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Problem Definition 
 

In some applications regarding thermal fatigue due to thermal transients (striping or 

turbulence) in mixing tees of class 1-2-3 piping systems of reactors, the temperature 

gradient within the pipe thickness must be considered time-dependent, as well as the 

thermal boundary conditions. In the present work the quasi-static thermoelasticity problem 

in a long hollow cylinder is solved analytically. This is the first step in a four-part JRC 

project studying thermal fatigue damage assessment, which consists of: 

- new analytical stress formulae for arbitrary time dependent thermal loads in pipes; 

- assessment of thermal fatigue crack growth; 

- probabilistic and statistical approach to thermal fatigue; 

- review and synthesis of thermal fatigue assessment methods from European and 

non-European Procedures 

Time-dependent thermal boundary conditions are assumed to act on the inner 

surface of the cylinder. In the first step, the general relation for the temperature distribution 

is derived by means of the finite Hankel transform. In the second step, the analytical 

solution for temperature distribution in wall thickness of a hollow cylinder in the sinusoidal 

transient thermal loading case is developed. In third step the thermal stress components 

are extracted by means of the displacement technique applied to a one dimensional 

problem of cylindrical bodies. Specific solutions were determined for the case of a  

sinusoidal transient thermal loading case applied to a hollow cylinder. Finally the results 

are compared with those from a previous independent study which used finite element 

analyses to solve the problem. A further verification of the analytical predictions was 

performed with an in-house FE analysis using the ABAQUS program. 

The results can be used in the assessment of the high cycle fatigue damage of 

mixing tees in the following parts of the draft European Procedure for Thermal Fatigue 

Analyses of Mixing Tees: 

• level 2 - sinusoidal temperature fluctuation as boundary condition on inner 

surface of the pipe; 

• level 3 - load spectrum fluctuation based on one-dimensional temperature 

and stress evaluation at each measured location; 

• level 4 - fracture mechanics applied to thermal fatigue crack growth 

assessment based on evaluation of ∆J or ∆K during a crack growth. 
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Nomenclature 
ri=a , re=b - inner and outer radii of the pipe; 

θ - temperature change from the reference temperature; 

To  - reference temperature; 

r  - radial distance; 

k  - thermal diffusivity; 

λ  - thermal conductivity; 

ρ - density; 

c  - specific heat coefficient; 

F(t) -  function of time representing the thermal boundary condition applied 

on the inner surface of the cylinder; 

Jυ(z) , Yυ(z) - Bessel functions of first and second kind of order υ. 

θ0   - amplitude of temperature wave;  

ω   - wave frequency in rad/s; 

t - time variable. 

sn  - positive roots of the transcendental equation (kernel of finite 

 Hankel transform); 

rrε  - radial strain; 

θθε  - hoop strain; 

zzε  - axial strain;  

rrσ  - radial stress;      

θθσ  - hoop stress;      

zzσ  - axial stress;      

χ, µ  - Lamé elastic constants; 

E  - Young’s modulus; 

G= µ  - shear modulus; 

β  - thermoelastic constant 

α - coefficient of the linear thermal expansion 

ν  - Poisson’s ratio 

u -  radial displacement. 
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1. Introduction  
 

 The development of thermal fatigue damage due to turbulent mixing or vortices in 

NPP piping systems is still not fully understood [1] and much effort continues to be 

devoted to experimental and analytical studies in this area [2,3]. As opposed to the 

relatively low number of cycles associated with thermal stratification, thermal striping1 at 

vortices and in mixing areas is more of a high cycle nature [4]. Thermal gradients and 

turbulence in the coolant fluid can induce oscillating local stresses in the portion of the pipe 

near the inside surface if the flow rates are sufficiently high. These cyclical thermal 

stresses are caused by oscillations of the fluid temperature at the interface resulting from 

interfacial mixing of the hot and cold fluid layers. For example, the test results and theory 

[4] indicate that thermal striping is present when the local Richardson number2 is less than 

0.25. Numerical simulation of the type of thermal striping and high-cycle thermal fatigue 

that can occur at tee junctions of the LWR piping systems showed that the oscillation 

frequency of the temperature of the coolant is a key factor in the response of pipe wall 

temperature field and that the critical frequency range is 0.1 – 1Hz [5]. The amplitude of 

the metal temperature oscillations is smaller than the difference in the hot and cold coolant 

layers because the finite value of the heat transfer coefficient and the thermal inertia of the 

pipe. Therefore, the high-cycle fatigue damage caused by thermal stresses is initially 

limited to the pipe inner surface adjacent to the interface [5], and further crack growth 

depends on the thermal stress profile through the thickness of the pipe [6,7,8,9].  

The current study addresses the development of the analytical solutions for the 

through-wall temperature response and thermal stress components in a hollow cylinder 

due to thermal transient in generals, and particularly for the sinusoidal transient thermal 

loading case. 

                                                 
1 Thermal striping is defined as the effect of a rapid random oscillation of the surface temperature inducing a 
corresponding fluctuation of surface stresses and strains in the adjacent metal. It is characterized by large numbers of 
strain cycles having potential to add to any fatigue damage produced by strain cycles associated with other plant 
operation transients. 
2 The Richardson number is the ratio of the density gradient and horizontal velocity gradient [4] 
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2.  Background on methods applied to solving thermoelasticity 
problems for thermal transients 

 

Thermal stresses are defined [10,11,12,13] as self-balancing stresses produced by a non-

uniform distribution of temperature or by differing coefficients of thermal expansion. These 

thermal stresses are developed in a solid body whenever any part is prevented from 

assuming the size and shape that it would freely assume under a change in temperature. 

In order to establish the allowable stresses, two types of thermal stress are defined. The 

first is a general thermal stress that develops with some distortion of the structure in which 

it occurs. When the level of this stress exceeds twice the yield strength of the material,    

successive thermal cycles may produce incremental distortion resulting in shakedown or, 

in extreme cases, ratcheting. Examples include the stress produced by an axial 

temperature distribution in a cylindrical shell or by the temperature difference between a 

nozzle and the shell to which it is attached, or the equivalent linear stress produced by a 

radial temperature distribution in a cylindrical shell. The second concerns the type of local 

thermal stress associated with almost complete suppression of differential thermal 

expansion and thus no significant global distortion of the body. Such stresses are 

considered only from the fatigue standpoint and are therefore classified as local stresses. 

Examples include the stress at a small hot spot on a vessel wall and the difference 

between the actual stress and equivalent linear stress resulting from a radial temperature 

distribution in a cylindrical shell. 

In looking at the methods for analyzing thermal stress under thermal transients, we 

focus on those for hollow cylinders (pipes). A.E. Segal has studied [14] the transient 

response of a thick-walled pipe subjected to a generalized excitation of temperature on the 

internal surface using Duhamel’s relationship. The generalization of the temperature 

excitation was achieved using a polynomial composed of integral-and half-order terms. To 

avoid the evaluation of recurring functions in the complex domain, Laplace transformation 

and a 10-term Gaver-Stehfest inversion formula were used to perform part of the 

necessary integrations. In the reference [15] Lee and Yoo have applied a numerical 

approach using the Green’s function method (GFM) for analysis of crack propagation 

under thermal transient loads. They have shown that GFM can be used to efficiently 

evaluate thermal stresses for fatigue damage analysis or SIFs for crack propagation 
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analyses. The same authors reported [16] an evaluation procedure of thermal striping 

damage on secondary piping of liquid metal fast reactors (LMFR) using GFM and standard 

FEM. A.S. Shahani and S.M. Nabavi solved the quasi-static thermoelasticity problem in a 

thick-walled cylinder analytical using the finite Hankel transform for the differential 

equations of both temperature and displacements [17].  S. Marie proposed [18] an 

extension of the analytical solution for the temperature and stresses in the event of a 

thermal shock in a pipe containing a fluid by a simple solution for any variation of the 

temperature in the fluid. The approach consists of breaking down the fluid temperature 

variation into a succession of linear shocks. The paper reported analytical expressions for 

the elastic thermal stresses, based on temperature fields calculated by the finite element 

method. N. Noda and K.-S. Kim used a Green’s function approach based on the laminate 

theory to solve the two-dimensional unsteady temperature field and associated thermal 

stresses in an infinite hollow circular cylinder [19]. The unsteady heat conduction equation 

has been formulated as an eigenvalue problem by making use of the eigenfunction 

expansion theory and laminate theory. The associated thermoelastic field was analyzed 

using the thermoelastic displacement potential function and Michell’s function.  

In the scope of the present work we were specifically interested in an analytic 

formulation which could applied to a wide range or pipe geometries and temperature 

conditions relevant to coolant piping systems. None of the above approaches were 

available found to be fully suitable: in some cases the geometry boundary conditions were 

inappropriate, in others the published information was insufficient to allow direct 

implementation. As a result, it was decided to develop an new solution to meet our 

requirements; this is presented in the following sections. 

3. Development of an analytical solution for temperature distribution 
 

The calculation of the temperature distribution in a piping subsystem must be 

distinguished from that in components with more complex geometries. Pipes can be 

represented as hollow cylinders and with such a simple geometry it becomes possible to 

use analytical tools to get the time-dependent temperature profile through wall thickness. 

Hence a pipe wall model subject to a sinusoidal fluctuation of fluid temperature can be 

used for assessment of thermal stripping damage phenomenon. A suitable analytical 

solution of time-dependence temperature in pipes provides a basis for obtaining solutions 

for the associated thermal stress components and their profile through the wall thickness. 
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This approach facilities extraction of stress intensity ranges for computing cumulative 

usage factors (CUFs) and also for crack growth analysis in areas of piping affected by 

turbulent mixing. 

3.1 The finite Hankel transform method 
 

Laplace, Fourier, Hankel and Mellin transforms have been applied to the solution of 

boundary-value problems in mathematical physics [20]. The application of such transforms 

reduces a partial differential equation in n independent variables to one in n-1 variables 

and it is often possible, by successive operations of this type, to reduce the problem to the 

solution of an ordinary differential equation. In applying the method of integral transforms 

to problems formulated in finite domains it is necessary to introduce finite intervals on the 

transform integral. Transforms of this nature are called finite transforms. Sneddon [21] 

considered a Bessel function as a kernel of a finite integral which he defined as a Hankel 

transform and showed its usefulness for solving certain boundary value problems. The 

Hankel transform arises naturally in problems posed in cylindrical coordinates which are 

solved using the technique of separation of variables, involving Bessel functions [22]. This 

transform is more appropriate for  solving differential equations with boundary conditions in 

which there is an axial symmetry. 

Consider a hollow cylinder of the inner and outer radii ri=a and re=b, respectively. 

Also, consider that the cylinder is made of a homogeneous isotropic material. The one-

dimensional heat diffusion equation in cylindrical coordinates is [11,12]: 

tkrrr ∂
∂
⋅=

∂
∂
⋅+

∂
∂ θθθ 11

2

2

         (1) 

where: 

oTtrT −= ),(θ           (2) 

 is the temperature change from the reference temperature (where the reference 

temperature To is the temperature of the body in the unstrained state or the ambient 

temperature before changing of temperature); 

r -  radial distance; 

k - the thermal diffusivity which is defined as: 

c
k

ρ
λ

=            (3) 

λ – the thermal conductivity; 
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ρ - the density; 

c – the specific heat coefficient; 

The thermal boundary condition (Dirichlet conditions) for a hollow cylinder are:  

)(),( tFta =θ           (4) 

0),( =tbθ  (adiabatic condition hypothesis )      (5)  

and the initial condition is 

0)0,( =rθ           (6) 

The function F(t) is a known function of time representing the thermal boundary 

condition applied on the inner surface of the cylinder. Later on this function will be adapted 

for sinusoidal transient thermal loading. 

The differential equation (1) contains a linear operator L, applied to a function f, in the 

general form 

 f
rdr

dfr
dr
d

r
Lf 2

21 ν
−

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛=         (7) 

The problem may be solved using the finite Hankel transform[17,20,22], defined by 

the following relation: 

drsrKtrfrstrfHtsF n

b

a
nn ),(),(]);,([),( ⋅⋅== ∫      (8) 

where:  

sn is the transform parameter; 

K(r,sn)  is the kernel of the transformation 

The inverse transform of (8) is defined as 

∑
∞

=

− ⋅⋅==
1

1 ),(),(]);,([),(
n

nnnn srKtsFartsFHtrf      (9) 

The an parameter should be inferred using the orthogonality of solutions of the Sturm-

Liouville differential equation that correspond to the linear operator from Eqn.(7) as 

 

∫ ⋅
= b

a
n

n

drsrKr
a

2)],([

1
         (10) 

The proper form of the kernel K(r,sn) depends on the form of the governing differential 

equation and also on the boundary condition applied. Taking into account the form of 
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linear operator given in Eqn.(7), the kernel of the transformation can be chosen [17,20,22] 

as 

)()(),( rsYBrsJAsrK nnn ⋅⋅+⋅⋅= υυ        (11) 

where Jυ(z) and Yυ(z) are the Bessel functions of first and second kind of order υ. 

The boundary conditions of the problem are defined by the linear operators M and N 

as follows: 

r
afmafmMf

∂
∂
⋅+⋅=

)()( 21         (12) 

r
bfnbfnNf

∂
∂
⋅+⋅=

)()( 21         (13) 

The values of the characteristic roots, sn, and constants A and B in Eqn. (11) may be 

obtained from the following equations 

0),( =nsaMK           (14) 

0),( =nsbNK           (15) 

If we apply the finite Hankel transform (8) to the linear operator (7) and integrate twice 

, we obtain:  

),(),(),(),(),(

),(),(),(),(];[

2 tsFs
r

tbfsbKtbf
dr

sbdKb

r
tafsaKtaf

dr
sadKasLfH

nnn
n

n
n

n

−⎥⎦
⎤

⎢⎣
⎡

∂
∂
⋅−⋅⋅−

−⎥⎦
⎤

⎢⎣
⎡

∂
∂
⋅−⋅⋅=

     (16) 

 

3.2 Solution for 1-D heat diffusion equation for a hollow cylinder  
By comparison of the derivative operator with respect to r from Eq. (1) with operator 

(7), it can be seen that υ =0. From Eqs. (4), (5) with (12) ,(13), for the present problem 

Eqs. (14) and (15) can be written as 

0),( =nsaK           (17) 

0),( =nsbK           (18) 

The corresponding kernel of the Hankel transform may be obtained [16], using Eqs. 

(11) and (17, 18) as follows: 

)()()()(),( rsYasJrsJasYsrK nonononon ⋅⋅⋅−⋅⋅⋅=      (19) 

The sn terms are the positive roots of the transcendental equation: 

0)()()()( =⋅⋅⋅−⋅⋅⋅ bsYasJbsJasY nononono       (20) 
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As consequence, with the kernel (19) and applying the Hankel transform from Eq. (8) 

to Eq.(1), using Eq. (16), boundary conditions Eqs.(4,6) and also Eqs. (17,18), the result is  

dr
sadKtFas

dt
d

k
n

n
),()(1 2 ⋅⋅=⋅+⋅ θθ        (21) 

where 

)],([),( trHsr n θθ =          (22) 

Using the properties of the Bessel functions (Appendix 1) on kernel (19) we obtain: 

)()()()(),(
11 rsYasJsrsJasYs

dr
srdK

nnonnnon
n ⋅⋅⋅⋅+⋅⋅⋅⋅−=     (23) 

Another property of Bessel functions is: 

z
zYzJzYzJ

⋅
=⋅−⋅ ++ πνννν

2)()()()( 11        (24) 

With Eq.(24)  we obtain: 

adr
sadK n

⋅
−=
π

2),(          (25) 

Substituting Eq. (25) in (21) gives:   

)(21 2 tFs
dt
d

k n π
θθ

−=⋅+⋅         (26) 

Eq. (26) can be re-written in the form 

)(22 tFksk
dt
d

n π
θθ ⋅

−=⋅⋅+         (27) 

With the initial condition from Eq.(6), the solution is: 

ττ
π

θ τ dFeekts
t

sktsk
n

nn )(2),(
0

22

⋅⋅
⋅−

= ∫ ⋅⋅⋅⋅−       (28) 

From Eq.(10) the coefficients an are obtained using the orthogonality of the solutions 

of Sturm-Liouville differential equation and kernel (19) as 

)()(
)(

2 2
0

2
0

2
0

22

bsJasJ
bsJsa

nn

nn
n ⋅−⋅

⋅⋅
⋅=

π         (29) 

Finally, the temperature distribution in the thickness of the hollow cylinder may be 

obtained substituting Eqs. (19, 28, 29)  into Eq.(9) as follows 
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[ ]

⎥
⎦

⎤
⎢
⎣

⎡
×

×⋅⋅⋅−⋅⋅⋅
⋅−⋅

⋅⋅
⋅⋅=

∫

∑

⋅⋅⋅⋅−

∞

=

ττ

πθ

τ dFee

rsYasJrsJasY
asJbsJ

bsJsktr

t
sktsk

nononono
n nn

nn

nn )(

)()()()(
)()(

)(),(

0

1
2
0

2
0

2
0

2

22

(30) 

 

where  sn are the positive roots of the transcendental equation 

 

0)()()()( =⋅⋅⋅−⋅⋅⋅ bsYasJbsJasY nononono       (20’) 

 

The main advantage of expressing the temperature distribution in the form of Eq.(30) 

is that the temperature field can be analyzed for various boundary conditions on inner 

surface expressed by means of function F(t). As example, for sinusoidal thermal loading or 

for thermal shock (expressed as a polynomial function of time) the integral from Eq. (30) 

can be relatively easy solved and, finally the thermal response in the body of the specimen 

can be obtained for the above initial and boundary conditions. 

3.3 Temperature distribution in a hollow cylinder subjected to sinusoidal 
thermal transient loading  
The solution for the temperature distribution during a thermal transient for a hollow 

cylinder as given in (30), can be written as follows: 

),(),,(),,(),( 32
1

1 nn
n

n stsrasbaktr θθθπθ ⋅⋅⋅⋅= ∑
∞

=

     (31) 

where 

)()(
)(),,( 2

0
2
0

2
0

2

1 asJbsJ
bsJssba

nn

nn
n ⋅−⋅

⋅⋅
=θ        (32) 

)()()()(),,(2 rsYasJrsJasYsra nonononon ⋅⋅⋅−⋅⋅=θ      (33) 

ττθ τ dFeest
t

sktsk
n

nn )(),(
0

3

22

∫ ⋅⋅⋅⋅−=         (34) 

For the time-dependent term θ3(t,sn), the boundary condition for thermal loading on 

inner surface of hollow cylinder is expressed as: 

)2sin()sin()( 00 tfttF ⋅⋅⋅=⋅⋅= πθωθ        (35) 

where  

θ0 – amplitude of temperature wave and  ω and f correspond to the wave frequency in 

rad/s and cycles/sec respectively; 
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t – time variable. 

By substituting Eq. 35 into Eq. 34 and integrating gives: 

222

2

03 )(
)cos()sin()(

),,(
2

ω
ωωωω

θωθ
+⋅

⋅⋅−⋅⋅⋅+⋅
⋅=

⋅⋅−

n

n

n

sk
ttske

st
tsk

n     (36) 

Therefore, the complete formula for temperature distribution in the thickness of hollow 

circular cylinder for sinusoidal thermal loading on the inner surface is: 

 

[ ]

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+⋅

⋅⋅−⋅⋅⋅+⋅
⋅×

×⋅⋅⋅−⋅⋅
⋅−⋅

⋅⋅
⋅⋅=

⋅⋅−

∞

=
∑

222

2

0

1
2
0

2
0

2
0

2

)(
)cos()sin()(

)()()()(
)()(

)(),,(

2

ω
ωωωω

θ

πωθ

n

n

n

sk
ttske

rsYasJrsJasY
asJbsJ

bsJsktr

tsk

nononono
n nn

nn

(37) 

 

A similar approach can be used to obtain a through-wall thermal distribution for other 

boundary conditions on the inner surface. If we use a time-dependent proper function F(t) 

applied as a thermal boundary condition on inner surface of the hollow cylinder  in Eq. 

(34), for instance modeling a  constant temperature, thermal shock, linear or exponential 

decay, etc., then the result will be a similar expression to Eq. (37).  

 

4. Development of analytical solution for thermal stress components  
 

4.1 Stress components for a cylindrical body 
The constitutive equations, following the generalized Hook’s law, for a homogeneous 

isotropic body in a cylindrical coordinate system are [11,12,13]: 

( )[ ] θα
ν

νσθασσνσε θθ ⋅+⎟
⎠
⎞

⎜
⎝
⎛ Θ

+
−=⋅++⋅−=

12
11

rrzzrrrr GE
   (38) 

( )[ ] θα
ν

νσθασσνσε θθθθθθ ⋅+⎟
⎠
⎞

⎜
⎝
⎛ Θ

+
−=⋅++⋅−=

12
11
GE zzrr    (39) 

( )[ ] θα
ν

νσθασσνσε θθ ⋅+⎟
⎠
⎞

⎜
⎝
⎛ Θ

+
−=⋅++⋅−=

12
11

zzrrzzzz GE
   (40) 

and 

G
r

r 2
θ

θ
σε = ; 

G
z

z 2
θ

θ
σε = ;

G
zr

zr 2
σε =         (41) 
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with zzrr σσσ θθ ++=Θ          (42) 

The alternative forms are 

θβχεµσ ⋅−⋅+⋅= errrr 2         (43) 

θβχεµσ θθθθ ⋅−⋅+⋅= e2         (44) 

θβχεµσ ⋅−⋅+⋅= ezzzz 2         (45) 

where 

χ, µ – the Lamé elastic constants 

ν
νχ

21
2
−
⋅

=
G           (46) 

E – Young’s modulus 

G= µ – shear modulus 

)1(2 ν+
=

EG           (47) 

oTtrT −= ),(θ  is the temperature change from the reference temperature To (where 

the reference temperature can be the temperature of the body in the unstrained state or 

the ambient temperature before a change of temperature) 

β - the thermoelastic constant 

ν
αβ

21−
⋅

=
E           (48) 

α – the coefficient of the linear thermal expansion 

ν – the Poisson’s ratio 

The one-dimensional equilibrium equation in the radial direction is: 

 0=
−

+
rdr

d rrrr θθσσσ          (49) 

 The displacement technique is also be applied to the solution of one-dimensional 

problems of hollow cylinder. The generalized Hooke’s law for problems [12] (plane stress 

and plane strain) in a cylindrical coordinate system is 

( ) '''
'

1 c
E rrrr −⋅+⋅−= θασνσε θθ         (50) 

( ) '''
'

1 c
E rr −⋅+⋅−= θασνσε θθθθ         (51) 

θθ σε rr G
⋅=

2
1           (52) 

where 
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⎪⎩

⎪
⎨
⎧
−=

E

E
E 21' ν    for plane strain, and plane stress respectively   (53)  

 

⎪⎩

⎪
⎨
⎧
−=

ν
ν
ν

ν 1'   for plane strain and plane stress respectively   (54) 

⎩
⎨
⎧ +

=
α

αν
α

)1(
'   for plane strain and plane stress respectively   (55) 

⎩
⎨
⎧

=
0

' 0νε
c   for plane strain and plane stress respectively   (56) 

The axial stress is zero (σzz=0) for plane stress, and a constant axial strain (εzz= ε0) 

may occur for a plane strain condition.  

For plane strain a normal stress σzz  acts on cross-sections of the long cylinder and is 

necessary to maintain the body in the state of plane strain. Therefore, the normal stress 

σzz is dependent on the normal stresses σrr and σθθ. From Eq. (40) it follows that: 

( )[ ] θασσνσε θθ ⋅++⋅−= ''
'

1
0 rrzzE

       (57) 

and finally for plane strain state the relationship for σzz is 

( ) 022 11
)1(

1
ε

νν
θανσσ

ν
νσ θθ −

+
−

⋅⋅+−+
+

=
EE

rrzz      (58) 

When all strains and stresses are only functions of radial distance r, the strain-

displacement relations are: 

dr
du

rr =ε            (59) 

r
u

=θθε            (60) 

0=θε r            (61) 

where u is the radial displacement. 

By use of Eqs. (59, 60, 61) in Eqs. (50, 51, 52) the components of stress in cylindrical 

coordinates can be expressed as: 

⎥⎦
⎤

⎢⎣
⎡ ⋅++⋅⋅+−⋅+

−
= ')'1(')'1('

'1
'

2 c
r
u

dr
duE

rr νθανν
ν

σ      (62) 
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⎥⎦
⎤
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⎡ ⋅++⋅⋅+−+⋅

−
= ')'1(')'1('

'1
'

2 c
r
u

dr
duE νθανν

ν
σθθ      (63) 

0=θσ r            (64) 

The substitution of Eqs. (62, 63) in Eq. 49 yields 

dr
trd

dr
urd

rdr
d ),(')'1()(1 θαν ⋅⋅+=⎥⎦

⎤
⎢⎣
⎡ ⋅

⋅        (65) 

The general solution of Eq. (65) is 

r
CrCdrrtr

r
u

r

2
1),(1')'1( +⋅+⋅⋅⋅⋅+= ∫θαν       (66) 

The integration constants C1 and C2 may be determined from the boundary 

conditions. By use of Eq. (66) and Eqs. (62, 63, 64) the stress components in cylindrical 

coordinates for a cylindrical body are 

'
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⋅
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+⋅
+
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+⋅⋅−⋅⋅
⋅

= ∫ ννν
θαθασθθ   (68) 

0=θσ r            (69) 

 

4.2 Stress components for a hollow cylinder 
The analytical solution for stress components will be specified for a hollow circular 

cylinder (or a cylinder with a concentric circular hole, as defined in [13]) with appropriate 

boundary conditions.  

We consider that the hollow cylinder is made of a homogeneous isotropic material. 

The solutions for plane stress and plane strain will first be stated. Thereafter the hollow 

cylinder is considered to be sufficiently long in axial direction to apply the hypothesis of  

plain strain and an analytical solution for thermal stress components during thermal 

transients will be specified. It is assumed that the thermomechanical properties do not 

change during a thermal transient and that the strain rates due to the thermal loading are 

small, so both the inertia and thermo mechanical coupling terms in the thermoelasticity 

governing equations can be neglected. 

Let us consider the radii a and b for hollow cylinder 

br
ar

e

i

=
=

           (70) 
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The boundary conditions for traction free surfaces are: 

0=rrσ   at brar ei == ,        (71) 

Substituting Eq. (71) in Eqs. (67, 68) the integration constants C1 and C2 may be 

determined as follows 

∫ −⋅⋅⋅
−

⋅−⋅=
b

a

cdrrtr
ab

C '),(1)'1(' 221 θνα       (72) 

∫ ⋅⋅⋅
−

⋅+⋅=
b

a

drrtr
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aC ),()'1(' 22

2

2 θνα        (73) 

Thus the stress components for a hollow cylinder are: 
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with   

0=zzσ  for plane stress        (76) 
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Also, the radial displacement is 
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The constant axial strain ε0 for plain strain can be determined from the condition that 
the axial force is zero 

∫ =⋅⋅
b

a
zz drr 02 σπ          (79) 

Substituting Eq. (77) in Eq. (79), the constant axial strain ε0 is given by 

∫ ⋅⋅
−

=
b

a

drrtr
ab

),(2
220 θαε         (80) 

The axial stress and the radial displacement for plain strain with a constant axial 

strain are: 
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In conclusion, the stress components and the radial displacement for a hollow circular 

cylinder are given in the following relationships:  

 

 

Plane stress  
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Plane strain (long hollow circular cylinder) 
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       for εzz=0 
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       for εzz=ε0 
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0=θσ r            (92) 

The above solutions for stress components are independent of the temperature field 

[12] and are valid for both steady and transient conditions.  

4.3 Thermal stress components in a long hollow cylinder subject to 
sinusoidal transient thermal loading  
Eqs.(88, 89, 90, 91) have been utilized to develop general solutions for the thermal 

stress components for any thermal transient case. In the next step these are made specific 

to the sinusoidal thermal boundary condition case.  

In Chapter 3 we developed the following equation for the temperature distribution in 

the thickness of a hollow cylinder under sinusoidal transient thermal loading: 

 

[ ]

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+⋅

⋅⋅−⋅⋅⋅+⋅
⋅×

×⋅⋅⋅−⋅⋅
⋅−⋅

⋅⋅
⋅⋅=

⋅⋅−

∞

=
∑

222

2

0

1
2
0

2
0

2
0

2

)(
)cos()sin()(

)()()()(
)()(

)(),,(

2

ω
ωωωω

θ

πωθ

n

n

n

sk
ttske

rsYasJrsJasY
asJbsJ

bsJsktr

tsk

nononono
n nn

nn

(37’) 

for known inner and outer radii a and  b respectively. As already suggested, Eq. (37’) can 

be represented in condensed form as:  
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In Eqs. (88, 89, 90, 91) for the stress components there are two kinds of integral, in 

the following forms:  

∫ ⋅⋅=
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∫ ⋅⋅=
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a

drrtrtI ),(),(2 θω          (98) 
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From the general form of temperature distribution (Eq.93) the radial dependence of 

temperature arises just in the second term as: 

)()()()(),,(2 rsYasJrsJasYsra nonononon ⋅⋅⋅−⋅⋅=θ      (95’) 

Performing the integrals from Eqs. (97) and (98) on  θ2(a,r,sn)  from Eq. (95’) and 

based on the Bessel function properties, the results are 
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            (100) 

 

Eqs. (99) and (100) can be substituted into Eqs. (97) and (98) so that the complete 

results of integrals I1 and I2 for sinusoidal case are 
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with sn  being the positive roots of the transcendental equation 

 

0)()()()( =⋅⋅⋅−⋅⋅⋅ bsYasJbsJasY nononono        (20’’) 
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The displacement and stress responses for any temperature field were obtained for 

plane strain conditions (long hollow cylinder) in Eqs. (86-91). With Eqs.(101) and (102) we 

obtain the complete formulae for thermal stress components in a long hollow circular 

cylinder in the case of sinusoidal transient thermal loading on inner surface.  
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The radial thermal stress component:       
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The hoop thermal stress component 
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The axial thermal stress component 
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        for εzz=0    
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for εzz=ε0    

 

In  “condensed forms” the above equations are 
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5. Application to a Benchmark Case and Discussion 
 

In order to validate the predictive capability of the analytical solutions developed in 

this study, the benchmark case of thermal striping at a FBR secondary circuit tee junction 

[23] was chosen. This relates to a thermomechanical and fracture mechanics assessment 

performed in the 1990’s in the framework of the European Commission’s Working Group 

on Codes and Standards by the following participants: NNC Ltd. (lead), Framatome 

(Novatome), AEA Technology and Leicester University. Also, an independent Korean 

study performed on the same benchmark was reported in [16]. The benchmark is posed as 

a thermoelastic problem, and although the application of the present work is foreseen for 

LWR reactors, it provides the best available data for checking the analytical solutions 

described in the previous chapters.  

The problem is based on operational experience with the secondary circuit of the 

French PHENIX reactor. The input data was obtained (by Framatome) from the actual 

characteristics of the reactor coolant circuit and because of its complexity, it was simplified 

where possible. PHENIX is a 250 MWe demonstration plant, with three secondary loops, 

modular steam generators and integrated primary circuit. During normal operation, sodium 

at 340 ºC flows in the main pipe of the secondary circuit. A small pipe, connected by a tee 

junction to the main pipe, discharges sodium at 430 ºC into the main pipe. The mixing of 

the two flows (∆T= 90ºC) produced a thermal striping phenomenon.. The main features of 

the circuit in the tee junction area are shown in Figure 1. The main pipe in the junction 

area consists in a horizontal straight part, an elbow, and vertical straight part where the tee 

junction is connected.   

In the straight parts the main pipe has the following characteristics: inner diameter: 

Φi= 494 mm and wall thickness: t= 7 mm. Both pipes are made of AISI 304 stainless, steel 

grade: Z5 CN 18.10 In the present work the following material properties values at 400 ºC 

were used [23]: 

- steel density: ρ=7803 kg/m3; 
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- specific heat coefficient: c=550 j/kg.K; 

- thermal conductivity: λ=19.39 W/m.K; 

- mean thermal expansion: αm=17.9·10-6 K-1; 

- Young’s modulus: E= 161·103 MPa; 

- yield Stress: σy = 161 MPa 

- thermal diffusivity: =
⋅

=
ρ
λ

c
k 4.5·10-6 m2/s. 

The results of the calculations performed in the 1990s by NNC and Framatome 

reported in [23] and those of the Korean study reported in [16] have been used for 

comparison of the predictive capability of the analytical solutions developed in the present 

study. Also, a new FE simulation has now been performed using ABAQUS commercial 

software. The comparison of these results with the analytic predictions is discussed in 

section 5.2 below.  

The results from NNC calculations include a fatigue assessment, using a version of 

the UK thermal striping method applied to austenitic steel, performed on the basis of 

AEA’s thermo hydraulic analysis of the TC01A signal. For thermal analyses an 

axisymmetric ABAQUS finite element model of a slice through the large pipe wall was 

used. For the stress calculations an analytic approach was adopted. The formulations for 

the stress components (similar to Eqs.88, 89 and 91) were applied to the output of the 

ABAQUS temperature calculations (FIL. file) with a Fortran post processor to determine 

the stress components at each node for each the temperature solutions. For calculation of 

the axial stress the  εzz= ε0 condition was used as the mechanical boundary condition. 

The Framatome calculations were performed using in-house methods applied to the 

AEA thermal hydraulic output TC01A and assuming sinusoidal fluctuations as an 

approximation to the signal. For tee junction area the frequencies 0.5 Hz and 1 Hz were 

used because they induce the maximum stresses in the wall [23]. To determine the load 

arising from the sinusoidal temperature fluctuations a computer code (SYSTUS release 

233) was used. For calculation of the axial stress the εzz=0 condition was used as the 

mechanical boundary condition. 

 The Korean study used FEM (ABAQUS version 5.7) for the heat transfer, thermal 

stress and fracture mechanics analyses. In addition, Fortran programs were developed for 

the thermal stress and fracture analyses using Green’s function method and ASME section 

III, subsection NH for fatigue damage evaluation. 
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In present analyses we apply sinusoidal thermal loading with similar characteristics 

to that used by Framatome: 

- temperature fluctuation range: ∆T=85 ºC; 

- the reference temperature : To= 385 ºC; 

- the frequencies: f=0.5 Hz and f= 1 Hz  

For the sinusoidal function described in Eq.(35), this implies that the amplitude θ0 = ∆T/2 = 

42.5oC, about a mean value of 385oC. 

For temperature profiles in the wall thickness for both sinusoidal signal of 0.5 Hz 

and 1 Hz the following relationship, which was developed in the present study, is used: 
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 (37’’) 

with  sn being the positive roots of the transcendental equation 

0)()()()( =⋅⋅⋅−⋅⋅⋅ bsYasJbsJasY nononono       (20’’’) 

J0(z) and Y0(z) are Bessel functions of first and second kind of order 0. The through-

wall thermal stress components for the sinusoidal signal at both 0.5 Hz and 1 Hz are 

obtained from the following relationships, developed in section 4 above: 103, 104. 105 and 

106. 

For fatigue assessment (Appendix 2) of components subject to multiaxial stress 

states, the various codes and standards [1,10,24]  require the use of parameters such as 

“Effective stress intensity range” based on maximum shear stress yield criterion (Tresca) 

or maximum distortion energy yield criterion (von Mises). Based on the last mentioned 

one, the following additional scalar stress values are evaluated: 

- Von Mises equivalent stress: 

 

( ) ( ) ( )
2

222
zzrrzzrr

VM
σσσσσσσ θθθθ −+−+−

=      (111) 

 

- Effective equivalent stress intensity range (for using with Maximum Distortion 

Energy Yield Criterion in fatigue crack initiation): 
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The Framatome [23] fatigue analyses used the methodology from the RCC-MR code 

(Design and Construction Rules for Mechanical Components of FBR Nuclear Islands), and 

the plasticity effects were taken into account by means of Kυ  and Kε factors (respectively 

triaxiality and local plastic stress concentration effects): 

( ) rangeTOT S
E

KK ∆⋅
+

⋅−+=∆
3

)1(21 νε ευ       (113) 

 Some comments are necessary before discussing the comparison between various 

methods. The analytical solutions for the temperature distribution (Eq. 37’’) and the 

associated thermal stress components (Eqs. 103’, 104’, 105’, 106’) were implemented by 

means of specially written routines implemented in the MATLAB software package 

(MATLAB 7.3 version, with Symbolic Math Toolbox). A first task was to establish the 

number of roots needed from transcendental equation (20’’’) because the response of the 

solutions become more stabile as the number of roots is increased. We used one hundred 

roots and note that further increasing the number gives negligible improvement in the 

predictions. This means that an equal number of the evaluations of the above equations 

must be performed. Also, due to Bessel function properties, the accuracy of the analytical 

solutions for both the temperature and the stress response is strongly dependent on the 

size of the incremental steps in the “r” variable (radial distance through wall thickness). An 

investigation was made to optimize this and it was concluded that several hundred are 

required. Taking into account the complex mathematical series expansions used for the 

analytical solutions for temperature distribution and thermal stress components through 

the wall thickness of hollow cylinder, the solutions show some point-to-point variability and 

therefore we applied a smoothing technique based on the polynomial fitting of analytical 

distributions. This technique is widely applied [1,6,7,8] to facilitate the calculation of stress 

intensity factors based on the thermal stresses profile [9], which are used for crack growth 

assessment.  

5.1 Comparison with independent studies on predicted temperature and 
stress distribution  
 
 The temperature profile distributions through wall-thickness of hollow cylinder have 

been obtained using Eq. (37’’) for sinusoidal signal frequencies of f=0.5 Hz and f= 1Hz.   
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In Figure 2, for f=0.5 Hz, the temperature profiles are shown for different time: t1= 

0.5 sec and t2=1.5 sec (corresponding to instants of maximum deviation of the fluid 

temperature from the mean or reference value) and t3=1 sec and t4= 2 sec, (minimum, i.e. 

zero, deviation from the reference temperature). As can be observed, at the times of 

maximum deviation, the resulting temperature field decays significantly through of pipe 

wall thickness, reaching negligible values after 3 mm deep. The temperature distributions 

are identical with those obtained in the Korean study [16] (see Figure 4) and by 

Framatome [23] (see Figure 5). Figure 3 shows the time-dependence of temperature at 

selected locations through the pipe thickness. The thermal reponse of the material has a 

sinusoidal form but with a decreased amplitude corresponding to the depth in the pipe 

wall. The temperature distributions calculated by NNC (Figure 6) display the same 

characteristics , but in relation to 300 °C as reference temperature. 

Figures 7 and 8 show the through-thickness and time dependence of the 

temperature profiles for f=1 Hz. As expected, the penetration depth of the temperature 

fluctuations are smaller (about 2 cm) than for f=0.5 Hz. Again the results are in good 

agreement with temperature distributions obtained by Framatome for the f=1 Hz case 

(Figure 9). 

 Calculations of the hoop, axial and radial thermal stress components have been 

made for the same frequencies (f=0.5 Hz and f=1 Hz) as in the thermal analyses. The 

distribution of the thermal stresses over the thickness of the wall is analyzed for a period of 

2 sec in case of f=0.5 Hz and for  sec for f=1Hz. In first half of each time period the 

stresses are compressive at the inner surface, switching then to tensile for the second half.  

 Figure 10 shows the limiting hoop stress distributions for f=0.5 Hz. On inner surface 

the maximum values are: σθcomp= -169.5 MPa (in compression), σθtensile= 171.5MPa (in 

tension), giving a range value of ∆σθθ=341 MPa . For f=1 Hz (Figure 11) the respective 

values are: σθcomp = -160 MPa, σθtensile =160 MPa, ∆σθθ= 320MPa . As expected,  ∆σθθ (1 

Hz) < ∆σθθ (0.5Hz). A comparison could be made with the NNC calculation [23], see 

Figure 12, 

 For axial thermal stress component two evaluations were performed: for εzz= ε0 ( as 

used by NNC) and εzz= 0 (Framatome). In the first case (Figures 13 and 14) we obtain the 

following maximum values: σzcomp= -137 MPa, σztensile= 156MPa , ∆σzz =293 MPa for f=0.5 

Hz and σzcomp= -137MPa, σztensile= 151 MPa , ∆σzz =288 MPa for f=1 Hz. In the εzz= 0 case 

the results are: σzcomp= -160MPa, σztensile= 167MPa, ∆σzz=327 MPa and σzcomp= -153 MPa, 

σztensile= 157 MPa, ∆σzz = 310 MPa  for f =0.5Hz and f=1 Hz respectively (Figures 15 and 



JRC Technical Note EUR 22802 EN (2007)    31 
 

16). Using the Framatome predictions for f=0.5Hz (Figures 17 and 18), a direct 

comparison with the results from the present work is made in Figure 19 (εzz= 0). For f=1 Hz 

the comparison used the corresponding Framatome results given in Figures 20 and 21, 

and Figure 22 shows the two sets of axial thermal stress predictions for εzz= 0. The 

agreement is considered good for f=0.5Hz and very good at  f=1Hz. 

 No predictions of radial thermal stress are reported in the NCC or Framatome 

studies. In any case the present work for f=0.5 Hz and f=1Hz show that the values are too 

small to have an impact on thermal fatigue assessment. 

 The von Mises equivalent stress profiles are displayed in Figures 25 and 26 for 

f=0.5 Hz in the εzz= ε0  and εzz= 0 cases respectively. Two instants of time were chosen: 

t=0.5 sec (for maximum values) and t=4 sec (for minimum values). Comparing the 

Framatome calculations (Figure 27) and those of the present work, very good agreement 

is obtained, as shown in Figure 28. A similar comparison for f=1 Hz was performed based 

on Figures 29 and 30 (present work) and Figure 31 (Framatome calculations). The von 

Mises equivalent stress profiles are in very closely agreement as can be seen in Figure 32. 

From the Korean study [16] a stress intensity profile (Tresca definition) is shown in Figure 

33, with a similar profile through the wall thickness. 

 The effective equivalent stress intensity range profile distribution has been 

evaluated for both frequencies and the εzz= ε0 and εzz= 0 cases. For f=0.5 Hz (Figures 34 

and 35) the results for ∆Srange.max are 307 and 328 MPa, respectively. The results for f=1 

Hz are displayed in Figures 36 and 37 and the corresponding maximum ∆Srange.max values 

are 275.7 and 293.4 MPa. These results confirm the frequency f=0.5 Hz is more critical 

than f=1Hz from thermal fatigue point of view. Tables 1 and 2 summarise the main results 

from the present work and from other reported analyses of this benchmark.  

 
 Table 1 Results for thermal stress components at f=0.5 Hz 
Thermal stress components Present work Framatome[23] NNC[23] Ref. [16] 

Hoop stress range (MPa) ∆σθθ= 341 ∆σθθ= 310 - 186.6 

Axial stress range (MPa) 

εzz= ε0 

εzz=0 

 

∆σzz= 293 

∆σzz= 327 

 

- 

∆σθθ= 310 

 

- 

- 

 

211  

Radial stress range (MPa) ∆σrr= 1 - - 42.6 

Von Mises equivalent stress (MPa) 

εzz= ε0 

εzz= 0 

 

σVMmax=152 

σVMmax=163 

 

- 

- σVMmax=154 

 

- 

- 
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Effective stress intensity range (MPa) 

εzz= ε0 

εzz= 0 

 

∆Srangemax=307 

∆Srangemax=328 

 

- 

∆Srangemax=310 

 

- 

∆Srangemax=315 

 

 

292.7 

 
Table 2 Results for thermal stress components at f=1 Hz 

Thermal stress components Present work Framatome[23] NNC[23] Ref. [16] 

Hoop stress range (MPa) ∆σθθ= 320 - - - 

Axial stress range (MPa) 

εzz= ε0 

εzz=0 

 

∆σzz= 288 

∆σzz= 310 

 

- 

- ∆σzz= 280 

 

- 

- 

 

- 

Radial stress range (MPa) ∆σrr= 0.8 - - - 

Von Mises equivalent stress (MPa) 

εzz= ε0 

εzz= 0 

 

σVMmax=141 

σVMmax=153 

 

- 

- σVMmax=154 

 

- 

- 

 

Effective stress intensity range (MPa) 

εzz= ε0 

εzz= 0 

 

∆Srangemax=275.7 

∆Srangemax=293.4 

 

- 

∆Srangemax=320 

 

- 

- 

 

 

- 

 

Overall the comparisons have demonstrated good agreement between predictions 

from the analytical solutions for thermal stresses developed in the present work with those 

obtained from finite element models in refs. [16] and [23]. 

5.2 Comparison with JRC finite element simulations 
 

The prediction of analytical solutions for thermal response and associated thermal 

stresses developed in the pipe were additionally compared with finite element analyses 

results performed in a simple elastic model. This was intended to provide a basis for future 

benchmarking of different scenarios and for assessing the relative merits of the different 

approaches. The commercial code ABAQUS was used to perform a standard un-coupled 

finite element calculation i.e. first the thermal analysis of the sinusoidal thermal load and 

second a mechanical analysis, when the resulting temperature fields are applied to 

determine the elastic thermal stresses. 

The finite element model used axi-symmetric 8-nodes elements (Figure 38 a). 

Axisymmetry was assumed and the length of the cylinder segment was chosen to more 

than twice the wall thickness. Auxiliary software routines were used to automatically 

generate finite element meshes with a progressive mesh refinement towards the inner pipe 

surface to capture the large strain variations induced by the thermal loads.  
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Two different boundary conditions were considered:  

- top edge of the sample free to expand in the axial direction, Figure 38b; 

- top edge of the sample fixed in the axial direction, Figure 38c. 

N.B. The model is restrained in the radial direction at the top outer edge, but this has 

virtually no influence on stress distributions in the bottom radial plane, which are used for 

comparison with the analytical solutions.  The material properties used for elastic analyses 

are mentioned in previous chapter. 

The characteristic thermal sinusoidal signals applied during this analyse were similar to 

those used in the analytical calculation. The reference temperature of the sample is 

T0=385˚C, the temperature fluctuation range is ∆T=85˚C and the frequencies considered 

are ν=0.5Hz and ν=1Hz. 

The thermal sinusoidal loads have been applied at time zero at the inner wall of the 

sample uniformly heated at 385˚C for t<0sec. The load was applied for 9 sec and the 

temperature and stress/strain variations across the wall thickness in function of time have 

been monitored.  

To apply the sinusoidal load in the FE analysis the easiest option was to use the 

standard Fourier series routine by means of the *AMPLITUDE keyword and its periodic 

option. The amplitude, Amp, defined in this way results in: 

 

 ( )[ ]∑
=

−+−+=
N

n
nn ttnBttnAAAmp

1
000 )(sincos ϖϖ             for   t ≥ t0  (114) 

 
     0AAmp =                           for  t < t0       (115) 
 

where N is the number of terms in the Fourier series, ω is the radial frequency in 

rad/sec, t0 is the starting time, A0 is the constant term in the Fourier series, An=1,2…are the 

first, second, etc. coefficients of the cosine terms and Bn=1,2…are the first, second, etc. 

coefficients of the sine terms. In our case: N=1, A0=T0, A1=0, B1=42.5 ˚C. 

Plots of the temperature field at several instants of time, during of temperature wave  

propagation across the wall thickness are shown in Figure 39 for f=0.5 Hz and Figure 40 

for f=1 Hz. As can be seen the temperature wave front is non-homogenous due to the 

rapid fluctuation of the thermal load at the inner boundary of model.   

Figures 41 and 42 show the von Mises iso-stress plots at a frequency f= 1Hz 

corresponding to the point-to-point temperature fluctuations in the body of pipe, for free 
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and fixed boundary conditions respectively. The visible distortion (strongly magnified for 

better visualization) in the latter is due to the radial constraint at the top of the model. 

  Before graphically comparing the results from analytical and finite element analyses 

it is important to mention that in the following, the instants of time for calculating the 

temperature and corresponding elastic stress components have been chosen to comply 

with the time steps used in the FE analysis.  

 The predicted temperature profiles across the wall-thickness are shown in Figures 

43 and 44 for frequencies of f=0.5 Hz and f= 1Hz. The analytical predictions fit quite well to 

those from the FEA at the same instants of time. 

 Figures 45 and 46 show the maximum and minimum hoop thermal stresses for both 

frequencies. These values correspond  to a fixed edge boundary condition. In the case of 

axial stress the comparison has been made for both the boundary condition cases: fixed 

and free axial strains. Figures 47 to 50 confirm the good agreement between the predicted 

and FE axial stress values across the wall thickness of the pipe for both the boundary 

conditions. The von Mises equivalent stress comparisons are depicted in Figures 51-54. 

Even though the FE stress gradients  for the free axial displacement boundary condition 

(εzz=ε0) are a bit higher for the analytical solutions, still the maximum values very close to 

those obtained by FEA. For the fixed boundary condition both the axial stress maximum 

values and the gradients are in good agreement with the FE results.  The effective 

equivalent stress intensity range is a very important parameter in relation to the fatigue 

curves used to obtain the cumulative usage factors for fatigue crack initiation assessment. 

The agreement between analytical and FEA calculations is rather good for maximum 

values as well as for the stress gradient through the wall-thickness, can be seen in Figures 

55-58. Table 3 summarizes the results of the above comparisons. The agreement between 

analytical and FEA predictions provides verification of the analytical model developed 

during this work. 

 
Table 3 Comparison between analytical and FEA calculation for thermal stresses due to 
sinusoidal thermal loading  
 f=0.5 Hz f= 1 Hz 
Stress component Analytical 

MPa 
FEA 
MPa 

Analytical 
MPa 

FEA 
MPa 

Hoop stress 
 

300 280 325 308 

Axial  stress 
εzz=0 
εzz=ε0 

 
290 
265 

 
285 
240 

 
310 
312 

 
312 
313 
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Von Mises stress 
εzz=0 
εzz=ε0 

 
163 
135 

 
159 
138 

 
153 
142 

 
156 
141 

∆Srange 
εzz=0 
εzz=ε0 

 
280 
263 

 
279 
263 

 
304 
283 

 
307 
288 

 

6. Conclusions 
 

Analytical solutions with several new features have been developed for temperature 

and elastic thermal stress distributions for a hollow circular cylinder under sinusoidal 

thermal transient loading at the inner surface. The approach uses a finite Hankel transform 

in a general form for any transient thermal loading for a hollow cylinder. Using the 

properties of Bessel functions, an analytical solution for temperature distribution through 

wall thickness was derived for a special case of sinusoidal transient thermal loading on 

inner pipe surface. The solutions for associated thermal stress components were 

developed by means of the displacement technique. To the authors’ knowledge, this is first 

time a complete set of such analytical expressions has been openly published.  

The solution method has been implemented using the MATLAB software package.  

Several practical issues have been resolved, for instance it is found that typically 100 roots 

of the transcendental equation are required to obtain a stable response and that the 

number of radial steps through the wall thickness needs to be of the order of many 

hundred, since the accuracy for both temperature and stresses is strong dependent on this 

variable 

The predictions made using the solution method have been successfully 

benchmarked by comparison with results of independent studies on a FBR secondary 

circuit tee-junction, which used a combination of finite element methods for temperature 

distributions and analytical methods for stresses. 

The analytical solution predictions for the FBR benchmark were additionally checked 

against results of a new finite element analysis with commercial software ABAQUS on 

elastic 2-D axisymmetric model. 

The new analytic solution scheme can be used to support several elements of the 

proposed European Thermal Fatigue Procedure for high cycle fatigue damage 

assessment of mixing tees, including:  

• level 2 – for analyses assuming a sinusoidal temperature fluctuation as 

boundary condition on inner surface of the pipe; 
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• level 3 – for load spectrum analysis based on one-dimension temperature 

and stress evaluations at each measured location; 

• level 4 – providing through-thickness stress profiles for thermal fatigue crack 

growth assessment. 

Further work will address the integration of the solution scheme into an overall 

process for determining thermal fatigue usage factors, considering also aspects as 

plasticity effects and selection of fatigue life curves.  
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Figure 1. Geometrical characteristics of the components in the tee junction area 
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Figure 2 Temperature profile distribution  through wall-thickness of hollow cylinder 

at various moments of time, f=0.5 Hz 
NB: ri=0.247 m, inner surface of pipe; re=0.247 m, outer surface of pipe 
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Figure 3 Time-dependence of temperature in some locations of wall-thickness 

for frequency f=0.5 Hz 
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Figure 4. Temperature profile along the thickness direction for sinusoidal loading, 
f= 0.5 Hz [16] 

 

 
 

Figure 5. Framatome calculations: Temperature profile for f= 0.5 Hz sinusoidal signal 
[23] 
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Figure 6. NNC calculations: Typical temperature results using filtered AEA TC01A data -
Temperature variation through thickness over time period 20.2 s to 20.9 sec [23] 
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Figure 7. Temperature profile distribution  through wall-thickness of 
hollow cylinder at various moments of time for frequency f=1 Hz 
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Figure 8. Time-dependence of temperature in some locations of wall-thickness 
for frequency f=1 Hz 

 

 
Figure 9. Framatome calculations: Temperature profile for f= 1 Hz sinusoidal signal 

[23] 
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Figure 10. The hoop stress profile distributions through wall thickness of hollow 
cylinder for instants with extreme values, for f=0.5 Hz 

(σcomp= -169.5 MPa, σtensile= 171.5MPa, ∆σθθ=341 MPa ) 
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Figure 11. The hoop stress profile distribution through wall thickness of hollow cylinder for instants 
with extreme values, for f=1 Hz (σcomp= -160 MPa, σtensile=160 MPa, ∆σθθ= 320MPa ) 
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Figure 12. NNC calculations: Axial and hoop stress variation through thickness over 
time period 20.2 to 20.85 sec for filtered AEA data at position TC01A [23] 
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Figure 13. The axial stress profile distributions (εzz=ε0 ) through wall thickness of 
hollow cylinder for instants with minimum and maximum values, for f=0.5 Hz 

(σcomp= -137 MPa, σtensile= 156MPa , ∆σzz =293 MPa ) 
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Figure 14. The axial stress profile distribution (εzz=ε0 ) through wall thickness of hollow cylinder 
for instants with minimum and maximum values, for f=1 Hz (σcomp= -137MPa, σtensile= 151 MPa , 

∆σzz =288 MPa  ) 
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Figure 15. The axial stress profile distributions (εzz=0) through wall thickness of a hollow cylinder 
for instants with minimum and maximum values, for f=0.5 Hz (σcomp= -160MPa, σtensile= 167MPa, 

∆σzz=327 MPa ) 
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Figure 16. The axial stress profile distributions (εzz=0 ) through wall thickness of 

hollow cylinder for instants with minimum and maximum values, for f=1 Hz 
(σcomp=  -153 MPa, σtensile= 157 MPa , ∆σzz = 310 MPa  ) 

 

 
 

Figure 17 Framatome calculations: Axial stress profile, f=0.5 KHz sinusoidal signal (εzz=0) [23] 
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Figure 18 Framatome calculations: Axial stress profile, f=0.5 KHz sinusoidal signal (εzz=0) [23] 
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Figure 19. Comparison between predictions from present work and Framatome 
calculations [23] for axial stress in case f=0.5 Hz and  εzz=0 



JRC Technical Note EUR 22802 EN (2007)    51 
 

 
 

Figure 20 Framatome calculations: Axial stress profile, f=1 Hz sinusoidal signal (εzz=0) [23] 
 

 
 

Figure 21 Framatome calculations: Axial stress profile, f=1 Hz sinusoidal signal (εzz=0)[23] 
 
 



JRC Technical Note EUR 22802 EN (2007)    52 
 

0.247 0.248 0.249 0.25 0.251 0.252 0.253 0.254
-200

-150

-100

-50

0

50

100

150

200

Radial distance m

A
xi

al
 s

tre
ss

 M
P

a

The axial stress profiles, f=1 Hz, epsZ=0

 

 
0.25 sec
0.75 sec
+ Framatome
+ Framatome

 
Figure 22 Comparison between predictions from present work and Framatome 

calculations [23] for axial stress in case f=1 Hz and  εzz=0 
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Figure 23. The radial stress profile distributions  through wall thickness of 

hollow cylinder for instants with minimum and maximum values, for f=0.5 Hz 
(σmin= -0.5MPa, σmax= 0.5MPa, ∆σrr=1 MPa ) 
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Figure 24. The radial stress profile distributions  through wall thickness of 
hollow cylinder for instants with minimum and maximum values, for f= Hz 

(σmin= -0.42 MPa, σmax= 0.38MPa, ∆σrr=0.8 MPa ) 
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Figure 25. The Von Mises equivalent stress profile distributions (εzz= ε0) through 

wall thickness of hollow cylinder for f=0.5 Hz σV.M.max= 152 MPa,)
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Figure 26. The Von Mises equivalent stress profile distribution (εzz= 0) through 

wall thickness of hollow cylinder for f=0.5 Hz, σV.M.max=  163 MPa 
 

 
Figure 27 Framatome calculations [23]: Von Mises profile 0.5 Hz 

sinusoidal signal (εzz=0) 
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Figure 28 Comparison between predictions from present work and Framatome 

calculations for Von Mises equivalent stress profile, f=0.5 Hz,  εzz=0 
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Figure 29. The Von Mises equivalent stress profiles distribution (εzz= ε0) through 

wall thickness of hollow cylinder, f=1 Hz, σV.M.max= 141 MPa 
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Figure 30. The Von Mises equivalent stress profiles distribution (εzz= 0) through 

wall thickness of hollow cylinder for f=1 Hz, σV.M.max=  152 MPa 
 

 
Figure 31 Framatome calculations [23]: Von Mises profile 1 Hz sinusoidal signal (εzz=0) 
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Figure  32. Comparison between profile predictions from present work and  Framatome calculations 

[23] for Von Mises equivalent stress, f=1 Hz,  εzz=0 
 
 
 

 
Figure  33 Stress intensity profile (Tresca) along thickness=0.5 Hz [16] 
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Figure 34. The effective equivalent stress intensity range profile distribution 

(εzz= ε0) through wall thickness of hollow cylinder for f=0.5 Hz, ∆Srange.max=  307 MPa 
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Figure 35. The effective equivalent stress intensity range profile distribution 

(εzz=0) through wall thickness of hollow cylinder for f=0.5 Hz, ∆Srange.max=  328 MPa 
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Figure 36. The effective equivalent stress intensity range profile distribution (εzz= ε0) 

through wall thickness of hollow cylinder for f=1 Hz, ∆Srange.max=  275.7 MPa 
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Figure 37. The effective stress intensity range stress profile distribution (εzz= 0) 
through wall thickness of hollow cylinder for f=1 Hz, ∆Srange.max= 293.4  MPa
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a) 
 

 
b)      c) 

Figure 38.  a) Abaqus model mesh; b) sample free to expand in the vertical direction (εzz= ε0); 
c) sample fixed in the vertical direction (εzz= 0). 
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Figure 39. Evolution of the temperature across the wall thickness for ν=0.5Hz (t=0 sec; 0.55 

sec; 1.052 sec; 2.257 sec; 9 sec).
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Figure 40. Evolution of the temperature across the wall thickness for ν=1Hz 

(t=0 sec; 0.17 sec; 1.166 sec; 1.583 sec; 4.09 sec; 6.55 sec). 
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Figure 41. Evolution of the von Mises stress across the wall thickness for ν=1Hz and sample 
free to expand in the axial direction (εzz= ε0) (t=0.002 sec; 0.114 sec; 1.313 sec; 5.313 sec; 

6.813 sec; 9 sec) 
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Figure 42. Evolution of the von Mises stress across the wall thickness for ν=1Hz sample fixed 
in the axial direction (εzz= 0),( t=0.002 sec; 0.114 sec; 1.313 sec; 6.313 sec) 
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Figure 43. Comparison of temperature profiles predictions: analytical versus FEA, 

f=0.5 Hz 
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Figure 44. Comparison of temperature profiles predictions: analytical versus FEA, 

f=1.0 Hz 
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Figure 45. Comparison of the hoop stress profiles: analytical versus FEA, 

f=0.5 Hz, εzz=0 
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Figure 46. Comparison of the hoop stress profiles: analytical versus FEA, 

f=1.0 Hz, εzz=0 
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Figure 47. Comparison of the axial stress profiles: analytical versus FEA, 

f=0.5 Hz, εzz=0 
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Figure 48. Comparison of the axial stress profiles: analytical versus FEA, 

f=1.0 Hz, εzz=0 
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Figure 49. Comparison of the axial stress profiles: analytical versus FEA, 

f=0.5 Hz, εzz=ε0 
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Figure 50 . Comparison of the axial stress profiles: analytical versus FEA, 

f=1.0 Hz, εzz=ε0 
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Figure 51. Comparison of the von Mises equivalent stress profiles: analytical versus FEA, 

f=0.5 Hz, εzz =0 
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Figure 52. Comparison of the von Mises equivalent stress profiles: analytical versus FEA, 

f=0.5 Hz, εzz =ε0 
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Figure 53. Comparison of the von Mises equivalent stress profiles: analytical versus FEA, 

f=1.0 Hz, εzz=0 
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Figure 54. Comparison of the von Mises equivalent stress profiles: analytical versus FEA, 

f=1.0 Hz, εzz=ε0 
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Figure 55. Comparison of the effective equivalent stress intensity range between 

instants t1=0.58 sec and t2=1.3 sec : analytical versus FEA f=0.5 Hz, εzz=0 
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Figure 56. Comparison of the effective equivalent stress intensity range between 

instants t1=0.58 sec and t2=1.3 sec: analytical versus FEA f=0.5 Hz, εzz=ε0 
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Figure 57. Comparison of the effective equivalent stress intensity range between 

instants t1=0.26 sec and t2=1.8 sec: analytical versus FEA f=1.0 Hz, εzz=0 
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Figure 58. Comparison of the effective equivalent stress intensity range between 

instants t1=0.26 sec and t2=1.8 sec: analytical versus FEA f=1.0 Hz, εzz=ε0 
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Appendix 1: Some properties of Bessel functions 
 

The differential equation 
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is a Bessel’s differential equation of order υ. The first solution is expressed by 
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and is called a Bessel function of the first kind of order υ, where Γ is the gamma 

function defined by 

 

∫
∞

−− ⋅=Γ
0

1)( dttex xt
  for x>0       (A1.3) 

The second solution of the Bessel equation which is available for all values of υ is 

expressed by 

 

)sin(
)()cos()()(

υπ
υπ υυ

υ
zJzJzY −−⋅

=       (A1.4) 

and is called the Bessel function of the second kind of order υ. If υ is not an integer, 

Jυ(z) may be used instead of Yυ(z)  as a second solution. Functions Jυ(z)  and  J-υ(z) are 

independent solutions of Eq. (A1.1). When υ is an integer n,  J-υ(z) is dependent on Jυ(z)   

)()1()( zJzJ n
n

n −−=         (A1.5) 

The complete solution of Eq. (A1.1) is 

 

)()()( zYBzJAzf υυ ⋅+⋅=   for all values of υ   (A1.6) 

)()()( zYBzJAzf nn ⋅+⋅=          for an integer  n   (A1.7) 

)()()( zJBzJAzf υυ −⋅+⋅=   for non-integer υ     (A1.8) 

 

Some formulas of the Bessel functions are listed as follows 
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The above formulas, except for the last, are satisfied  by Yυ(z) instead Jυ(z).  
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Appendix 2: Fatigue Evaluation Procedure Based on Elasticity 
Calculated Stress Results (API 579/2000) 
 
 A quantity known as the “equivalent intensity of combined stress” or “stress 

intensity” is computed at certain locations on the component or structure of interest. The 

stress intensity at a point is a measure of stress, calculated from stress components 

utilizing a yield criterion, which can be used for comparison with the mechanical strength 

properties of the material obtained in tests under uniaxial load. 

 The “Maximum Distortion Energy Yield Criterion” may be used to establish stress 

intensity. In this case the stress intensity is equal to the von Mises equivalent stress: 

( ) ( ) ( )
2

2
13

2
32

2
21 σσσσσσσ −+−+−

== vonMisesS      (A2.1) 

 

Although this yield criterion is more complicated to apply when manual calculations 

are performed, it is the most common criterion for yield used in finite element analysis, and 

is generally recognized to give more accurate results than the maximum shear stress yield 

criterion. 

Fatigue Evaluation Procedure Based on Elasticity Calculated Stress Results 

 A fatigue evaluation should be performed if the component is subject to cyclic 

operation. The evaluation for fatigue is made on the basis of the number of applied cycles 

of a stress or strain range at a point in the component. The allowable number of cycles 

should be adequate for the specified duration of operation to determine the suitability for 

continued operation. Fatigue curves are typically presented in two forms: fatigue curves 

that are based on smooth bar test specimens and fatigue curves that are based on the test 

specimens which include weld details. The stresses and strains produced by any load or 

thermal condition which does not vary during the cycle need not be considered in a fatigue 

analysis if the fatigue curves utilized in the evaluation are adjusted for mean stresses and 

strains. 

 An effective total stress intensity amplitude is used to evaluate the fatigue damage 

for results obtained from a linear elastic stress analysis. The effective peak stress intensity 

amplitude is defined as one-half the effective total stress intensity range, calculated for 

each cycle described in the loading history. The procedure can be used for the general 

case where the principal stress directions change during the loading cycle. 

 The steps required for thermal fatigue crack initiation are described in the following: 
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Step1. -Determine a load history based on the past operation and future planned 

operation. The load history should include all significant operating loads and events which 

the component will be subjected to. 

Step 2. – For a location in the component under evaluation, compute the stress 

components σij and the equivalent stress for each point in the load histogram. Use this 

information to create an effective stress load histogram.  

Step 3. – Determine the cyclic stress range based on the effective stress histogram 

developed in Step 2 using the cycle counting  method in ASME E 1049 (rainflow method). 

Step 4. Determine the stress tensor at the start and end points for the “kth” cycle in 

the effective stress histogram counted in Step 3. Using these data, determine the stress 

range and designate this quantity as ∆ σij
k. 

Step 5. – Compute an effective stress intensity range for the “kth” cycle using the 

“Maximum Distortion Energy Yield Criterion”. Using the change in stress components 

determined in Step 4, compute the effective equivalent stress intensity range for the 

cycle:  
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=∆ k
rangeS  (A2.2) 

Step 6. – Determine the effective alternating stress intensity for the “kth” cycle 
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 Sm – allowable stress 
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where 
k
eK  = fatigue knock-down factor for the “kth” cycle (from table with applicability and 

limitations) 
k
nS∆  = range of primary plus secondary stress intensity for the “kth” cycle 
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m = material constant 

n = material constant 

 
Step 7. – Determine the permissible number of cycles, Nk for the alternating stress 

intensity computed in Step 6. Fatigue curves are contained in ASME B&PV Code, Section 

III. 

Step 8. – Determine the fatigue damage for the “kth” cycle 

 

k
k
f N

D 1
=           (A2.7) 

Step 9. – Repeat Steps 4 through 8 for all stress ranges identified in the cycle 

counting process in Step 3. 

Step 10. Compute the accumulated fatigue damage using the following equation. 

The component is suitable for continued operation if this equation is satisfied. The 

permissible damage fraction, Df, is usually taken as 1.0 unless an alternative value is 

specified by the Engineer performing the assessment 

 

 ∑ ≤ f
k
f DD           (A2.8) 

Step 11. – Repeat Steps 2 through 10 for each point in the component subject to a 

fatigue evaluation. 
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Abstract 
Analytical solutions with several new features have been developed for temperature and elastic thermal stress 
distributions for a hollow circular cylinder under sinusoidal thermal transient loading at the inner surface.  
The approach uses a finite Hankel transform in a general form for any transient thermal loading for a hollow 
cylinder. Using the properties of Bessel functions, an analytical solution for temperature distribution through wall 
thickness was derived for a special case of sinusoidal transient thermal loading on inner pipe surface.  
The solutions for associated thermal stress components were developed by means of the displacement 
technique. To the authors’ knowledge, this is first time a complete set of such analytical expressions has been 
openly published.  
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