))k kf s f G s G sω ω=  and jj BA  , the Fourier coefficients of the cosine and sine 
series: 
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Cukier et al. (1973) showed that the part of the variance due to one input factor iX is the sum of the 
squares of the Fourier coefficients due to the angular frequency iω and its harmonics: 
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The sensitivity iS index is then defined as: 
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Finally, Saltelli and Bolado (1998) have proved that the sensitivity indices defined by the FAST 
method are equivalent to the ones defined by Sobol.  
 
However, in order to use the formula 5.3.5.2.6, several conditions have to be fulfilled: 
 
 a bound for the infinite sum in 5.3.5.2.5 has to be fixed; it is denoted by M (Cukier et al. (1975) 

have empirically shown that a good compromise between a good quality of the indices and their 
estimation cost is M = 4 or M = 6) 

 the functions Gi have to be chosen; the initial choices were given in Cukier et al. (1973) and in 
Koda et al. (1979) respectively 

 
0(sin( )) exp( sin( ))i i i i i ix G s x sω ν ω= =                                   (5.3.5.2.7) 

 
0(sin( )) (1 sin( ))i i i i i ix G s x sω ν ω= = +                                    (5.3.5.2.8) 

 
 the choice of the angular frequencies iω such that are free of interferences up to a certain order 

(here up to order 4). These frequencies are changing with the number of input variables and sets of 
such frequencies are given in Schaibly and Shuler (1973) for example and are reproduced in table 
5.3.5.2.1. 

 the sampling of the variable [,] ππ−∈s , for the computation of the Fourier coefficients jj BA  , has 
to respect the Nyquist-Shannon sampling theorem (i.e. the sampling frequency should be at least 
twice the maximal frequency of the function to be sampled); if we denote by Ns the size of this 
sample, then its minimal value should be )max(2 is MN ω> . However, Cukier et al. (1975) 
showed that there is no significant gain in accuracy in the calculation of the Fourier coefficients 
for sample sizes beyond )max( is MN ω≈ . In table 5.3.5.2.1 we also present, for each set of angular 
frequencies, the minimal number of simulations to be performed Ns. 
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Figure 5.3.5.2.1.- Example of  FAST sampling in 2 dimensions, with a set of frequencies equal to {11, 21} and 
Ns=691; (a) using formula 5.3.5.2.7; (b) using formula 5.3.5.2.8.  
 
 

Table 5.3.5.2.1.- Set of frequencies and corresponding minimal sample size, based on the formula 
4   ,1)max( =+= MMN is ω . 

Number of 
input factors 

Set of frequencies { iω } Minimal 
sample size Ns 

5 {11, 21, 27, 35, 39} 157 
6 {1, 21, 31, 37, 45, 49} 197 
7 {17, 39, 59, 69, 75, 83, 87} 349 
8 {23, 55, 77, 97, 107, 113, 121, 125} 501 
9 {19, 59, 91, 113, 133, 143, 149, 157, 161} 645 
10 {25, 63, 103, 135, 157, 177, 187, 193, 201, 205} 821 
11 {41, 67, 105, 145, 177, 199, 219, 229, 235, 243, 247} 989 
12 {31, 87, 113, 151, 191, 223, 245, 265, 275, 281,289, 

293} 
1173 

13 {23, 85, 141, 167, 205, 245, 277, 299, 319, 329, 335, 
343, 347} 

1389 

14 {87, 133, 195, 251, 277, 315, 355, 387, 409, 429, 
439, 445, 453, 457} 

1829 

15 {67, 143, 189, 251, 307, 333, 371, 411, 443, 465, 
485, 495, 501, 509, 513} 

2053 

16 {73, 169, 245, 291, 353, 409, 435, 473, 513, 545, 
567, 587, 597, 603, 611, 615} 

2461 

17 {85, 145, 241, 317, 363, 425, 481, 507, 545, 585, 
617, 639, 659, 669, 675, 683, 687} 

2749 

18 {143, 229, 289, 385, 461, 507, 569, 625, 651, 689, 
729, 761, 783, 803, 813, 819, 827, 831} 

3325 

19 {149, 275, 361, 421, 517, 593, 639, 701, 757, 783, 
821, 861, 915, 935, 945, 951, 959, 963} 

3853 

 
Application example (level_E test case) 
 

A study has been performed in order to compare results obtained via regression based techniques and 
via FAST. This study is based on two samples, a simple random sample of size 459 and a FAST 
sample of size 323 (one half of the suggestion made in table 5.3.5.2.1, though in agreement with some 
authors, as for example Koda et al. (1979)). The former was used to estimate sensitivity indices based 
on regression models (SRRCs) and CSM plots, while the latter was used to estimate variance-based 
sensitivity indices (first order effects contributions to the variance of the output variables). Three 
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output variables have been considered in this study, one of them is dynamic (the dose over time), while 
the others are scalar responses (the peak dose and the time to the peak dose).  
 
Regarding the dose over time, regressions based on the raw values never reached a coefficient of 
determination (R2) above 0.35, and most of the time it was between 0.10 and 0.20, see figure 5.3.5.2.2. 
This fact makes very limited the validity of this regression model to explain the behaviour of the dose 
over time. Figure 5.3.5.2.3 shows the results of the regressions based on the ranks of the values. 
According to this analysis it is clear that V(1) is the most important model input. In fact, there is a clear 
correlation between the R2s  and the absolute value of the SRRC associated to V(1).  The rest of the 
inputs are practically non-influential (only L(1) reach at early time steps values around –0.30).  
 
 

 
 

 

Figure 5.3.5.2.2.- SRCs and R2 versus time for the 
dose over time (raw values). Level_E test case. 

Figure 5.3.5.2.3.- SRRCs and R2 versus time for 
the dose over time (ranks). Level_E test case. 

 
 
Figure 5.3.5.2.4 shows the results of the FAST analysis. The results obtained are partially different 
from the ones provided by regression analysis. In this case, the two most relevant model inputs are W 
and V(1), in this order except at early and late time. The other inputs are quite less important. This 
figure does also show that first order effects are able to explain between 15 and 25% of the variability, 
depending on the time. These results do also show that the behaviour of the dose over time in this test 
case is complex, since a large fraction of the variability (more than 75%) is due to interactions. Figure 
5.3.5.2.5 shows the maximum distance to the diagonal obtained when computing CSM plots for the 
dose over time and all the input parameters. Dm 0.05 is also provided for each time to know what values 
are statistically significant and which are not. Results reported in this figure do essentially agree 
(though there are some differences) with the ones reported by FAST: W is the most relevant 
parameters at intermediate times while V(1) predominates at early and late times, being their effect 
statistically significant at all times. The rest are essentially irrelevant except during short periods.  
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Figure 5.3.5.2.4.- Variance based first order 
sensitivity indices obtained with FAST for the 
dose over time. Level_E test case. 

Figure 5.3.5.2.5.- Sensitivity indices obtained with 
the CSM plot for the dose over time. Level_E test 
case. 

  
Figure 5.3.5.2.6.- CSM plot for the peak dose with 
bands set at α=0.05. Level_E test case. 

Figure 5.3.5.2.7.- CSM plot for the time to the 
peak dose with bands set at α=0.05. Level_E test 
case. 

 
 
Figures 5.3.5.2.6 and 5.3.5.2.7 show respectively the CSM plots for the peak dose and the time to the 
peak dose. Tables 5.3.5.2.2 and 5.3.5.2.3 show the FAST results (only first order effects), regression 
analysis results (R2 and SRRCs) and CSM results (values of Dm for each input parameter) for the same 
outputs. The symbol ‘*’ in the CSM results column means statistically significant result with α=0.05. 
We can see the very good agreement between all the techniques when working on these output 
variables, at least in the identification of most relevant parameters and their order of importance. It is 
also remarkable the large fraction of the variability of these outputs that is explained by first order 
effects (47% for the peak dose and almost 70% for the time to the peak dose). 
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Table 5.3.5.2.2.- FAST results (first order effects), regression analysis results (R2 and SRRCs) and CSM results 
(values of Dm for each input parameter, α=0.05) for the peak dose. 
 Sensitivity measure 
Input parameters  SRRC Fraction of σ2 Dm 
T 0.000 (9) 0.001 (8) 0.116 (8)
k 0.003 (8) 0.000 (9) 0.064 (9)
V(1) 0.639 (2) 0.167 (2) *0.407 (2)
L(1) -0.118 (4) 0.006 (6) 0.145 (6)
R(1) -0.188 (3) 0.024 (3) *0.201 (3)
V(2) 0.044 (6) 0.018 (4) *0.151 (5)
L(2) -0.029 (7) 0.002 (7) 0.133 (7)
R(2) -0.048 (5) 0.009 (5) *0.195 (4)
W -0.747 (1) 0.244 (1) *0.454 (1)
 R2=0.957 1st order effects total 

contribution to σ2=0.471 
Dmα=0.147 

 
Table 5.3.5.2.3.- FAST results (first order effects), regression analysis results (R2 and SRRCs) and CSM results 
(values of Dm for each input parameter, α=0.05) for the time to peak dose. 
 Sensitivity measure 
Input parameters  SRRC Fraction of σ2 Dm 
T 0.005 (9) 0.000 (7.5) 0.063 (4)
k -0.008 (7) 0.000 (7.5) 0.046 (5.5)
V(1) -0.885 (1) 0.501 (1) *0.395 (1)
L(1) 0.304 (2) 0.099 (2) *0.155 (3)
R(1) 0.255 (3) 0.082 (3) *0.172 (2)
V(2) -0.113 (4) 0.001 (5) 0.042 (8.5)
L(2) 0.075 (6) 0.000 (7.5) 0.046 (5.5)
R(2) 0.090 (5) 0.004 (4) 0.043 (7)
W -0.006 (8) 0.000 (7.5) 0.042 (8.5)
 R2=0.955 1st order effects total 

contribution to σ2=0.687 
Dmα=0.076 

 
 

Figure 5.3.5.2.8 shows the CSM plot for the dose at 105 years. This plot shows that the impact of W 
and V(1) on the mean of the output is not the same in all their regions, clearly the lowest values of W 
contribute more to the mean of the dose than its largest values, while intermediate values of V(1) are 
the ones that really affect the mean of the dose at that time. This result is in agreement with the results 
provided by FAST (figure 5.3.5.2.4); both inputs are identified as the only important ones and in the 
same order (Dm(W)=0.4798, Dm(V(1))=0.2715), no other input parameter reaches Dmα (α=0.05). 
Additionally, the CSM line for V(1) explains the very low value of R2 at 105 years in figure 5.3.5.2.3; 
this line shows the clear lack of monotonocity in the relation between this input and the output since 
the largest values of the output are obtained for intermediate values of V(1) (steepest region of the CSM 
line in average). Many other CSM plots realised for the dose at different time steps, which are not in 
this report, showed agreement with the results of FAST provided in figure 5.3.5.2.4. 
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Figure 5.3.5.2.8.- CMS plot for the dose at 105 years with bands set at α=0.05. Level_E test case. 
 

 
Estimation by EFAST method 
 
For the total sensitivity indices, Saltelli et al. (1999) introduced the extended FAST (EFAST) method, 
where the part of variance due to all the variables except Xi is the sum of the squares of the Fourier 
coefficients due to all the angular frequency i~ω different from iω , leading to: 
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Another difference from the initial FAST method is that the functions Gi have been chosen such that 
they are “filling” in a more suitable way the input space:  
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2
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π
ω +==                                   (5.3.5.3.2) 
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2
1))(sin( iiiii ssGx ϕω

π
ω ++==                               (5.3.5.3.3) 

 
where iϕ is a random phase chosen uniformly in [0, 2π[. Moreover, the choice of the angular 
frequencies iω  is no longer constrained by the “no interferences up to a certain order” rule.  
For a given variable Xi, the pair of indices (Si, STi) is computed simultaneously; the only constraint is 
that the angular frequency iω  (corresponding to xi) should be large compared to the ones 
corresponding to the rest of the variables (for instance iω =124, i~ω =1). 
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(a) (b) (c) 

Figure 5.3.5.3.1.- Example of  EFAST sampling in 2 dimensions, with a set of frequencies equal to {11, 21} 
and Ns=691; (a) using formula 5.3.5.3.2; (b) using formula 5.3.5.3.3 with one single random phase; (c) using 
formula 5.3.5.3.3 with two random phases. 
 
 
It should be emphasized that when computing sensitivity indices with FAST method, it is not possible 
to compute tolerance intervals (as it is the case when using Sobol method) because the method is 
deterministic. The number of runs is equal to nxd for estimating 2d sensitivity indices. 
 
Example (the Ishigami function continued) 
 
For the Ishigami function we get, using the package sensitivity in R, for 1000=n : 3000 model 
evaluations for estimation of 6 indices 
 

2391.0ˆ ,47.0ˆ ,5506.0ˆ ,0ˆ ,442.0ˆ ,3077.0ˆ
321321 ====== TTT SSSSSS .               (5.3.5.3.4) 
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Figure 5.3.5.3.2.-  First order and total sensitivity indices for Ishigami function using extended FAST method. 
 
 
Estimation by random balanced design (RBD) 
 
The RBD method (see Tarantola et al. (2006) or Saltelli et al. (2008)) is similar to FAST or EFAST. It 
uses the parametrization ))(sin( sGx iii ω= , ] [ππ ,−∈s  the scalar variable and }{ iω  is the set of integer 
angular frequencies (the function G may be taken as in expressions 5.3.5.3.2 or 5.3.5.3.3). The scalar 
variable is then discretized. The main difference with FAST – EFAST is that the input space is 
explored using the same frequency ω, to avoid the use of a complicated algorithm for choosing the 
different frequencies. Doing so, the set of discretized input parameters xi (i.e. the design) is no longer 



 

 65

space-filling. Therefore, random permutations of the coordinates of those points are taken in order to 
generate a set of scrambled points that cover the input space. An example of such “scrambled” points 
is shown in figure 5.3.5.4.1.  The model is then evaluated at each design point. To compute the first 
order sensitivity index Si, the output y is re-ordered in increasing order of the values taken by the factor 
Xi. The Fourier spectrum of the output is calculated for the frequencies {ω, 2ω,..., Mω} to the estimate 
the sensitivity index Si.  
The procedure is repeated for all the other factors to obtain all the first order sensitivity indices. 
 
The main drawback of this method is that it only computes the first order sensitivity indices.  
 
Its main advantages with respect to (E)FAST is that there is no minimum sample size to avoid 
interference problems and no special algorithm for providing the free interference set of frequencies. 
Also, the number of harmonics in the spectrum (i.e. M) may be increased without affecting the size of 
the sample. 
Another advantage is that confidence intervals could be computed for those indices. 
 
The number of runs is equal to n for estimating d sensitivity indices. 

 
Figure 5.3.5.4.1.- Example of RBD sampling in 2 dimensions, with ω = 1 and Ns=100; (4.3.35) have been used 
for generating the design .  
 
 
Example (the Ishigami function continued): 
 
For the Ishigami function we obtain with this method for 1000=n  (1000 model evaluations for 
estimation of 3 indices) 019.0ˆ ,454.0ˆ ,319.0ˆ

321 === SSS . These results are very similar to the 
theoretical ones (5.3.4.1) and to the ones obtained using Sobol’s or Saltelli’s method (5.3.5.1.10)  and 
EFAST method (5.3.5.3.4).  The computations have been made using R. 
 
Other variance decomposition based methods 
 
McKay (1997) also gives a method of estimation of the variances Var(Y) and ])|[( iXYEVar  based on 
replicated Latin Hypercube Sampling, which can be used to estimate the first order sensitivity indices. 
Hofer (1999) uses correlation ratios to estimate first order sensitivity indices. The output sample is 
divided in subsamples according to a partition of each input sample. The output mean is computed for 
each subsample and the variance of these means divided by the variance of the output is the first order 
sensitivity index for that input parameter. Correlation ratios are the square root of first order sensitivity 
indices computed in this way.     
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5.4. Distribution sensitivity methods 
 
Many of the uncertainties that appear in a PA are epistemic (lack of knowledge). The assessment of 
these uncertainties is done most frequently via expert judgement. In many cases the experts show some 
reluctance to provide accurate distributions, as is the case of underconfident experts. In other situations 
they acknowledge that the distributions could be slightly different from the ones they are actually 
providing. One of the targets of SA is to measure the potential impact of those changes on the 
distributions of the outputs. 
 
The trivial solution for this problem is to run the code a number of times under the original or main 
distribution, let us say n times, and another number of times under the alternative distribution, let us 
say n’ times, and to compare the results (mainly means, distribution functions and success or failure 
probabilities). In the case of k input parameters we need to run n+kn’ times the code to measure the 
influence of changing the input distribution of each input parameters. This problem becomes a 
combinatorial problem as we try to measure the effect of changing simultaneously the distribution of 
two or more input parameters. Certainly this is not an efficient way to measure the effect of input 
distribution changes on the output distribution. 

 
In the following pages we will describe two methods available in the statistics literature to measure the 
influence of input distribution changes in the means and the distribution functions of the output 
variables. These two methods (the weighting method and the rejection method) were developed by 
Beckman and McKay (1987). This problem did also arise within the Probabilistic Safety Assessment 
Code Use Group (PSAG and formerly PSAC), in the PA area. Some of the participants in that group 
proposed solutions similar to the weighting method, see OECD-NEA (1993 and 1997) and Alonso 
(1993). In fact, the solution proposed by Alonso is a particular case of the method proposed by 
Beckman and McKay (restricted only to uniform and log-uniform distributions).   

 
The first method developed by Beckman and McKay is suitable for measuring the effect on the mean 
of the output and resembles a variance reduction technique, importance sampling. The second method 
is suitable for measuring the effect on the distribution function and is based on the acceptance/rejection 
sampling technique to sample from distributions with no analytical inverse cumulative distribution 
function. The second method is more relevant to the estimation of the change in the success probability 
of a passive system, though the first one does also provide some additional worthy information. 

 
First we will define the problem, second we will show the foundations of these two methods and we 
also will write down some ideas about their efficiencies. We will also provide some ideas about their 
actual implementation. Finally, an application example will be shown. 

 

5.4.1. The problem 
 
Let us consider a k components vector of input parameters X. Let us assume that two different 
distribution functions f1(x) and f2(x) may be assigned to that input parameter vector. Let us also assume 
that the first one is the reference one and the second one is the one we are addressing for sensitivity. 
For simplicity, let us consider only one output variable Y. Since X is a random vector, Y will also be 
random and its distribution function will depend on the distribution function of X. Let us call F1(y) and 
F2(y) to the distribution functions of Y when X follows the distributions f1(x) and f2(x) respectively. 
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5.4.2. The weighting method 
  
The weighting method resembles importance sampling. In the case of importance sampling the 
problem is to estimate the mean of a reference random variable as accurately as possible, and the 
proposed solution is to find an ancillary random variable with the same mean and a smaller variance 
than the reference variable. In our case we have both, the reference distribution and the ancillary one, 
so that we can apply the method for our purposes. This method is only adequate for estimating changes 
in the mean. 
 
Let us consider the random variable Y’ defined as )())()(()()()(' 12 xxxxxx YffYwY == . Let us 
demonstrate that the mean of Y’, when sampling X from f1(x), is the same as the mean of Y when 
sampling X from f2(x). In other words, let us demonstrate that E1(Y’(X))=E2(Y(X)), where the sub-
indices  indicate what input vector distribution function we are using to compute the mean. The only 
requirement we are going to impose is that the support R2 of f2(x) is contained in the support R1 of 
f1(x). 
 

[ ] xxxxxxxxxxxX dfYdfYffdfYYE
RRR ∫∫∫ ===

111

)()()()()()()()('))('( 211211  .      (5.4.2.1) 

 
Since 12 RR ⊂ , and f2(x) is null outside 2R , the last integral in 1R  and in 2R  are the same so that we can 
write 
 

))(()()()()())('( 2221
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From a practical point of view, this theoretical result means that a way to estimate the mean of Y under 
f2(x) is to get a sample of Y under f1(x) and to multiply each one of those sampled value of Y under 
f1(x) by its corresponding weight w(x)= f2(x)/ f1(x). The arithmetic mean of those sampled values 
multiplied by their corresponding weights is an unbiased estimate of E2(Y(X)). In the following lines 
there is the procedure to be followed: 
 

• Step 1  Obtain a sample of size n of the input random vector under the reference 
distribution: X1, X2, …, Xn. Their actual values will be x1, x2, …, xn. 

• Step 2  Run the code for those n sets of inputs in order to get the corresponding sample 
of the output variable: Y1, Y2,…, Yn. Their actual values will be y1, y2,…, yn. 

• Step 3  Weight the sample with the corresponding weights, getting for each actually 
sampled value yi=y(xi) the corresponding value y’(xi)= y(xi)w(xi)= y(xi) f2(xi)/ f1(xi). 

• Step 4  Estimate E2(Y(X)) through: 
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The efficiency of the weighting method 
 
A general problem in statistical estimation is the determination of the accuracy of the estimates 
generated with a given method. In the general case the accuracy of the estimates is measured with their 
variance. The larger the variance is, the smaller the accuracy is. In our case we can compare the 
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accuracy or variance of the estimator of the mean of Y under the reference distribution using a random 
sample, 1μ̂ , with the accuracy of the proposed estimator 2μ̂  (formula 5.4.2.3) for estimating the mean 
of Y under the sensitivity distribution.  
 
Let us define the efficiency of the second estimator with respect to the first as the quotient of the 
variance of the first divided by the variance of the second. Since both estimators are simple arithmetic 
averages of two different magnitudes, Y and Y’, this efficiency will be equal to the quotient of the 
variances of Y and Y’. The consequences of this fact are that, depending on the characteristics of Y’, we 
will get efficiencies larger or smaller than one. In other words, 2μ̂  could be more accurate or less 
accurate than 1μ̂ . This could lead to the surprising result that, though we sampled under the conditions 
of f1, our estimate for the mean of Y under f2 could have less error than the estimate for the mean of Y 
under f1. 
 
In order to understand this phenomenon, let us see the following example. Let us assume that we have 
a very simple model that depends on only one input parameter X. Let us assume that the experts 
provided as their best estimate for this model an exponential distribution with mean 10. Let us assume 
that we know the closed solution of our model and its analytical form is exactly the same as the former 
exponential density function. Let us also consider that our interest is to study the effect of changing the 
mean of the input distribution to any other value between 2 and 50, keeping the type of distribution 
(exponential). All these assumptions may be resumed as 
 

0.1           )(1 == − λλ λxexf  

0.1            )( == − λλ λxexy  

       [ ]5.0,02.0        )( 222
2 ∈= − λλ λ xexf  . 

 
We can see that in this case Y’(x)=f2(x). Moreover, under these assumptions it is quite easy to 
demonstrate that the efficiency of the weighting method proposed by Beckman and Mckay is 
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(5.4.2.1.1) 
Figure 5.4.2.1.1 shows the reference input probability density function f1 and the response of the 
computer code Y, the same function in this example (the continuous line f1(x)=Y(x)), same function in 
this example; and the two extreme cases for f2 among the infinite set considered (λ2 between 0.02 and 
0.5). For each one of those infinite alternative distributions f2, the corresponding function Y’(x) is equal 
to f2. Figure 5.4.2.1.2 shows the efficiency of the weighting estimator with respect to the estimator of 
the mean of Y under f1. A straightforward conclusion from that plot is that the smaller λ2 (the larger the 
mean of X) the larger the efficiency. Efficiencies are larger than 1 for λ2<0.1 and smaller than 1 for 
λ2>0.1. For λ2=0.02, the efficiency is approximately 100; in that case we need samples 100 times 
larger to estimate the mean of Y under the reference distribution that to estimate the mean of Y under 
this alternative distribution with the same accuracy. The most surprising fact of this result is that we 
are using a sample of f1! 
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Figure 5.4.2.1.1.- Input reference 
distribution, model (same curve), and 
extreme alternative input distributions 
(equal to the corresponding Y’ 
functions). 

Figure 5.4.2.1.2.- Efficiency of the 
weighting estimator, for the example 
with the exponential distributions, as a 
function of λ2 (that represents the 
alternative distribution). 

 
 
The reason for such a surprising result comes from the fact that, for all the functions Y’(x), X follows 
the same law of probability, but the range of Y’ (remind that it is equal in this example to the 
corresponding f2) decreases dramatically as λ2 decreases, so that the variance of Y’ decreases as λ2 
decreases, producing the result shown in figure 5.4.2.1.2. It is quite interesting to check that better 
results are obtained as the variance of f2 increases. 
  
Beckman and Mckay (1987) provide further studies about the efficiency of this method for the cases of 
normal and beta distributions, discussing about the origin of the obtained results. 
 

5.4.3. The rejection method 
 
The rejection method is based on the acceptance/rejection sampling method for random variables with 
cumulative distribution function with no analytical inverse function, see Johnson (1987) and Fishman 
(1996).  
 
There are two conditions for the application of this method: First, as in the previous method, the 
support of f2(x), R2, must be contained in the support of f1(x), R1; and second, the quotient f2(x)/f1(x) 
must be bounded. Let us assume that the bound is M; in other words, ( ) 212    )()( R Mff ∈∀≤ xxx . In 
the following lines there is the procedure to be followed: 
 

• Step 1  Obtain a sample of size n of the input random vector under the reference 
distribution: X1, X2, …, Xn. Their actual values will be x1, x2, …, xn. 

• Step 2  Run the code for those n sets of inputs in order to get the corresponding sample 
of the output variable: Y1, Y2,…, Yn. Their actual values will be y1, y2,…, yn. 

• Step 3  For each sample xi, take a sample of the uniform distribution Vi between 0 and 
Mf1(xi). 

• Step 4  Retain in the sample the corresponding output value Yi=yi if the realisation vi of 
Vi is less or equal to f2(xi), otherwise reject that value from the sample. 
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• Step 5  Consider the values of Y remaining in the sample as a random sample of Y under 
f2(x), and use this sample of size k≤n to build up an empirical distribution function that 
estimates the actual distribution function of Y under f2(x). Each step in that empirical 
distribution function will have a height 1/k. 

 
The objective of sampling Y under f1(x) and under f2(x) is to get an estimate of the probability of 
failure of the system under those different circumstances. If we assume that the system fails when the 
variable Y exceeds the value y0, our estimate of the probability of failure will be the number of 
observations of Y that exceed such a value divided by n for the reference case and divided by k in the 
sensitivity case. 
 
This procedure for estimating the distribution function of Y under f2(x) produces an unbiased estimator 
for that function since we are applying strictly the acceptance/rejection method for sampling  X under 
f2(x) using as an ancillary function f1(x). The acceptance/rejection method provides a random sample 
of X under f2(x). This fact guaranties that the transformation of this sample through the model provides 
a random sample of Y under f2(x). This sample may be used in the usual way to provide any unbiased 
estimator related to Y, in particular the empirical distribution function. 
 
The efficiency of the rejection method 
 
In this case Beckman and McKay propose as a measure of efficiency the probability that a realisation 
of the random vector X under f1(x), x, be accepted as a random variate under f2(x). This probability is 
1/M since   
 

MdffVPPeff
R

1)()|)(()retained is  random a( 12
1

=≤== ∫ uuuuX  .             (5.4.3.1.1) 

 
The intuitive justification for this result comes from the fact that the quotient between the hypervolume 
under Mf1(x) and the hypervolume under f2(x) is M, so that, in the average, according to the acceptance 
criterion, only a fraction 1/M of the sample obtained under f1(x) will remain as a sample under f2(x). A 
detailed demonstration may be found in Beckman and McKay (1987). 
 
Let us revisit the example of the exponential functions shown in section 5.4.2.1. If we try to apply the 
rejection method to that case, the first thing we find is that the method may not be applied to any 
alternative distribution with λ2<0.1 since the quotient f2(x)/f1(x) must be bounded and that is not the 
case under these conditions. For all the other cases (λ2>0.1), it is quite easy to show that the efficiency 
is 
 

2λλ=eff   .                                                                     (5.4.3.1.2) 
 

Let us consider now the alternative exponential distribution function f2(x) with λ2=0.2. We have 
sampled 50 observations from f1(x) and we have applied the rejection method. Figure 5.4.3.1.1 shows 
the three essential functions in this method for the example case: f1(x), 2 f1(x) and f2(x). It is convenient 
to remember that in this example f1(x) and Y(x) are identical functions. The 50 values sampled from 
f1(x) are the x component of the points in figure 5.4.3.1.1. The y components of those points are the 
corresponding realisations of the uniform random variables Vi. In agreement with the method, only 
those x values corresponding to points below f2(x) (dotted line) are retained as valid x values under 
f2(x). The values of Y for those x values are those that will be considered to build up the distribution 
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function for Y. Figure 5.4.3.1.2 shows the empirical distribution function for Y under f1(x) (solid line) 
and the empirical distribution function for Y under f2(x) (void line).  
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Figure 5.4.3.1.1.- f1(x),  f2(x) and 
2f1(x). The output variable of this 
model coincides with f1(x).  

Figure 5.4.3.1.2.- Empirical 
distribution function for Y under f1(x) 
and empirical distribution function for 
Y under f1(x), using the sample 
obtained under f1(x). 

 
 
A careful look at figure 5.4.3.1.1 shows that in this sample 25 points are above f1(x) and the rest are 
below it. This sample efficiency is exactly the same as the predicted efficiency, though it could be 
different in another sample. As a consequence of this fact, the empirical distribution function for Y 
under f2(x) in figure 5.4.3.1.2 will have only 25 steps, each one with height 1/25. If we consider that 
the system fails as soon as Y is larger than 0.09, by inspection of figure 5.4.3.1.2 we easily see that the 
estimate for the probability of failure under the reference distribution is 6/50=0.12, while the estimate 
for the probability of failure under the alternative distribution is 6/25=0.24. The estimate of that 
probability increases by a factor 2. This result could be expected since f1(x) puts more weight on the 
small values and less weight on the large values of X than f2(x). Nevertheless, Y(X), the model itself, is 
monotonically decreasing, so that a shift towards smaller X values implies a shift towards larger Y 
values. This example is for a model with only one input parameter, but its application to a multi-
parameter model is straightforward. 
 
Both methods are suitable for measuring the sensitivity to the change in one, several or all the input 
parameters, though with some restrictions (if a set of the input parameters are mutually dependent, the 
sensitivity to a change in one subset may not be addressed separately). 
 

An extension of the rejection method 
 
As we have seen in the previous section, the main problem of the rejection method is its potential low 
efficiency due to discarding many observations from the sample under some circumstances. A way to 
increase this efficiency is repeating many times the process described in section 5.4.3 and averaging. If 
we do so, we will arrive at an output estimated distribution function under the alternative input 
distribution (f2(x)) that attributes the following probability to each output value 
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Application example of the rejection method (extended) 
 
The rejection method (extended according to section 5.4.3.2) was applied to assess the changes in the 
reliability of a passive safety system in an advanced nuclear power reactor. Several input parameters 
were affected by epistemic uncertain and their uncertainty was characterised via probability density 
functions. All input distributions were allowed to vary their means up to 15% up and down. So, if the 
mean of a given uncertain parameter was 10, the intention of the study was to see what were the 
consequences on the output (pressure in the primary system) of changing the mean of the input 
between 8.5 and 11.5.  
 
Figures 5.4.3.2.1 and 5.4.3.2.2 show the results corresponding to two input parameters: different 
cumulative distributions of the pressure under different input distributions. The system was supposed 
to fail when a pressure of 4 Mpa was exceeded (value 4 in the x-axis). Figure 5.4.3.2.1 shows the 
results corresponding to the most influent parameter (input parameter 11). We can see the shift towards 
larger pressures when the mean of the input parameter diminishes (orange →blue →purple →green 
→red). The output distribution under the original input distribution is the purple line. Under that 
hypothesis, the probability of failure of the system was roughly 4%. When analysing the spread of that 
probability under different alternative input distributions we can see that it may vary between roughly 
2% (orange line) and 11% (red line). Figure 5.4.3.2.2 
Shows the results for a completely irrelevant parameter (input parameter 9); it is practically impossible 
to distinguish the different output distributions. Changing the mean of this input parameter has no 
impact on the output distribution. 

  
Figure 5.4.3.2.1.- Results of the rejection 
(extended) method for an influent input parameter.  

Figure 5.4.3.2.2.- Results of the rejection (exten-
ded) method for an irrelevant input parameter.  

 
 

6. Response surface based 
 
The most widely used response surface model is regression, see Iooss et al. (2006), and sections 
5.2.1.3 – 5.2.1.7 in this report. Among the other response surface models, the polynomial chaos 
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expansions are quite effective for the sensitivity analysis, because once the coefficients of the 
expansion are estimated, the computation of the Sobol sensitivity indices is straightforward. 
 

6.1. Polynomial chaos expansions 

Polynomial chaos expansions of random functionals are based on the mathematical theory developed 
by Wiener (1938), Cameron and Martin (1947). Their use for uncertainty and sensitivity purposes 
started with the work of Ghanem and Spanos (1991) on the stochastic finite element method and ever 
since they have gained in popularity, especially in the case when the physical system under study is 
computationally expensive, making Monte Carlo simulations impossible to use.  

Polynomial chaos consist in expanding the output on an orthogonal basis of polynomial chaos denoted 
by { }kψ :  

)()(
0

xx ∑
∞

=

=
k

kky ψβ .                                                            (6.1.1) 

The orthogonality is associated to the joint probability density function (pdf(x)) of the random vector 
x (the input), i.e. klklklk dpdf δψψψψψ 2)()()()()(),( xxxxxxx == ∫ . As an example, for a 

normally distributed 1-dimensional input, the basis of polynomial chaos is formed by the Hermite 
polynomials  
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The response surface is obtained by approximating the expansion (6.1.1) by a finite sum 
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The coefficients kβ  are computed as ∫= xxxx dpdfy kk

k
)()()(2

1 ψβ
ψ

. Finally, in order to obtain the 

estimations of these coefficients, a quadrature formula is used. The choice of the quadrature method 
will lead to the choice of the design of experiments, i.e. the values of the input vector where the 
computations with the original model have to be done; it will also give the weights jw to be used: 
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Due to the orthogonality being associated to the joint probability density function (pdf(x)) of the input, 
straightforward formulae for the total (V) and partial (Vu) variances are deduced: 
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where U(u) is a set of indices. 
 
The Sobol sensitivity indices can then be computed as the ratio between Vu and V. An important 
remark is that with this method we can compute sensitivity indices up to any order we need to, without 
any computation effort. This allows deciding whether higher order interactions between the inputs are 
significant or not. 
 
Example of transport of a radionuclide in a nuclear waste repository (continued) 
 
For the example of the transport of a radionuclide (129I) in a nuclear waste repository (section5.2.1.5), a 
deterministic design of experience with 737 points (in 6 dimensions) has been used for the quadrature 
method. Sensitivity indices up to the fourth order have been computed using the software Petras 
(http://www-public.tu-bs.de:8080/~petras/software.html). We present in table 6.1.1 the values for the 
total sensitivity indices. 
 
 
Table 6.1.1.- Polynomial chaos expansion sensitivity results for the example of the transport of a radionuclide. 

Variable 
name 

Sobol total 
sensitivity indices 

Order of variable 
importance  

Kh1 ST1= 3.51e−01 1 
Kv1 ST2= 3.48e−01 2 
K2 ST3= 2.45e−01 5 
K3 ST4= 2.55e−01 4 
poro ST5= 3.00e−01 3 
de ST6= 1.82e−01 6 

 
 
There is one significant difference between those results and the ones obtained for the regression 
methods previously used, which is the fact that the input variable Kh1 appears as the most important 
one. However, Kv1 and poro which were the most influent ones in the different regression methods are 
the next important ones. Another significant difference is the fact is that the initial computational effort 
was quite large for the polynomial chaos expansions: a deterministic design of experiments with 737 
points has been used (i.e. 737 runs of the numerical code), while a random design of experiments (latin 
hypercube) with only 60 points have been used for the regression methods. 
 

6.2. Kriging  
 
Kriging was developed initially by geostatisticians in the 60’s. It’s use in the context of computer 
experiments started with the work of Sacks et al. (1989a). A detailed description of kriging may be 
found in Santner et al. (2003). Kriging is an interpolating method. The kriging model can be written in 
the form  
 

)()()( xxx Zfy += β ,             (6.2.1) 
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where β)(xf  is the deterministic part (called the trend) and )(xZ is the random part (a centred, 
stationary Gaussian process). The trend takes into account the large scale variations of the output, 
while the random part takes into account its small scale variations. The Gaussian process is entirely 
characterized by its covariance function. The covariance function determines the smoothness of the 
response surface and it depends on k+1 parameters; its form has to be chosen a priori (out of a list of 
possible covariance functions, see Santner et al. (2003)).  
 
The parameters that have to be estimated from the data are the coefficients β of the trend and the k+1 
parameters of the covariance function. The estimation is done by the maximum likelihood method. 
 
As an example, the Gaussian covariance function is defined by: 
 

( ) dd

i iiZ IRhhhC ∈−= ∑ =
any for       )(exp)(

1
22 θσ                  (6.2.2) 

 
where 2

Zσ  and iθ , i=1,…,d  represent the variance and the scale parameters of the Gaussian process, 
have to be estimated from the experiments by maximum likelihood. 
 
One of the main advantages of kriging is the fact the predictor is an interpolator whose smoothness 
depends on the data (via the covariance function) and yet not imposed a priori as in a regression 
method.   
 
The surface response obtained by kriging can be used to compute Sobol sensitivity indices. 
 
Example of transport of a radionuclide in a nuclear waste repository (continued)  
 
For the example of the transport of one radio nuclide (129I) in a nuclear waste repository, the latin 
hypercube design with 60 points has been used to estimate the parameters of a kriging model with a 
linear trend. This means that 7 coefficients (denoted 6,...0, =iiβ ) had to be estimated for the trend and 

7 parameters ( 2
Zσ  and iθ , i=1,…,6 ) for the Gaussian process. Sobol total sensitivity indices have been 

computed. We present in table 6.2.1 the sensitivity results obtained. 
 
Table 6.2.1.-  Kriging (with linear trend) sensitivity results for the example of the transport of a radionuclide. 

Variable 
name 

Sobol total 
sensitivity indices 

Order of variable 
importance  

Kh1 ST1= 2.37e−06 6 
Kv1 ST2= 9.04e−01 1 
K2 ST3= 3.72e−03 4 
K3 ST4= 4.58e−02 3 
poro ST5= 8.68e−02 2 
de ST6= 9.47e−04 5 

 
Again, like in the regression examples, Kv1 and poro are the most influent input variables.  
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7. Conclusions 
 
A review of most interesting and useful SA techniques in the context of a PA has been done, 
concentrating efforts on screening methods and global methods. Screening methods focus on 
identifying strong functional relations between inputs and outputs, while global methods focus on how 
input uncertainty maps on the output space. 
 
Within screening methods we have focused our attention on classical full factorial and fractional 
factorial methods, Morris’ method and sequential bifurcation. We have found full factorial and 
fractional factorial methods as powerful tools when the number on input parameters is moderate, but 
its applicability cannot be recommended when the number of input factors is very large; in those cases 
methods like Morris’ and sequential bifurcation are more appropriate.  
 
In this study, global methods have been classified as graphic methods, Monte Carlo based methods, 
variance decomposition based methods and distribution sensitivity methods. This classification is a bit 
arbitrary since there are many overlaps among these methods (graphic tools may be used with data 
obtained via Monte Carlo simulation, but they may also be used with data obtained under different 
sampling schemes, as for example the traditional FAST sampling), but we have found it useful. 
 
Monte Carlo based methods (regression based and Monte Carlo filtering) are quite well known in the 
scientific and technical community. They are simple to use and provide easily interpretable results. 
The main shortcoming of regression-based techniques is the specification, a priori, of a given structure 
for the model under study, which makes less powerful the results. Monte Carlo filtering, which allows 
identifying relations between different regions of inputs and outputs,  is not affected by this problem. 
An important advantage of these methods is that they allow the simultaneous use of the same sample 
(input and output) to perform uncertainty and sensitivity analysis, not needing specific additional code 
runs for each specific analysis. This fact is a strong reason in favour of these methods. An important 
area of research for the next future is the adaptation of specific efficient techniques to allow computing 
variance based sensitivity indices using Monte Carlo samples. 
 
Variance based methods provide information about what input factors and what interactions among 
input factors introduce more variability in the output, which made them very powerful tools to 
understand the behaviour of PA models. The main problem with many of these techniques is the need 
of using specific sampling schemes, not appropriate to perform simultaneously uncertainty analysis. A 
large improvement has been achieved during the last years to make these methods cheaper in 
computational terms, though there is still room for improvement.  
 
Graphical methods (scatter plots, cobweb plots and contribution to the sample mean plots –CSM plots-
) are strongly recommended. They provide a lot of information in support of numeric sensitivity 
techniques and illustrate many model features that are not shown by pure numeric measures. 
Additionally, one of them, CSM plots, provides a numeric measure that is itself a measure of 
importance linked to variance based sensitivity indices. This method identifies what region(s) of each 
input variable has/have the strongest impact on the output mean and allows the representation, in the 
same graphic, of may inputs, which facilitates comparing the effect of different inputs. The use of 
cobweb plots in support of Monte Carlo filtering techniques is strongly recommended. These 
techniques do also allow representing the relation between one output and several inputs.  
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Distribution sensitivity techniques have been identified as the mean to check what could be the effect 
on output distributions of changes in the distributions of the inputs. The use of these techniques could 
be very helpful to avoid expensive experiments and expert judgement processes.  This would be the 
case of input parameters whose likely alternative distributions do not show an important impact on the 
output distribution. 
 
The whole set of methods described in this report allow PA modellers to study and get information 
about their model from different perspectives, which allows them to understand correctly their models. 
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Annex 1: Level E test model description. 
 
The model under study reproduces the behaviour of a high-level radioactive waste repository and the 
contaminant disposed of. The repository is considered without any geometric complexity, as just a 
point. Engineered barriers are modelled through a containment time during which there is no release. 
After the containment period, the contaminant starts releasing at a fractional constant rate. Only one 
radionuclide is considered in this study, 129I. This radionuclide was selected because of its relevance in 
many safety assessments already performed worldwide. The contaminant is carried by groundwater 
through two consecutive geosphere layers to the biosphere, where it makes its way into a water stream 
from which exposed population take drinking water. This model has 15 inputs, nine of which are 
affected by uncertainty. These model inputs are the initial inventory of 129I (M0), its decay rate (λ), the 
dose conversion factor (β), and all the other inputs that characterize the physical-chemical properties of 
the near field, both geosphere layers and the biosphere. 
 
There are three components in this system model, which will be described in the following 
subsections: the source term model, geosphere models and the biosphere model.  
 

7.1. A.1.- Source term model 
 
The source term model consists of a simple delay in the release, after which a fractional constant 
release begins (the release being proportional to the remaining quantity of contaminant). During the 
whole period, the inventory also decreases due to radioactive decay. Therefore, during the containment 
period, the inventory of 129I decreases according to the following ordinary differential equation (ODE): 
 

TttM
dt

tdM
≤−=                     )()( λ ,                                                     (A.1) 

 
while, after the containment period,  the inventory of 129I decreases according to the following ODE: 

TttkMtM
dt

tdM
>−−=          )()()( λ .                                                   (A.2) 

 
The initial condition is M(0)=M0. The flow of contaminant escaping from the facility to the first 
geosphere layer is given by 
 

)()( tkMtS = .                                                                        (A.3) 
 
Both containment time (T) and release rate (k) are considered to be uncertain. 
 

7.2. A.2.- Geosphere model 
 
The transport of contaminant through both geosphere layers is simulated in one dimension (1-D). Each 
geosphere layer is characterized by its length (L(i), where i stands for the layers; i=1 corresponds to the 
first layer and i=2 to the second). The transport equation is 
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where R(i), V(i)and d(i) stand, respectively, for the retardation coefficient, the groundwater velocity and 
the dispersion length in the corresponding geosphere layer, which is indicated by i. C(i) stands for the 
concentration of contaminant in any position x at time t, so that formally it should be considered 
C(i)(x,t). Velocities of groundwater, retardation coefficients and lengths of both layers are considered 
+to be uncertain model inputs, whereas dispersion lengths are known inputs. Null concentration of 
contaminant in both layers is considered for the initial condition. For the specification of the boundary 
conditions, it is assumed that the contaminant flow rate into the first layer is the flow coming from the 
facility. Moreover, the flow rate into the second layer is equal to the flow rate from the first layer; 
similarly, the flow rate into the biosphere is equal to the flow rate from the second geosphere layer. 
 

7.3. A.3.- The biosphere model 
 
The biosphere model is very simple. It is assumed that the contaminant coming from the second 
biosphere layer gets into a stream used for drinking water. Therefore, the dose is a function of the 
proportion of water drunk by individuals. Mathematically it can be formulated as 
 

)()( )2( tG
W
wtD β=                                                              (5) 

 
where G(2)(t) is the flow rate coming from the second geosphere layer into the biosphere, β is the dose 
conversion factor, w is the individual’s annual water consumption rate and W is the flow rate of the 
biosphere water stream. 
 
 
Table A.1.- Model inputs in the problem under study (U = uniform distribution, LU = logarithmic-uniform 
distribution; in both cases values shown in brackets denote lower and upper bounds). 

PARAMETER TYPE VALUE/DISTRIBUTION UNITS 
M0 Constant 102 Mol 
Λ Constant 4.41·108 y-1 

T Random/uncertain U[102,103] Y 
K Random/uncertain LU[10-3,10-2] y-1 
V(1) Random/uncertain LU[10-3,10-1] m·y-1 

L(1) Random/uncertain U[102,5·102] M 
d(1) Constant 10 M 
R(1) Random/uncertain U[1,5] Dimensionless 
V(2) Random/uncertain LU[10-2,10-1] m·y-1 

L(2) Random/uncertain U[5·101,2·102] m 
d(2) Constant 5 m 
R(2) Random/uncertain U[1,5] Dimensionless 
W constant 0.73 m3·y-1 

W Random/uncertain LU[105,107] m3·y-1 
Β constant 56 Sv·mol-1 
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