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Problem Definition

In some applications regarding thermal fatigue due to thermal transients (striping or
turbulence) in mixing tees of class 1-2-3 piping systems of reactors, the temperature
gradient within the pipe thickness must be considered time-dependent, as well as the
thermal boundary conditions. In the present work the quasi-static thermoelasticity problem
in a long hollow cylinder is solved analytically. This is the first step in a four-part JRC
project studying thermal fatigue damage assessment, which consists of:

- new analytical stress formulae for arbitrary time dependent thermal loads in pipes;

- assessment of thermal fatigue crack growth;

- probabilistic and statistical approach to thermal fatigue;

- review and synthesis of thermal fatigue assessment methods from European and

non-European Procedures

Time-dependent thermal boundary conditions are assumed to act on the inner
surface of the cylinder. In the first step, the general relation for the temperature distribution
is derived by means of the finite Hankel transform. In the second step, the analytical
solution for temperature distribution in wall thickness of a hollow cylinder in the sinusoidal
transient thermal loading case is developed. In third step the thermal stress components
are extracted by means of the displacement technique applied to a one dimensional
problem of cylindrical bodies. Specific solutions were determined for the case of a
sinusoidal transient thermal loading case applied to a hollow cylinder. Finally the results
are compared with those from a previous independent study which used finite element
analyses to solve the problem. A further verification of the analytical predictions was
performed with an in-house FE analysis using the ABAQUS program.

The results can be used in the assessment of the high cycle fatigue damage of
mixing tees in the following parts of the draft European Procedure for Thermal Fatigue
Analyses of Mixing Tees:

e level 2 - sinusoidal temperature fluctuation as boundary condition on inner
surface of the pipe;

e level 3 - load spectrum fluctuation based on one-dimensional temperature
and stress evaluation at each measured location;

e level 4 - fracture mechanics applied to thermal fatigue crack growth

assessment based on evaluation of AJ or AK during a crack growth.
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Nomenclature
r=a, re=b  -inner and outer radii of the pipe;
0 - temperature change from the reference temperature;
To - reference temperature;
r - radial distance;
k - thermal diffusivity;
A - thermal conductivity;
P - density;
c - specific heat coefficient;
F(t) - function of time representing the thermal boundary condition applied

on the inner surface of the cylinder;

J(z) , Yo(z) - Bessel functions of first and second kind of order v.

6o - amplitude of temperature wave;

1) - wave frequency in rad/s;

t - time variable.

Sn - positive roots of the transcendental equation (kernel of finite

Hankel transform);

g, - radial strain;

Ep - hoop strain;

£, - axial strain;

o, - radial stress;

Oy - hoop stress;

o - axial stress;

L M - Lamé elastic constants;
E - Young’s modulus;

G=u - shear modulus;

B - thermoelastic constant
a - coefficient of the linear thermal expansion
v - Poisson’s ratio

u - radial displacement.
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1. Introduction

The development of thermal fatigue damage due to turbulent mixing or vortices in
NPP piping systems is still not fully understood [1] and much effort continues to be
devoted to experimental and analytical studies in this area [2,3]. As opposed to the
relatively low number of cycles associated with thermal stratification, thermal striping’ at
vortices and in mixing areas is more of a high cycle nature [4]. Thermal gradients and
turbulence in the coolant fluid can induce oscillating local stresses in the portion of the pipe
near the inside surface if the flow rates are sufficiently high. These cyclical thermal
stresses are caused by oscillations of the fluid temperature at the interface resulting from
interfacial mixing of the hot and cold fluid layers. For example, the test results and theory
[4] indicate that thermal striping is present when the local Richardson number? is less than
0.25. Numerical simulation of the type of thermal striping and high-cycle thermal fatigue
that can occur at tee junctions of the LWR piping systems showed that the oscillation
frequency of the temperature of the coolant is a key factor in the response of pipe wall
temperature field and that the critical frequency range is 0.1 — 1Hz [5]. The amplitude of
the metal temperature oscillations is smaller than the difference in the hot and cold coolant
layers because the finite value of the heat transfer coefficient and the thermal inertia of the
pipe. Therefore, the high-cycle fatigue damage caused by thermal stresses is initially
limited to the pipe inner surface adjacent to the interface [5], and further crack growth
depends on the thermal stress profile through the thickness of the pipe [6,7,8,9].
The current study addresses the development of the analytical solutions for the
through-wall temperature response and thermal stress components in a hollow cylinder
due to thermal transient in generals, and particularly for the sinusoidal transient thermal

loading case.

! Thermal striping is defined as the effect of a rapid random oscillation of the surface temperature inducing a
corresponding fluctuation of surface stresses and strains in the adjacent metal. It is characterized by large numbers of
strain cycles having potential to add to any fatigue damage produced by strain cycles associated with other plant
operation transients.

? The Richardson number is the ratio of the density gradient and horizontal velocity gradient [4]
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2. Background on methods applied to solving thermoelasticity
problems for thermal transients

Thermal stresses are defined [10,11,12,13] as self-balancing stresses produced by a non-
uniform distribution of temperature or by differing coefficients of thermal expansion. These
thermal stresses are developed in a solid body whenever any part is prevented from
assuming the size and shape that it would freely assume under a change in temperature.
In order to establish the allowable stresses, two types of thermal stress are defined. The
first is a general thermal stress that develops with some distortion of the structure in which
it occurs. When the level of this stress exceeds twice the yield strength of the material,
successive thermal cycles may produce incremental distortion resulting in shakedown or,
in extreme cases, ratcheting. Examples include the stress produced by an axial
temperature distribution in a cylindrical shell or by the temperature difference between a
nozzle and the shell to which it is attached, or the equivalent linear stress produced by a
radial temperature distribution in a cylindrical shell. The second concerns the type of local
thermal stress associated with almost complete suppression of differential thermal
expansion and thus no significant global distortion of the body. Such stresses are
considered only from the fatigue standpoint and are therefore classified as local stresses.
Examples include the stress at a small hot spot on a vessel wall and the difference
between the actual stress and equivalent linear stress resulting from a radial temperature
distribution in a cylindrical shell.

In looking at the methods for analyzing thermal stress under thermal transients, we
focus on those for hollow cylinders (pipes). A.E. Segal has studied [14] the transient
response of a thick-walled pipe subjected to a generalized excitation of temperature on the
internal surface using Duhamel’s relationship. The generalization of the temperature
excitation was achieved using a polynomial composed of integral-and half-order terms. To
avoid the evaluation of recurring functions in the complex domain, Laplace transformation
and a 10-term Gaver-Stehfest inversion formula were used to perform part of the
necessary integrations. In the reference [15] Lee and Yoo have applied a numerical
approach using the Green’s function method (GFM) for analysis of crack propagation
under thermal transient loads. They have shown that GFM can be used to efficiently

evaluate thermal stresses for fatigue damage analysis or SlFs for crack propagation
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analyses. The same authors reported [16] an evaluation procedure of thermal striping
damage on secondary piping of liquid metal fast reactors (LMFR) using GFM and standard
FEM. A.S. Shahani and S.M. Nabavi solved the quasi-static thermoelasticity problem in a
thick-walled cylinder analytical using the finite Hankel transform for the differential
equations of both temperature and displacements [17]. S. Marie proposed [18] an
extension of the analytical solution for the temperature and stresses in the event of a
thermal shock in a pipe containing a fluid by a simple solution for any variation of the
temperature in the fluid. The approach consists of breaking down the fluid temperature
variation into a succession of linear shocks. The paper reported analytical expressions for
the elastic thermal stresses, based on temperature fields calculated by the finite element
method. N. Noda and K.-S. Kim used a Green’s function approach based on the laminate
theory to solve the two-dimensional unsteady temperature field and associated thermal
stresses in an infinite hollow circular cylinder [19]. The unsteady heat conduction equation
has been formulated as an eigenvalue problem by making use of the eigenfunction
expansion theory and laminate theory. The associated thermoelastic field was analyzed
using the thermoelastic displacement potential function and Michell’s function.

In the scope of the present work we were specifically interested in an analytic
formulation which could applied to a wide range or pipe geometries and temperature
conditions relevant to coolant piping systems. None of the above approaches were
available found to be fully suitable: in some cases the geometry boundary conditions were
inappropriate, in others the published information was insufficient to allow direct
implementation. As a result, it was decided to develop an new solution to meet our

requirements; this is presented in the following sections.

3. Development of an analytical solution for temperature distribution

The calculation of the temperature distribution in a piping subsystem must be
distinguished from that in components with more complex geometries. Pipes can be
represented as hollow cylinders and with such a simple geometry it becomes possible to
use analytical tools to get the time-dependent temperature profile through wall thickness.
Hence a pipe wall model subject to a sinusoidal fluctuation of fluid temperature can be
used for assessment of thermal stripping damage phenomenon. A suitable analytical
solution of time-dependence temperature in pipes provides a basis for obtaining solutions

for the associated thermal stress components and their profile through the wall thickness.
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This approach facilities extraction of stress intensity ranges for computing cumulative
usage factors (CUFs) and also for crack growth analysis in areas of piping affected by

turbulent mixing.

3.1 The finite Hankel transform method

Laplace, Fourier, Hankel and Mellin transforms have been applied to the solution of
boundary-value problems in mathematical physics [20]. The application of such transforms
reduces a partial differential equation in n independent variables to one in n-1 variables
and it is often possible, by successive operations of this type, to reduce the problem to the
solution of an ordinary differential equation. In applying the method of integral transforms
to problems formulated in finite domains it is necessary to introduce finite intervals on the
transform integral. Transforms of this nature are called finite transforms. Sneddon [21]
considered a Bessel function as a kernel of a finite integral which he defined as a Hankel
transform and showed its usefulness for solving certain boundary value problems. The
Hankel transform arises naturally in problems posed in cylindrical coordinates which are
solved using the technique of separation of variables, involving Bessel functions [22]. This
transform is more appropriate for solving differential equations with boundary conditions in
which there is an axial symmetry.

Consider a hollow cylinder of the inner and outer radii ri=a and re=b, respectively.
Also, consider that the cylinder is made of a homogeneous isotropic material. The one-

dimensional heat diffusion equation in cylindrical coordinates is [11,12]:
2
where:
O=T(r,t)-T, (2)
is the temperature change from the reference temperature (where the reference
temperature T, is the temperature of the body in the unstrained state or the ambient
temperature before changing of temperature);
r - radial distance;
k - the thermal diffusivity which is defined as:
k=2 (3)
0oc

A — the thermal conductivity;
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p - the density;

c — the specific heat coefficient;

The thermal boundary condition (Dirichlet conditions) for a hollow cylinder are:
O(a,t)=F(t) (4)

6(b,t) =0 (adiabatic condition hypothesis ) (5)

and the initial condition is

0(r,0)=0 (6)

The function F(t) is a known function of time representing the thermal boundary

condition applied on the inner surface of the cylinder. Later on this function will be adapted

for sinusoidal transient thermal loading.

The differential equation (1) contains a linear operator L, applied to a function f, in the
general form

ot )2

The problem may be solved using the finite Hankel transform[17,20,22], defined by
the following relation:

b
F(s,.t)=H[f(r,);s,]= fr-f(r,t)'K(r,Sn)dr (8)
where:
Sn is the transform parameter;

K(r,sn) is the kernel of the transformation

The inverse transform of (8) is defined as
f(r)=H[F(s,,0);r]1= Y a, F(s,,1)-K(r,s,) (9)
n=1

The a, parameter should be inferred using the orthogonality of solutions of the Sturm-

Liouville differential equation that correspond to the linear operator from Eqn.(7) as

P— (10)

Ir-[K(r, s, )] dr

a

The proper form of the kernel K(r,s,) depends on the form of the governing differential

equation and also on the boundary condition applied. Taking into account the form of
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linear operator given in Eqn.(7), the kernel of the transformation can be chosen [17,20,22]
as
K(r,s,)=4-J,(s,-r)+B-Y (s, 1) (11)
where J,(z) and Y,(z) are the Bessel functions of first and second kind of order v.

The boundary conditions of the problem are defined by the linear operators M and N

as follows:
Mf =m,- f(a)+m, - L (12)
or
Nf=n, - f(b)+n, -—af;(b’ (13)
/A

The values of the characteristic roots, s,, and constants A and B in Eqn. (11) may be
obtained from the following equations

MK (a,s,)=0 (14)

NK(b,s,)=0 (15)

If we apply the finite Hankel transform (8) to the linear operator (7) and integrate twice

, we obtain:

HLf3s5,]=a [dK(“) fla.)-K(a,s,)- %}—
(16)
L [dK(b 5)

f(bJ)—K(b,s,,)-%}—sff
a

(,:1)

3.2 Solution for 1-D heat diffusion equation for a hollow cylinder
By comparison of the derivative operator with respect to r from Eq. (1) with operator

(7), it can be seen that v =0. From Egs. (4), (5) with (12) ,(13), for the present problem
Egs. (14) and (15) can be written as

K(a,s,)=0 (17)

K(b,s,)=0 (18)

The corresponding kernel of the Hankel transform may be obtained [16], using Egs.
(11) and (17, 18) as follows:

K(r,s,)=Y,(s,-a)-J (s, 1)=J,(s,-a)-Y,(s,7) (19)

The s, terms are the positive roots of the transcendental equation:

Y,(s,-a)-J,(s,-D)=J,(s,-a)-Y,(s,-D)=0 (20)
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As consequence, with the kernel (19) and applying the Hankel transform from Eq. (8)
to Eq.(1), using Eq. (16), boundary conditions Egs.(4,6) and also Eqgs. (17,18), the result is

Ld0 g . dK@s)
T +s2-0 =a-F(t)- 0 (21)
where

o(r, s,)=H[O(r,1)] (22)

Using the properties of the Bessel functions (Appendix 1) on kernel (19) we obtain:

dK(r,s,) )
dr

Another property of Bessel functions is:

S, Y, (s,-a) S (s, 1)+, -J,(s,-a) Y (s,7) (23)

v+1(Z) Y(Z) J (Z) H(Z)__Z (24)
With Eq.(24) we obtain:
dK(a,s,) __ 2 (25)
dr T-a

Substituting Eq. (25) in (21) gives:

1 d6’ s 5 2

0 =——F(t 26
PR _F@ (26)
Eq. (26) can be re-written in the form
dé ~ 2k 27)

ks 0=—""F(
dt T ®

With the initial condition from Eq.(6), the solution is:

Bls,0) = et [ (o (28)
0

From Eq.(10) the coefficients a, are obtained using the orthogonality of the solutions

of Sturm-Liouville differential equation and kernel (19) as

2

2 2
a _r : sioJ; (snz-b) (29)
2 JO(Sn.a)_JO(Sn.b)

Finally, the temperature distribution in the thickness of the hollow cylinder may be

obtained substituting Eqgs. (19, 28, 29) into Eq.(9) as follows
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- s2-J2(s -b) [

O(r,t)=k-rx- n_“0\n Y(s -a)-J (s -N=J (s -a)-Y (s -r)|x
(ro=kx ;Jé(sn-b)—Jé(sn-a)L"(S" D1, (67) =, (5,-0) 1,5, 1)

¢ (30)
Jesfesrn]

0

where s, are the positive roots of the transcendental equation

Y,(s,-a)J,(s,-b)=J (s, a)-Y,(s,-b) =0 (20')

The main advantage of expressing the temperature distribution in the form of Eq.(30)
is that the temperature field can be analyzed for various boundary conditions on inner
surface expressed by means of function F(t). As example, for sinusoidal thermal loading or
for thermal shock (expressed as a polynomial function of time) the integral from Eq. (30)
can be relatively easy solved and, finally the thermal response in the body of the specimen

can be obtained for the above initial and boundary conditions.

3.3 Temperature distribution in a hollow cylinder subjected to sinusoidal
thermal transient loading
The solution for the temperature distribution during a thermal transient for a hollow

cylinder as given in (30), can be written as follows:

0rt) =k 7Y 0,(@.b.s,) - Oy(a,r.s,) - Oy(t.s,) (31)
=

where

0,(a,r,s,)=Y,(s,-a)-J,(s,7)=J,(s,-a)- Y, (s,7) (33)

0,(t,5,) = e j R (r)dt (34)

0
For the time-dependent term 65(t,s,), the boundary condition for thermal loading on
inner surface of hollow cylinder is expressed as:
F(t)=86, -sin(w-t)=6,-sin(2x- [ -1) (35)
where
0y — amplitude of temperature wave and @ and f correspond to the wave frequency in

rad/s and cycles/sec respectively;
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t — time variable.
By substituting Eq. 35 into Eqg. 34 and integrating gives:

—fes? .
e 4 (k5% -sin(@-£) — - cos(w- 1)

(k-5°) + @’ (50)

w
b,(w,t,s,)=0, -

Therefore, the complete formula for temperature distribution in the thickness of hollow

circular cylinder for sinusoidal thermal loading on the inner surface is:

oron=kr-3, - (SbJ)_(f,(b ) @600, 03,6,

(37)

—k-s? 1 + (k- Sz) -sin(w-t) —w-cos(w-t)

(k-s) + o’

w-e
x| 6,-

A similar approach can be used to obtain a through-wall thermal distribution for other
boundary conditions on the inner surface. If we use a time-dependent proper function F(t)
applied as a thermal boundary condition on inner surface of the hollow cylinder in Eq.
(34), for instance modeling a constant temperature, thermal shock, linear or exponential

decay, etc., then the result will be a similar expression to Eq. (37).

4. Development of analytical solution for thermal stress components

4.1 Stress components for a cylindrical body
The constitutive equations, following the generalized Hook’s law, for a homogeneous

isotropic body in a cylindrical coordinate system are [11,12,13]:

1 1 v

Err—E[UW—V'(U&g+Uzz)]+a'0—ﬁ[0rr—m®j+a'0 (38)
& :l[o —v-(o,+o )]+0(-(9:L Cpy———0 |+ (39)
00 E 00 r zz 2G 00 l+v
&£ =l[0 —v-(o,+0 )]+a-<9=i(a —L®j+a~0 (40)
zz E zz r 2 2G zz 1+V
and

:O-rE‘. & _G :Gzr (41)
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with ® =0, +0,,+0_. (42)

The alternative forms are

c,=2u-¢,+ye-p-0 (43)
Opp =2 -Egp+x-€— -0 (44)
o.=2u-é.+y-e-f-0 (45)
where

1. M — the Lamé elastic constants

2v-G
- 46
=15, (46)

E — Young’s modulus

G= u — shear modulus

E
C2(1+v) (47)

0=T(r,t)-T, is the temperature change from the reference temperature T, (where

the reference temperature can be the temperature of the body in the unstrained state or
the ambient temperature before a change of temperature)

B - the thermoelastic constant

a-FE
ﬁ=1_2v (48)

o — the coefficient of the linear thermal expansion

v — the Poisson’s ratio
The one-dimensional equilibrium equation in the radial direction is:
dGrr + Grr _0-6‘6’ — 0 (49)
dr r
The displacement technique is also be applied to the solution of one-dimensional

problems of hollow cylinder. The generalized Hooke’s law for problems [12] (plane stress
and plane strain) in a cylindrical coordinate system is

1

g, = = (o, —v'o,)+a0-c (50)

Egp = %(0% —v'o, )+a0—c' (51)
1

0 = E ’ GI‘H (52)
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E
E'=41-v* for plane strain, and plane stress respectively (53)
E
14
V'=31-v for plane strain and plane stress respectively (54)
14
(l+v)a ) i
a'= for plane strain and plane stress respectively (55)
a
Ve, . .
c'= 0 for plane strain and plane stress respectively (56)

The axial stress is zero (0,,=0) for plane stress, and a constant axial strain (€..= €o)

may occur for a plane strain condition.
For plane strain a normal stress o,, acts on cross-sections of the long cylinder and is
necessary to maintain the body in the state of plane strain. Therefore, the normal stress

0., is dependent on the normal stresses o, and ogg. From Eq. (40) it follows that:

& = %[O‘zz — v'-(a,r +0, )]+ a0 (57)
and finally for plane strain state the relationship for o, is

v E E
.. :m(%+Uaa)—(1+v)'05‘91_vz A (58)

When all strains and stresses are only functions of radial distance r, the strain-

displacement relations are:

du
= 59
b= (59)
f = (60)
£,,=0 (61)

where u is the radial displacement.
By use of Egs. (59, 60, 61) in Egs. (50, 51, 52) the components of stress in cylindrical

coordinates can be expressed as:

r

= E2[ﬂ+v'~£—(l+v').a'-¢9+(1+v')-c'} (62)
1-v" | dr r
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Cpp = £ 5 {v‘-d—u+z—(1+v')‘a'-<9+(1+v')‘c} (63)
- dr r

O,9=0 (64)
The substitution of Eqgs. (62, 63) in Eq. 49 yields
i{l.M}:(lﬂ/').anm (65)
drir dr d.
The general solution of Eq. (65) is

' ' 1 C’2
u:(1+v)-a-—j@(r,t)-r-dr+C1-r+— (66)

r r

The integration constants C; and C, may be determined from the boundary
conditions. By use of Eqg. (66) and Egs. (62, 63, 64) the stress components in cylindrical
coordinates for a cylindrical body are

_aE E E C  E

L= O(r,t)-r-dr+ -C, — + . 67

O P2 ;[ (rot)-r-dr v ey 2 1o € (67)
a'. E' E' E' C E'

= O(r,t)-r-dr—a"E"O(r,t)+ C, + 4 ' 68

oo P -! (rt)-r-dr (rs1) 1—v' ' 14y 2 1=y ¢ (68)

c,=0 (69)

4.2 Stress components for a hollow cylinder
The analytical solution for stress components will be specified for a hollow circular

cylinder (or a cylinder with a concentric circular hole, as defined in [13]) with appropriate
boundary conditions.

We consider that the hollow cylinder is made of a homogeneous isotropic material.
The solutions for plane stress and plane strain will first be stated. Thereafter the hollow
cylinder is considered to be sufficiently long in axial direction to apply the hypothesis of
plain strain and an analytical solution for thermal stress components during thermal
transients will be specified. It is assumed that the thermomechanical properties do not
change during a thermal transient and that the strain rates due to the thermal loading are
small, so both the inertia and thermo mechanical coupling terms in the thermoelasticity
governing equations can be neglected.

Let us consider the radii a and b for hollow cylinder

(70)

r=a
r,=b
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The boundary conditions for traction free surfaces are:
o, =0 atr=a,r,=b (71)
Substituting Eq. (71) in Egs. (67, 68) the integration constants C4 and C, may be

determined as follows

C=a (=) s je(m)rdr ¢ (72)
az b
G =a 4V -_[9(r,t)~r~dr (73)
Thus the stress components for a hollow cylinder are:
1 r r2 _a2 b
o, = a',E'|:_r_2. Ja‘e(f",t) -redr +m£0(7,l‘) ‘7 d}":| (74)
, P ta
Gy =a"E' j O(r,t)-r-dr + Tje(r,z) cr-dr —0(r,1) (75)
with
o.. =0 for plane stress (76)
) ? E(bz J'H(r 0)-r-dr—0(r, t)JJrE &, for plane strain (77)
|4

Also, the radial displacement is

Y 1-v'  a 1
u=(1+v)-a-[;!@(r,t)-r-dr+(l r+—]-b2_

b
' 2J‘H(r,t)-r-a’r —c'r (78)
+v r a -

The constant axial strain &, for plain strain can be determined from the condition that

the axial force is zero
b
272'IO'ZZ r-dr=0 (79)
Substituting Eq. (77) in Eq. (79), the constant axial strain &g is given by

2a |
&y =mjﬁ(r,t)~r~dr (80)

The axial stress and the radial displacement for plain strain with a constant axial

strain are:
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g ff(bz J@(rt) redr=6(r, t)J ®)
_(H_V) {%_:[H(r,t)-r-a’r+(11_+3;/l”+a72j'bzi—az£9(’”=f)"”'d’” (82)

In conclusion, the stress components and the radial displacement for a hollow circular

cylinder are given in the following relationships:

Plane stress

1 1-v & 1
:(1+V)-a-{;!9(1/,0-r-dr+(1+Vr+7]-ﬁ:|:t9(r,t)-r-dr} (83)

1 - W2_gt b
O',,.=a-E{—r_z.gﬁ(r,t)-r-dr+m'[9(r,t)-r-dr} (84)
Cp=0" E{ .[H(r f)-r- dr+%_{[9(r,t).r.dr—9(r,t)} (85)

Plane strain (long hollow circular cylinder)

u:(1+v { IQ(}* t)-r- er{(l 2v)- r+—J ! zje(r,t)-r-dr} (86)
1- ‘_a /
for €,,=0
1+v 17 1-3v  d° 1§
u=(_— )« {;ge(r,t)-r-dw(lw r+7)m£9(r,r)-r-dr} (87)
for €,,=¢€9
a-E| 1 7} P-a®
o, = - [—r—z.;[&’(r,t).r.dr+ X _az);[@(r,t)-r.dr} (88)
- je(r -1 dr+&je(r 0)-r-dr—0(r,1) (89)
Yol—v| (b*

b
o, =" [% [oc.t)-r-ar —H(r,t)J for £2,=0 (90)
—a
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E( 2 ¢
. = f_ > (mie(r,m redr - 9(r,t)J for €22=¢ (91)
c,,=0 (92)

The above solutions for stress components are independent of the temperature field

[12] and are valid for both steady and transient conditions.

4.3 Thermal stress components in a long hollow cylinder subject to
sinusoidal transient thermal loading

Eqs.(88, 89, 90, 91) have been utilized to develop general solutions for the thermal
stress components for any thermal transient case. In the next step these are made specific
to the sinusoidal thermal boundary condition case.

In Chapter 3 we developed the following equation for the temperature distribution in

the thickness of a hollow cylinder under sinusoidal transient thermal loading:

£ S2'J2(S b) I_
Hraa),t :kﬂ' n 0 n Yusn-a -Jo Snr _JO Sn.a _}70 Sn'r y
el sy U R A R AR )

—kes2 ot 2 . (37,)
w-e " +(k-s7) sin(@-1)—w-cos(w-1)

x| 6, -
’ (k-s°) + @’

for known inner and outer radii a and b respectively. As already suggested, Eq. (37’) can

be represented in condensed form as:

Or.w.0) =k 73 O(a.b.s,) 0,(a.r.s,) O(o.r.5,) (93)
p
with
0,(a,r,s,)=Y,(s,-a)-J,(s,r)=J (s, -a)-Y,(s,T) (95)
O (onts ) =0, w-e" (k- s*)-sin(w-1) - - cos(w- 1) (96)

(k-s*) + o’
In Egs. (88, 89, 90, 91) for the stress components there are two kinds of integral, in

the following forms:

[l(r,a),t)zjﬁ(r,t)-r-dr (97)

L(@,0)=[0(t)-r-dr (98)
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From the general form of temperature distribution (Eq.93) the radial dependence of
temperature arises just in the second term as:

Oy(a.r,5,)=Y,(s, @) J,(5,1) = J, (s, @) X, (s, ) (95')

Performing the integrals from Egs. (97) and (98) on #62(a,r,s;) from Eq. (95’) and
based on the Bessel function properties, the results are
LG5, -0, G5, -1y =y, - @))= T, (5, -@)- [ Yis, - 1) —a Tis, @)

N

n

J-Hz (a,r,s,)rdr =

(99)
[0:(a,r,s,)rdr — Ly, (s, -y, By —a-d (s, @)=, (5, @) (b YiCs, -B)—a-Yis, @)}
S

n

(100)

Egs. (99) and (100) can be substituted into Egs. (97) and (98) so that the complete

results of integrals /; and /, for sinusoidal case are

r o 2. 2 )
11(’”750,1):IH(F,t)-r-dr:k-ﬁ.z . s, JO(Snzb)
a n=1 JO(sn'b)_Jo(Sn'a)

x| Y, (5, @) [ (s, ) —aJy (s, @) (s, @) [ Yils, ) —a X (s, @) [x (101)
R)

n

g +(k-sf)-sin(w-t)—w'cos(a"t)}

x| G, -
‘ (k-s°) +

b " 2 12 .
Iz(a)at):Ie(r,t)-r-dr:k.”.z 5 Sn JO(Snzb)
“ = Jo (s, )= Jy (s, a)

L (s, -a) - IG5, ) —a- I (s, @)~ (5, @) [b-Yi(s, -b)—a X (s, @)} |x (102)
R)

n

X

g +(k-sf)-sin(w-t)—w'cos(a"t)}

x| G, -
‘ (k-s°) +

with s, being the positive roots of the transcendental equation

Y (s, a)-J,(s,-b)=J,(s,-a)-¥,(s, D) =0 (207)
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The displacement and stress responses for any temperature field were obtained for
plane strain conditions (long hollow cylinder) in Egs. (86-91). With Eqs.(101) and (102) we
obtain the complete formulae for thermal stress components in a long hollow circular

cylinder in the case of sinusoidal transient thermal loading on inner surface.
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The radial thermal stress component:

a-E {(_iz)k”i s Jz(szb)
1-v S Jo(s,-b)=J; (s, a)

x i{n(s,,-a»[w](sn~r>—a-J1<sn~a)]—Jo(s,,-a>~[r~Y1<s,,-r)—aﬁ(sn-a)]}}x
S

n

o, (r,otn) =

P a)-e_k'si't+(k-sz)-sin(a)-t)—a)-cos(a)-t) rr—a’
X . 4 X
’ (k-5*) + o’ r(b*-a’)

y s>+ J3 (s, -b) o
k”zJ@b)ﬁ@a)

(103)

x i{n(sn-a)-[b-usn-b)—a-Jms,,-a)]—Jo(sn-a)-[b-z(sn-w—a-ms,,-a)]}}x
)

n

w-e (k-sj)-sin(a)-t)—a)-cos(a)-t)} }

x| 6, -
° (k-s°) + @’

The hoop thermal stress component

_@E SERLACACAD)
O o1, @,1) = T {[ j ZJ(S B)-J3(s,-a)

n

x i{ms,,-a)-[r-J1<sn-r)—a~J1<sn-a>]—Jo<s,,-a)-[r-Yl(snm)—a-z(sfa)]}}

n

0 a).e_k.si.[+(k.SZ)_Sin(a)_t)_w.cos(a)-t) r2+a2
X X n X
b (k-s*)’ + @’ r*(b* -a’)

8 < s2-J3 (s, -b)
k”;J@b)ﬁ@a)

X i{m,-a)-[b-Jl(s,,-b)—a-Jl(s,,-aﬂ—Jo(sn-a)-[b-msn-b)—a-msn-a)]}}x
Sn

w-e +(k-sn2)'sin(a)'l‘)w'cos(w't)]

x| @, -
’ (k-s) + o

S 2';](? n’b
Ry _(‘f,g (S)” e @ 6600 06, 0]

x| 6,

w-e +(k-s*)-sin(@-1) - w-cos(w-1) o
(k-s*)’ + o

24
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The axial thermal stress component

a-E] 2v < s> J3 (s, -b)
- v{bz—a ,ZJ b)—=J2(s, ) |

x{i{n(sn-a>~[b-Jl<s,,-b)—a-J1<s,,-a)]—Jn(sn-ay[bx(sn-b)—a-x(s,,-aﬂ} :
Sn

_[90 | w-e +(k~sf)-sin(a)~t)a)-COS(CO't)] (105)

(k-s*) + @

S Z.Jg n.b
—k-fr-zjg(j’;l_b)_(‘f,g(s)rl_a)[ms,,-a)-Jo<snr>—Jo(sn-a)-ms,,-m]x

[ a)-ek'si"+(k-s2)~sin(a)-t)a)-cos(art)}}
x| 6,- -

(k-s*) + @

for £,,=0

SR AL

o-FE
o.(r,ot)=——1— ey — X
l-v b - = Jy(s,-b)=J,(s,-a)

X i{msn-a)-[b-Jl(sn-b)—a-Jl(sn-aﬂ—Jo(s,,-a)-[b-ms,,-b)—a-msn-a)]}}x
S

) Ho.a,.e“i't+(k-sf)-iig(a}-tz)—a)-cos(a)-t) ~ (106)
(k-s”) +o
S s2-J2(s, D) [
k- n 20 n Y(s -a)-J —J (s -a)-Y (s -rIx
T ;J;(Sn-b)—.]g(sn-a)l' o(Sn a) o(Snr) o(Sn a) o(Sn 7')]
w-e "y (k-s*)-sin(@-t)—w-cos(w-1)
X 00' o 2
(k-s*) +o
for e,,=¢€
In “condensed forms” the above equations are
a-E 1 r’—a’
O'Vr(”,a)af)ZT{—F—Q'Il(V,wJ)er'Iz(a),f)} (107)
a-E 1 r+a
o,(r,o,t)= 1(r,m, t)++ L(w,t)-0(r,w,t) (108)
l-v|r’ -(b* —a*)
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o _(r,ot)= ﬂ(% 1, (o,t)—0(r, a),t)j for €,,=0 (109)
1-v\b —a

o (r,o,t)= ﬂ(% 1, (w,t)—0(r, a),t)j for £,,=€¢ (110)
1-v\b —a

5. Application to a Benchmark Case and Discussion

In order to validate the predictive capability of the analytical solutions developed in
this study, the benchmark case of thermal striping at a FBR secondary circuit tee junction
[23] was chosen. This relates to a thermomechanical and fracture mechanics assessment
performed in the 1990’s in the framework of the European Commission’s Working Group
on Codes and Standards by the following participants: NNC Ltd. (lead), Framatome
(Novatome), AEA Technology and Leicester University. Also, an independent Korean
study performed on the same benchmark was reported in [16]. The benchmark is posed as
a thermoelastic problem, and although the application of the present work is foreseen for
LWR reactors, it provides the best available data for checking the analytical solutions
described in the previous chapters.

The problem is based on operational experience with the secondary circuit of the
French PHENIX reactor. The input data was obtained (by Framatome) from the actual
characteristics of the reactor coolant circuit and because of its complexity, it was simplified
where possible. PHENIX is a 250 MWe demonstration plant, with three secondary loops,
modular steam generators and integrated primary circuit. During normal operation, sodium
at 340 °C flows in the main pipe of the secondary circuit. A small pipe, connected by a tee
junction to the main pipe, discharges sodium at 430 °C into the main pipe. The mixing of
the two flows (AT= 90°C) produced a thermal striping phenomenon.. The main features of
the circuit in the tee junction area are shown in Figure 1. The main pipe in the junction
area consists in a horizontal straight part, an elbow, and vertical straight part where the tee
junction is connected.

In the straight parts the main pipe has the following characteristics: inner diameter:
®i= 494 mm and wall thickness: t= 7 mm. Both pipes are made of AISI 304 stainless, steel
grade: Z5 CN 18.10 In the present work the following material properties values at 400 °C
were used [23]:

- steel density: p=7803 kg/m>;
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specific heat coefficient: c=550 j/kg.K;

- thermal conductivity: A=19.39 W/m K;

- mean thermal expansion: ocm=17.9-10'6 K'1;

- Young’s modulus: E= 161-10°* MPa;

- yield Stress: 6y, = 161 MPa

- thermal diffusivity: & =£ =4.510°m?s.

The results of the calculations performed in the 1990s by NNC and Framatome
reported in [23] and those of the Korean study reported in [16] have been used for
comparison of the predictive capability of the analytical solutions developed in the present
study. Also, a new FE simulation has now been performed using ABAQUS commercial
software. The comparison of these results with the analytic predictions is discussed in
section 5.2 below.

The results from NNC calculations include a fatigue assessment, using a version of
the UK thermal striping method applied to austenitic steel, performed on the basis of
AEA’s thermo hydraulic analysis of the TCO1A signal. For thermal analyses an
axisymmetric ABAQUS finite element model of a slice through the large pipe wall was
used. For the stress calculations an analytic approach was adopted. The formulations for
the stress components (similar to Eqs.88, 89 and 91) were applied to the output of the
ABAQUS temperature calculations (FIL. file) with a Fortran post processor to determine
the stress components at each node for each the temperature solutions. For calculation of
the axial stress the ¢,,= g9 condition was used as the mechanical boundary condition.

The Framatome calculations were performed using in-house methods applied to the
AEA thermal hydraulic output TCO1A and assuming sinusoidal fluctuations as an
approximation to the signal. For tee junction area the frequencies 0.5 Hz and 1 Hz were
used because they induce the maximum stresses in the wall [23]. To determine the load
arising from the sinusoidal temperature fluctuations a computer code (SYSTUS release
233) was used. For calculation of the axial stress the &,=0 condition was used as the
mechanical boundary condition.

The Korean study used FEM (ABAQUS version 5.7) for the heat transfer, thermal
stress and fracture mechanics analyses. In addition, Fortran programs were developed for
the thermal stress and fracture analyses using Green’s function method and ASME section

[, subsection NH for fatigue damage evaluation.
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In present analyses we apply sinusoidal thermal loading with similar characteristics
to that used by Framatome:

- temperature fluctuation range: AT=85 °C;

- the reference temperature : T,= 385 °C;

- the frequencies: f=0.5 Hz and f= 1 Hz
For the sinusoidal function described in Eq.(35), this implies that the amplitude 6y = AT/2 =
42.5°C, about a mean value of 385°C.

For temperature profiles in the wall thickness for both sinusoidal signal of 0.5 Hz

and 1 Hz the following relationship, which was developed in the present study, is used:

9(r,a),t):k-ﬂ-i_ljg(S”'.[)J)o_(f]”g'é) .a)[Yo(sn ca)-J, (s,r)=J, (s, -a)- Y, (s, - F)]x

—k-s?t 2 . (37”)
w-e " +(k-s7)-sin(w-t)—w-cos(w-t)
x| 6, - ) 2
(k-s’) +o
with s, being the positive roots of the transcendental equation
Y,(s,a)-J,(s,-b)=J, (s, a)-¥,(s,-b) =0 (20”)

Jo(z) and Y)(z) are Bessel functions of first and second kind of order 0. The through-
wall thermal stress components for the sinusoidal signal at both 0.5 Hz and 1 Hz are
obtained from the following relationships, developed in section 4 above: 103, 104. 105 and
106.

For fatigue assessment (Appendix 2) of components subject to multiaxial stress
states, the various codes and standards [1,10,24] require the use of parameters such as
“Effective stress intensity range” based on maximum shear stress yield criterion (Tresca)
or maximum distortion energy yield criterion (von Mises). Based on the last mentioned
one, the following additional scalar stress values are evaluated:

- Von Mises equivalent stress:

:\/(Urr_696)2+(Gzz_o-99)2+(o-rr_azz)2 (111)

- Effective equivalent stress intensity range (for using with Maximum Distortion

Energy Yield Criterion in fatigue crack initiation):
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AS, e = \/(AG" ~Aoy,) +(Ao, —2Aag€)2 +(Ac, —Ac. Y -

The Framatome [23] fatigue analyses used the methodology from the RCC-MR code
(Design and Construction Rules for Mechanical Components of FBR Nuclear Islands), and
the plasticity effects were taken into account by means of K, and K¢ factors (respectively
triaxiality and local plastic stress concentration effects):

20+v) s (113)

range

AgTOT = (KU +K£ _1)

Some comments are necessary before discussing the comparison between various
methods. The analytical solutions for the temperature distribution (Eq. 37”) and the
associated thermal stress components (Egs. 103’, 104’, 105, 106’) were implemented by
means of specially written routines implemented in the MATLAB software package
(MATLAB 7.3 version, with Symbolic Math Toolbox). A first task was to establish the
number of roots needed from transcendental equation (20’) because the response of the
solutions become more stabile as the number of roots is increased. We used one hundred
roots and note that further increasing the number gives negligible improvement in the
predictions. This means that an equal number of the evaluations of the above equations
must be performed. Also, due to Bessel function properties, the accuracy of the analytical
solutions for both the temperature and the stress response is strongly dependent on the
size of the incremental steps in the “r” variable (radial distance through wall thickness). An
investigation was made to optimize this and it was concluded that several hundred are
required. Taking into account the complex mathematical series expansions used for the
analytical solutions for temperature distribution and thermal stress components through
the wall thickness of hollow cylinder, the solutions show some point-to-point variability and
therefore we applied a smoothing technique based on the polynomial fitting of analytical
distributions. This technique is widely applied [1,6,7,8] to facilitate the calculation of stress
intensity factors based on the thermal stresses profile [9], which are used for crack growth

assessment.

5.1 Comparison with independent studies on predicted temperature and
stress distribution

The temperature profile distributions through wall-thickness of hollow cylinder have

been obtained using Eq. (37”) for sinusoidal signal frequencies of f=0.5 Hz and f= 1Hz.
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In Figure 2, for f=0.5 Hz, the temperature profiles are shown for different time: t1=
0.5 sec and t2=1.5 sec (corresponding to instants of maximum deviation of the fluid
temperature from the mean or reference value) and t3=1 sec and t4= 2 sec, (minimum, i.e.
zero, deviation from the reference temperature). As can be observed, at the times of
maximum deviation, the resulting temperature field decays significantly through of pipe
wall thickness, reaching negligible values after 3 mm deep. The temperature distributions
are identical with those obtained in the Korean study [16] (see Figure 4) and by
Framatome [23] (see Figure 5). Figure 3 shows the time-dependence of temperature at
selected locations through the pipe thickness. The thermal reponse of the material has a
sinusoidal form but with a decreased amplitude corresponding to the depth in the pipe
wall. The temperature distributions calculated by NNC (Figure 6) display the same
characteristics , but in relation to 300 °C as reference temperature.

Figures 7 and 8 show the through-thickness and time dependence of the
temperature profiles for f=1 Hz. As expected, the penetration depth of the temperature
fluctuations are smaller (about 2 cm) than for f=0.5 Hz. Again the results are in good
agreement with temperature distributions obtained by Framatome for the f=1 Hz case
(Figure 9).

Calculations of the hoop, axial and radial thermal stress components have been
made for the same frequencies (f=0.5 Hz and f=1 Hz) as in the thermal analyses. The
distribution of the thermal stresses over the thickness of the wall is analyzed for a period of
2 sec in case of f=0.5 Hz and for sec for f=1Hz. In first half of each time period the
stresses are compressive at the inner surface, switching then to tensile for the second half.

Figure 10 shows the limiting hoop stress distributions for f=0.5 Hz. On inner surface
the maximum values are: Ogcomp= -169.5 MPa (in compression), Ogtensie= 171.5MPa (in
tension), giving a range value of Acge=341 MPa . For f=1 Hz (Figure 11) the respective
values are: Ogcomp = -160 MPa, Ogtensie =160 MPa, Aoge= 320MPa . As expected, Aogg (1
Hz) < Aoge (0.5Hz). A comparison could be made with the NNC calculation [23], see
Figure 12,

For axial thermal stress component two evaluations were performed: for €,,= € ( as
used by NNC) and ¢,,= 0 (Framatome). In the first case (Figures 13 and 14) we obtain the
following maximum values: Ozcomp= -137 MPa, Ozensie= 156MPa , Ao, =293 MPa for f=0.5
Hz and Ozcomp= -137MPa, Oztensic= 151 MPa , Ao, =288 MPa for f=1 Hz. In the ¢,,= 0 case
the results are: 0zcomp= -160MPa, Ozensie= 167MPa, Ao,,=327 MPa and 0comp= -153 MPa,
Ozensie= 157 MPa, Ao, = 310 MPa for f =0.5Hz and f=1 Hz respectively (Figures 15 and
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16). Using the Framatome predictions for f=0.5Hz (Figures 17 and 18), a direct
comparison with the results from the present work is made in Figure 19 (¢,,= 0). For f=1 Hz
the comparison used the corresponding Framatome results given in Figures 20 and 21,
and Figure 22 shows the two sets of axial thermal stress predictions for €,= 0. The
agreement is considered good for f=0.5Hz and very good at f=1Hz.

No predictions of radial thermal stress are reported in the NCC or Framatome
studies. In any case the present work for f=0.5 Hz and f=1Hz show that the values are too
small to have an impact on thermal fatigue assessment.

The von Mises equivalent stress profiles are displayed in Figures 25 and 26 for
f=0.5 Hz in the €,,= €9 and &,,= 0 cases respectively. Two instants of time were chosen:
t=0.5 sec (for maximum values) and t=4 sec (for minimum values). Comparing the
Framatome calculations (Figure 27) and those of the present work, very good agreement
is obtained, as shown in Figure 28. A similar comparison for f=1 Hz was performed based
on Figures 29 and 30 (present work) and Figure 31 (Framatome calculations). The von
Mises equivalent stress profiles are in very closely agreement as can be seen in Figure 32.
From the Korean study [16] a stress intensity profile (Tresca definition) is shown in Figure
33, with a similar profile through the wall thickness.

The effective equivalent stress intensity range profile distribution has been
evaluated for both frequencies and the €,,= €y and ¢,,= 0 cases. For f=0.5 Hz (Figures 34
and 35) the results for ASrange.max are 307 and 328 MPa, respectively. The results for f=1
Hz are displayed in Figures 36 and 37 and the corresponding maximum AS;ange max Values
are 275.7 and 293.4 MPa. These results confirm the frequency f=0.5 Hz is more critical
than f=1Hz from thermal fatigue point of view. Tables 1 and 2 summarise the main results

from the present work and from other reported analyses of this benchmark.

Table 1 Results for thermal stress components at f=0.5 Hz

Thermal stress components Present work | Framatome[23] | NNC[23] Ref. [16]
Hoop stress range (MPa) Acge= 341 Acg=310 - 186.6
Axial stress range (MPa)

€7~ € Ac,,=293 - - 211
€,,7=0 Ac,,=327 Acge=310 -

Radial stress range (MPa) Ac,=1 - - 42.6
Von Mises equivalent stress (MPa)

€27~ € OvMmax=152 - -

€,=0 OyMmax—163 - OvMmax—154 -
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Effective stress intensity range (MPa)

£,5= € AS angemax=307 | - -

€,~=0 AS angemax=328 | ASrangemax=310 ASrangemax=315 | 292.7
Table 2 Results for thermal stress components at f=1 Hz

Thermal stress components Present work Framatome[23] | NNCJ[23] Ref. [16]

Hoop stress range (MPa) Acge= 320 - - -

Axial stress range (MPa)

€22~ €9 Ac,= 288 - - -

€,,=0 Ac,=310 - Ac,,=280 -

Radial stress range (MPa) Ac,=0.8 - - -

Von Mises equivalent stress (MPa)

€227 &0 OvMmax=141 - -

€,=0 OyMmax—1353 - OvMmax—154 -

Effective stress intensity range (MPa)

€22= €0

€5=0

A Srangemax:2 75.7
AS angemax=293.4

Asrangemax:?’ 20 -

Overall the comparisons have demonstrated good agreement between predictions
from the analytical solutions for thermal stresses developed in the present work with those

obtained from finite element models in refs. [16] and [23].

5.2 Comparison with JRC finite element simulations

The prediction of analytical solutions for thermal response and associated thermal
stresses developed in the pipe were additionally compared with finite element analyses
results performed in a simple elastic model. This was intended to provide a basis for future
benchmarking of different scenarios and for assessing the relative merits of the different
approaches. The commercial code ABAQUS was used to perform a standard un-coupled
finite element calculation i.e. first the thermal analysis of the sinusoidal thermal load and
second a mechanical analysis, when the resulting temperature fields are applied to
determine the elastic thermal stresses.

The finite element model used axi-symmetric 8-nodes elements (Figure 38 a).
Axisymmetry was assumed and the length of the cylinder segment was chosen to more
than twice the wall thickness. Auxiliary software routines were used to automatically
generate finite element meshes with a progressive mesh refinement towards the inner pipe

surface to capture the large strain variations induced by the thermal loads.
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Two different boundary conditions were considered:

- top edge of the sample free to expand in the axial direction, Figure 38b;

- top edge of the sample fixed in the axial direction, Figure 38c.
N.B. The model is restrained in the radial direction at the top outer edge, but this has
virtually no influence on stress distributions in the bottom radial plane, which are used for
comparison with the analytical solutions. The material properties used for elastic analyses
are mentioned in previous chapter.

The characteristic thermal sinusoidal signals applied during this analyse were similar to
those used in the analytical calculation. The reference temperature of the sample is
To=385°C, the temperature fluctuation range is AT=85C and the frequencies considered
are v=0.5Hz and v=1Hz.

The thermal sinusoidal loads have been applied at time zero at the inner wall of the
sample uniformly heated at 385°C for t<Osec. The load was applied for 9 sec and the
temperature and stress/strain variations across the wall thickness in function of time have
been monitored.

To apply the sinusoidal load in the FE analysis the easiest option was to use the
standard Fourier series routine by means of the *AMPLITUDE keyword and its periodic

option. The amplitude, Amp, defined in this way results in:

N
Amp:AO+Z[An cosna(t—t,)+ B, sinna(t—1,)] for t=1 (114)

n=l1
Amp = A, for t<t (115)

where N is the number of terms in the Fourier series, w is the radial frequency in
rad/sec, ty is the starting time, Ay is the constant term in the Fourier series, An-12. are the
first, second, etc. coefficients of the cosine terms and B,-1,..are the first, second, etc.
coefficients of the sine terms. In our case: N=1, Ao=T,, A1=0, B4=42.5 °C.

Plots of the temperature field at several instants of time, during of temperature wave
propagation across the wall thickness are shown in Figure 39 for f=0.5 Hz and Figure 40
for f=1 Hz. As can be seen the temperature wave front is non-homogenous due to the
rapid fluctuation of the thermal load at the inner boundary of model.

Figures 41 and 42 show the von Mises iso-stress plots at a frequency f= 1Hz

corresponding to the point-to-point temperature fluctuations in the body of pipe, for free
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and fixed boundary conditions respectively. The visible distortion (strongly magnified for
better visualization) in the latter is due to the radial constraint at the top of the model.

Before graphically comparing the results from analytical and finite element analyses
it is important to mention that in the following, the instants of time for calculating the
temperature and corresponding elastic stress components have been chosen to comply
with the time steps used in the FE analysis.

The predicted temperature profiles across the wall-thickness are shown in Figures
43 and 44 for frequencies of f=0.5 Hz and f= 1Hz. The analytical predictions fit quite well to
those from the FEA at the same instants of time.

Figures 45 and 46 show the maximum and minimum hoop thermal stresses for both
frequencies. These values correspond to a fixed edge boundary condition. In the case of
axial stress the comparison has been made for both the boundary condition cases: fixed
and free axial strains. Figures 47 to 50 confirm the good agreement between the predicted
and FE axial stress values across the wall thickness of the pipe for both the boundary
conditions. The von Mises equivalent stress comparisons are depicted in Figures 51-54.
Even though the FE stress gradients for the free axial displacement boundary condition
(ez=g0) are a bit higher for the analytical solutions, still the maximum values very close to
those obtained by FEA. For the fixed boundary condition both the axial stress maximum
values and the gradients are in good agreement with the FE results. The effective
equivalent stress intensity range is a very important parameter in relation to the fatigue
curves used to obtain the cumulative usage factors for fatigue crack initiation assessment.
The agreement between analytical and FEA calculations is rather good for maximum
values as well as for the stress gradient through the wall-thickness, can be seen in Figures
55-58. Table 3 summarizes the results of the above comparisons. The agreement between
analytical and FEA predictions provides verification of the analytical model developed

during this work.

Table 3 Comparison between analytical and FEA calculation for thermal stresses due to

sinusoidal thermal loading

f=0.5 Hz f=1Hz
Stress component Analytical FEA Analytical FEA
MPa MPa MPa MPa
Hoop stress 300 280 325 308
Axial stress
€,,7=0 290 285 310 312

€,,=€0 265 240 312 313
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Von Mises stress

£,=0 163 159 153 156
£,,=€0 135 138 142 141
Asrange

£,=0 280 279 304 307
2,60 263 263 283 288

6. Conclusions

Analytical solutions with several new features have been developed for temperature
and elastic thermal stress distributions for a hollow circular cylinder under sinusoidal
thermal transient loading at the inner surface. The approach uses a finite Hankel transform
in a general form for any transient thermal loading for a hollow cylinder. Using the
properties of Bessel functions, an analytical solution for temperature distribution through
wall thickness was derived for a special case of sinusoidal transient thermal loading on
inner pipe surface. The solutions for associated thermal stress components were
developed by means of the displacement technique. To the authors’ knowledge, this is first
time a complete set of such analytical expressions has been openly published.

The solution method has been implemented using the MATLAB software package.
Several practical issues have been resolved, for instance it is found that typically 100 roots
of the transcendental equation are required to obtain a stable response and that the
number of radial steps through the wall thickness needs to be of the order of many
hundred, since the accuracy for both temperature and stresses is strong dependent on this
variable

The predictions made using the solution method have been successfully
benchmarked by comparison with results of independent studies on a FBR secondary
circuit tee-junction, which used a combination of finite element methods for temperature
distributions and analytical methods for stresses.

The analytical solution predictions for the FBR benchmark were additionally checked
against results of a new finite element analysis with commercial software ABAQUS on
elastic 2-D axisymmetric model.

The new analytic solution scheme can be used to support several elements of the
proposed European Thermal Fatigue Procedure for high cycle fatigue damage
assessment of mixing tees, including:

e level 2 — for analyses assuming a sinusoidal temperature fluctuation as

boundary condition on inner surface of the pipe;
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e level 3 — for load spectrum analysis based on one-dimension temperature
and stress evaluations at each measured location;
e level 4 — providing through-thickness stress profiles for thermal fatigue crack
growth assessment.
Further work will address the integration of the solution scheme into an overall
process for determining thermal fatigue usage factors, considering also aspects as

plasticity effects and selection of fatigue life curves.
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Figure 1. Geometrical characteristics of the components in the tee junction area
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Temperature profile through thickness for f=0.5Hz
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Time-dependence of temperature in specified locations of thickness,=1 Hz

1 Hz sinusoidal signal
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Figure 9. Framatome calculations: Temperature profile for f
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The hoop stress profile at max values, f=0.5 Hz
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Figure 12. NNC calculations: Axial and hoop stress variation through thickness over
time period 20.2 to 20.85 sec for filtered AEA data at position TCO1A [23]

The axial stress profile at max values,=0.5Hz,eps=EOQ ,
200

|
---+-- 0.5sec

1.5 sec

150

100

50

Axial stress MPa

-100

| | |
| | | |
| | | |
| | | |
| | | | |
0.247 0.248 0.249 0.25 0.251 0.252 0.253 0.254
Radial distance m
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0.5 Hz (6comp= -160MPa, Giensite= 167MPa,

0) through wall thickness of a hollow cylinder
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The axial stress profile at max values, f=1 Hz, epsZ=0
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Figure 16. The axial stress profile distributions (¢,,=0 ) through wall thickness of
hollow cylinder for instants with minimum and maximum values, for f=1 Hz
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The axial stress profiles, f=1 Hz, epsZ=0
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The radial stress profile at max values, =1Hz
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Figure 25. The Von Mises equivalent stress profile distributions



JRC Technical Note EUR 22802 EN (2007)

Von Mises stress MPa

The Von Mises equivalent stress profile,f=0.5 Hz,espZ=0
180 = T T [ T [ —— ———————]

| | =———t1=0.25 sec
==—=12=4 sec

160 B

140

120

100

80

60

40

20

|
|
|
o
|
l
1
0252  0.253

|
0.251
Radial distance m

0.254

Figure 26. The Von Mises equivalent stress profile distribution (g,,= 0) through

wall thickness of hollow cylinder for £=0.5 Hz, oy mmax= 163 MPa

Stress {_H{)u\
o SN S N .
.r"\\
1Y
|
e - £ ot
.
Aok € or T
\
\
kY
tae.0 | ‘\
100.0 | \'\
LY
\
\
Y
\
80.00 \
\
\
l‘.
I‘|
\.
60.00 t
5\
\
i
\
\
\
\
40,00 \
\
:
W
=
—
.
20.00 —
B
T
[y S
—
B I 1 | | R Y 5 .
L.600 Z.000 J.000 i.000 5.000 G.000

1
T.000

DISTANCE {h‘!'ﬁl

Figure 27 Framatome calculations [23]: Von Mises profile 0.5 Hz
sinusoidal signal (¢,,=0)

54



55

The Von Mises equivalent stress profile,f=0.5 Hz, espZ=0

Q
@]
< =
o < O : :
I I ._.M m __z © ” ”
g m + £ 3 oo} , |
3B S 2o I |
\ = o w0 o | |
3 £ @ 2 m S < | | s
T I I S S S N I 0 s D HE YN TR SRR S A -
| — N
= 0w + : VLS 1l = N | | 1
| S B¢ |4 . | | }
| I n 1 ! |
| =5 | ! ” ” !
| o e 2 N i | | 1
R S . g |8z [T Ll 'hoo B EREREEEEEEEE R SRR T
I | S NS ~ ]
L S |82 |I ” | !
| | o w & ! ! !
, , E5 | o ” | !
I I —
(S N O SN N B+ B L1888 |8, . . SR [
I 1 - o & 7 o
| | o & [ |
- slz2E |3 | |
” | 2 o O o | I
I I 2 B ® | ,
o i/ g2 |22 |z | |
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ] . p—
N ] OM ..w w. o [ T A
I
| ” g8 o0 M |
” | = B o |
I I o L @ I
| | < O = » |
i s S iy _Aeite St N W M D - mmm - R e e e A
o - K] |
I I O = !
I I
L o [
I I
I | (e V m ”
o = |S8% |3 ,
S R A S [§E | SRS et EE R Ry
I | | | © o, m !
I | | | | m 5 !
I | | | | o |
I I I I I o =
I I I I I N~ oS I
L 1 1 1 1 m = !
o o o o o o o o o o 0 7 ,
<<} © <t N =} =5} © < N o N = o o o o
~ ~ ~ ~ ~ ) < w0 o w0
BdIN SS81]S SOSI|\ UOA m © o -
’ ) BdIN SS®8l]S SOBSI|\| UOA
o —
[

JRC Technical Note EUR 22802 EN (2007)

0.254
€o) through

1 HZ, OV.M.max— 141 MPa

0.253

0.252

wall thickness of hollow cylinder, f=

0.248 0.249 ) 0.251
Radial distance m

0.247
Figure 29. The Von Mises equivalent stress profiles distribution (&,
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Time-dep of Von Mises Stress for f=1 Hz and espZ=0
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Figure 30. The Von Mises equivalent stress profiles distribution (g,,= 0) through
wall thickness of hollow cylinder for =1 Hz, 6y Mmmax= 152 MPa
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Figure 31 Framatome calculations [23]: Von Mises profile 1 Hz sinusoidal signal (¢,,=0)
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The Von Mises equivalent stress profiles,f=1 Hz ,espZ=0
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Figure 32. Comparison between profile predictions from present work and Framatome calculations
[23] for Von Mises equivalent stress, f=1 Hz, ¢,,=0
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Figure 33 Stress intensity profile (Tresca) along thickness=0.5 Hz [16]
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The effective equivalent stress intensity range profile,f=0.5 Hz,espZ=E0
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Figure 34. The effective equivalent stress intensity range profile distribution
€9) through wall thickness of hollow cylinder for f
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The effective equivalent stress intensity range profile,f=1Hz,espZ=EOQ
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Figure 36. The effective equivalent stress intensity range profile distribution (g,
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Figure 37. The effective stress intensity range stress profile distribution (g,,= 0)
through wall thickness of hollow cylinder for f
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- L

b) c)
Figure 38. a) Abaqus model mesh; b) sample free to expand in the vertical direction (.= €o);
c) sample fixed in the vertical direction (g..= 0).
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Figure 39. Evolution of the temperature across the wall thickness for v=0.5Hz (t=0 sec; 0.55
sec; 1.052 sec; 2.257 sec; 9 sec).
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Figure 40. Evolution of the temperature across the wall thickness for v=1Hz
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Figure 41. Evolution of the von Mises stress across the wall thickness for v=1Hz and sample
free to expand in the axial direction (g..= €o) (t=0.002 sec; 0.114 sec; 1.313 sec; 5.313 sec;
6.813 sec; 9 sec)
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Figure 42. Evolution of the von Mises stress across the wall thickness for v=1Hz sample fixed
in the axial direction (¢,,= 0),( t=0.002 sec; 0.114 sec; 1.313 sec; 6.313 sec)
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Comparison of the temperature profiles through thickness,f=0.5Hz
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Figure 43. Comparison of temperature profiles predictions: analytical versus FEA,
f=0.5 Hz
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Figure 44. Comparison of temperature profiles predictions: analytical versus FEA,

=1.0 Hz
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Comparison of the hoop stress profiles, f=0.5 Hz, epsZ=0
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Figure 46. Comparison of the hoop stress profiles: analytical versus FEA,
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Comparison of the axial stress profiles, =0.5 Hz, epsZ:
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Figure 47. Comparison of the axial stress profiles: analytical versus FEA,
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Figure 48. Comparison of the axial stress profiles: analytical versus FEA,
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Comparison of the axial stress profiles, f=0.5 Hz, epsZ:
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Figure 49. Comparison of the axial stress profiles: analytical versus FEA,
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Figure 50 . Comparison of the axial stress profiles: analytical versus FEA,
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Comparison for Von Mises equivalent stress profiles, f=0.5 Hz, espZ=0
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Figure 51. Comparison of the von Mises equivalent stress profiles: analytical versus FEA,

Figure 52. Comparison of the von Mises equivalent stress profiles: analytical versus FEA,
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Comparison for Von Mises equivalent stress profiles ,f=1 Hz ,espZ:
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Figure 53. Comparison of the von Mises equivalent stress profiles: analytical versus FEA,
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Figure 54. Comparison of the von Mises equivalent stress profiles: analytical versus FEA,
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=0)

Comparison of effective equivalent stress intensity range ,f=0.5Hz,espZ:
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Figure 55. Comparison of the effective equivalent stress intensity range between

=0

0.5 Hz, ¢,,

1.3 sec : analytical versus FEA f

instants t;=0.58 sec and t;
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Analytical

(edN) @buel Ayisuajul sssauls JuseAiNba aAl}0aYa ay |

0.249 0.25 0.251 0.252 0.253 0.254

0.248

Radial distance (m)

Figure 56. Comparison of the effective equivalent stress intensity range between

0.5 Hz, €,,=¢¢

instants t;=0.58 sec and t,=1.3 sec: analytical versus FEA f:
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=0)

Comparison of effective equivalent stress intensity range ,f=1 Hz,espZ:

Analytical
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Figure 57. Comparison of the effective equivalent stress intensity range between

=0

1.0 Hz, &,,

1.8 sec: analytical versus FEA f

instants t;=0.26 sec and t;

Comparison of effective equivalent stress intensity range ,f=1 Hz,espZ=EO0)
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Figure 58. Comparison of the effective equivalent stress intensity range between

1.0 Hz, &,,~=¢¢

instants t;=0.26 sec and t,=1.8 sec: analytical versus FEA f:
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Appendix 1: Some properties of Bessel functions

The differential equation

dzfgz)+l.dgz)+{1_uzj.ﬂz)=0 (A1.1)

dz z z2

is a Bessel’s differential equation of order v. The first solution is expressed by

J@=y D (ZJ ’ (A1.2)

ml(o+m+1) 12

and is called a Bessel function of the first kind of order v, where I" is the gamma
function defined by
_°° -t x-1
F)=[e"r7dr o0 00 (A1.3)
0

The second solution of the Bessel equation which is available for all values of v is

expressed by

J,(z)-cos(vr)—J_ (z) (A1.4)
sin(vr) |

Y,(2) =

and is called the Bessel function of the second kind of order v. If v is not an integer,
Ju(z) may be used instead of Y,(z) as a second solution. Functions J,(z) and J,(z) are
independent solutions of Eq. (A1.1). When v is an integer n, J.,(z) is dependent on J,(z)

J,(2)=(-1)"J_,(2) (A1.5)

The complete solution of Eq. (A1.1) is

f(z)=A4-J,(z2)+B-Y, (2) for all values of v (A1.6)
f(z)=4-J,(z2)+B-Y,(2) for an integer n (A1.7)
f(2)=4-J,(z2)+B-J_,(2) for non-integer o (A1.8)

Some formulas of the Bessel functions are listed as follows
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2—ZUJU(Z) = JU_I(Z) +Ju+1 (Z)

dJ,)z) _1

22 = V@ =T @]=7 ) - LI (2) == (2) + 2T, (2)

Ll s @ n)]=a-z" -, @)
dz
J,(2)=(=D)"J_(2)=(-1)"J,(-2)

T ()= (D) Y ()=

(A1.9)

(A1.10)

(A1.11)

(A1.12)
(A1.13)

(A1.14)

The above formulas, except for the last, are satisfied by Y,(z) instead J,(z).
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Appendix 2: Fatigue Evaluation Procedure Based on Elasticity
Calculated Stress Results (API 579/2000)

A quantity known as the “equivalent intensity of combined stress” or “stress
intensity” is computed at certain locations on the component or structure of interest. The
stress intensity at a point is a measure of stress, calculated from stress components
utilizing a vyield criterion, which can be used for comparison with the mechanical strength
properties of the material obtained in tests under uniaxial load.

The “Maximum Distortion Energy Yield Criterion” may be used to establish stress

intensity. In this case the stress intensity is equal to the von Mises equivalent stress:

S=0c _\/(Gl_0-2)2+(O-2_O-3)2+(03_01)2 (A21)

vonMises — 2

Although this yield criterion is more complicated to apply when manual calculations
are performed, it is the most common criterion for yield used in finite element analysis, and
is generally recognized to give more accurate results than the maximum shear stress yield
criterion.

Fatigue Evaluation Procedure Based on Elasticity Calculated Stress Results

A fatigue evaluation should be performed if the component is subject to cyclic
operation. The evaluation for fatigue is made on the basis of the number of applied cycles
of a stress or strain range at a point in the component. The allowable number of cycles
should be adequate for the specified duration of operation to determine the suitability for
continued operation. Fatigue curves are typically presented in two forms: fatigue curves
that are based on smooth bar test specimens and fatigue curves that are based on the test
specimens which include weld details. The stresses and strains produced by any load or
thermal condition which does not vary during the cycle need not be considered in a fatigue
analysis if the fatigue curves utilized in the evaluation are adjusted for mean stresses and
strains.

An effective total stress intensity amplitude is used to evaluate the fatigue damage
for results obtained from a linear elastic stress analysis. The effective peak stress intensity
amplitude is defined as one-half the effective total stress intensity range, calculated for
each cycle described in the loading history. The procedure can be used for the general
case where the principal stress directions change during the loading cycle.

The steps required for thermal fatigue crack initiation are described in the following:
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Step1. -Determine a load history based on the past operation and future planned
operation. The load history should include all significant operating loads and events which
the component will be subjected to.

Step 2. — For a location in the component under evaluation, compute the stress
components o and the equivalent stress for each point in the load histogram. Use this
information to create an effective stress load histogram.

Step 3. — Determine the cyclic stress range based on the effective stress histogram
developed in Step 2 using the cycle counting method in ASME E 1049 (rainflow method).

Step 4. Determine the stress tensor at the start and end points for the “k™ cycle in
the effective stress histogram counted in Step 3. Using these data, determine the stress
range and designate this quantity as A Gijk.

Step 5. — Compute an effective stress intensity range for the “k™ cycle using the
“‘Maximum Distortion Energy Yield Criterion”. Using the change in stress components
determined in Step 4, compute the effective equivalent stress intensity range for the

cycle:

2 2 2
AS* :\/(AO'“ —Aazz) +(A022 —AG33) +(AG33 —Aall) +6(Ac), + Aol +Acly) (A2.2)

range 2

Step 6. — Determine the effective alternating stress intensity for the “k™ cycle

1

ASflt = EKf .AS){;nge (A23)
with

Kf=1.0 for  ASF<3S, (A2.4)

Sm — allowable stress

k 1—71 Sk k
K; =10+ -1 for 35S, <AS; <3mS,, (A2.5)
n(l-m)\ 38,
K! _1 for  ASF<3mS, (A2.6)
n

where
K* = fatigue knock-down factor for the “k™ cycle (from table with applicability and
limitations)

AS* = range of primary plus secondary stress intensity for the “k™ cycle
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m = material constant

n = material constant

Step 7. — Determine the permissible number of cycles, N¥ for the alternating stress
intensity computed in Step 6. Fatigue curves are contained in ASME B&PV Code, Section
[l

Step 8. — Determine the fatigue damage for the “k™ cycle

1
k

Step 9. — Repeat Steps 4 through 8 for all stress ranges identified in the cycle

(A2.7)

counting process in Step 3.

Step 10. Compute the accumulated fatigue damage using the following equation.
The component is suitable for continued operation if this equation is satisfied. The
permissible damage fraction, Dy, is usually taken as 1.0 unless an alternative value is

specified by the Engineer performing the assessment

Y DE<D, (A2.8)

Step 11. — Repeat Steps 2 through 10 for each point in the component subject to a

fatigue evaluation.



JRC Technical Note EUR 22802 EN (2007)

80



European Commission

EUR 22802 EN — Joint Research Centre — Institute for Energy
Title: NEW ANALYTICAL STRESS FORMULAE FOR ARBITRARY TIME DEPENDENT THERMAL
LOADS IN PIPES

Author(s):
V. Radu
E. Paffumi
N. Taylor

Luxembourg: Office for Official Publications of the European Communities
2007 — 80 pp. — 21x 29.7 cm
EUR — Scientific and Technical Research series — ISSN 1018-5593

Abstract

Analytical solutions with several new features have been developed for temperature and elastic thermal stress
distributions for a hollow circular cylinder under sinusoidal thermal transient loading at the inner surface.

The approach uses a finite Hankel transform in a general form for any transient thermal loading for a hollow
cylinder. Using the properties of Bessel functions, an analytical solution for temperature distribution through wall
thickness was derived for a special case of sinusoidal transient thermal loading on inner pipe surface.

The solutions for associated thermal stress components were developed by means of the displacement
technique. To the authors’ knowledge, this is first time a complete set of such analytical expressions has been
openly published.



The mission of the JRC is to provide customer-driven scientific and technical support for the
conception, development, implementation and monitoring of EU policies. As a service of the
European Commission, the JRC functions as a reference centre of science and technology for the
Union. Close to the policy-making process, it serves the common interest of the Member States, while
being independent of special interests, whether private or national.

EUROPEAN COMMISSION

Publications Office

Publications.eu.int






