

Environment. Technology. Resources, Rezekne, Latvia

Proceedings of the 10th International Scientific and Practical Conference. Volume III, 29-35

ISSN 1691-5402
© Rezekne Higher Education Institution (Rēzeknes Augstskola), Rezekne 2015

DOI: http://dx.doi.org/10.17770/etr2015vol3.175

Computer Programming Aptitude Test as a
Tool for Reducing Student Attrition

Juris Borzovs, Laila Niedrite, Darja Solodovnikova

University of Latvia, Faculty of Computing.
Address: Raina blvd 19, Riga, LV 1586, Latvia

Abstract. The stable trend to lose from one-third to half of students in the first study year of computing studies

motivated us to explore, which methods are used to determine in advance such applicants, who have no change to
overcome the first study year. Initially, a research about the factors influencing the attrition in Faculty of Computing
at the University of Latvia was conducted. The research revealed that the trend of non-beginning studies might
indicate the wrong choice of the study field and possible lack of understanding of what is programming by enrolled
students (applicants as well as pupils).

The study provides the review of the situation with programming aptitude tests in the world, which could serve as
one of the solutions to the dropout reduction. An action plan is proposed, which is based on the exploration of students
and evaluation of activities already conducted at the Faculty of Computing of the University of Latvia to reduce
dropout (School of Young Programmers, Compensative Course in High School Mathematics, Mentoring programs).
Moreover, the supplementation of these activities by one of the existing programming attitude tests (or a combination
of several tests) or a necessity to develop a new similar test is considered.

Keywords: Aptitude test, attrition rate, computer science education, data analysis.

I INTRODUCTION

In recent years the observed practically stable trend
to lose from one-third to half of students in the first
year of computing studies motivated us to explore,
whether the world has not found indeed a method,
how to determine in advance such applicants that have
no chance to overcome the first study year.

On the one hand, the dropout students and the
teaching staff have wasted their resources. On the
other hand the Ministry of Science and Education and
experts that are evaluating the study programs
frequently associate the high dropout rate with a low
effectiveness of the implementation of the study
program (another matter – whether it is reasonable)
and ask what is done to reduce the attrition.

To reduce the attrition, it was decided initially to
perform a research about the factors influencing the
attrition in Faculty of Computing at the University of
Latvia [1]. Our study investigated students enrolled
into the computer science bachelor and programmer
professional programs in one year (2013). It were
originally assumed, that following factors could have
a potential impact on attrition:

1. High school grades (admission score)
2. Compensative course in high school

mathematics
3. Intermediate grades for core courses
4. Prior knowledge in programming.

The results of the study in more detail can be found
in [1]. Further, a short summary of the main
conclusions is given to justify the choice of
appropriate solutions to reduce the attrition.

There exists a large group of students, who in fact
do not begin studies and who are later expelled. The
majority of expelled students drop out in the 1st
semester of the 1st year. These students include both
students with weaker and with quite good high school
grades. Since the 1st year dropout consists mostly of
students, who have not really begun studies, so the
high school grades do not have significant effect on
dropout, but they may have an impact on the further
study process.

The hypothesis that a programming background is
an important factor influencing dropout was rejected,
since we found out that the ratio between students
with and without prior knowledge remained the same
at the start and end of the first study year. This was
concluded based on the data from self-assessment
questionnaires. Also there is still a large number of
students, who do not really begin studies, which could
be explained by the wrong choice of a study program
and insufficient insight into "what is programming",
what the program developers are doing at work, and
during the self-assessment test the knowledge in an
informatics at school was possibly incorrectly treated
as knowledge in programming.

Juris Borzovs, et al./ Environment. Technology. Resources, (2015), Volume III, 29-35

30

It is not necessary to prove, that every man has a
different capability, however, in the society an opinion
dominates, that every „normal” student is capable to
acquire the basics of the most important sciences, e.g.
language, mathematics etc. Therefore, they are
included into the school curriculum. There is still an
open question, whether in this set of skills and
knowledge, also the programming should be included.

Even in most of high schools the programming is
not on the list of mandatory subjects, and so it is in the
whole world, despite the recent actions (e.g. [2]).

It is not proved, however, there is a widespread
opinion that the programming is not among skills that
should be taught mandatory, because a significant part
of “normal” people can not learn them.

In the 1st study year it is meant usually by
„programming” just writing a computer program in
some programming language. Certainly, such limited
understanding is quite far from all methods of
developing computer programs [3], and includes not
more than 20% of tasks in professional software
development. However, it can be hardly imagined that
software developer can be without these program
coding skills.

According to the research results [4], universities
should prepare an action plan to reduce the attrition,
which, at the same time, does not lower the quality of
studies [5] or admission requirements [6].

In the following part of the paper, a review about
the programming aptitude tests is given, that can be
used to reduce attrition. We will propose an action
plan that is based on investigation of students and on
analysis of already undertaken actions to lower the
attrition rate (“The School of Young Programmers”
[7], Compensative course in high school mathematics,
Mentoring program). We will also outline
considerations about supplementation of these actions
with existing programming aptitude tests or
combination of them, also the necessity to develop
new targeted tests will be discussed.

II MATERIALS AND METHODS

Attempts to pre-select the most appropriate students
for programming are at least 50-60 years old [8]-[10].
Searching ‘computer programming aptitude test’ in
Google Scholar, at least 60 publications for the period
from 1960 until 2014 are obtained, but in neither of
them, including the youngest publications, „silver
bullet” unfortunately was not found.

All existing approaches to computer programming
aptitude determination are conditionally divisible into
two parts: the ones based on the psychological tests
(for instance, [11]-[18]) and the ones based on solving
specifically designed non-programming tasks (for
instance, [19]-[21]).

In practice, hybrid tests [22] are often used, which
contain elements to check the „logical reasoning,
numerical problem solving, pattern recognition, ability

to follow complex procedures and attention to detail”.
So, in addition to problem solving, such tests include
also evaluation of various specific personality traits.

There also exist tests, which are used to self-asses
the existing programming knowledge. Programming
simulation includes „pseudocode, control structures
(e.g. loops), look-up tables, sets, arrays, boolean
true/false, looping and other programming structures”.

If the time comes, when an adequate idea of
programming and one’s skills in this area will be
obtained before applying to the university computer
science study program, everything written above will
become obsolete. While this is not the case, the most
promising psychological [16], [18] and problem
solving, for example, [22] self-test summary should be
offered to the prospective students.

Psychological Tests

In one of the studies [16], Myers-Briggs personality
types detection test is used to determine, which types
of college students are doing better in the
programming introductory course.

Myers-Briggs test is available, for example, at this
website [23]. The test determines a total of 16
different personality types, 4 aspects are evaluated:
1) general attitude: Extraverted vs. Introverted;
2) perception function: Sensing vs. Intuition;
3) judging function: Thinking vs. Feeling;
4) perception – judging domination: Judging vs.
Perceiving.

The study [16] concludes that „sensing students
performed better on programming assignments than
intuitive students, and that judging students achieved
higher programming averages than perceptive
students”. Commenting on the findings of these types,
it can be noted that Sensing means that an individual
relies on a specific, topical information, but Intuition
means that a person relies on his or her vision of the
world. On the other hand, people with judging
dominance perceive the world as an ordered structure
that follows the set of laws, in contrast to the
perceiving people, who perceive the world as a
structure that can take different forms and results.

Another study [18] describes how results of various
tests performed by students, correlate with their
programming ability. It was determined that 2 tests
SQ [24] and EQ [25] used together, showed the best
correlation results. A test „Cambridge Personality
Questionnaire” (SQ - Systemizing Quotient - test) was
used, which determines how easily an individual
understands object systems. The second test used in
the study, was „The Cambridge Behaviour Scale”
(Empathy Quotient test - EQ), which describes how
easily an individual understands human emotions. A
difference between the two test results: SQ - EQ. (r =
.67) revealed the correlation with programming
results. Separately, each of these tests showed
significantly poorer correlation.

Juris Borzovs, et al./ Environment. Technology. Resources, (2015), Volume III, 29-35

31

The authors of the study explained the obtained
results with the fact that people with SQ significantly
higher than EQ prefer dealing with ordered systems in
everyday life, instead of dealing with people, who
they do not understand. The authors also suggest that a
large SQ – EQ value indicates the aptitude for studies
that require great effort and practice that definitely
corresponds to the programming studies.

Problem Solving Tests

One of the further examined examples [22]
describes a test that already exists at the university,
while the other shows the possibility to realize a test in
a modern environment, attractive and habitual for
pupils [26].

The test of the University of Kent includes
questions about 1) „Logical thinking and problem
solving”, which essentially evaluates the ability to
prevent problems arising during the development of
IS, 2) „Pattern and syntax recognition”, which
essentially tests the ability to discern differences and
pay attention to details, to verify the information,
3) „Ability to follow complex procedures”, which
assesses the ability to organize, process events, objects
in a logical sequence, according to some regulations,
assess the impact of an action on the future.

The test includes 26 questions. Answers are
assigned points and groups are defined by the number
of points, but the selection of specific questions and
division into groups is unclear, since the test is based
on the practical experience of its usage. This gives an
insight into the test, which has already been
implemented and used in practice at the university,
however, the usage of such test in our case should be
further explored and evaluated.

The second example, „Aptitude and Logical
Reasoning” [26] test, which is implemented as a
mobile application and is available in Google Play, is
not primarily intended to measure the programming
aptitude, but helps to improve problem solving skills
and prepare for various exams and similar tests. There
are many such mobile applications, which suggests
that both the test and the its implementation
environment are topical and demanded among users.

III RESULTS AND DISCUSSION

According to the conclusions of the primary study
of the distribution of students [1], a majority of
students really do not begin studies, therefore,
activities targeting both „early” dropped out students
and applicants are considered. Several ideas are
planned to be studied further, for example, the
possibility for students to assess themselves their
suitability for a chosen field of study, by offering a
variety of self-assessment tests - personality tests,
logic tests, mathematics tests. For example, the
contents of the latter test could be based on the
compensative course in high school mathematics,

which is already conducted at the Faculty of Computer
Science. It could be implemented as a computerized
test for self-assessment that candidate students could
take before they choose the study program.

For example, the contents of the latter test could be
based on the compensative course in high school
mathematics, which is already conducted at the
Faculty of Computer Science. It could be implemented
as a computerized test for self-assessment that
candidate students could take before they choose the
study program. The groundwork in this direction has
been started in the project “School of Young
Programmers” of the Faculty of Computer Science at
the University of Latvia [7]. The purpose of this
project is to promote the comprehension about
programming in high schools.

A detailed insight into both the study about
students, the analysis of existing activities aimed at
reducing the dropout and the new action plan follows.

Results of the Initial Survey - Reasons for the
Choice of the Faculty of Computing

The reasons for the students’ choice of the Faculty
of Computing of the University of Latvia could be
determined from the questionnaire completed by
prospective students beginning their studies. In 2013
235 questionnaires were processed. Questionnaires are
anonymous, summarized results are available. It is
allowed to mark several reasons for the choice, and
the most marked reasons are shown in the Table1.

TABLE 1.

REASONS FOR THE CHOICE OF THE FACULTY OF COMPUTING

The reasons with a positive impact on the further

study process were identified as „I have been
programming before and I like it” and „I am interested
in mathematics”. Many students also marked the
reasons that can indicate misunderstanding of the
profession, such as „I like everything related to
computers”, i.e. underestimation of the true nature of
the program is possible, because the idea of
computing may be influenced by the use of computers
according to the contents of a high school informatics
course. Another large part of students choose the
reasons that could indicate even a lack of interest for
the study content („potentially high salary in the
future” and „I hope to learn a profession where I could
easily get a job”).

I like everything related to computers 127 54,0%

Potentially high salary in the future 108 46,0%

I think that there is a high quality of study 98 41,7%

I have been programming and I like it 97 41,3%

I hope to learn a profession where I could
easily get a job

 89 37,9%

I am interested in mathematics 91 38,7%

Juris Borzovs, et al./ Environment. Technology. Resources, (2015), Volume III, 29-35

32

Since there is no information about the respondents
of the questionnaire, the precise analysis of the
connection between reasons and dropout is not
possible, but conclusions can be drawn that before
enrolment, students underestimate that the curriculum
includes mathematical courses (less than a half of
students are interested in mathematics), and that they
will have to program. 41.3% of new students selected
the answer „I have been programming and I like it”,
but for other students, it is unknown, what the
outcome of their familiarization with programming
will be, and it would be better to offer the opportunity
to get an idea of programming earlier - before
enrolment into the study program. While the
programming subject is not mandatory in the high
school curriculum for everyone, it would be good to
create such opportunity.

The table does not include the reasons marked by
less than 20% of respondents, including the influence
of parents and friends, the opportunity to easily get
into the group financed by the state, which are also
risky reasons with high potential of dropouts, because
these answers do not indicate students’ interest and
idea of the profession.

School of Young Programmers

The School of Young Programmers (SYP) [7] was
created to promote the comprehension about
computing [Fig.1]. The lectures available in the online
environment allow to understand what a programming
is. In 2014 at the lectures of the School of Young
Programmers, a modern, intuitive programming
language Scratch designed especially for schools, was
studied. Scratch is a project of the lifelong learning
group “Lifelong Kindergarten” of the Massachusetts
Institute of Technology (USA). Although this
language is easy to learn, it is possible to create quite
complex programs in Scratch 2.0. “The School of
Young Programmers” is offered by the Faculty of
Computing of the University of Latvia with the
support of the Fund of the University of Latvia and
JSC “4finance”.

Fig.1. E-environment of the School of Young Programmers

SYP offers tutorials of the programming language
Scratch, program examples, video materials and
environment [27], which allows pupils, who have not
studied programming at high school, to learn
programming by themselves in a short time. Scratch
can be used at different levels of difficulty for pupils
of different ages, therefore, it can also be used to
evaluate, whether a pupil is interested in and is good
at programming, before making a decision about
studying at the Faculty of Computing or elsewhere.

Mentoring Program

The mentor program is designed at the University
of Latvia to support a freshmen at the beginning of
their study, because they have to contend with a large
amount of new information and settle into an
unfamiliar environment. The program works at almost
all faculties, including the Faculty of Computing [28].
At the Faculty of Computing, the program is
implemented by the Student Authority, in
collaboration with the Alumni of the Faculty of
Computing, the Student Council of the University of
Latvia, Accenture Latvia and FranklinCovey. The
participants of the program - mentors, who are senior
students, have the opportunity to participate in free
training to get new experience useful for their career.
Freshmen, in turn, have the opportunity to get an
advisor, who can provide information, advice and
support. The mentoring program at the Faculty of
Computing is designed to help students to earn a
diploma, providing support directly in the first year
when the dropout is the highest.

The activity of the mentoring program is described
by the following statistics: 42 mentors and 66
freshmen applied for the program. Among freshmen,
80.3% of those who took part in the mentoring
program, registered for the second semester, but only
63.21% of students who did not have mentor,
registered for the second semester. So, among
mentored freshmen, there are better results, however,
different conclusions could be drawn: either the
program really helped first-year students, or more
active, interested students, who would cope with the
studies either way, registered for the program.

Current Situation with the Compensative
Course

The Compensative Course in High School
Mathematics was introduced in 2009 with the purpose
to expand knowledge of students of the Faculty of
Computing, to improve the situation with the study
process both for teachers and for students. Students
are able to get knowledge on topics, which were not
promptly acquired in high school, and the absence of
this knowledge complicates the understanding of the
university course content. The course also allows
teachers to work with the audience with more
homogeneous knowledge.

Juris Borzovs, et al./ Environment. Technology. Resources, (2015), Volume III, 29-35

33

The course content includes topics that were
identified during interviews with teachers and taking
into account teachers’ proposals about the essential
topics of their courses, which should be known
already from high school.

„Compensative Course in High School
Mathematics” is mandatory for the students of the
Faculty of Computing with the admission examination
score less than 700 (1000 is the maximum possible).
The course is taught by means of lectures on the the
planned course topics. The course is conducted in the
1st and 2nd semesters of the first study year and the
course topics are divided into the groups: Algebra and
Functions (in the fall semester), as well as
Trigonometry and Geometry (in the spring semester).
Students have to take a test on each of these groups of
topics and when they get an assessment „passed” for
each of the two groups in the corresponding semester,
the final test for the semester is obtained. Students are
allowed to take each of these tests repeatedly several
times. The e-learning environment Moodle is used to
inform students about their results. However, the tests
themselves have not been implemented in the e-
learning environment. If a student passes a test faster
than at the end of the semester (if a student is sure that
he or she has acquired unclear issues, then he or she
can take tests more quickly), then a student is allowed
not to attend this course anymore. This course was
offered to 122 students out of 254 students enrolled in
2013.

The Compensative Course in High School
Mathematics directly represents both the necessary
training in mathematics and students’ personal
qualities, such as motivation, commitment and
perseverance, because a student does not have to
acquire a new difficult content, but has to learn deeper
topics, which have already been studied at high
school, to avoid potential problems in further studies.

It should be recalled that this course targets those
122 students with admission score of less than 700,
which includes grades for high school mathematics.
Therefore, analysing students by the mathematics
knowledge aptitude indicator, it is more important to
analyse further exactly the weakest, less suitable,
group of students, to plan further support activities.
However, as a study of dropout showed [1], there is
also a high dropout rate among students with more
than 700 points, which is why the pre-enrolment
activities aimed at prevention of dropout due to other
reasons, including the wrong choice, are
recommended to be conducted among this group of
students as well.

Therefore, some of the results are described at a
glance, which could be used to distinguish separate
student subgroups that could benefit from different
supportive activities to reduce dropout. The full results
of the dropout study can be found at the paper [1].

Results of a study on the outcomes of the
Compensative Course in High School Mathematics

allowed to distinguish 3 groups of students: „do-
nothing students” - 15 students (100% of them
dropped out), which did not attempt to pass any of the
tests, the 2nd group consisting of 74 students who
sooner or later passed the tests (30% of them dropped
out) and „failers” - 33 students who failed to pass the
tests (88% of them dropped out). Conclusions about
students were made based on the available
information about the history of passing the course.
Among „test failers”, there are mostly the students
who have quickly given up (attempted to pass the tests
only once), but more than a half of those, who passed
the tests, are the students, who attempted to pass the
tests several times. These data indicate that the result
depends not so much on the level of high school
knowledge, as on other reasons – interest or
motivation (or lack of them) to work.

47%

18%

12%

23% Students, who study further

Dropped out students, who
passed the tests

Dropped out “do-nothing”
students

Dropped out students, who
failed to pass the tests

Fig.2. Groups of test takers

So the following groups of students can be
distinguished (see Fig.2):

1) Students, who study further – high school
knowledge is acceptable after taking the course

2) Dropped out students, who passed the tests –
high school knowledge is acceptable after
taking the course, the motivation has been
sufficient to pass the course, however, students
do not continue studies

3) Dropped out „do-nothing” students – wrong
choice of the program and lack of motivation,
no data on the knowledge in this course

4) Dropped out students, who failed to pass the
tests – lack of motivation, high school
knowledge is not acceptable as the course was
not passed.

Proposed Plan for Dropout Reduction

The Table 2 shows the evaluation of the above-
mentioned groups, which activities and when should
be planned.

According to the characteristics of each group, the
time when activities should be conducted, as well as
the type of the support activities, is identified. The
existing compensative course in high school
mathematics should be retained at the beginning of
studies for students with admission scores less than
700 points. Since the previously given distribution
into groups is possible only after the fact of dropping
out, then, as a preventive measure to reduce dropout
caused by other reasons, such as difficulties in settling

Juris Borzovs, et al./ Environment. Technology. Resources, (2015), Volume III, 29-35

34

in the university environment, difficulties in
orientation in the study process, a mentoring program
should be developed and popularized at the beginning
of studies.

TABLE 2.

ACTIVITIES FOR DROPOUT REDUCTION

Groups When the activity
should be offered?

Activity

Students, who study
further

At the beginning
of studies

Existing
compensative course
in mathematics

Dropped out students,
who passed the tests

At the beginning
of studies

Mentoring program,
existing compensative
course in mathematics

Dropped out “do-
nothing” students

Before enrolment Aptitude tests

Dropped out students,
who failed to pass the
tests

Before enrolment Aptitude tests

On the other hand, to prevent the enrolment of

students inappropriate for the programmer profession,
which correspond to the latter two groups, profession
aptitude tests should be offered, as well as educational
and promotional activities for pupils, explaining what
is programming and which knowledge is required for
a programmer, where one of the tools would be the
promotion of the School of Young Programmers.

Our proposals in the area of the professional
aptitude test are the following:

1) To implement the assessment test of the
compensative course in mathematics as an online
test to evaluate the knowledge in mathematics,

2) For the evaluation of programming skills, if
perspective students have such skills, the
supplementation of materials of the School of
Young Programmers with a set of exercises
organized in the form of a test, where the
execution of these exercises would not exceed a
certain time limit. The test would serve as an
initial insight into the aptitude measurement and
attraction of interest, and the rest of the materials
available in the e-environment could be then
used for the in-depth understanding.

3) Psychological tests [16], [18], the description of
which has already been given above,

4) Problem solving tests [22], [26] - a combination
of the best examples.

The proposed package should be promoted before
the enrolment.

IV CONCLUSIONS

There are various tests for programming aptitude
measurement, at the same time, the specificity of the
national education system and the university should be
taken into account to evaluate the plan for the most
appropriate activities to reduce dropout.

In this paper, the action plan, which, in addition to
the programming aptitude tests implemented in a self-

assessment form, also includes other activities that
should be used both before and after the enrolment
and require the involvement of the faculty staff, was
proposed.

One of the most important further tasks is the
combination of the best examples of the problem
solving tests – including both the content and the
form – by offering content in the Latvian language as
well as conducting the content selection or novelty.
The further tasks are related to this test and
approbation of the whole action plan and
determination of aptitude criteria.

V REFERENCES
[1] J. Borzovs, L. Niedrīte, and D. Solodovņikova, “Factors

affecting attrition among first year computer science students:
the case of University of Latvia”, 2015, submitted for
publication.

[2] Computing at School, [Online]. Available:
http://www.computingatschool.org.uk/ [Accessed: Mar.17.,
2015]

[3] D.Bricklin, “Why Johnny can't program”, August 2002,
[Online], Available: http://www.bricklin.com/
wontprogram.htm [Accessed: Mar.17., 2015]

[4] F. Araque, C. Roldán, and A. Salguero, “Factors influencing
university drop out rates”, Computers and Education, vol.
53(3), pp. 563-574, 2009.

[5] L. Paura and I. Arhipova, “Cause Analysis of Students’
Dropout Rate in Higher Education Study Program”, Procedia-
Social and Behavioral Sciences, vol. 109, pp. 1282-1286,
2014.

[6] L. Grebennikov and M. Shah, "Investigating attrition trends in
order to improve student retention", Quality Assurance in
Education, Vol. 20 (3), pp. 223 – 236, 2012.

[7] “School of Young Programmers” [Online]. Available:
http://www.df.lu.lv/nacstudet/jauno-datoriku-skola/,
[Accessed: Mar.17., 2015].

[8] T.C. Rowan, “Psychological tests and selection of computer
programmers”, Journal of the Association for Computing
Machinery, Vol. 4, pp. 348-353, 1957.

[9] W.J. McNamara, J.L. Hughes, “Manual for the revised
Programmer Aptitude Test”, New York: international
Business Machines Corporation, 1959.

[10] A.W. Stalnaker, “The Watson-Glaser Critical Thinking
Appraisal as a predictor of programming performance”,
Proceedings of the Third Annual Computer Personnel
Research Group, pp. 75-77, 1965.

[11] E. Spranger, “ Types of Men: The Psychology and Ethics of
Personality”, Johnson Reprints, New York, 1966.

[12] C.K. Capstick, J.D. Gordon, and A. Salvadori, “Predicting
performance by university students in introductory computing
courses”, ACM SIGCSE Bulletin Vol. 7(3), pp. 21-29, 1975.

[13] R.E. Mayer, J.L. Dyck, and W. Vilberg, “Learning to program
and learning to think: What’s the connection?” Commun. of
ACM Vol.29 (7), pp. 605-610, 1986.

[14] D.A. Scanlan “The mental abilities associated with
programming aptitude”, CSC'88 Proceedings of the ACM
sixteenth annual conference on computer science, p.737, 1988.

[15] G.E. Evans and M.G. Simkin, “What best predicts computer
proficiency?” Commun. of ACM Vol.32(11), pp. 1322–1327,
1989.

[16] C. Bishop-Clark and D.D. Wheeler, “The Myers-Briggs
personality type and its relationship to computer
programming”, Journal of Research on Computing in
Education, Vol. 26(3), pp. 358-370, 1994.

[17] C.C. Cegielski, J. Dianne, and D.J. Hall, “What makes a good
programmer?”, Commun. of the ACM, Vol. 49(10), pp. 73-75,
2006.

Juris Borzovs, et al./ Environment. Technology. Resources, (2015), Volume III, 29-35

35

[18] S. Wray, “SQ Minus EQ can Predict Programming Aptitude”,
Proceedings of the PPIG 19th Annual Workshop, pp. 243-254,
2007.

[19] M. Tukiainen and E. Mönkkönen, “Programming aptitude
testing as a prediction of learning to program”, In: J. Kuljis, L.
Baldwin, and R. Scoble (Eds). Proc. PPIG 14, pp. 45-57, 2002

[20] S. Dehnadi, R. Bornat “The camel has two humps”, 2006,
[Online], Available: http://wiki.t-o-f.info/uploads/EDM4600/
The%20camel%20has%20two%20humps.pdf [Accessed:
Mar.17., 2015]

[21] T. Lorenzen, H.-L. Chang, “MasterMind©: a predictor of
computer programming aptitude”, ACM SIGCSE Bulletin,
Vol. 38 (2), pp. 69-71, 2006.

[22] University of Kent, Computer Programming Aptitude Test
[Online], Available: http://www.kent.ac.uk/careers/tests/
computer-test.htm [Accessed: Mar.17., 2015]

[23] Carl Jung’s and Isabel Briggs Myers’ typology test, [Online],
Available:
http://www.humanmetrics.com/hr/you/personalitytype.aspx
[Accessed: Mar.17., 2015]

[24] Autism Research Centre, Cambridge, “Cambridge Personality
Questionnaire” (SQ test). Available:
http://www.autismresearchcentre.com/arc_tests, [Accessed:
Mar.17., 2015]

[25] Autism Research Centre, Cambridge, “The Cambridge
Behaviour Scale” (EQ test), Available:
http://www.autismresearchcentre.com/tests/eq_test.asp,
[Accessed: Mar.17., 2015]

[26] Android Apps on Google Play: Aptitude and Logical
Reasoning, [Online]. Available: https://play.google.com/store/
apps/details?id=com.madguy.aptitude.lr [Accessed: Mar.17.,
2015]

[27] I. Gorbāns, “Programming environment for every students –
Scratch or basics of programming in few hours”, E-book,
2014, [Online]. Available: http://skolas.lu.lv/mod/book/
view.php?id=29857 , [Accessed: Mar.17., 2015]

[28] Mentoring program of Faculty of Computing at University of
Latvia, [Online]. Available: http://www.df.lu.lv/
zinas/t/28406/ [Accessed: Mar.17., 2015]

