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ABSTRACT

The paper analyses a model of a neural net proposed by Hinton et 
al (1985). They have added noise to a Hopfield net and have called it 
Boltzm ann m achine (BM) drawing an analogy with the behaviour of 
physical systems with noises. The concept of sim u la ted  ann ealin g  is 
analysed. The experiment aimed at testing the state of thermal 
equilibrium for a Boltzmann net with three neurons, specified threshold 
values and weights at two different temperatures, T=1 and T=0,25, is 
described.
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1. INTRODUCTION

A classic Boltzmann machine is treated as a neural net defined in 
(Ackley, Hinton and Sejnowski, 1985). The present paper illustrates 
concepts of s im u la ted  a n n ea lin g  and therm al equ ilibrium  by an example
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of the partial net. The technique of transition probabilities computation at 
different temperatures is described that makes use of Markov chains.

2. BOLTZMANN MACHINES AND HOPFIELD NETS

Two papers by Hopfield (1982, 1984) were o f crucial importance 
in pointing out the connections between brain model and physical 
systems. Ackley, Hinton and Sejnowski (1985) proposed a neural model 
called B oltzm an n  m achine that was a cross between a Hopfield network 
and the computation technique called s im u la ted  an n ea lin g  which was 
described by Kirkpatrick, Gelatt and Vecchi (1983).

To understand Hinton's idea, one should imagine the 
interpretation of an energy landscape (see Fig.l). Each state of the system 
could be associated with a point in the energy landscape where there 
might exist points with either local minimum (Ej) and / or global 
minimum (E2).

For the ball to be able to transit from state Ej to state E2, 
changes in the ball energy state are necessary. In the intuitive sense, this 
is an activation function or the concept of noise proposed by Hinton. The 
problem is how to find the global minimum of the function. Hopfield 
networks are efficient for finding local minimums, however, they do not 
find global ones.

In real world physical systems, with energy landscape there is 
associated the concept of temperature. In 19th century, Austrian physicist 
Ludvig Boltzmann showed that the energy of gas molecules depends on

Fig.l. A noisy ball finds the lowest hill.

8 2

Environments. Technology. Resources 1997

ISBN 9984-585-36-0



the temperature. If a system is able to easily transit from one state to 
another, the most probable configuration of its being in any state could be 
computed as follows:

pi £ L ' _  e-(E\-E2)/T ^
Pei

Hinton therefore used the name of Boltzmann to convey the idea 
that the energy of the state of a neural net could be changed depending on 
the temperature. At t=0 the net behaves similarly as the Hopfield model. 
Hinton has proposed a network operation mode that could find the global 
minimum, which is called s im u la ted  annealing, that is the gradual 
decrease of the temperature in the network.

3. THE ARCHITECTURE OF BM

In what follows, we will use denotations and a net with three nodes 
(see Fig. 2). (Alexander and Morton, 1991):

For the above net, the following holds:

V2 T23=T^0.5 v 3

Fig.2. The net nodes.

Vj=T, if Y tuVj >U , and 

V pO .if i^ jV j  <U , (2)
i*j

where Vj stands for the firing state 
of the neuron (VpO when not 
firing and Vj=T when firing); Uj is 
the threshold of the neuron and 
I  T j V j - U  (3)
>*j

is the activation of the neuron, Tjj
being the weight liking neuron i to 
neuron j.
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The effect of temperature might be shown as alternation of probabilities 
(see Fig.3):

(a) threshold function (b) BFPF (c) BFPF

Fig.3. The effect of temperature on firing probability.

Hinton has shown that Boltzmann function correctly characterizes 
this effect:

P(D =
1

We shall refer to this as the Boltzmann firing probability function 
(BFPF). This function has been plotted in Fig.4 for temperatures of 0,5 
and 0,25 (in arbitrary units):

Fig.4. The S-shaped BFPF.

To characterize a BM, the following is required:
(1) Compute activation function by formula (3) for each state V,V2V3 :
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For example: V 1V2 V3  = 0 1 0 .
A1=Ti 2V2+ T 1 3V 3 - Uj = -0,5 + 0,1 = -0,4 
A2=Ti2V 1 + T2 3 V ? - U2  = 0 + 0 + 0,2 = 0,2 
A3 = T 13 V j + T2 3 V2  - U3  = 0,5 - 0,7 = -0,2.

(2 ) Compute probability for each neuron by formula (4) at various 
temperatures [p (0 ) = 1 - p ( 1 )].

.-'Neuipm?! \ ^ T # ( U 5 " | | >  ■, T = 1 .0
niim B ferr P(0)

1. | 0 .17  | 0 .83  II 0.4 0 .6
2 . 0 .6 9  0.31 0 .55 0 .4 5
3. 0 .3  1 0 .7  1 0 .4 5 0 .5 5

(3) By using values from point (2), transition probabilities should be 
computed. In general case, if a network consists of N elements, a neuron 
might remain in the same state or to transit to N other states.
From state 010 the following transitions could be obtained:

/  ! \
— >010

1i' '  T 'k.
110 000 Oil

Transition probabilities are computed as follows:

[ W l ) , + ( l - W 0 ) y]/3  (5)

Determine probabilities for T=T:
010-^  110- p(l)! = 0,13
010 -* 000 -p(0 ) 2  = 0,15 
010 O i l - p ( l ) 3  = 0,15 
010 -» 010 - p = 0,57.

Application of this formula for state 010 fo r each neuron at 
different temperatures is illustrated in Fig. 5.
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(4) On obtaining thus transition diagrams for all the states, one 
could then draw the BM state diagram for each temperature. In practice, 
however, this is a labour-intensive process, that is why another technique 
is used. A chain of events S0, S l5 S2,..., Sm_! is given and a system is 
known for which the events follow each other with known probabilities 
p(i, j). The system might be represented as a matrix mxm. This techique is 
referred to as Markov chain. It enables one to determine the probability of 
system's being in any state and at any time. The results are given in 
Table 1 where the number of state is set by a binary number, e.g. S2=010. 
The shaded column shows the state used for illustration.

(a) Boltzm ann behaviour (T=T.O) (b) T=0.25

Fig.5. Transition probabilities at different temperatures.

Table 1

Next

Stat
e

I  CURRENT STArjs

1 S° '• T s6- W ( :
Sos,s2
S3
S<
S5s6s7

0.55 0.31 0 0.J3 0 0 0
0.02 0.08 0.02 0 0.04 0 0
0.23 0 0.23 0 0 0.27 0
0 0.31 0.58 0 0 0 0.17
0.2 0 0 0.71 0.26 0.26 0
0 0.3 0 0.08 0.47 0 0.1
0 0 0 0.08 0 0.24 0.1
0 0 0.17 6 0.23 0.23 0.63

Markov chain for T=0,25
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N e x t C U R R E N T S T A T E

St at
e

, s : o , : . s , ■ ' S 2 ; ...:. s 3, ■ •.S " Ss- Sf, S 7

S„ 0 . 5 3 0 . 2 2 0  IS 0 0 . 1 6 0 0 0

Si 0 . 1 1 0 . 3 5 0 o . n 0 0 . 1 3 0 0

S , 0 . 1 8 . 0 ■ 0 . 5 7 0 . 1 8 ■ 0 0  ■ 0 . 2 (■)

s 3 0 0 . 2 2 0  15 0 . 5 4 0 0 0 0 . 1 7

S 4 0 . 1 8 0 '■> 0 0 . 5 6 0 . 1 9 0 . 2 0

Si 0 0 . 2 1 .0' 0 0 . 1 4 0 . 5  . ■0 0 . 1 5

S(, 0 0 0 , 1 3 0 0 . 1 4 0 , 0 . 4 2 0 . 1 5

s 7 0 0 <) 0 . 1 7 0 0 . 1 8 0 . 1 8 0 . 5 3

Markov chain for T=1,0

It is known that the probability of being in state Sj at time t is Pi(t), so as 
the probability of being in some state j at time t+1, Pj(t+1) may be worked 
out by adding up all the probabilities of entering that state, taking into 
account the probability o f being in the previous state:
Pj(t+ 1)=2 Pj(t) p(i, j) (6 )
For example, say the probability of being in any state at t=0 is 0,125 (that 
is 1/8). The probability o f the system being in state S3  will be as follows: 
P3 ( l)  = Po.(0 )p(0 ,3 )+P1(0 )p(l,3 )+P2 (0 )p(2 ,3 )+P3 (0 )p(3 ,3 )+P4 (0 )p(4 ,3 )+ 
+P5 (0)p(5,3)+P6 (0)p(6,3)+P7 (0)p(7,3) =
= 0,125*0+0,125*0,22+0,125*0,15+0,125*0,54+0,125*0+0,125*0+ 
+0,125*0+0,125*0,17 = 0,125(0,22+0,15+0,54+0,17) = 0,135.

4. STIMULATED ANNEALING

By using the possibility to compute network nodes in any state and 
at any time, one could observe what happens if the temperature of the 
network is changed. Let us turn to formula (6 ) and compute probabilities 
of being in any network state at time t using a Markov chain for T=1 and 
T=0,25. The results are given in Table 2.

Starting with equal probabilities (i.e. 1/8), the system then reaches 
t=7 at the temperature equal to 1. By testing experimentally the next 
steps, one can conclude that the probabilities are not actually changed at 
this temperature. According to Hinton, this effect is called therm al 
equilibrium . The probabilities will start changing when the temperature is 
changed. From Table 2 it is seen that the temperature is decreased
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up to 0,25. Thermal equilibrium is reached again at t=15. If  we transit to 
T=0 at this point then a final state of the network could be obtained:

T. Time P(0) P(l)  P(2) P(3) P(4) P(5) P(6 ) P(7)
0 28 0 0 0,494 0 0,313 0 0 0,193

The network is in three states what gives the local minimum of the 
system. At the end o f the annealing process the system is seen to finish in 
the stable states of the net with a probability related to their energy. If the 
initial conditions o f point (2 ) are satisfied, then it can easily be seen that 
state S2  with the least energy, 0 , 1  , has the highest final probability, 
0,494, state S4  with the energy 0,1 at the beginning has the final 
probability 0,313 and, at last, state S7  has the lowest final probability. For 
all the other states, the final probabilities are equal to zero.

The aim of Boltzmann approximation was to prove that the final 
probabilities in partial state greatly depend on the energy of the state. 5

Table 2
T. Time P(0) P(l) P(2) P(3) P(4) P(5) P(6) P(7)
1.00 1 0.13250 0.08750 0.14125 0.13500 0.14125 0.12500 0.10500 0.13250
1.00 2 0.13326 0.07630 0.14966 0.13586 0.14770 0.12052 0.10211 0.13457
1.00 3 0.13350 0.07198 0.15417 0.13548 0.15002 0.11715 0.10321 0.13450
1.00 4 0.13372 0.07001 0.15694 0.13498 0.15094 0.11487 0.10457 0.13398
1.00 5 0.13396 0.06899 0.15873 0.13461 0.15133 0.11336 0.10555 0.13345
1.00 6 0.13420 0.06843 0.15993 0.13436 0.15151 0.11238 0.10617 0.13302
1.00 7 0.13441 0.06810 0.16074 0.13421 0.15159 0.11172 0.10655 0.13268
0.25 8 0.13054 0.01528 0.20866 0.13741 0.19140 0.09850 0.06050 0.15671
0.25 9 0.12228 0.01052 0.23237 0.13194 0.20334 0.08186 0.05802 0.15866
0.25 10 0.12019 0.00920 0.24609 0.13000 0.20520 0.07376 0.06000 0.15456
0.25 11 0.12024 0.00869 0.25585 0.12913 0.20451 0.06930 0.06104 0.15024
0.25 12 0.12100 0.00845 0.26317 0.12872 0.20314 0.06656 0.06138 0.14658
0.25 13 0.12189 0.00833 0.26875 0.12851 0.20169 0.06473 0.06143 0.14366
0.25 14 0.12272 0.00826 0.27306 0.12842 0.20038 0.06342 0.06137 0.14137
0.25 15 0.12341 0.00822 0.27639 0.12838 0.19926 0.06246 0.06128 0.13959

5. CONCLUSIONS

All the examples used above to analyse the simulated annealig 
methog might be implemented with the help of either programming 
language. The computing technique for transition probabilities and 
thermal equilibrium is necessary for further application in Boltzmann 
machine learning (Ackley, Hinton and Sejnowsky, 1985; Alexander and 
Morton, 1991;Kappen, 1995).
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