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Abstract. This paper examines the possibility of storing OWL 2 based ontology information in a classical relational 

database and reviews some existing methods for ontology databases. In most cases a database is a fitting solution for 
storing and sharing information among systems, clients or agents. Similarly, in order to make domain ontology 
information more accessible to systems, in a comparable way, it can be stored and provided in a database form. As of 
today, there is no consensus on a specific ontology database structure. The main focus of this paper is specifically on 
OWL 2 as a basis for the description of ontology centric information in a database. The Web Ontology Language 
OWL 2 is a language for describing ontology information for the Semantic Web. As such it consists of a list of 
reserved words and grammatical rules for defining many parts of ontology knowledge. Based on this language 
specification this paper examines the possibility of storing information in a relational database for the description of 
domain ontology information. By creating a database structure based on OWL2 it is feasible to obtain an approach to 
storing information about the domain ontology in an utilizable way, by using its descriptive abilities. Nowadays 
multiple approaches to storing ontology information and OWL in databases exist; most of them are based on storing 
RDF data or provide persistence for specific OWL software libraries. The examination of the existing approaches 
provided in this paper, shows how they differ from the goal of obtaining a general, more easily usable and less 
software library specific database for domain ontology centric information. This paper describes a version of a simple 
relational database capable of holding and providing ontology knowledge on demand, which can be implemented on a 
database management system of choice.  
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I INTRODUCTION 

Ontology knowledge is a powerful tool to share, 
describe and classify information about a given 
domain. The ontology describes concepts important to 
a domain. It does it by naming classes, individuals and 
relations and describing how these ontology elements 
interact with each other. By using reasoning on this 
information, new relationships between concepts and 
individuals can emerge, and individuals can be 
classified by reasoning about their attributes. The 
ontology knowledge can be provided in many 
different forms and using many different languages or 
notations to describe the information. In its most basic 
form, ontology knowledge is stored in a file on a 
computer. In order to use the ontology more easily, it 
would be desirable to access it with the same ease as a 
database. There are many approaches to storing 
ontology or similar information in a database. Some 
databases are structured around the information it 
contains and how the information is used; other 
approaches store the ontology in its most basic form in 
RDF triplets, and still other methods include storing 
API specific data structures in a database for 
persistence of these variable objects. This paper shows 
that having a natural and common structured relational 

database for storing ontology information can be 
useful for many applications. A general and common 
database is accessible to many different software 
applications or agents and requires only the 
understanding of the database structure by these 
agents. This makes it possible for the agents or 
software applications to be developed separately 
instead of requiring them to use the same API or be 
written in the same programming language. In order to 
store ontology knowledge, it is necessary to 
understand the kind of information stored in modern 
ontology modelling approaches.  

II  ONTOLOGY KNOWLEDGE 

At its core any ontology describes concepts, 
individuals and properties and uses structures in order 
to convey information about elements of the domain. 
Ontology information can be described using many 
different notations and approaches. In order to be able 
to use the most common and full approach, the OWL 
2 standard will be used as an ideal. OWL 2 is the web 
ontology language version 2 for the Semantic Web 
with formally defined meaning [1]. It provides many 
useful keywords to frame and describe knowledge. 
Using these keywords and structures makes it possible 
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to describe a doming ontology and the knowledge 
contained in it. First it provides a way to assert the 
association of certain pieces of information to classes, 
individuals or properties. This is done using the 
“Declaration” operator followed by “Named 
Individual”, “Class”, “Object Property”, “Data 
Property” or “Data type” and the name of the entity 
being associated with one of these types. Next, the 
operator “Class Assertion” is used to classify an 
individual, by stating the individual’s name and the 
class it belongs to. The operators “Sub Class Of” and 
“Sub Object Property Of” are used to create a 
hierarchy of classes and properties to form taxonomy. 
Ontology building requires the expert to follow the 
rules of how an ontology is structured. In order to 
create a correct taxonomy, any higher level classes 
must be more abstract than their lower level classes. 
Individuals belonging to a class must be the most 
distinct and unique element of the ontology. Further 
OWL 2 provides a way to define expressly equal or 
distinct classes and individuals using the operators 
“Equivalent Classes”, “Disjoint Classes”, “Different 
Individuals” and “Same Individual”. On the lower 
level individuals can be described by using their 
relationship with other individuals. This is done using 
the “Object Property Assertion” operator and stating 
the name of the object property and the second 
individual in this relationship. The operator “Negative 
Object Property Assertion” can be used to express a 
distinct lack of a specific relationship between two 
individuals. For implying a class to members of a 
relationship, the operators “Object Property Domain” 
and “Object Property Range” are used. By defining 
these attributes of the object property it can be 
reasoned that any individual with this property is of 
the specified class. OWL 2 has many more operators 
for defining ontology knowledge. There are very 
similar operators for defining data properties between 
individuals and data types, for example “Data 
Property Assertion” and “Negative Data Property 
Assertion”. Other operators are used for defining 
complex classes. The operators “Object Intersection 
Of”, “Object Union Of” and “Object Complement Of” 
are used to define unnamed classes which arise from 
the interaction of other classes. A whole array of 
operators is used in order to define the specific 
attributes of a property; these include: “Symmetric 
Object Property”,” Asymmetric Object Property” ,” 
Reflexive Object Property”, “Irreflexive Object 
Property”, “Functional Object Property” , “Inverse 
Functional Object Property” and “Transitive Object 
Property”. 

All the above and other operators are used to 
meticulously define every single detail regarding the 
knowledge contained in the ontology about each of the 
important domain concepts. Using the logic associated 
with these operators even more information about the 
concepts can be derived from the specifically 
expressed definitions. However, not every application 

using ontology knowledge is required to know every 
detail about the domain, and not every agent will use 
reasoning on the ontology. Some software agents are 
completely content using ontology concepts simply as 
a dictionary. This makes it reasonable to store the 
ontology separately from the software applications 
which end up using it. 

III EXISTING APPROACHES 

There already exist several approaches to storing 
and recalling ontology information. Protégé is a very 
popular tool for creating ontology models. However, it 
does not provide a solution for accessing the ontology 
externally. It mainly provides the means of saving the 
ontology in a file or source so that another program 
can use the ontology file. Historically, in previous 
versions of the software many attempts have been 
made to create a solution for accessing and storing 
ontology models created in Protégé in a database [2] -
[4].  

Another popular tool for working with ontology is 
Apache Jena. It is a programming library for JAVA. 
Besides many other functions it offers two ways of 
storing ontology data in databases. Jena comes 
packaged with server software called “Fuseki”. Fuseki 
is a SPARQL server. It stores ontology information in 
its own internal data structure and provides access to 
the data by sending SPARQL queries to it. The second 
solution Jena offers is called TDB (), which is a native 
high performance triple store [5]. This approach 
creates a triplet-based database table in a database of 
the user’s chaise. Apache Jena does provide means to 
work with ontology structures, however, underneath it 
relies mostly on RDF data, with the ontology being 
higher level abstraction of it. 

It is worth mentioning another software tool for 
ontology persistence called OWLDB [6]. OWLDB is 
a database backend for the OWL API. It provides 
persistence for OWL API data structures. This means 
that by using this tool objects created by the OWL 
API can be stored and recalled from a database. This, 
however, means that only application written by using 
both these tools can use this function. The reason for 
creating this backend, as stated by the authors, was to 
make the use of ontology information simpler, based 
directly on OWL and not reliant on previous RDF 
structures. The approach presented in this paper is in 
agreement with this sentiment. In order to work with 
the capabilities of the ontology itself it is not 
necessary to implement a backwards compatibility 
with pre-existing approaches. Unfortunately, this 
project is not being continued anymore. 

There also exist many different database types, all 
of which have their own advantages [7]. The reason a 
classical relational database was chosen over more 
specialized ones, was to make the resulting database 
more accessible to a wider variety of possible uses and 
software applications. 
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IV OWL 2 BASED DATABASE 

This paper proposes a database structure based 
directly on OWL 2 and uses simple relations to 
describe ontology knowledge. At the centre of the 
proposed database architecture a main table is located 
which holds every element in the ontology (Fig. 1). In 
this context an element is any piece of information 
which describes some idea in the ontology. Without 
additional information such an element can potentially 
be a class, individual, property, literal, data type and 
so on. Additionally to the main table many other 
tables exist, each named after operators in the OWL2 
specification. The main table shall hold a unique 
identifier, the elements name and a list of true or false 
Boolean variables to describe the element further. The 
unique identifier will be used in other tables to 
reference the unique element to provide additional 
information to it or to use it for the description of 
other elements of the ontology. This allows the 
database to reuse the named individual as many times 
as needed. The list of true or false operators provides 
hints to the type of element in order to make it easier 
to find additional information about the element. For 
example, if the element is hinted to be an individual or 
a class it is reasonable to search the “class assertion” 
table for more information about the element as to 
which classes the element belongs to, or which 
elements are individuals of this class element, 
depending on the type of the element. Having a list of 
hints requires it to be updated in addition when new 
entries are being made into other tables. However, at 
the same time, the list of hints simplifies searching for 
additional information immensely. Without this list of 
hints, it would be necessary to search the entire 
database and every table in it to obtain the full picture 
about every element. Additionally the entity table 
holds a reference to a prefix entry in the prefix table. 
By separating prefixes from the entity they can be 
reused. If every entity in the ontology has the same 

prefix, there will be only one prefix in the prefix table 

used by every entity. Finally, the entity holds a 
reference to an annotation in case it exists. The 
annotation provides additional information to a human 
user. Every other table in the database references one 
or more entities. For some tables the order of 
referencing entities is important, for other it is not. For 
example, the table “Sub Class Of” contains 
information about the hierarchy of classes. The 
column “Sub ID” holds references to the class which 
is the sub class in the hierarchy, while the column 
“Sup ID” holds the references to the class above it. So 
the order is important, and the naming of the columns 
reflects this fact. In contrast, the table “Equivalent 
Classes” has the columns “C1 ID” and “C2 ID”. The 
order of the references is not important since the table 
describes equivalency. This must be taken into 
account during searches on the tables. If, for example, 
one wishes to find the equivalent classes to an entity, 
one must search for the entity’s identifier in both 
columns, for it can have been placed in the first as 
well as in the second position during the creation of 
the ontology. Some tables reference many more 
entities. The table “Data Property Assertion” holds 
references to the entity of type individual, which has 
been given this attribute, the reference to the entity 
which describes the data property, the reference to a 
data type entity and the entity representing the data. 

Some possible tables have been omitted from this 
database structure since the data they would have 
contained are more useful and tied directly to an 
entity. Besides the class, individual and other 
assertions being represented directly in the entity 
table, assertions about object property characteristics 
have also been added directly to the “Object property” 
table (Fig. 2). This table references a base entity 
representing this object property. In addition it can 
reference entities representing classes, to provide 
information about the domain and range of this object 
property. All of the possible characteristics of an 

Fig. 2. Core tables 

Fig. 1. Property tables 
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object property are provided as Boolean variables in 
the table. 

All the aforementioned tables provided pieces of 
information about an entity in a disconnected, but self-
describing way. However, there are tables which hold 
more complex information and require all pieces of it 
to be obtained, before a conclusion can be reached. 
For example, the table “Object Intersection Of” (Fig. 
3) provides parts of a description of a complex class. 
A complex class arises from the interaction of 
multiple other classes. In the case of intersection, a 
complex class is created, when the combination of 
other classes creates a new conceptual class. Since an 
unspecified number of classes can be involved in this 
interaction, a static table containing all required 
references cannot be created. Therefore the table 
“Object Intersection Of” holds only one reference to a 
participating class at a time. The reference to the base 
class is a reference to an entity describing the complex 
class itself, and the column “Intersecting” holds the 
reference to one of the intersecting classes. This 
means, all table entries concerning the complex class 
(having the same base class id) must be obtained, 
before it is known which classes are involved in the 
intersection. The same rule applies to all tables 
describing complex classes. 

Finally, the database also holds a table capable of 
describing various datatypes for data properties (Fig. 
4). Datatypes behave like classes with the difference 
that they do not have individuals, but instead govern 
literal data. Literals, datatypes and the data themselves 
are also entities in this database. Similar to complex 
object classes, complex data types also require 
multiple entries into tables. Just like the “Object 

Intersection Of” database table, the “Data Intersection 
Of” table provides information about all data types 
whose intersection form a new complex data type. 

Access to the knowledge in the database is very 
simple. In the case, when a user or software agent is 
looking for a specific concept, the main entity table is 
searched for it by name. There can be two entities 
with the same name in the table. In such a case the 
related prefix can be consulted. If a prefix was 
specified within the search parameters, the unique 
entity can be found. Once the entity is found, it can be 
provided to the user. Some systems may be satisfied at 
this stage with the obtained information. Other 
systems may choose to obtain further information 
about the found entity. Based on the entity’s 
characteristics further tables can be polled for 
additional information based on the identification of 
the entity. In most cases the result of searching other 
tables will be a list of identifications referencing other 
related entities. Again, depending on the nature of the 
obtained information some systems may choose what 
connected information must be researched further. To 
do this, the main table is searched again based on the 
identifications and other entities and their name and 
characteristics are obtained. This process is repeated 
until the user or system has obtained all the required 
information about the original and related entities. 

This database structure can be implemented in any 
standard database system. For example, the creation 
script of the main entity table for MYSQL looks as 
follows: 

 

Fig. 3. Complex class tables 

Fig. 4. Datatype tables 
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DROP TABLE IF EXISTS 
'owl2db'.'entities' ; 

CREATE TABLE IF NOT EXISTS 
'owl2db'.'entities' ( 

  'Id' INT(11) NOT NULL 
AUTO_INCREMENT , 

  'Prefix_fk' INT(11) NOT NULL, 
  'Name' CHAR (50), 
  'Is_a_Individual' Boolean NOT 

NULL, 
  'Is_a_Class' Boolean NOT NULL, 
  'Is_a_Object_Property' Boolean NOT 

NULL, 
  'Is_a_Data_Property' Boolean NOT 

NULL, 
  'Is_a_Data_type' Boolean NOT NULL, 
  'Is_data' Boolean NOT NULL, 
  'Annotation_fk' INT(11) NOT NULL, 
  PRIMARY KEY ('Id'), 
  CONSTRAINT FOREIGN KEY 

('Prefix_fk') REFERENCES 
'prefixes' ('Id') ON DELETE 
CASCADE ON UPDATE CASCADE, 

  CONSTRAINT FOREIGN KEY 
('Annotation_fk') REFERENCES 
'annotations' ('Id') ON DELETE 
CASCADE ON UPDATE CASCADE 

) 
ENGINE = InnoDB 
AUTO_INCREMENT = 1; 

V CONCLUSION 

This paper described a novel approach to storing 
specifically ontologies based on OWL 2 in a simple 
and directly accessible database. Since the structure 
was based on the OWL 2 language, its capabilities for 
defining and describing ontology knowledge must be 
comparable. However, there are some potential 
downsides resulted from using such a database 
structure. The main entity table can become very large 
in size. This can slow down access to the ontology 
knowledge since every other quarry is using this table 
to determine the name and characteristics of an entity 
based on its identifier. This is amplified by storing not 
only named, but also unnamed entities in this table. 
Every complex class which does not necessarily have 
been given a name must still have an entity object in 
order to define every attribute of the complex class. 
Existing datatypes like “xsd:integer” also must have 
entity object in order to maintain the integrity and 
consistency of the database structure. All these factors 
contribute to a very large list of entities. 

The proposed database does not guarantee or verify 
the reasonability of the knowledge described in it. 
There is no mechanism to prevent any entity from 
being a class, individual and property and other at the 
same time. It is the ontology expert’s responsibility 
for the ontology knowledge to make sense. However, 
in some cases it can be of use to have elastic and 

multi-purpose element of the ontology. A concept 
being several things at the same time is not 
automatically a logical fallacy, as long as the resulting 
ontology is usable for its stated purpose. Another 
downside to storing ontology knowledge in a database 
is the lack of a reasoning mechanics. Any such 
functionality must be provided by an additional 
software solution connecting to the database, 
obtaining its contents and adding any new conclusions 
to the database. However, some basic reasoning 
functionality like an automatic classification of 
entities can be added directly to the database using 
triggers or scripting languages. This is dependent on 
the database management software capability. 

At this point it is unclear how this database will or 
should handle imports from other ontologies. The 
prefix table provides some functionality to describe 
the origin of an entity. If an entity has a prefix from an 
outside source, further quarrying to other knowledge 
sources may be required. 

Because of the large number of tables, obtaining all 
information can be difficult. At this point, knowledge 
obtaining must be performed using a dialog approach, 
which includes obtaining information piece by piece. 
This has positive as well as negative aspects to it. On 
the one hand, this allows the user of the database to 
obtain only those pieces of information which are 
important. By having a dialog, the user has a choice at 
every step. On the other hand, as a negative aspect, 
this means that in cases where all the related 
information has to be obtained, the process is slowed 
down immensely. As future work, an approach to 
obtaining the information more easily and preferably 
handled on the server side can be researched as well as 
an implementation of a quarrying language like 
SPARQL.  
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