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Abstract. The present article is a series of publications dedicated to the research of smart fabric sensors integrated into 

socks and is also part of the project aimed at developing the measuring system based on smart fabric supplied with sensors 

and intellectual data processing. The aim of the article is to perform a practical study on the application of Self-

Organizing Map to smart textile signal clustering. Within the framework of the research, different approaches to the 

organization of network training are explored. A method for encoding an input pattern is also proposed. It has been 

established that the network is able to recognize the signal as a good step, a bad step, and an unrecognized step. The 

primary classification allows further selecting specific algorithms for a detailed analysis of good steps and bad steps. The 

detailed analysis of bad steps is the key to solving the problem of revealing of an athlete’s special type of fatigue, leading 

to injuries. 
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I. INTRODUCTION 

DAid® Pressure Sock System [1] measures and 

transmits a signal proportional to the pressure exerted 

by the foot on the sensors. In general, the system 

opens wide opportunities for investigating the 

processes of interaction of the user of smart fabric 

with any other objects, for example, in medicine at 

the stage of rehabilitation of patients or for 

monitoring the mobility of bedridden patients; in 

various sports – in equestrian sport (to control the 

rider’s position in the saddle), dancesport, basketball 

(analysis of the coverage of the ball with the wrist) 

and in many other areas. The system transmits 

observations simultaneously from all sensors at 

predetermined intervals (for example, there are ten 

sensors in smart socks). 

However, there is a substantial gap between the 

idea of signal collection (and even its physical 

implementation) and the operation of the system. It is 

due to the fact that the system must be able to 

recognize the signal. The signal may have noise, it is 

susceptible to the influence of the human body mass, 

tissue displacement is also not excluded, etc. Thus, 

one of the challenges is the analysis of the received 

signal. The ultimate goal of the analysis is to 

determine the process parameters specific to each 

area. For example, in case of running, as a result of 

analyzing the signal from the socks, it is expected to 

reveal such signal characteristics that would indicate 

the athlete’s fatigue level. 

As it is known, observations from clinical studies 

have estimated that over 60 % of running injuries 

could be attributed to training errors. In fact, it can be 

stated that all overuse running injuries are a result of 

training errors. An individual who has sustained an 

overuse running injury must have exceeded his/her 

limit of running distance and/or intensity in such a 

way that the remodeling of the injured structure 

predominated over the repair process due to the 

stresses placed on the structure [2]. 

On the way to the ultimate goal of identifying 

process parameters, there is the task of primary signal 

classification. Within the framework of the research, 

the authors investigate the use of Self-Organizing 

Maps (SOMs, also known as Kohonen Network) for 

signal clustering into the acceptable step (“the good” 

step that is correctly performed from the subjective 

point of view of the authors of the study), the 

unacceptable step (“the bad”) and something else that 

cannot be called even a ugly step (“the 

unrecognized”). Unacceptable steps are the steps that 

are not executed correctly (in comparison with the 

“good” ones). Objective evaluation of a step is the 

subject of further research, once it is determined that 

signals of DAid® Pressure Sock System can be 

divided into these three classes. 

The paper explores various approaches to the 

organization of network training. A manual way of 

network training is proposed. Experiments on the 

clustering of the signal obtained during a real run are 

carried out. The experiments aim at finding out 

whether the signal is distinguishable and determining 

the accuracy levels at which it is possible to classify 

patterns that do not participate in network training. 
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The Kohonen network has been chosen owing to its 

simple mathematical model, which does not require 

significant computation and can be implemented in 

portable devices. The SOMs do not require a training 

sample. This will allow in the future, on their basis, to 

create systems that themselves adapt to the ordinary 

human step. This is a significant advantage over 

similar solutions. 

 

II. OVERVIEW OF CONTEMPORARY 

RESEARCH IN THE FIELD 

Many articles are devoted to the analysis of the 

signal coming from clothes, shoes, wearable 

equipment. The current research is close to studies [3] 

and [4], in which the authors discuss how to detect 

the gait phases and abnormalities of the phases. The 

source of the signal is ground contact force (GCF) 

sensors, which use air bladders and air pressure 

sensors. The authors use predefined rules to 

determine the appropriate gait phase. It should be 

noted that the integration of sensors in the shoes 

aligns the relief of the foot. At the same time, the use 

of predefined rules narrows the scope of the method. 

It is worth mentioning the study [5], in which to 

determine the appropriate gait phase at each gait 

moment the authors use a threshold-based detection 

algorithm employing state transition theory. To 

obtain the signal, the smart shoe is used, combining 

two types of sensors: force sensitive resistors (FSRs) 

and a gyroscope. The data of smart shoes are used in 

another study of these authors [6], which recognizes 

gait phases. The disadvantage of using force sensitive 

resistors is that the FSR does not adequately reflect 

the actual foot pressure due to its small sensing area 

and limited sensing range [7]. In its turn, the study [7] 

uses the GCF sensors. For the analysis of the gait 

phases in the gait motions, the authors apply a hidden 

Markov model. 

Summarizing the existing studies in the field of 

smart textile signal processing, it is possible to 

formulate several approaches that allow drawing 

conclusions about the parameters of running or 

walking: 

 To “disassemble” the original signal into 

components and explore geometric shapes, its 

properties, etc.; 

 To cluster the signal and then denote each 

cluster in one way or another depending on the 

parameters of the signals it is made up; 

 On the basis of expert knowledge, to define (a) 

the norms of time intervals between the 

extremes of sensor signals, as well as (b) other 

indicators characterizing the steps. Then, it is 

necessary to divide the signal into steps, and 

for each step to calculate the values of the 

indicators; 

 As in the previous approach, it is necessary to 

calculate the values of step indicators and then 

build a time series of changes in indicators in 

order to analyze the trend of change in 

indicators. The approach allows forecasting 

the development of various parameters of the 

race. 

Each approach has its own advantages in 

determining what happens to the athlete in the 

running process. Solving this problem, the greatest 

effect can be achieved through synergistic 

approaches. The present research is based on the 

approach related to signal clustering and denoting 

each cluster. 

 

III. THE EXPLOITED SYSTEM FOR PLANTAR 

PRESSURE ANALYSIS 

In the present research, the wireless DAid® 

Pressure Sock System [1] (Fig. 1) has been used to 

measure temporal gait parameters and plantar 

pressure control. The proposed system consists of the 

array of sensors distributed over the sole part of 

socks, connected by conductive lines and custom 

designed connector with electronic devices that 

collect and transmit data from sensors to the data 

processing device [1]. 

 
Fig. 1. Allocation of left foot sensors of Daid® Pressure Sock 

System. 

 

In Fig. 1 (right side), the labels ADC0, ADC1, 

ADC2, ADC3, ADC4 denote pressure sensors. White 

lines (see Fig. 1, left image) are conductive lines, 

which deliver the signal from sensor to sock 

connectors. The transmitting device connected to 

each sock uses Bluetooth to deliver the signal to the 

host computer.  

The designed Daid® Pressure Sock System 

provides an opportunity to control relative pressure 

distribution, temporal gait features; it can potentially 

provide recognition of walk/run patterns and their 

long-time alterations that could help avoid possible 

injuries due to foot overload. The developed sensors 

are inexpensive, do not disturb plantar pressure 

distribution and may be easily customized following 

recommendation of physician [1]. In Fig. 2, the 

example of one sensor signal is depicted, where V-1 

denotes inverted sensor output. 

 

  

 
 

ADC0 ADC3 

ADC1 
ADC4 

ADC2 
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Fig. 2. A signal fragment produced by one sensor. 

 

IV. SOM IN SIGNAL CLUSTERING TASK 

SOMs are neural network based clustering 

methods used for the analysis and visualization of 

high dimensional data [8]. SOMs have an important 

characteristic for this study – they do not require a 

training sample. The only thing that is required is 

expert knowledge of the approximate number of 

classes that are expected to be received. SOMs can 

yield satisfactory results with a comparatively small 

training set and can be significantly faster than 

conventional MLPs for exploratory classification 

problems [8]. 

In the present research, the input vector transmits 

the signal of a step obtained from five sensors of 

smart sock (see Fig. 1). To find the start and end 

points of a step in the streaming signal of the race, a 

simple comparison of the sum signal across all 

sensors with a threshold value is used. If the sum is 

below a given threshold (see Fig. 3), the closest 

(right-hand) minimum of this sum will be the cut 

point of next step. 

 
Fig. 3. Visual representation of weight vectors of the three neurons. 

 

It is also possible to use the method of detection 

of the so-called reference points, based on the 

transformation of dynamic data into static images and 

the application of the multilayer perceptron (see [9] 

for detailed explanation). Any approach allows 

dividing the signal into steps. The five-channel signal 

of each step forms one input vector of the Kohonen 

network. 

As the number of signal measurements of a 

person’s step can vary, to determine the size of the 

input vector, the case with the largest number of 

measurements of the step (23 measurements) has 

been identified among all the steps of the two 

experimental races R1 and R2. Two more formal 

measurements have been added to this number in 

order to ensure that all measurements are made. 

However, this is an optional activity. If the duration 

of any step is less than 25 measurements, for 

example, 18, then measurements from 19 to 25 are 

filled with zeros. In total, the input vector is formed 

by 125 measurements – 25 for each of the five 

sensors as shown in Fig. 4. 

 

 
Fig. 4. Visual representation of the composite input vector of a 

step. 

 

In the present paper, as a metric for determining 

the winning neuron of the input vector, the Euclidean 

metric 
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The Kohonen network consists of neurons 

organized into a rectangular structure. As a function 

of calculating the proximity of neighboring neurons, 

the Gaussian function is used: 
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The study uses the coefficient of learning rate η 

equal to 0.1 and the standard deviation of the 

distribution σ equal to 0.5. 

Depending on the goal of the experiment, the 

network consists of two, three or six neurons. In fact, 

their number indicates the number of clusters (types 

of steps), into which the Self-Organizing Map divides 

the “cut” signals of step. Accordingly, the more 

neurons are used in the Kohonen network, the more 

details are recognized in the signal of step. 

To provide full control over all parameters of the 

Kohonen network, use arbitrary metrics for 

calculating the closeness of vectors and manually set 

the values of the weights, the authors have created 

their own SOM program in the Java programming 

language. In future, this development can be 

transferred to the Android platform, which will allow 

for real-time monitoring of the race parameters 

calculated on the side of this device. 
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V.  IMPLEMENTATION OF EXPERIMENTS 

The aim of the series of experiments is to 

investigate how successfully Self-Organizing Maps 

cluster the signal received from the DAid® Pressure 

Sock System sensors. For simplicity, the experiments 

use sensor signals from only one sock (from the left 

foot). In total, two experimental races were made (see 

Table 1). The first part of the path of each race was 

run normally by the test persor (in the opinion of the 

tester), and the second half – deliberately worse, 

performing the so-called unacceptable steps. Under 

the unacceptable (“the bad”) step, the following 

sequence of foot-to-ground contact is implied: 

1) contact of the sock with the ground at a large 

angle (the plane of the foot at this moment is 

practically perpendicular to the surface); 

2) contact of the heel with the ground. 

The number of steps accomplished by the test 

person during normal and bad races is given in 

Table 1. 
Table 1 

Experimental Race 

Race 

identifier 

Total step 

number 

Good* step 

count 
Bad* step count 

R1 105 71 34 

R2 64 36 28 

* in the test person’s opinion 

 

It should be noted that due to the human factor, 

within the normal style of running, various deviations 

from the normal style could be tolerated (the same 

can be attributed to the style of bad running – some 

“bad” steps could be performed as quite good steps 

or, conversely, as “not steps” at all). The comparison 

of the test person’s opinion with the “opinion” of the 

artificial neural network is also one of the important 

points of the present research. 

Apart from races, there were also two series of 

jumps on the left foot: 11 jumps for the training 

sample and 10 jumps for the test sample. The 

obtained jumps are used contrary to the steps and are 

referred to as the “unrecognized” signals. 

A. The First Experiment: Clustering Steps into 

Two Clusters and Choosing the Best Metric 

In the first experiment, the Self-Organizing Map 

should cluster the R1 race steps (see Table 1) into two 

clusters of steps, using two metrics: the Euclidean 

metric (1) and contour-based metric (2). As a result of 

applying the Euclidean metric, one step out of the 71 

steps of the normal running style is recognized as the 

“bad” one by the SOM. In turn, 4 steps out of the 34 

steps taken in bad running style are attributed by the 

SOM to the cluster of “good” ones, which makes the 

clustering accuracy equal to 95 %. It cannot be stated 

that these five steps were incorrectly clustered. It is 

assumed that the test person unintentionally (and not 

realizing) took one bad and four good steps at the 

wrong time. In turn, the Self-Organizing Map has its 

own “opinion”.  

Fig. 5 demonstrates the weight vectors of the 

SOM neurons obtained during training (clustering). 

 
Fig. 5. Visual representation of weight vectors of two neurons. 

 

Since the weights of the neurons contain 

approximately average values of all the elements of 

the cluster, the lines in Fig. 5 actually reflect the 

generalized image of a “good” step and that of a 

“bad” step. 

In case of using the counter-based metric, the 

network recognizes the steps in a way similar to that 

of the Euclidean metric, but clusters the other seven 

steps in a different way. However, one cannot say 

that the network “made a mistake” as another metric 

was used, which otherwise evaluated the similarity of 

time series. In subsequent experiments, this trend 

remains unchanged – using the Euclidean metric, the 

clustering of steps practically coincides with the test 

person’s opinion. Therefore, in subsequent 

experiments it was decided to use only the Euclidean 

metric. The model obtained in the first experiment is 

denoted as 𝑆𝑂𝑀𝑅1
2 (two clusters, the first sample). 

B. The Second Experiment: Clustering Steps Into 

Three Clusters: The “Good”, the “Bad” and the 

“Unrecognized”  

In the second experiment, the Kohonen network is 

formed by three neurons, ensuring that the signal is 

clustered into three classes of steps. To the selection 

of R1 race signals, 11 signals of jumps were added 

from the toe (hereinafter, the “unrecognized” signals). 

As a result of training, one step (and the same as in 

the first experiment) out of the 71 steps of the normal 

running style was recognized by the Kohonen 

network as a bad step. Eight out of the 34 steps of the 

bad running style were attributed by the network to a 

cluster of good steps. Finally, six “unrecognized” 

signals out of 11 signals were recognized as bad 

steps. Fig. 6 shows the values of weights of all three 

neurons. 
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Fig. 6. The values of the weights of the neurons, the “good” step, 

the “bad” step and jump (unrecognized). 

 

Fig. 6 demonstrates that the “unrecognized” signal 

(dotted line) significantly differs from the signal of 

good (green line) and bad steps, and it is also longer. 

This is clearly seen in the measurements 15–25 of 

ADC4 sensor (Fig. 6, signals 115–125): although the 

steps are already completed, there is still the 

“unrecognized” signal (dotted line). The model 

obtained in the second experiment is denoted as 

𝑆𝑂𝑀𝑅1
3 . 

C. The Third Experiment: Classification of Test 

Steps on the Trained Network 

In the third experiment, the steps from the R2 race 

are classified on the models 𝑆𝑂𝑀𝑅1
2 and 𝑆𝑂𝑀𝑅1

3  

obtained in the previous experiments (see Table 1). 

The model 𝑆𝑂𝑀𝑅1
2  allowed classifying the signals of 

the race R2 at 100 % accuracy. In turn, the model 

𝑆𝑂𝑀𝑅1
3  also classifies good and bad steps at 100 % 

accuracy, but the three “unrecognized” signals out of 

the 10 test “unrecognized” signals are attributed to 

bad steps. Fig. 7 compares signals of the three 

“unrecognized” signals with the values of weights of 

the neuron of bad steps and that of the 

“unrecognized” signal.  

As seen in Fig. 7, duration of “unrecognized” 

signals (recognized by the SOM as bad steps) is 18 

measurements, which is typical of bad steps. 

 
Fig. 7. Comparison of duration of the “unrecognized” signal to that 

of the signal of bad steps. 

 

Indeed, repulsions from the surface when 

performing jumps on the left toe had similar features 

with landings on the toe when performing bad steps. 

D. The Fourth Experiment: Clustering of the Signal 

of Steps by a Network with Six Neurons 

Within the framework of the fourth experiment, 

all the steps of R1 and R2 races were used. The aim 

of the experiment was to investigate the clustering 

results of the signal of steps by a network with two 

neurons (the obtained model was denoted as 

𝑆𝑂𝑀𝑅1,𝑅2
2 ), and by a network with six neurons (the 

obtained model was denoted as 𝑆𝑂𝑀𝑅1,𝑅2
6 ). In the 

case of 𝑆𝑂𝑀𝑅1,𝑅2
2 , the four steps out of the 107 steps 

made during the normal running style were 

recognized by the SOM as bad steps, and the eight 

steps out of the 62 steps made during the 

unacceptable running style were recognized by the 

SOM as acceptable steps. 

It should be noted again that this does not indicate 

an error in the operation of the SOM – the test person 

could unconsciously take steps of the type not 

required of him. 
 

Table 2 

Distribution of Steps by Clusters 

Type 

of a 

step 

Number 

of steps 
(for two 

races) 

𝑆𝑂𝑀𝑅1,𝑅2
2

 𝑆𝑂𝑀𝑅1,𝑅2
4𝑜𝑓6

 

Cluster 

“Good”  

Cluster 

 “Bad”  

Cluster 

A 

Cluster 

B 

Cluster 

C 

Cluster 

D 

Good 107 104 3 2 18 43 44 

Bad 62 8 54 54 8 0 0 

 

It is worth noting that in the case of six neurons in 

the Kohonen network ( 𝑆𝑂𝑀𝑅1,𝑅2
6 ), two neurons 

turned out to be “dead” – they were not involved. The 

eight steps attributed by the network 𝑆𝑂𝑀𝑅1,𝑅2
2  to 

good steps were classified into the cluster B. The 

remaining 54 steps of the unacceptable style were 

classified by the SOM into the cluster A. As a result, 

it can be concluded that this is the cluster of bad 

steps. Those 103 steps out of 107 steps (acceptable 

style), which were previously attributed to good 

steps, were classified into the clusters C and D, while 

the remaining four steps were grouped into the 

clusters A and B, each containing two steps. These 

data are provided in  

Table 2. 

On the basis of the weight vectors of the four 

neurons, the matrix of distances was created, which 

resulted in a dendrogram shown in Fig. 5. 

 
Fig. 8. Dendrogram of the similarity of clusters. 

A      Cluster 
          of “bad”  
          steps 

C 

B 

D 

Clusters of 
“good” 
steps 
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As shown in the dendrogram, all the steps can be 

divided into three types: the “bad” cluster A, the 

“good” clusters B and D. The question arises: what 

steps were attributed by the network to the cluster C? 

To answer this question, let us take a look at the 

matrix of cluster distances (see Fig. 9). 

 

 
Fig. 9. The matrix of cluster distances. 

 

 The cluster C is closer to the cluster D, which is 

a subset of good steps. Thus, clusters B, C and D are 

types of good steps with varying degrees of 

acceptability. In particular, the cluster C holds the 

steps from the sample of good steps, which were 

unintentionally not so well made. In fact, this group is 

an indication of the deviations in the test person’s 

race from normal running style. 

E. The Fifth Experiment: Comparison of Manual 

Clustering with SOM Clustering 

The final experiment performed manual clustering 

(the obtained model was denoted as 𝑀𝑎𝑛𝑢𝑎𝑙𝑅1
2 ) and 

clustering by the Self-Organizing Map (𝑆𝑂𝑀𝑅1
2 ). As 

the test person believed that he ran well the first half 

of the race and the second half – worse, then the 

average values of “good” and “bad” steps were taken. 

In Fig. 10, Fig. 11 and Fig. 12, these values are 

compared to the values of weights of the network 

𝑆𝑂𝑀𝑅1
2 of the first experiment. 

 
Fig. 10. The average values of steps obtained manually and by the 

network 𝑆𝑂𝑀𝑅1
2 . 

 
Fig. 11. The average values of “good” steps obtained manually and 

by the network 𝑆𝑂𝑀𝑅1
2 . 

 
Fig. 12. The average values of “bad” steps obtained manually and 

by the network 𝑆𝑂𝑀𝑅1
2 . 

 

As can be seen in the figures above, manual 

clustering practically coincides with the clustering of 

the Self-Organizing Map: the graph of the average 

value of acceptable steps coincides with the graph of 

the weights of the corresponding neuron by 98.5 %, 

and for unacceptable steps the coincidence is 97 %. 

This is an important result, showing that the 

“opinion” of the network basically coincides with that 

of the test person. There are also minor 

“disagreements” described in the previous 

experiments. 

 

VI. CONCLUSIONS 

The authors of the present paper have investigated 

the application of the Self-Organizing Map to the 

clustering of the signal of steps obtained from sensors 

of DAid® Pressure Sock System. The experiments 

have been carried out with the aim to use the trained 

SOM in order to classify steps that do not participate 

in training. 

As a result of the first experiment, clustering of 

the steps into two clusters has been achieved at 95 % 

accuracy. The error of five percent is explained by 

subjectivity when the test person attributed steps to a 

particular class. To increase the accuracy, expert 

knowledge in the field of physiology is required. It 

has been found that for a given signal type the 

Euclidean metric gives a result that is closer to the 

opinion of the test person than the contour-based 

metric does. 

In the second experiment, signals of the third type 

(actually not being steps) have been added, and 

clustering into three groups has been performed. The 

coincidence with the opinion of the test person has 

been 87 %. 

In the third experiment, the models obtained 

during the training in the first and second experiments 

( 𝑆𝑂𝑀𝑅1
2  and 𝑆𝑂𝑀𝑅1

3 ) have been used. The 

coincidence of the classification of steps (previously 

not involved in training) with the opinion of the test 

person has been 100 % for the two types of steps, and 

96 % for the steps and “unrecognized” signals. 

In the fourth experiment, the authors have 

compared the clustering of acceptable and 

unacceptable steps into two and six clusters. In case 

of six neurons in the Kohonen network, two have not 

been not involved. One cluster contains unacceptable 

steps, three clusters – acceptable. As a result, the 

Signal measurement number 

Signal measurement number 

Signal measurement number 
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gradation of good steps has been obtained. It should 

be noted that bad steps have not been divided into 

subgroups. It is also worth mentioning that even with 

such a small amount of data, it has been possible to 

demonstrate the clustering approach with further 

assigning of a name to each class in accordance with 

the steps included in it. 

Finally, in the fifth experiment, the results of 

manual clustering and clustering by the SOM 

network have been compared. It has been found that 

the results of manual clustering and that of the SOM 

network practically coincide. 

Within the framework of the present research, a 

practical study of the application of Self-Organizing 

Map to smart textile signal clustering has been carried 

out. Based on the results of the experiments, it can be 

concluded that the network is able to recognize the 

signal as the “good” step, “bad” step, and not a step at 

all. Such a primary (rough) classification allows 

further selecting specific algorithms for a detailed 

analysis of “good” steps and “bad” steps. The 

detailed analysis of bad steps is the key to solving the 

problem of revealing of an athlete’s special type of 

fatigue, leading to injuries. This is also the area of the 

further research. 
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