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Abstract— The present paper considers one approach to 
Bayes’ formula based probabilistic inference under interval 
values of relevant probabilities; the necessity of it is caused 
by the impossibility to obtain reliable deterministic values of 
the required probabilistic evaluations. The paper shows that 
the approach proves to be the best from the viewpoint of the 
required amount of calculations and visual representation 
of the results. The execution of the algorithm of probabilis-
tic inference is illustrated using a classical task of decision 
making related to oil mining. For visualisation purposes, 
the state of initial and target information is modelled using 
probability trees.
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I. NoN-formal INtroductIoN to INterval 
ProbabIlItIes

Probabilistic inference procedures are widely used 
in different scientific, technical and economic areas. To 
exemplify widespread procedures of this kind, one can 
mention marginalization of a set of joint probabilities, 
calculation of conditional probabilities in the set of joint 
probabilities, and calculation of the posterior probabilities 
of events on the basis of their prior probabilities and 
information provided by event indicators.

All original procedures of probabilistic inference 
have been developed for the cases when the values of 
relevant probabilities are set in a unique deterministic 
form. Unfortunately, it is not always possible to obtain 
such probability values. The main reasons for that are the 
shortage or complete absence of suitable statistical data 
and low confidence in the evaluations provided by experts.

What can be done in situations like that? One possible 
way is to use available deterministic evaluations ignoring 
their potential unreliability. Another way is to introduce 
some extent of uncertainty into relevant evaluations 
assuming that their real values lie within the specified 
bounds of uncertainty. In situations where for some reason 
or other it is impossible to obtain reliable evaluations of 
the necessary probabilities, the second option seems 
to be preferable. By introducing controlled extents of 

uncertainty in the evaluations that are of interest to us, 
we extend the possibility of obtaining uncertain results, 
but real value of that result lies within the set bounds of 
uncertainty.

The idea to apply non-point probabilities has a long 
history. The first formal use dated back at least to the 
middle of the 19th century, is connected with the name of 
George Boole who intended to co-ordinate theory of logic 
(that can express complete ignorance) and probability 
theory.

Since the 1990s, the theory has received strong 
impulse initiated by exhaustive foundations of P. Walley 
[1] who had introduced the term imprecise probabilities. 
To evaluate boundary values of probabilities, P.Walley 
[1] introduced into consideration both buying and 
selling price for a hypothetical gamble. Those two prices 
correspond to the lower and the upper probabilities that 
form an interval of possible values of relevant probability. 
That interpretation underlies the theory of uncertain 
probabilities of P. Walley. The theory can be regarded as a 
specific extension of the traditional subjective probability 
theory.

Walley’s theory extends the traditional subjective 
probability theory via buying and selling prices for 
gambles, whereas Weichselberger’s approach generalizes 
Kolmogorov’s axioms without imposing an interpretation. 
On the other hand, Weichselberger [2]-[4] treats interval 
values of probabilities as initial data; based on it, he builds 
his theory of interval probabilities. Strict theory of interval 
probabilities is also described in [5].

II. formal coNcePts aNd defINItIoNs of INterval 
ProbabIlItIes

Let there be a set of random events { }, 1,...,iA a i n= =
. Let us assume that probabilities of occurrence of those 
events are set not in the deterministic form but in the form 
of intervals of possible values of those probabilities.

[ ],i il u , 1,...,i n= , 
where il  - lower (the least) possible value of 
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probability ( )i ip p a= ; iu  - upper (the largest) possible 

value of probability ( )i ip p a= .

It is evident that while choosing one of the values

[ ],i i ip l u∈ , 1,...,i n=  in a random or systematized 

way, we get a set of deterministic probabilistic evaluations 

{ }, 1,...,ip i n= . In [6], a set of all possible probabilities 

of this kind is determined as follows:

( ){ }/ ,i i i iP p p A l p u i= ∈ ≤ ≤ ∀ , (1)

where ( )p A  denotes a set of all possible probabilis-
tic evaluations defined in the set of random events A.

 To avoid situations when P =∅ , boundary values 
of probabilistic intervals have to satisfy these restricting 
conditions:

1 1
1

n n

i i
i i

l u
= =

≤ ≤∑ ∑ .  (2)

Probabilistic intervals satisfying conditions (2) are 
called proper intervals in [6]. It is evident that in the tasks 
of interval probabilistic inference we should only use 
proper intervals.

In common case i ip l≥  and i ip u≤ , ia A∀ ∈ . If

inf
ii pl ∈= P  and sup

ii pu ∈= P , i∀ , (3)

it means that deterministic values of probabilities 

can be selected over the whole interval [ ],i il u , also 

including its boundaries. In [5], probabilistic intervals 

satisfying (3) are called reachable intervals; whereas 
in [2]-[4], probabilities defined in the probabilistic 
intervals of general type are called R -probabilities but 
probabilities defined in the reachable intervals are called 
F -probabilities with M structure.

In [6], it is proved that for reachable probabilistic 
intervals these inequalities are valid:

1j i
j i

l u
≠

+ ≤∑ , i∀ ;  (4)

1j i
j i

u l
≠

+ ≤∑ , i∀ .  (5)

In [2]-[4], [6], algorithms are proposed for determining 
marginal interval probabilities and conditional interval 
probabilities in the set of joint interval probabilities. It 
should be noted that the algorithms described in [6] are 
simpler and more operable than those presented in [2]-[4].

III. INterval versIoNs of bayes’ formula

One specific interval version of Bayes’ formula is 
proposed in [2]-[4]. Here, formula derivation is based 
on the simultaneous use of two concepts of interval 
probability: intuitive concept and canonical concept. 
The algorithm is quite complicated, is of rather artificial 

character and possesses limited operability; that is why, 
this version is not examined in the present paper.

A much more attractive version is an interval variant 
of Bayes’ formula, which is based on the concept 
of generalised probabilistic intervals [7]-[8]. The 
presentation of the theory of generalised intervals can be 
found in [9]-[11], as well as in other works.

A classical interval is identified as a set of real 
numbers, while a generalized one is identified by means 
of predicates that are filled with real numbers, and its 
boundaries are not ordered in a conventional sense. The 

generalized interval [ ],x x x KR= ∈  is called proper 

if x x≤ , and improper if x x≥ . The set of proper 

intervals is denoted as [ ]{ }, /IR x x x x= ≤ ,  but the set 

of improper intervals is denoted as [ ]{ }, ,IR x x x x= ≥

. Operations on the generalised intervals are determined 
based on Kaucher’s arithmetic. [12].

Two specific mathematical operations are defined in 
the set of generalized intervals:

( ) ( )min , ,max ,pro x x x x=   x . (6)

The result of that operation is a proper generalised 
interval.

( ) ( )max , ,min ,imp x x x x=   x . (7)

This operation yields an improper generalised interval. 
The operation that follows transforms a proper generalised 
interval into an improper generalised interval.

[ ],dual x x=x .  (8)

Wang [7], [8] proposes this interval version of Bayes’ 
formula:

( ) ( ) ( )

( ) ( )
1

/
/

/

i i
i n

j j
j

p A E p E
p E A

dualp A E dualp E
=

=

∑
 (9)

where iE , 1,...,i n= , - are mutually disjoint event 

partitions in Ω , and ( )
1

1
n

j
j

p E
=

=∑ ; ( ).dualp  is defined 
in (8).

To simplify the calculations, this expression can be 
used:

( ) ( ) ( ) ( )( )
1 1

/ /
n n

j j j j
j j

dualp A E dualp E dual p A E p E
= =

=∑ ∑
(10)

Let us consider a simple illustrative example of prob-
abilistic inference in a task of decision making based on 
the interval version of Bayes’ formula (9). As an example, 
a classical task of assessing the chances of oil presence on 
a specific site is described, provided that the prior evalu-
ations of these chances are set, and conditional determin-
istic evaluations of probabilities of the results of seismic 
exploration of the site are assigned. The following data 
are used as initial: a set of random events (“states of na-

ture”) { }1 2,A a a= where event 1a  corresponds to real 
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presence of oil on the site, event 2a  corresponds to real 
absence of oil on the site. Let us call events 1a and 2a  
geological events. Let us assume that based on the expert 
evaluation, these interval values of probabilities of the 
events were assigned:

( ) [ ]1 0.50,0.70p a = , ( ) [ ]2 0.30,0.50p a = .
Let us assume that a manager of an oil mining company 

has made a decision to arrange seismic exploration of the 

site to re-evaluate the prior values of probabilities ( )1p a  

and ( )2p a . Let us denote a set of random events, 

outcomes of seismic exploration as { }1 2,B b b=  where 

1b  is an outcome indicating the presence of oil on the site 

but 2b  is an outcome indicating the absence of oil on the 

site. Let us call events 1b  and 2b  seismic events.

The specifics of a seismic exploration is that it can 
both confirm real presence or absence of oil on a site, and 
produce erroneous results, i.e., to show the presence of oil 
when it is missing in reality or to show the absence of oil 
when it is really present. Let us introduce this system of 
denotations:

1 1/b a - seismic exploration has confirmed real presence 
of oil on the site;

2 1/b a  - seismic exploration has erroneously indicated 
the lack of oil on the site, though in reality oil is present;

1 2/b a  - seismic exploration has erroneously indicated 
the presence of oil on the site, though in reality oil is not 

present on the site;

2 2/b a  - seismic exploration has confirmed real absence 
of oil on the site.

Let there be set these interval values of conditional 
probabilities:

( ) [ ]1 1/ 0.70,0.90p b a = , ( ) [ ]1 2/ 0.10,0.30p b a =

( ) [ ]2 1/ 0.10,0.30p b a = , ( )2 2/ 0.70,0.90p b a = .
As can easily be seen, these values are reachable val-

ues according to conditions (4) and (5). Actually, here we 
are not interested in conditional probabilities of the results 
of seismic study depending on the presence or lack of oil 
at a site, ( )/j ip b a ,  , 1, 2i j = ; instead, we are interested 
in conditional probabilities ( )/i jp a b , , 1, 2i j =  of the 
presence or lack of oil on a specific site depending on the 
results of a seismic exploration.

The task in this example is to calculate the posterior 
probabilities ( )/i jp a b , , 1, 2i j = , based on the informa-
tion available. The initial state of information in the form 
of a probability tree is shown in Fig. 1.

Probabilities of the outcomes are calculated by 
multiplying the probabilities related to the tree branches 
leading to the given outcome. The calculated values 
of these probabilities are given in the end positions of 
probability tree in Fig. 1. Now all the necessary and 
sufficient information is available to calculate the required 
values of the posterior probabilities.

Event 1b  can occur jointly with event 1a  (outcome 
(1)), and jointly with event 2a  (outcome (3)). Therefore, 
the total probability of event 1b  can be calculated as 
follows:

( ) ( ) ( ) [ ] [ ] [ ]1 1 3 0.35,0.63 0.03,0.15 0.38,0.78p b p p′ = + = + =

( ) [ ]1 1, 0.50,0.70a p a =

( ) [ ]2 2, 0.30,0.50a p a =

( ) [ ]1 1 1 1/ , / 0.70,0.90b a p b a =

( ) [ ]2 1 2 1/ , / 0.10,0.30b a p b a =

( ) [ ]1 2 1 2/ , / 0.10,0.30b a p b a =

( ) [ ]2 2 2 2/ , / 0.70,0.90b a p b a =

(1)

(2)

(3)

(4)

 ) [ ]1 0.35,0.63p =

( ) [ ]2 0.05,0.21p =

( ) [ ]3 0.03,0.15p =

( ) [ ]4 0.21,0.45p =

Geological events Seismic events

Fig. 1. Initial state of information in the task of oil mining.

Event 2b  can occur jointly with event 1a  (outcome 
(2)) and with event 2a  (outcome (4)). That is why,

( ) ( ) ( ) [ ] [ ] [ ]2 2 4 0.05,0.21 0.21,0.45 0.26,0.66p b p p′ = + = + =

The values ( )1p b′  and ( )2p b′  would be the values 
of denominators in the classic Bayes’ formula should all 

the values in the above example be set in unambiguous 
deterministic form. However, in reality we deal with 
interval values of probabilities; due to that, we have 
to utilize values ( )1dualp b′  and ( )2dualp b′ . Let us 
determine these values using (10).

( ) ( ) [ ] [ ]1 1 0.38,0.78 0.78,0.38p b dualp b dual′′ ′= = =
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( ) ( ) [ ] [ ]2 2 0.26,0.66 0.66,0.26p b dualp b dual′′ ′= = =

Let us calculate the required values of the posterior 
probabilities using (9) and taking into account (10).

( ) ( ) ( )
( ) ( ) ( ) ( )( )

( )
( )

1 1 1
1 1

11 1 1 1 2 2

/ 1
/

/ /
p b a p b p

p a b
p bdualp p b a p b p b a p b

= = =
′′+

 [ ]
[ ] [ ]0.35,0.63 0.35 0.63, 0.92,0.81
0.78,0.38 0.38 0.78

 = = =  
.

The remaining calculations will be done by analogy.

( ) ( )
( )

[ ]
[ ] [ ]2 1

1

0.03,0.153 0.03 0.15/ , 0.08,0.19
0.78,0.38 0.38 0.78

p
p a b

p b
 = = = = ′′  

( ) ( )
( )

[ ]
[ ] [ ]1 2

2

0.05,0.212 0.05 0.21/ , 0.19,0.32
0.66,0.26 0.26 0.66

p
p a b

p b
 = = = = ′′  

( ) ( )
( )

[ ]
[ ] [ ]2 2

2

0.21,0.454 0.21 0.45/ , 0.81,0.68
0.66,0.26 0.26 0.66

p
p a b

p b
 = = = = ′′  

For values ( )1 1/p a b  and ( )2 2/p a b , we have obtained 
improper intervals. This result is absolutely correct from 
the viewpoint of the theory of generalised intervals; 
however, it is incorrect from the position of common 
sense. To get the correct result, we simply invert these 
improper interval using (6). As a result, we have

( ) [ ]1 1/ 0.81,0.92p a b = , ( ) [ ]1 2/ 0.19,0.32p a b = ,

( ) [ ]2 1/ 0.08,0.19p a b = , ( ) [ ]2 2/ 0.68,0.81p a b = .
It is easy to see that the resulting intervals are reachable 

intervals. The check for reachability has to be made for 
pairs of intervals ( )1/p b⋅  and ( )2/p b⋅ ).

The target state of information in the form of a 
probability tree is represented in Fig. 2.

(1)

(3)

(2)

(4)

Geological eventsSeismic events

( ) [ ]1 1, 0.38,0.78b p b′ =

( ) [ ]2 2, 0.26,0.66b p b′ =

( ) [ ]1 1 1, / 0.81,0.92a p a b =

( ) [ ]2 2 1, / 0.08,0.19a p a b =

( ) [ ]1 1 2, / 0.19,0.32a p a b =

( ) [ ]2 2 2, / 0.68,0.81a p a b =

Fig. 2. Target state of information in the task of oil mining.
Iv. coNclusIoNs

The use of interval probabilistic values is aimed 
at modelling uncertainties regarding these values in a 
specific way. In the past decades, multiple variants of 
procedures of probabilistic inference at interval values 
of relevant probabilities have been proposed. The present 
paper shows that the most appropriate interval version 
of Bayes’ formula is the version proposed in [7]-[8]. 
Utilization of the concept of generalised probability 
intervals helps to simplify the necessary calculations. 
This version is logically validated and does not require 
application of complicated concepts as it takes place in 
Weichselberger version [2]-[4]. The shortcoming of the 
considered technique is that when calculating the posterior 
values of probabilities, improper intervals of those values 
might be obtained. This shortcoming, however, can be 
easily overcome by means of simple inverting of improper 
probabilistic intervals.

Probabilistic inference under interval values has 
found wide application in different fields of science 
and technology. A considerable number of publications 
on this topic can evidence this. Out of numerous 
publications, paper [13] should be mentioned which 
presents a qualitative review on application of imprecise 

values in engineering. Papers [14]-[16] provide examples 
of application of interval values of probability in the 
processes of decision analysis and choice.

The use of procedures of interval probabilistic 
inference seems to be prospective in tasks of ecological 
risk assessment and making decisions related to the 
protection of the environment since a significant degree 
of uncertainty of initial information is characteristic of 
this research area.
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