

Environment. Technology. Resources, Rezekne, Latvia

Proceedings of the 10th International Scientific and Practical Conference. Volume III, 138-150

ISSN 1691-5402
© Rezekne Higher Education Institution (Rēzeknes Augstskola), Rezekne 2015

DOI: http://dx.doi.org/10.17770/etr2015vol3.187

iOS Applications Testing

Ivans Kulesovs
Faculty of Computing, University of Latvia.

Address: 19 Raina Blvd., Riga, LV-1586, Latvia,
Enterprise 2.0 Department, C.T.Co SIA.

Address: 15/25 Jurkalnes Str., Riga, LV-1046, Latvia

Abstract. Mobile applications conquer the world, but iOS devices hold the major share of tablets market among the
corporate workers. This study aims to identify the aspects (i.e. features and/ or limitations) that influence the testing
of the native iOS applications. The aspects related to general mobile applications testing are identified through the
systematic literature review of academic sources. iOS applications testing aspects are identified through the review of
non-academic (multivocal) literature sources. The identified aspects are merged and discussed in detail using the
reviewed sources and based on the author’s professional experience in iOS applications testing. The references to the
credible sources are provided in order to support the professional experience findings. The study eliminates the gap
that exists in the academic world in regards to iOS applications testing. The practitioners are also encouraged to fulfill
their iOS applications testing strategies with the identified aspects.

Keywords: iOS applications, mobile computing, software testing, software quality.

I INTRODUCTION

According to Clearwater Technology Mobile
Computing Sector Report [1], the mobile computing
industry is expected to be worth almost US $330
billion by 2015. According to the same study, 67% of
corporations allow workers to use the tablets, but 51%
of corporations even buy the tablets for them. iOS
devices hold 75% of the tablets market share among
the corporate workers.

With the growth of platform abilities applications
become more complex [2] to satisfy the increasing
user needs. The increased complexity means that there
are many aspects that should be taken into
consideration when testing mobile applications.
Mobile workers mostly use native business
applications on their devices; otherwise there would
not be such a dominant position of the single
operating system. That is why iOS native applications
are the subject of the main interest for this study.

Despite the fact that the topic being hot, there are
only some academic studies [3] – [5] performed that
systemize the generic aspects that should be taken into
consideration when testing the mobile applications
without specifying the platform. Other studies – [6]
and [7] that include the clear distinction between the
platforms, concentrate on some narrow topic. On the
other side, there are different iOS testing checklists,
mind maps, blogs etc. available in the internet. This
motivates the author to perform the systematic
literature review of academic literature in the field of
mobile testing and perform the literature review of the

available non-academic (or multivocal, as per [8])
sources in the field of iOS testing.

It was decided to concentrate both reviews on
aspects of manual testing of such quality
characteristics as functional suitability, performance
efficiency, compatibility, reliability, maintainability,
and portability according to [9]. That is why the test
automation, security, and usability testing are out of
scope (except parts that are closely related to or are on
the border line with the quality characteristics
mentioned above).

The following research question was formulated:
RQ: Which aspects (i.e. features and/ or

limitations) influence the testing of functional
suitability, performance efficiency, compatibility,
reliability, maintainability, and portability of the iOS
native business applications?

The results of both reviews are merged in order to
answer the research question. The goal of the study is
to eliminate the gap that currently exists between
academic and non-academic sources in the field of
iOS applications testing, as well as to provide the
sufficient details for practitioners to make their iOS
applications testing strategy more complete and solid.

The paper is organized as follows: in Section II the
research methodology is described; in Section III the
merged results gathered through both reviews are
presented; in Section IV the details of the identified
iOS testing aspects are discussed, and conclusions
based on the findings are presented in Section V.

Ivans Kulesovs / Environment. Technology. Resources, (2015), Volume III, 138-150

139

II RESEARCH METHODOLOGY

The systematic literature review (SLR) of the
academic sources was performed in order to gain the
aspects of the mobile applications testing. The
multivocal literature review (MLR) was performed in
order to gain the exclusive aspects of iOS applications
testing. The idea to perform two types of the review to
consolidate the data from different sources was taken
from work by Tom et al. [10] Fig. 1 shows the stages
of sources selection for the whole review process
applied in this paper.

The procedure described by Kitchenham and
Charters [11] was followed in order to conduct the
systematic literature review. The qualitative review
approach was applied in order to include a rigor into
the systematic review of multivocal literature as
suggested by Ogawa and Malen [8]. They define the
multivocal sources as accessible, but non-academic
writings on the topic.

A. Systematic Literature Review

The search of academic literature for SLR was
performed in two iterations. The first iteration was
executed using the databases and search criteria that
are described below. 12 papers were selected as
relevant to answer RQ. The second iteration was
executed based on the references in the papers
selected after the first iteration. Some relevant sources
were found, but they appeared to be non peer-
reviewed. The details of each iteration can be found in
Table 1.

1) Databases. The following databases were used to
search the keywords described in the Search

Keywords section: Springer Links (Springer), IEEE
Xplore (IEEE further in the text), and ACM Digital
Library (ACM).
2) Search Keywords. Appropriate keywords were
searched in metadata. Due to the search engines
differences, metadata should be treated as a search
within the title, OR abstract, OR keywords for ACM
and as a search within the title only for Springer,
while IEEE has an option to search within all
metadata at once.

TABLE I

NUMBER OF PAPERS LEFT AFTER EXCLUSION/ INCLUSION DURING EACH SLR STAGE

ITERATION STAGE NUMBER OF ACADEMIC WORKS AFTER

STAGE

1 1. Initial repeatable search (duplicates removed) 946
 2. Refined search to include works from 2014 972
 3. Exclusion upon titles 33
 4. Exclusion upon abstract 18
 5. Exclusion upon full text 12

2 6. Secondary search based on references in selected results 0
 Total: 12

Because preliminary search of keywords “iOS

application” and “testing” or “iOS application” and
“quality” returned small amount of results, the
keyword “iOS” was substituted with “mobile”. It was
also given a try to shorten the word “application” to
“app”. The following search string was used: (("iOS
apps" OR "iOS applications") OR ("iPhone OS apps"
OR "iPhone OS applications") OR ("mobile apps" OR
"mobile applications")) AND ("quality" OR "testing"
OR “verification” OR “validation”).

3) Inclusion/ Exclusion Criteria. Only peer-
reviewed papers in English were selected. There was
no limitation given on the type of the source (i.e.

journals, conference proceedings etc.). Papers starting
from the year 2007 were chosen, because it is the year
when iOS (iPhone OS at that time) was released. The
year 2013 was chosen as the last year of publication
for the search results repeatability. The search was
also refined by adding papers from the year 2014 in
order not to miss the latest available information.

Irrelevant papers were excluded upon title, then
upon abstract, and then upon full text. The main credit
was given to the papers that offered some
categorization or general overview of mobile
applications testing. Papers that mention only the
specific testing type of mobile applications (i.e. unit

Fig. 1. Process of sources selection for SLR and MLR

Ivans Kulesovs / Environment. Technology. Resources, (2015), Volume III, 138-150

140

testing, security, usability etc.) or that are related to
test automation were excluded from the results after
additional acquaintance with abstract because they do
not focus on the aspects asked in RQ. Only non-
shortened version of papers were included if two
versions of the same paper for different occasions (e.g.
conference proceedings and magazine) were
identified.

4) Data Extraction and Synthesis. The data
extraction phase involved the extraction of aspects and
categories of aspects related to RQ from the selected
studies. The categories of multiple non-overlapping
aspects are mentioned in some papers, while the
detailed description of aspects from single category is
mentioned in others. The data synthesis phase includes
the merge of aspects from the different papers that
appeared to have the same meaning. In order to make
the data more usable the aspects were divided between
4 large clusters: Environment, Application Lifecycle,
Inside the Application, and (functional or performance
aspects of) UI/ UX.

B. 2.2. Multivocal Literature Review

1) Data Sources and Search Strategy. Sources for
MLR were searched in Google
(http://www.google.com/). The combination of the
same keywords as for SLR, excluding the “mobile
applications” OR “mobile apps” part, was used for the
first search iteration. The keyword “checklist” was
added for the second iteration. The first 50 relevant
articles per iteration (see Appendix B) based on the
Google ranking algorithm were taken for subsequent
analysis.

2) Inclusion/ Exclusion Criteria. The sources were
excluded during three stages by evaluating 1) Title/
partial text available in the search results; 2) full text;
3) overall quality. The sources related to iOS testing
only were included into the final results, i.e. the
sources containing only information about general
mobile testing aspects were excluded. The sources on
security or unit testing, as well as the sources on
testing automation were excluded as well. Duplicates
were excluded upon title during the first exclusion
stage. Some sources were excluded on the second
stage because they directly referred to other sources
found. The inclusion/ exclusion progress is depicted in
Table 2.

TABLE II

NUMBER OF PAPERS LEFT AFTER EXCLUSION DURING EACH

MLR STAGE

ITERATION INITIAL STAGE 1 STAGE 2 STAGE 3

Iteration 1 50 20 5 5

Iteration 2 50 20 5 4

Total 9

3) Data Extraction and Synthesis. The data
extraction phase involved the extraction of aspects and
aspects categories asked in RQ. Some sources already

contain categorized lists of aspects while other are
materials written in narrative. The data synthesis
phase includes the merge of aspects from the selected
sources. The identified aspects were divided between
the same clusters as done for SLR.

III RESULTS

A. Summary of Reviews

Despite the fact that the search criteria for SLR
includes studies starting from 2007, the first selected
study was published in 2009 [4], but the most
productive years are 2012 (5 studies: [6], [12], [13],
[3], and [14]) and 2013 (3 studies: [15], [16], and
[17]). 2 studies [7] and [18] were published in 2011,
and 1 study [5] was published in 2014. 2 studies [6]
and [7] are related to narrow topic of mobile
application lifecycle, 1 study [17] is related to user
complaints about iOS applications, and other 9
sources [3] – [5], [12] – [16], and [18] are related to
general testing of mobile applications.

Between the sources selected through MLR, 7
sources [19] – [25] were published in 2013. 1 source
[26] was published in 2012 and 1 source [27] in 2014.
5 sources [20] – [22], [27], and [26] are blog posts, 2
sources [19] and [25] are testing checklists, 1 source
[23] is a white paper, and 1 source [24] is a mind map.
All the blog posts describe the testing only of one or
some aspects, while other sources try to cover the
whole iOS testing field.

B. Aspects of iOS Applications Testing

The aspects that influence the testing of iOS
applications gathered through SLR and MLR are
shown in Table 3. If a source is referred in the table
before the details of an aspect, it means that aspect is
just mentioned in the source without pointing the
details that are related to iOS applications testing.

There are three types of iOS devices: iPad, iPhone,
and iPod mentioned in [19], and [23] – [25] that have
different screen size, resolution & pixel ratio,
processing efficiency, memory, and storage capacity,
as per [3] – [5], [13], [14], [16] – [18], and [23] – [25].
It is claimed in [4] that functionalities, usability issues
in the interface design, and user behavior “to be tested
in emulator”, while other sources [13], [16] – [18],
and [27] state that almost everything should be tested
on the real device to get the reliable test results. There
are also different types of the external accessories,
both wired and wireless [12], [15], like headphones
[12], [15], [25] and keyboard [12], [15] that can be
connected to the device.

It is claimed in many sources [3], [5], [13], [16],
and [23] – [25] that the variety of operating systems
(OS) is an important testing aspect, while OS upgrade
is mentioned explicitly only in [16]. It is possible to
set the restrictions on the usage of different hardware
or OEM software completely or for the specific
application within the iOS [19], [22], [24].

Ivans Kulesovs / Environment. Technology. Resources, (2015), Volume III, 138-150

141

Mobile devices have limited power, processing, and
memory resource [3], [4], [6], [12], [14], [16], [17].
Thus resources consumption efficiency plays an
important role in application success [3], [4], [12],
[14], [17], [19]. Applications should also be checked
on different networks, i.e. strong WiFi connection,
cellular network (LTE, 3G, EDGE), and in Airplane
mode [3] – [5], [12], [21], [22], [24], [25].

Different network conditions (e.g. slow connection,
packets loss etc.) should be taken into consideration as
well [24]. Different regional settings, like data and
time formats [24], [25], as well as time zones [25] are
also the subject of interest.

iOS application lifecycle consists of several phases,
and there are specific conditions that can uniquely
influence application’s behavior while being in the
definite phase. An application can be just installed and
launched for the first time [14], [19], [25], work in

foreground, stay in background [6], [7], [12], [19],
[24], receive memory warnings [6], [7], [12], [18],
[24], be interrupted by a call or SMS [15], [19],
system alert [15], push notification [19], [24], GPS
signal [15], or audio/ video from another application
[19], [24], [25]. It can even crash [16], [17], [23], [24].
Or it can also be updated to the next version [16],
[24], [25].
[22] warns about the need to check an extended
(Chinese) on-screen keyboard, while [4] mentions on-
screen keyboard as a generic aspect that should be
taken into consideration. According to [19] and [24]
data can be shared via email or Bluetooth, or another
network between the applications. According to [24]
and [25] it is necessary to check application’s logging
and analytics features. Testing of In-App Purchase
component is mentioned in [24]. Testing of Web View
component is mentioned both in [5] and [24].

TABLE III

ASPECTS OF IOS APPLICATIONS TESTING

ENVIRONMENT

HARDWARE

Devices iPad, iPhone, iPod [19], [23] –
[25].

Screen size, resolution & pixel ratio, processing efficiency, memory,
storage capacity; [3] – [5], [13], [14], [16] – [18], [23] – [25]
motion activities [24], [25].

Simulator [3], [4], [13], [16], [18], [27].

External Accessories Headphones [12], [15], [25], keyboard [12], [15]; wired/ wireless [12], [15].

OPERATING SYSTEM

OS Variety [3], [5], [13], [16], [23] – [25]. OS upgrade [16].

Restrictions and
Privacy Settings

[4], [5], [16], [17].

Safari, Camera, Siri, IAP (in-app purchase), Location Services, Contacts, Calendars, Photos, Social Networking,
Microphone, Motion Activities, Cellular Data Use, Background App Refresh [19], [22], [24].

RESOURCES

Limitations Lack of storage, amount of memory, running out of battery, processing capabilities. [3], [4], [6], [12], [14], [16],
[17]

Consumption Memory consumption, battery consumption. [3], [4], [12], [14], [17], [19]

CONNECTIVITY

Network Types WiFi, Cellular networks; [3] – [5], [12], [21], [25]

Bluetooth [3], [4], [12], [25]; Airplane mode [24], [25].

Network Conditions [3], [4], [12], [14], [15], [17].

Strong/ no/ poor connection; connection loss [19], [21], [22], [24].

Ask for connection [4].

INTERNALIZATION

Region Formats [14].

Date format, hour format [24], [25].

Date/ Time Settings Switching between time zones, system time too fast/ too slow. [24]

APPLICATION LIFECYCLE

Installing and
Launching

[14], [19], [25].

Background [6], [7], [12], [19], [24].

Crash [16], [17], [23], [24].

Low-Memory
Warnings

[6], [7], [12], [18], [24].

Interruptions [4], [6], [7], [12], [14].

Ivans Kulesovs / Environment. Technology. Resources, (2015), Volume III, 138-150

142

Call/ SMS [15], [19]; push notifications [19], [24], system alerts [15]; GPS signal [15]; audio/ video [19], [24],
[25].

Application Update [16], [24], [25].

INSIDE THE APPLICATION

Keyboard [4].

Extended keyboard [22].

Data Import/ Export Email; Bluetooth/ network (peer to peer) [19], [24].

Logging/ Analytics [24], [25].

In-App Purchases [24].

Web View [5], [24].

UI/ UX

Gestures [5], [24].

Smooth Animation [17], [24].

Pull to Refresh [24].

Orientation Portrait, landscape. [4], [12], [24], [25]

Half Pixels [24].

Localization [16], [25].

Native characters and special symbols [19].

Accessibility VoiceOver, accessibility zoom etc. [20], [26], [23] – [25]

An application can be manipulated with a variety of
gestures [5], [24]. When animated transitions occur,
they must run smoothly [17], [24] irrespectively of the
task executed in parallel. Testing for half pixels
glitches and testing of Pull to Refresh feature are
mentioned in [24]. The necessity of checking the
application both in portrait and landscape is noticed in
[4], [12], [24], and [25]. The importance of
localization testing is mentioned in [16] and [25]. [19]
identifies the need for testing of native characters and
special symbols. It should also be checked that
application works as designed when accessibility
features of OS are enabled [20], [23] – [26].

IV DISCUSSION AND IMPLICATIONS

Despite the fact that the Results section shows the
identified aspects of iOS applications testing gathered
through SLR and MLR, the author feels the necessity
to discuss the details of identified aspects. There are
also some aspects that are known to the author (like
iAd, update of Xcode, AirDrop etc.), but they are
missing in the reviewed literature. Some of the details
are provided in the reviewed sources. Others are
added based on the author’s more than four years of
professional experience of leading more than 20 iOS
applications testing projects for several Global
Fortune 500 [28] and other multinational companies,
giving the references to iOS Developer Library [29] or
other credible sources where possible.

A. Hardware

1) Devices. While there are four types of iOS
devices, business applications are mostly developed
for iPads [30], and sometimes have reduced iPhone

versions [31]. iPods and Apple Watch devices
generally are out of scope.

iPad 1st generation devices, as well as iPhone 3G,
iPhone 3GS, and iPhone 4 are not taken into
consideration anymore when new applications for iOS
are developed. Only iPhone 4 supports iOS 7 (the
latest iOS version at the moment of writing is iOS 8),
but three other mentioned devices already are not [32].

iPad 2 [33] and iPad mini [34] both have non retina
display (i.e. a display with lower pixel density than the
latest iOS devices) and generally the same hardware
options. They are the least powerful iPad devices that
support the latest iOS version. Special checks that
application design fits the small screen of the device
and that every UI control can be easily interacted with
should be performed on iPad mini.

iPad 4 [35] and iPad 3 [36] both have retina
displays, but iPad 4 is more powerful than iPad 3.
Generally, it is enough to have only one device of any
generation to cover this category of devices.

iPad Air [37] and iPad mini retina [38] both have
faster GPU (but still retina display) and M7 64-bit
core processor that has built-in hardware for motion
activities like accelerometer, gyroscope, and compass.

iPad Air 2 [39] and iPad mini 3 [40] are equipped
with Touch ID [41] technology. iPad Air is also
equipped with even faster GPU and M8 64-bit core
processor that has a barometer sensor in addition.

iPhone 4 [42] and higher all have retina displays.
iPhone 4S [43] has a faster dual core processor in
comparison with iPhone 4. iPhone 5 [44] and iPhone
5C [45] are both packed with even faster next
generation processor. iPhone 5S [46] is packed with
already mentioned M7 64-bit core processor and
fingerprint identity sensor.

Ivans Kulesovs / Environment. Technology. Resources, (2015), Volume III, 138-150

143

Despite the fact that iPhone 5th generation devices
have larger screen size in comparison with iPhone 4th
generation devices, applications designed for iPhone
4th generation devices can still run on iPhone 5th
generation devices, but there are black bars above and
below application content, unless properly named and
to a larger screen accordingly sized launch image is
provided [47].

iPhone 6 [48] and iPhone 6 Plus [49] have M8 64-
bit core processor, larger and even larger screen size,
and already mentioned fingerprint identity sensor,
barometer, and other sensors. Separate image
resources should be prepared for applications to look
smooth on iPhone 6 Plus.

iPhone 6th line supports Near Field
Communications-based mobile payment technology
Apple Pay [50]. Apple Pay can be used also on iPhone
5th line, but only when paired with Apple Watch.
Payments can be made also on iPad Air 2 and iPad
mini 3, but only within the applications.

Generally speaking, one device from each
generation would be enough to cover the whole set of
iPhones, in case of application under test does not rely
on the specific function of the device like motion
activity or finger print of iPhone 5S and higher or Siri
(advanced voice control) that is available only starting
from iPhone 4S.

2) Device vs. Simulator. The author’s professional
experience supports the statement expressed in [13],
[16] – [18], and [27] that for achieving good quality of
the application, it should be tested on the device rather
than on the simulator, because testing results can vary.
It also should be taken into consideration that
application can behave differently when it is built in
debug, not in release mode [51].

3) External Accessories. There are different kinds
of accessories, both wired and wireless [12], [15], that
can be attached to the device: headphones [12], [15],
[25], keyboard [12], [15], stylus etc. It can occur that
an application handles the inputs and outputs from/ to
external accessories in a different way than it does
without them, or it does not handle them at all [52].
External accessories from different manufacturers can
behave differently, e.g. styluses from different
manufacturers can have different configurations inside
the application in order to handle the palm
(interaction) rejection etc. [53]

B. Operating System

1) iOS Variety. Release of the new iOS version
almost always leads to the major retesting cycle for
the non-trivial applications. New Xcode [54] version
(that includes new version of iOS SDK and compiler)
[55] is shipped together with the new iOS version.
Thus, there can be completely different test results
when the same code is built by the different Xcode
versions.

The following update strategy is followed by the
development organizations which the author works or
worked for when the new iOS version is released:

1. Current application version built by previous
the Xcode is checked on the new iOS version
(preliminary checks are done already on Beta
or GM versions).

2. Major failures, if any, are fixed, and the
application is released with remark that it
supports the latest iOS version.

3. More thorough testing cycle follows when the
application current version is built by the new
Xcode afterwards.

It is possible to leave the application version built
by the previous Xcode for some period of time if, for
example, active development currently is not planned.
But here is a list of situations when developers are
forced to rebuild the application with the new version
of Xcode:

 New iOS version does not support the methods
that were previously deprecated, but still used
in the application; new supported methods that
substitute the deprecated ones are available
with the new Xcode, e.g. detection of UDID
[56].

 Apple announces that all the new applications
or application updates submitted to the App
Store must be optimized for new iOS and built
with the latest Xcode [57].

 Application should be redesigned for the
marketing purposes, because of the iOS
redesign (as it occurred with iOS 7 [58]), but
new UI is achieved using the latest Xcode.

It is worth mentioning that devices with the
previous iOS version should always be available and
handled carefully in case some of the applications
developed within the organization still support it. It
should not be forgotten that there is no official way to
install any previous major iOS version after the
release of the latest major iOS version [59]. It should
be taken into consideration that not all users update
iOS version as soon as it is released [60], but can
continue to use the previous one for quite a long
period of time. From the author’s experience, it is
especially applicable for enterprise users – they update
iOS version only after the enterprise infrastructure that
supports the latest iOS version is ready.

2) Restrictions and Privacy Settings. In iOS a user
can set different restrictions, both system and
application wise, on the usage of different hardware or
OEM software. For example, it is possible to restrict
the usage of Safari, Camera, Siri, IAP (In-App
Purchase), Location Services, Contacts, Calendars,
Photos, Social Networking, Microphone, Motion
Activities, Cellular Data Use, Background App
Refresh etc. [19], [22], [24] The application should
handle cases when it tries to access the restricted item.
The user should also be warned about the restriction

Ivans Kulesovs / Environment. Technology. Resources, (2015), Volume III, 138-150

144

and instructed how to remove it [61] or offered to
remove the restriction within the application if it is
possible.

C. Resources

1) Limitations and Consumption. Due to the fact
that a mobile device has more limited storage,
memory, power, and processing capabilities than an
ordinary PC [3], [4], [6], [12], [14], [16], [17],
examination of how the applications handle these
limits and operate within these limits are of special
interest. The application should check for the free
storage availability when the new data is added/
downloaded. Otherwise, from the author’s experience,
the user will not be able to operate with the data that
already is inside the application due to crashes. The
application should be checked for efficient battery
consumption as well [3], [4], [12], [14], [17], [19]. It
can be verified using Xcode Instruments tools [62].
Battery usage logging can also be enabled on the
device that is provisioned for the development [63].
Instruments tools can also be used for profiling the
efficiency of memory and processor resource
utilization.

D. Connectivity

1) Network Types. During Alpha testing the
application is mostly checked in the laboratory
environment [4]: on the strong WiFi connection and in
the Airplane mode. The working on the cellular data
(LTE, 3G, EDGE) should be checked as well [3] – [5],
[12], [21], [25], especially if the application utilizes a
lot of traffic. The user, at least, should be warned
when large data synchronization occurs on the cellular
network.

2) Network Conditions. There are different network
conditions possible [3], [4], [12], [14], [15], [17], [19],
[21], [22], [24] (e.g. slow connection, packets loss,
etc.). It should be checked if under these conditions:

 The application handles different network
conditions on the first launch [24].

 Proper error messages are shown on timeouts
and other network errors [24].

 The interaction with UI (i.e. the main thread) is
not blocked [24].

 The corrupted data is not stored, or at least can
be redownloaded.

For simulating different network conditions Apple
Network Link Conditioner can be used [21]. This tool
is a part of Xcode Developer Tools [64] and can
simulate network conditions on the device if the
network connection from Mac is shared. It can also be
enabled directly on the device that is provisioned for
development.

Sometimes it is also necessary to check a poor
connection or a connection loss/ switching in the real
world. From the author’s experience, the most
common cases that should not be simulated, but
should be checked in the field are:

 The traffic loss while the device “thinks” that it
is still connected to the network (e.g. entering
the elevator or walking outside the network
coverage).

 Switching from WiFi to the cellular network
and vice versa, switching from one WiFi access
point to another, switching between different
cellular network types.

 Only cellular network conditions (e.g. inbound/
outbound connection speed, packet loss ratio
etc.) can be simulated, but the device will still
think that it is on WiFi. Thus, the real cellular
network should be used to check the cellular
network specific functionality of the
application.

 The situation when the device is not connected
to any network should be checked separately to
make sure that this condition is treated the
same way as the Airplane mode.

E. Internalization

1) Region Formats. Applications should be tested
using different region formats [14] that have different
hour format (24 or 12) [24], [25] and different coma
separators. For example, German Switzerland and
United States regions cover these both differences.
From the author’s experience, the specific Arabic and
Israel region formats should be explicitly tested if the
application’s functionality is directly related to the
calendar and weekend days.

2) Date/ Time Settings. When the application
receives updates from backend, and especially when
creation/ update timestamps for items are visible (but
the same also applies for locally created items), it is
necessary to check how the application behaves with
different time settings [24]:

 When switching between time zones.
 When the system time is too fast or too slow.

Besides checking that functionality works properly
itself, it is necessary to check that relative times are
properly calculated [24].

F. Application Lifecycle

1) Installing and Launching. The application should
be installed both on the device that already contained
some version of the application and on the clean
device after the factory reset. The user should be
warned through a message or a progress bar in case
the access to the application functionality is given in
more than 5 seconds after launching [19].

2) Background. The background mode is one of the
major cycles of iOS application lifecycle. If the
application cannot be sent to the background in
approximately 5 seconds, then iOS kills it. The same
is applicable when going back to the foreground [65].
That is why it is necessary to check that the
application changes the state in sufficient amount of
time even with the large amounts of data inside. The
application can also perform the refreshes in the

Ivans Kulesovs / Environment. Technology. Resources, (2015), Volume III, 138-150

145

background using the special multitasking feature
provided since iOS 7 or if it uses the Location
Services, plays audible content in background, etc. It
should be checked that all the data is preserved [25],
but specific data is updated and is not corrupted after
the application is returned to the foreground. All the
animations should be restarted as well – it does not
occur automatically.

3) Locked Device. Apple warns that improper
design or implementation of cryptographic operations
can introduce performance or battery life problems.
Locking the device with passcode can influence the
applications that can operate in background. What is
more, the device denies the access to the keychain and
files [66]. From the author’s experience, the incidents
including data loss and crashes can occur if the
application needs access to the keychain during the
background activity, but the situation when the
keychain is not available is not handled properly. It
usually takes a long time to isolate the cause of such
incidents. It is easy to crash the application just by
frequent locking with a passcode and unlocking the
device if the file data protection strategy is poorly
designed.

4) Crashes. There is an option to use crash reports
[24] when the tester cannot reproduce the exact steps
that led to the crash. Some crash reports if
symbolicated (i.e. converted to the proper stacktrace
using debug symbols of the build) [67] can give a hint
on the exact scenario that led to crash. Others are not
useful if the crash occurred not in the application, but
in iOS itself.

5) Low-Memory Warning. When iOS needs more
memory, it unloads applications that are currently in
the background [7], [12], [24]. Prior to iOS 6, if the
application needed even more memory it could unload
cashed images (if cashing was performed) and not
visible views of the currently running application. In
such cases it was possible to see only the placeholders
of images or the application could even crash if
unloaded data reload was not properly handled during
the further navigation activities. Now developers must
handle actions to perform when memory warning is
received completely on their own [68], [69]. If the
application utilizes a lot of memory (usually it means
that there are memory leaks in the application) then it
can be fully unloaded from the device memory by iOS
itself [69]. Low-memory warnings can be simulated
by Xcode Instruments (but only for the simulator)
[69], [70]. From the author’s experience, they can be
easily reproduced on the device when many heavy
pages are loaded in Safari or when photos or videos
are made while the application under test is running
on the background. Working with very large data or
quick and frequent refreshes of data in UI collections
can cause low-memory warnings when the application
under test is running on the foreground.

6) Interruptions. The application should preserve its
state and should not freeze if it receives an incoming

call or SMS [15], [19], system alert [15], or local, or
push [19], [24] notification while being in the
foreground, especially when activities occur on the
main thread.

It is possible to open the application through the
push notification if it is received when the application
is in the background or closed. Different navigation
start points should be checked in case the application
also does some navigation actions inside itself on
confirming the push notification. The application icon
badge update should also be checked including the
case when several updates are received in a row [71],
[72].

For applications that play audio/video it should be
checked that other audio/ video streams are paused on
in-application audio stream start. It should be checked
if audio continues to play or not when the application
is in the background (to play or not - it depends on the
requirements) [19], [24], [25]. It is worth mentioning
that audio/ video inside the Web Views is handled in a
different way than audio/ video played natively [73].

7) Application Update. The migration process of
the application from the previous versions should be
tested before the new version of the application that
will be available to the final user is released [24], [25].
After the application is updated from the previous
version it should be checked that:

 The data is not corrupted [74].
 The user preferences stay in place [24].
 Saved credentials are still there [24].
 Previously registered push notifications are still

received [24], [74].
The updates should be performed using the

different possible paths starting from the very first
application release [24]. From the author’s experience,
in some cases (e.g. due to the requirements change, or
the incomplete data model design during the first
release) data model changes can be so significant that
users are asked to perform the backup of their data and
to perform the clean install of the application.
Encrypted data migration is also the subject of
interest. When there is a backend server and it is
updated as well, it is necessary to check the old
application versions on the new server version if there
is no mechanism that does not allow connecting to the
server with the old versions of the application.

G. Inside the Application

1) Keyboard. Editable UI elements should be
focused through auto scroll after onscreen keyboard
appears. In practice, it is often forgotten to check how
they behave in case of split, undocked, extended [22]
or external keyboard [12], [15], only docked and
merged onscreen keyboard is taken into account. From
the author’s experience, non standard keyboard
appearances often influence the usability of those
editable elements that are placed near the screen
bottom border.

Ivans Kulesovs / Environment. Technology. Resources, (2015), Volume III, 138-150

146

2) Data Import/ Export. Many applications support
different file formats that they can operate with. There
are different ways how supported file formats can be
imported into or exported from the application. They
are:

 Open In from email, web browser, or other
applications [75];

 via Air Drop [76];
 via Email [19], [24];
 via iTunes [77];
 via Photos application/ Camera [78];
 via Bluetooth/ network (peer to peer) [19],

[24];
 import (download and open) from URL [79].

It should be checked that the application handles
(i.e. is registered to open and can open [80]) supported
file formats in non case sensitive manner [81].
Naming of the exported data should be verified as
well.

Files can be sent via email from the application. In
most cases, iOS native email client is used for this
purpose. It should be checked that there are default to,
subject, and body set on email creation. The
application should also properly handle the case when
there is no email account configured [24].

From the author’s experience, there are not many
problems encountered when images are imported from
the Photos application using the native view
controller. But in case when custom view controller is
used, it should be more strictly checked how it is
synchronized with Photos application. The robustness
of the Camera component usage is also the subject of
worries. The Camera component tests should include
the device orientation change, rotation lock,
background, etc., i.e. the same aspects that should be
checked for every mobile application.

3) Logging/ Analytics. Public analytics engines are
often used for collecting crash reports, feature usage
statistics and other logs for further development
activities and testing thoroughness prioritization [24,
25]. Analytics is mostly used for publically available
applications without own backend server. Based on
the author’s experience, if analytics is used then the
main points that should be checked are:

 Analytics gathering should handle situations
when the data is not available or has another
format than expected. It is better to send the
wrong one or no statistics than to break the
UX.

 The statistics should not be sent via cellular
networks. In most cases only WiFi connection
should be used.

 The analytics should not gather the data about
the user without his/ her permission. The user
should be warned about how and where the
data will be used [82].

 Collecting the data should not break the UX in
any other way.

Enterprise applications can have other, more strict
and extensive rules for logging depending on the
corporate policy. Own logging protocols are used in
such cases.

4) In-App Purchase. In-App Purchase (IAP) is a
business model that allows the user to buy virtual or
digital consumables, non-consumables, and
subscriptions within the application that is distributed
via Apple App Store. It should be checked that the
purchased items are available on all the devices that
are registered for the particular user, and that
purchases are restored after the application reinstall,
clean install, and iOS update or clean install. [83]

IAP products can be tested using special test users
on Apple test environments. It is also possible to test
auto-renewable subscriptions on these environments,
because they have compressed durations for testing
purposes. [84]

IAP password cashing system setting is of the
special interest. The password can be saved for 15
minutes or asked each time the user makes any IAP
[85]. The application should be checked for handling
both options [24].

5) iAd. iAd is Apple’s platform that allows to
“generate revenue and promote … apps” by showing
an advertisement within the applications [86]. Test
advertisements, including the erroneous one can be
sent “over local networks or USB using iAd Producer,
or over the carrier network using Apple's test servers”
[87]. There are two types of advertisement available:
banner views and full-screen advertisements [88].
Apple suggests checking that the application shows
only fully loaded advertisements. The application
should pause other activities when the user begins the
interaction with a banner and should restart them
when the user finishes (or system cancels) the
interaction with a banner. Advertisements should
appear quickly and response to the device orientation
changes [88].

6) Web View. Web View is a part of WebKit. Web
Views are used to represent the web content inside the
native mobile applications [89]. The native application
is called a hybrid when most of the data inside it is
represented using Web Views [90]. Web Views are
often used in order to open different file formats [91]

or to login to the different content providers. It should
be checked that the links inside the Web Views are
opened in the way they are designed to (they are
opened in the same view by default [92], but they
often should be opened in a default browser, for
example). From the author’s experience, unnecessary
scroll bars and bouncing effects should be eliminated
if any.

H. UI/ UX

1) Gestures. The application can be manipulated
with a variety of gestures like tap, double tap, touch
and hold, pinch, pan, swipe, etc. It should be checked
that gestures bring the same user experience as

Ivans Kulesovs / Environment. Technology. Resources, (2015), Volume III, 138-150

147

suggested in iOS Human Interface Guidelines [93].
The applications made by Apple can be used for
reference. Based on the author’s practice, if some
elements on the definite application screen support
non-trivial gestures other than single tap, other screen
elements around should be checked for interaction
using the same non-trivial gestures. It also should be
verified that unexpected interactions with multiple UI
elements at once are not allowed, because such actions
often lead to crash.

It is worth mentioning that minimal suggested
tappable area is 44 x 44 px [94].

2) Smooth Animation. The animation is used to
improve UX when the application responds to the user
actions or when it provides the user with a feedback
about the occurring on the screen. But they should not
be “excessive or gratuitous” otherwise they “can
obstruct app flow, decrease performance, and distract
users from their task” [95]. The animation should be
smooth irrespectively of the currently running
background tasks, thus the author recommends to test
different animated transitions for smoothness while
heavy background tasks occur.

3) Pull to Refresh. Pull to Refresh [24] feature is a
very common user experience mechanism that is used
for performing delta data loads in mobile applications
[96]. It should be verified that Pull to Refresh
mechanism loads only the new data, not the whole
available data set, and that already loaded data is
persisted in case of the Pull to Refresh update failed. It
also should be checked how it behaves when the
current data/ time and/ or data settings (e.g. format
and zone) are changed.

4) Orientation. The application should be checked
in both orientations if applicable [4], [12], [24], [25],
[97]. Based on the author’s experience, it can occur
that UI elements are wrongly placed on the orientation
change, and the application can crash when the user
interacts with misplaced elements (it often occurs with
popovers) [98]. The application can also crash when
the device is rotated during the execution of heavy
operations. Executing the actions after the rotation
with the rotation lock option enabled is also the
subject of interest, because there are several ways how
the device orientation can be checked and how the
device orientation change is detected by the
application [97], [99].

5) Half Pixels. Sometimes there are half-pixels [24]
and other unexpected blurs [100] noticed when using
the application. They occur when UI elements are
scaled or when their size and origin are calculated, but
not rounded to the whole pixels. The same applies to
the fonts. These UI glitches are more visible on the
non-retina displays and are often inspected in practice
using the 3-fingers accessibility zoom [101].

6) Localization. The following should be checked
in case the application supports localizations:

 Localized text in images [24].

 Localized translated text fits the available area
[24].

 The same text is localized in exactly the same
way when used in different parts of the
application.

 Right-to-left text input and alignment [24] for
Arabic and Hebrew languages.

 Native and special characters:

- persistence in a database or a file;

- printing and display [19];
- writing to log;

- handling both by the client and the server.
7) Accessibility. There are plenty of accessibility

features available in iOS [20], [23] – [26], i.e.
VoiceOver, accessibility zoom, bold text, invert colors
etc. [101] They all change the way how the system
and the applications look and respond to the gestures.
Thus it should be checked that enabling the
accessibility features of the system does not break the
application.

V CONCLUSION

The literature review of both academic and
multivocal literature was performed. The majority of
the sources selected for the review, both academic and
multivocal, were published during the last three years
period.

The results of SLR are mostly related to general
mobile applications testing aspects like limited
resource utilization, orientations, localizations etc.,
while the results of MLR provided the needed details
of iOS application testing aspects (like definite
restrictions and privacy settings, iOS accessibility
features, etc.), as well as identified some new aspects
like IAP, date/ time settings etc. The identified aspects
were divided between 4 large clusters: Environment,
Application Lifecycle, Inside the Application, and
(functional or performance aspects of) UI/ UX. The
details of each aspect were discussed based on the
selected sources and the author’s professional
experience giving the appropriate references to Apple
Developers LibraryError! Bookmark not defined.
and other credible sources. Some aspects that were not
identified through literature reviews, but are known to
the author (iAd, update of Xcode, AirDrop etc.) were
discussed as well.

The future work will focus on the details of some of
the aspects, as well as iOS applications test
automation, stress testing, and security testing.

The author concludes that the study eliminates the
gap that existed in the academic world in regards to
the identification and detailed description of iOS
application testing aspects. These details should also
be useful for practitioners who want to make their iOS
testing strategy more solid and complete.

Ivans Kulesovs / Environment. Technology. Resources, (2015), Volume III, 138-150

148

VI ACKNOWLEDGMENTS

The author thanks C.T.Co Ltd.
(http://www.ctco.lv/) for allowing and stimulating the
conduction of the research based on the real software
projects, and Darja Smite and Vladislavs Simanovics
for their valuable reviews.

VII REFERENCES
[1] “Mobile Computing Sector Report”, 2011. [Online].

Available: http://www.clearwatercf.com/documents/
library/Mobile_Report_FINAL.pdf [Accessed: May 10, 2014].

[2] Crittercism, “Mobile Experience Benchmark”. [Online].
Available:
http://pages.crittercism.com/rs/crittercism/images/crittercism-
mobile-benchmarks.pdf [Accessed: May 10, 2015].

[3] H. Muccini, F. Di Antonio, and P. Esposito, “Software testing
of mobile applications: challenges and future research
directions”, in Proc. IEEE 7th Int. Workshop Automation of
Softw. Test, Zurich, AST, 2012, pp. 29–35.

[4] V.L.L. Dantas, F.G. Marinho, A.L. da Costa, R.M.C. Andrade,
“Testing requirements for mobile applications”, in Proc. 24th
Int. Symp. Comput. and Inform. Sci., Guzelyurt, ISCIS, 2009,
pp. 555-560.

[5] J. Gao, B. Xiaoying, T. Wei-Tek, T. Uehara, “Mobile
application testing: a tutorial”, IEEE Computer, vol. 47, no. 2,
pp. 46-55, Feb. 2014.

[6] D. Franke, S. Kowalewski, C. Weise, and N. Prakobkosol,
“Testing conformance of lifecycle-dependent properties of
mobile applications”, in Proc. 5th Int. Conf. Softw. Testing,
Verification and Validation, Montreal, ICST, 2012, pp. 241 –
250.

[7] D. Franke, C. Elsemann S. Kowalewski, C. Weise, “Reverse
engineering of mobile application lifecycles”, in Proc. 18th
Work. Conf. Reverse Eng., Limerick, WCRE, 2011, pp. 283 –
292.

[8] R.T. Ogawa, B. Malen, “Towards rigor in reviews of
multivocal literatures: applying the exploratory case study
method”, Review of Educ. Research, vol. 61, no. 3, pp. 265–
286, Fall 1991.

[9] Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE) – System and
software quality models, ISO/IEC 25010, 2011.

[10] E. Tom, A. Aurum, R. T. Vidgen, “An exploration of technical
debt”, Journal of Systems and Software, vol. 86, no. 6, pp.
1498-1516, 2013.

[11] B. Kitchenham, S. Charters, „Guidelines for performing
Systematic Literature Reviews in Software Engineering”,
EBSE Tech. Rep., 2007, vers. 2.3.

[12] D. Franke, S. Kowalewski, C. Weise, “A mobile software
quality model”, in Proc. 12th Int. Conf. Quality Softw., Xi'an,
Shaanxi, QSIC, 2012, pp. 154 – 157.

[13] H.-K. Kim, “Mobile applications software testing
methodology”, Commun. in Comput. and Inform. Sci., vol.
342, 2012, pp. 158-166.

[14] E. H. Marinho, R.F. Resende, “Quality factors in development
best practices for mobile applications”, in Proc.
Computational Sci. and Its App., Salvador de Bahia, Brazil,
ICCSA, 2012, pp. 632-645.

[15] D. Amalfitano, A.R. Fasolino, P. Tramontana, and N.
Amatucci, “Considering context events in event-based testing
of mobile applications”, in Proc. IEEE 6th Int. Conf. Softw.
Testing, Verification and Validation Workshops, Luxembourg,
ICSTW, 2013, pp.126-133.

[16] K. Haller, “Mobile testing”, ACM SIGSOFT Softw. Eng.
Notes, vol. 38, no. 6, pp. 1-8, Nov. 2013.

[17] H. Khalid, “On identifying user complaints of iOS apps”, in
Proc. 35th Int. Conf. Softw. Eng., San Francisco, CA, ICSE,
2013, pp. 1474 – 1476.

[18] D. Franke, C. Weise, “Providing a software quality framework
for testing of mobile applications”, in Proc. 4th Int. Conf.
Softw. Testing, Verification and Validation, Berlin, ICST,
2011, pp. 431 - 434.

[19] “Testing Criteria for iOS Apps - App Quality Alliance”, Oct.
21, 2013. [Online]. Available: http://www.appqualityalliance.
org/files/AQuA_testing_criteria_for_iOS_for_v1.0%20final%
2022_oct_2013.pdf [Accessed: May 10, 2015].

[20] “Tips For Accessibility Testing Of iOS Apps | Pat's Tapestry”,
May 24, 2013. [Online]. Available: http://patstapestry.
wordpress.com/2013/05/24/tips-for-accessibility-testing-of-
ios-apps/ [Accessed: May 10, 2015].

[21] “Testing iOS Apps for Tough Network Conditions | Nearsoft”,
Oct 20, 2013. [Online]. Available: http://nearsoft.com/blog/
testing-ios-apps-for-tough-network-conditions/ [Accessed:
May 10, 2015].

[22] “TestElf Blog — We Find These Common Bugs When
Testing iOS Apps”, Jul 24, 2013. [Online]. Available:
http://blog.testelf.com/post/56341438836/we-find-these-
common-bugs-when-testing-ios-apps [Accessed: May 10,
2015].

[23] “The Essential Guide to iPhone & iPad App Testing”, Dec 10,
2012. [Online]. Available: http://core.ecu.edu/STRG/
materials/uTest_eBook_Mobile_Testing.pdf [Accessed: May
10, 2015].

[24] “iOS Testing mind map 1.2 – Now with more stuff | Neglected
Potential”, Oct 8, 2013. [Online]. Available:
http://www.neglectedpotential.com/2013/10/ios-testing-mind-
map-1-2/ [Accessed: May 10, 2015].

[25] “iOS Devices | Dave Addey”, Sept 22, 2013. [Online].
Available:
http://daveaddey.com/postfiles/AgantReleaseChecklist2013.pd
f [Accessed: May 10, 2015].

[26] “iOS Accessibility - A Useful Guide For Testing | Rosie
Land”, Sep 2, 2012. [Online]. Available:
http://www.rosiesherry.com/2012/09/02/ios-accessibility-a-
useful-guide-for-testing/ [Accessed: May 10, 2015].

[27] “Testing iOS Applications”, Mar 12, 2014. [Online].
Available: http://blog.smartbear.com/mobile/testing-ios-
applications/ [Accessed: May 10, 2015].

[28] “Global 500 – Fortune”, Mar 18, 2015. [Online]. Available:
http://fortune.com/global500/ [Accessed: May 10, 2015].

[29] “Developer Library - Apple Developer”. [Online]. Available:
https://developer.apple.com/library/ [Accessed: May 10,
2015].

[30] “Apple - iPad in Business”. [Online]. Available:
http://www.apple.com/ipad/business/ [Accessed: May 10,
2015].

[31] “Apple - iPhone in Business”. [Online]. Available:
http://www.apple.com/iphone/business/ [Accessed: May 10,
2015].

[32] “iOS 6: Which software features does my iPhone, iPad, or
iPod touch support? - Apple Support”. [Online]. Available:
http://support.apple.com/kb/ht5457 [Accessed: May 10, 2015].

[33] “iPad 2 - Technical Specifications”. [Online]. Available:
http://support.apple.com/kb/sp622 [Accessed: May 10, 2015].

[34] “iPad mini - Technical Specifications”. [Online]. Available:
http://support.apple.com/kb/SP661 [Accessed: May 10, 2015].

[35] “iPad (4th generation) - Technical Specifications”. [Online].
Available: http://support.apple.com/kb/sp662 [Accessed: May
10, 2015].

[36] “iPad (3rd generation) - Technical Specifications”. [Online].
Available: http://support.apple.com/kb/sp647 [Accessed: May
10, 2015].

[37] “iPad Air - Technical Specifications”. [Online]. Available:
http://support.apple.com/kb/SP692 [Accessed: May 10, 2015].

[38] “iPad mini with Retina display - Technical Specifications”.
[Online]. Available: http://support.apple.com/kb/SP693
[Accessed: May 10, 2015].

[39] “iPad Air 2 - Technical Specification”. [Online]. Available:
http://support.apple.com/kb/SP708 [Accessed: May 10, 2015].

[40] “iPad mini 3 - Technical Specification”. [Online]. Available:
http://support.apple.com/kb/SP709 [Accessed: May 10, 2015].

Ivans Kulesovs / Environment. Technology. Resources, (2015), Volume III, 138-150

149

[41] “Use Touch ID on iPhone and iPad - Apple Support”.
[Online]. Available: http://support.apple.com/en-us/HT5883
[Accessed: May 10, 2015].

[42] “iPhone 4 - Technical Specifications”. [Online]. Available:
http://support.apple.com/kb/sp587 [Accessed: May 10, 2015].

[43] “iPhone 4S - Technical Specifications”. [Online]. Available:
http://support.apple.com/kb/sp643 [Accessed: May 10, 2015].

[44] “iPhone 5 - Technical Specifications”. [Online]. Available:
http://support.apple.com/kb/sp655 [Accessed: May 10, 2015].

[45] “iPhone 5c - Technical Specifications”. [Online]. Available:
http://support.apple.com/kb/SP684 [Accessed: May 10, 2015].

[46] “iPhone 5s - Technical Specifications”. [Online]. Available:
http://support.apple.com/kb/SP685 [Accessed: May 10, 2015].

[47] “iPhone Development 101: Default (Launch) Image Sizes for
iPhone & iPad”. [Online]. Available:
http://www.idev101.com/code/User_Interface/launchImages.h
tml [Accessed: May 10, 2015].

[48] “iPhone 6 - Technical Specifications”. [Online]. Available:
http://support.apple.com/kb/SP705 [Accessed: May 10, 2015].

[49] “iPhone 6 Plus - Technical Specifications”. [Online].
Available: http://support.apple.com/kb/SP706 [Accessed: May
10, 2015].

[50] “Apple - Apple Pay”. [Online]. Available:
https://www.apple.com/apple-pay/ [Accessed: May 10, 2015].

[51] “Xcode Overview: Debug Your App”, Oct 20, 2014. [Online].
Available: https://developer.apple.com/library/ios/
documentation/ToolsLanguages/Conceptual/Xcode_Overview
/DebugYourApp.html [Accessed: May 10, 2015].

[52] “Monitoring Accessory-Related Events”, Feb 24, 2012.
[Online]. Available: https://developer.apple.com/library/ios/
featuredarticles/ExternalAccessoryPT/Articles/MonitoringEve
nts.html [Accessed: May 10, 2015].

[53] “Tablet Stylus Test Lab: Comparison of Pencil, Intuos, Pogo
Connect & Jot Script”, May 12, 2013. [Online]. Available:
http://www.apartmenttherapy.com/tablet-stylus-test-lab-
comparison-of-pencil-intuos-pogo-connect-jot-script-tech-test-
lab-reviews-196850 [Accessed: May 10, 2015].

[54] “Xcode - What's New - Apple Developer”. [Online].
Available: https://developer.apple.com/xcode/ [Accessed: May
10, 2015].

[55] “What’s New in Xcode”, Apr 20, 2015. [Online]. Available:
https://developer.apple.com/library/mac/documentation/Devel
operTools/Conceptual/WhatsNewXcode/Articles/Introduction.
html [Accessed: May 10, 2015].

[56] “iOS 7.0 Release Notes”, Oct 22, 2013. [Online]. Available:
https://developer.apple.com/library/ios/releasenotes/General/R
N-iOSSDK-7.0/ [Accessed: May 10, 2015].

[57] “Apple to require all new App Store submissions to be
“optimized for iOS 7,” built with latest Xcode starting Feb. 1 |
9to5Mac”, Dec 17, 2013. [Online]. Available:
http://9to5mac.com/2013/12/17/apple-to-require-all-new-app-
store-submissions-to-be-optimized-for-ios-7-built-with-latest-
xcode/ [Accessed: May 10, 2015].

[58] “Apple - Press Info - iOS 7 With Completely Redesigned User
Interface & Great New Features Available September 18”, Sep
10, 2013. [Online]. Available: http://www.apple.com/pr/
library/2013/09/10iOS-7-With-Completely-Redesigned-User-
Interface-Great-New-Features-Available-September-18.html
[Accessed: May 10, 2015].

[59] “Why Apple won’t allow you to downgrade your iPhone from
iOS 7 to iOS 6 | ITProPortal.com”, Sep 29, 2013. [Online].
Available: http://www.itproportal.com/2013/09/29/why-apple-
wont-allow-you-to-downgrade-your-iphone-from-ios-7-to-ios-
6/ [Accessed: May 10, 2015].

[60] “App Store Distribution - Support - Apple Developer“.
[Online]. Available: https://developer.apple.com/
support/appstore/ [Accessed: May 10, 2015].

[61] “About Restrictions (parental controls) on iPhone, iPad, and
iPod touch - Apple Support”. [Online]. Available:
http://support.apple.com/kb/ht4213 [Accessed: May 10, 2015].

[62] “About the Instruments User Reference” [Online]. Available:
https://developer.apple.com/library/ios/documentation/Analysi

sTools/Reference/Instruments_User_Reference/Introduction/I
ntroduction.html [Accessed: May 10, 2015].

[63] “Logging Energy Usage on an iOS Device”, Oct 16, 2014.
[Online]. Available: https://developer.apple.com/library/
mac/recipes/Instruments_help_articles/LoggingEnergyUsagei
naniOSDevice/LoggingEnergyUsageinaniOSDevice.html
[Accessed: May 10, 2015].

[64] “Designing for Real-World Networks” [Online]. Available:
https://developer.apple.com/library/ios/documentation/Networ
kingInternetWeb/Conceptual/NetworkingOverview/WhyNetw
orkingIsHard/WhyNetworkingIsHard.html [Accessed: May
10, 2015].

[65] “Background Execution”, Sep 17, 2014. [Online]. Available:
https://developer.apple.com/library/ios/documentation/iPhone/
Conceptual/iPhoneOSProgrammingGuide/BackgroundExecuti
on/BackgroundExecution.html [Accessed: May 10, 2015].

[66] “iOS Security”, Oct 2012. [Online]. Available:
https://www.apple.com/br/ipad/business/docs/iOS_Security_O
ct12.pdf [Accessed: May 10, 2015].

[67] “Analyzing Crash Reports”, Apr 08, 2015. [Online].
Available: https://developer.apple.com/library/ios/
documentation/IDEs/Conceptual/AppDistributionGuide/Analy
zingCrashReports/AnalyzingCrashReports.html [Accessed:
May 10, 2015].

[68] “Handling Memory Warnings - UIViewController Class
Reference”, Sep 17, 2014. [Online]. Available:
https://developer.apple.com/library/ios/documentation/uikit/re
ference/UIViewController_Class/Reference/Reference.html
[Accessed: May 10, 2015].

[69] “Performance Tips”, Sep 17, 2014. [Online]. Available:
https://developer.apple.com/library/ios/documentation/iPhone/
Conceptual/iPhoneOSProgrammingGuide/PerformanceTips/P
erformanceTips.html [Accessed: May 10, 2015].

[70] “iOS Simulator User Guide: Interacting with iOS Simulator”,
Mar 09, 2015. [Online]. Available: https://developer.apple.
com/library/mac/documentation/IDEs/Conceptual/iOS_Simula
tor_Guide/InteractingwiththeiOSSimulator.html [Accessed:
May 10, 2015].

[71] “About Local Notifications and Remote Notifications”, Mar
09, 2015. [Online]. Available: https://developer.apple.
com/library/ios/documentation/NetworkingInternet/Conceptua
l/RemoteNotificationsPG/Introduction.html [Accessed: May
10, 2015].

[72] “Registering, Scheduling, and Handling User Notifications”,
Mar 09, 2015. [Online]. Available: https://developer.apple.
com/library/ios/documentation/NetworkingInternet/Conceptua
l/RemoteNotificationsPG/Chapters/IPhoneOSClientImp.html
[Accessed: May 10, 2015].

[73] “About AV Foundation “, Nov 18, 2014. [Online]. Available:
https://developer.apple.com/library/ios/documentation/Audio
Video/Conceptual/AVFoundationPG/Articles/00_Introduction
.html [Accessed: May 10, 2015].

[74] “Technical Note TN2285: Testing iOS App Updates”, Oct 07,
2014. [Online]. Available: https://developer.apple.com/
library/ios/technotes/tn2285/_index.html [Accessed: May 10,
2015].

[75] “Technical Q&A QA1587: How do I get my application to
show up in the "Open in..." menu on iOS for a specific
document type?”, Apr 14, 2014.[Online]. Available:
https://developer.apple.com/library/ios/qa/qa1587/_index.html
[Accessed: May 10, 2015].

[76] “Share content with AirDrop from your iPhone, iPad, or iPod
touch - Apple Support“. [Online]. Available:
http://support.apple.com/kb/ht5887 [Accessed: May 10, 2015].

[77] “Apple - iTunes - Everything you need to be entertained“.
[Online]. Available: http://www.apple.com/itunes/ [Accessed:
May 10, 2015].

[78] “About the Camera and Photo Library”, Jul 17, 2012.
[Online]. Available: https://developer.apple.com/
library/ios/documentation/AudioVideo/Conceptual/CameraAn
dPhotoLib_TopicsForIOS/Introduction/Introduction.html
[Accessed: May 10, 2015].

Ivans Kulesovs / Environment. Technology. Resources, (2015), Volume III, 138-150

150

[79] “Using NSURLDownload”, Oct 22, 2012. [Online].
Available: https://developer.apple.com/library/mac/
documentation/Cocoa/Conceptual/URLLoadingSystem/Tasks/
UsingNSURLDownload.html [Accessed: May 10, 2015].

[80] “About Document Interaction“, Nov 15, 2010. [Online].
Available: https://developer.apple.com/library/ios/
documentation/filemanagement/conceptual/documentinteracti
on_topicsforios/Introduction/Introduction.html [Accessed:
May 10, 2015].

[81] “Technical Q&A QA1697: Why doesn't my device load a file
that loads fine in the Simulator?“, Jun 01, 2010. [Online].
Available: https://developer.apple.com/library/ios/qa/
qa1697/_index.html [Accessed: May 10, 2015].

[82] “App Store Review Guidelines - Apple Developer“. [Online].
Available:
https://developer.apple.com/appstore/resources/approval/guide
lines.html [Accessed: May 10, 2015].

[83] “Getting Started with In-App Purchase - In-App-Purchase-
Guidelines.pdf”, Dec 01, 2014. [Online]. Available:
https://developer.apple.com/in-app-purchase/In-App-
Purchase-Guidelines.pdf [Accessed: May 10, 2015].

[84] “Testing In-App Purchase Products“, Oct 02, 2014. [Online].
Available:
https://developer.apple.com/library/ios/documentation/Langua
gesUtilities/Conceptual/iTunesConnectInAppPurchase_Guide/
Chapters/TestingInAppPurchases.html [Accessed: May 10,
2015].

[85] “Use Restrictions to prevent purchasing on your iPhone, iPad,
or iPod touch - Apple Support”. [Online]. Available:
http://support.apple.com/kb/ht6088 [Accessed: May 10, 2015].

[86] “About iAd“, Sep 17, 2014. [Online]. Available:
https://developer.apple.com/library/ios/documentation/UserEx
perience/Conceptual/iAd_Guide/Introduction/Introduction.htm
l [Accessed: May 10, 2015].

[87] “About iAd Tester - Apple Support”. [Online]. Available:
http://support.apple.com/kb/HT5245 [Accessed: May 10,
2015].

[88] “Testing iAd Apps”, Sep 17, 2014. [Online]. Available:
https://developer.apple.com/library/ios/documentation/userexp
erience/conceptual/iAd_Guide/TestingiAdApplications/Testin
giAdApplications.html [Accessed: May 10, 2015].

[89] “Introduction to WebKit Objective-C Programming Guide”,
Nov 19, 2012. [Online]. Available: https://developer.apple.
com/library/mac/documentation/Cocoa/Conceptual/DisplayW
ebContent/DisplayWebContent.html [Accessed: May 10,
2015].

[90] “What is a Hybrid Mobile App? -Telerik Developer Network”,
Mar 25, 2015. [Online]. Available: http://developer.telerik.
com/featured/what-is-a-hybrid-mobile-app/ [Accessed: May
10, 2015].

[91] “Technical Q&A QA1630: Using UIWebView to display
select document types“, Aug 25, 2009. [Online]. Available:

https://developer.apple.com/library/IOs/qa/qa1630/_index.htm
l [Accessed: May 10, 2015].

[92] “Simple Browsing”, Nov 09, 2012. [Online]. Available:
https://developer.apple.com/library/mac/documentation/Cocoa
/Conceptual/DisplayWebContent/Tasks/SimpleBrowsing.html
[Accessed: May 10, 2015].

[93] “iOS Human Interface Guidelines: Interactivity and
Feedback“, Apr 08, 2015. [Online]. Available:
https://developer.apple.com/library/ios/documentation/userexp
erience/conceptual/MobileHIG/InteractivityInput.html
[Accessed: May 10, 2015].

[94] “iOS Human Interface Guidelines: Adaptivity and Layout”,
Apr 08, 2015. [Online]. Available:
https://developer.apple.com/library/ios/documentation/userexp
erience/conceptual/mobilehig/LayoutandAppearance.html
[Accessed: May 10, 2015].

[95] “iOS Human Interface Guidelines: Animation”, Apr 08, 2015.
[Online]. Available: https://developer.apple.com/
library/ios/documentation/userexperience/conceptual/mobilehi
g/Animation.html [Accessed: May 10, 2015].

[96] “United States Patent: 8448084”, May 21, 2013. [Online].
Available: http://patft.uspto.gov/netacgi/nph-
Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2
Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8,
448,084.PN.&OS=PN/8,448,084&RS=PN/8,448,084
[Accessed: May 10, 2015].

[97] “Supporting Multiple Interface Orientations”, Dec 13, 2012.
[Online]. Available: https://developer.apple.com/
library/ios/featuredarticles/ViewControllerPGforiPhoneOS/Re
spondingtoDeviceOrientationChanges/RespondingtoDeviceOr
ientationChanges.html [Accessed: May 10, 2015].

[98] “UIPopoverController Class Reference“, Dec 16, 2013.
[Online]. Available: https://developer.apple.com/
library/ios/documentation/UIKit/Reference/UIPopoverControl
ler_class/Reference/Reference.html [Accessed: May 10,
2015].

[99] “Technical Q&A QA1688: Why won't my UIViewController
rotate with the device?”, Apr 18, 2013. [Online]. Available:
https://developer.apple.com/library/ios/qa/qa1688/_index.html
[Accessed: May 10, 2015].

[100] “OS X Human Interface Guidelines: Icons and Graphics”, Apr
08, 2015. [Online]. Available: https://developer.apple.com/
library/mac/documentation/UserExperience/Conceptual/OSX
HIGuidelines/IconsGraphics.html [Accessed: May 10, 2015].

[101] “Use Accessibility features in iOS - Apple Support“. [Online].
Available: http://support.apple.com/kb/HT5018 [Accessed:
May 10, 2015].

The full list of the reviewed multivocal sources with indicating
the exclusion phase can be found here:
https://dspace.lu.lv/dspace/bitstream/handle/7/2739/iOS
Applications Testing - Multivocal Sources.pdf

