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Abstract. This paper examines the algorithm o f differential evolution that has appeared 
rather recently. This algorithm ascribed by its developers to a class o f  evolutionary algorithms 
is a comparatively non-complicated technique o f  solution search as applied to multiparameter 
optimisation tasks. Nevertheless, there are two essential factors preventing from wide 
application o f the considered solution search technique. One o f them lies in the principle o f  
coding vectors (variables) that constitute a population the algorithm works with. The second 
problem is o f  pure technical character: in the process o f  search, stagnation occurs, or 
impossibility to find new solutions, when there is no optimal solution in the population and the 
vectors available are not heterogeneous. Besides studying search possibilities (limitations) o f  
the differential evolution, some ways to cope with the problem o f stagnation so-as to raise the 
performance o f the algorithm are also suggested.

1. Introduction
Along with widely known genetic algorithms, other evolutionary algorithms exist 

(Bentley, 1999) that have been developed to solve optimisation tasks. Among them the 
differential evolution (DE) can be mentioned. The main criterion as to why this algorithm can 
be ascribed to the class o f  evolutionary ones is the presence o f the respective concepts and 
solution search principles in it. The DE algorithm comprises individuals (vectors), population, 
crossover and mutation operators.

DE greatly differs from the standard genetic algorithm (Goldberg, 1989) in that it 
solely uses integer or real numbers as evolution objects. This means that a fenotype (solution) 
and genotype (solution representation in the algorithm) are identical. Respectively, the space 
o f solutions and space o f  search are also identical. This approach to coding has both positive 
and negative features. DE is adapted to manipulating really integer solutions but at the same 
time is restricted by this application area (in turn, GA is known to be universal regarding this 
aspect). If we turn to the role distribution o f evolutionary operators o f mutation and crossover, 
certain differences can also be found. In the GA, crossover is primary, whereas in DE mutation 
is primary. The above differences in the algorithms demonstrate the similarity o f DE and 
evolutionary strategies. DE differs from evolutionary strategies in that the mutation o f the 
directed vector o f  standard deviations (Back and Schwefel, 1995) that are responsible for 
mutations o f  the vector o f values can be observed in the latter. The task o f this study is to 
examine the behaviour o f DE with an applied optimisation task. With this, major attention will 
be paid to stagnation (the lack o f  progress in search under the absence o f  complete 
convergence) that was recognised as the main shortcoming o f  the algorithm (Lampinen and 
Zelinka, 2000).

2. Parameters and principles of the DE algorithm
The interpretation o f  DE described below is a DE/rand/l/bin scheme (Lampinen and 

Zelinka, 2000). In this algorithm the processing o f  real integer or mixed integer/real integer 
variables constituting a vector o f  variables o f the optimised objective function takes place
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f(X):RD ~^R,
X=(xj, ...,xd) ,X  e  Rd

where X  determines a vector consisting o f D  parameters o f the objective function. Normally 
each o f parameters has its limits, lower and upper, respectively, x(L) and x (U)\ 
x /L)< X j< x /U), y - 1 , ..., D.

Like other evolutionary algorithms, DE manipulates a population, P G, consisting o f  NP  
real integer vectors Xi>G, where i defines an individual belonging to the population but G 
defines a generation (epoch) to which the population belongs:

Po = XiiG, F T ,...,N P , G = l, ..., Gmax,
XjlG=Xj,i,c?, F I , ...,NP, y = l , ... ,D.

On the basis o f the existing variable limits, the initialisation o f  the initial (zero) 
population occurs:

Po = randj:i[ 0; 1] *(xj(U)- x f L))+xfL), F I ,  ...,N P, j= \ , . . . ,D ,

where randjj[Q; 1] is an uniformly distributed random variable within the limits [0.0; 1.0], that 
is selected anew for each j  and i. Starting from the first generation, a set o f  vectors 
(chromosomes) o f the current population, P G, participates in the selection and formation (on 
the basis o f  random selection) o f  trial vectors for next population, PG+i. A population o f  trial 
vectors, P ’G+1 = UitG+r u hi:G+i, is created as follows:

Uj,i,G+i-
Vj,:,G+i= Xhr3,0 +F*{ Xj!rlic  “  xjtr2iG) IF randpl0; 1 )< C R vj= k ,

where i= 1,..., NP, j=  1,..., D\
k g {1,... ,  D }  is a parameter randomly selected one time for each i; 
r l ,r2 ,r3  e  { ! , . . . ,  NP} are selected at random, but rl&r2^r3&i;
CR e  [0; 1], F  e  (0; 1+].

Random indexes: r l, r2, and r3 are determined for each i (that is for each chromosome anew). 
The task o f  index k is to prevent from the coincidence o f  ViiG+i and XjiG, An example o f  the trial 
vector generation is shown in Fig. 1. CR and F are control parameters o f DE.

Control parameters o f  the algorithm: D, NP, F, and CR are assigned before the 
algorithm starts working and remain constant until it stops (the standard procedure). The main 
stopping criteria are the following: either achieving the time limit for the evolutionary solution 
search or the situation when G=Gmax.

A  population for the next generation, , PG+i, is created o f  the current population, P G, 
and o f a population o f trial vectors, U-hG+i, according to the following deterministic rule (see 
also Fig. 1):

Xj'G+l -
Uj,G+j- UjjiG+i IF f(UiiG+i) < M i.g),

XiNr
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Current vector

V

Current population
Nr. Fitness ____ j = l .....- 1=2 1=3 1=4
i=l 2.21 0.13 0.76 0.53 0.79
i=2 2.65 0.99 0.30 0.61 0.74
i=3 1.43 0.58 0.05 0.78 0.03
i=4 1.55 0.02 0.70 0.40 0.43
i=5 1.61 0.61 0.58 0.11 0.32
i=6 2.01 0.35 0.45 0.54 0.67

rl, r2, and r3 are chosen at random

r 1=2 0.99 0.30 0.61 0.74

—>  1 r2=4 0.02 0.70 0.40 0.431

Vector of difference 0.97 -0.40 0.22 0.31|
xF (mutation)

Weighted vector 0.77 -0.32| 0.17 0.251
+

—5*“ r3=6 0.35 0.45 [ 0.54 0.671

Noise vector 1.12 0.13 0.72 0.92
crossover -  with probability CR a parameter from noise

- > Target vector 0.13 0.76 0.53 079]
il

------ Trial vector 0.13 0.13 0.72 0.79]
Determination of the trial vector fitness

Fitness 1.77

V
Selection (negative): based on 
the fitness value, a target vector 
or trial vector is selected

Control parameters of D E
Dimension of vector 4
Population size

P
6

Mutation rate 0.80
Crossover rate

R
0.50

Current population + 1
Nr. Fitness 1=1 1=2 j=3 j=4
i=l 1.77 0.13 0.13 0.72 0.79

ao

oV>

G<D
’S
O<D
C
ZSCTCL>

00

Fig. 1. Formation of individuals for the next population. The optimized function is f(X)=Xi+X2 +X3 -t-X4

From this rule it follows that selection in DE is o f negative character as the worst 
solutions are in essence removed and replaced by the best ones under compulsion. As opposite
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to it, the positive or standard selection foresees selecting pairs for crossover in the same way as 
it happens, say, in simple genetic algorithms.

3. Case study
To make the experiments, a function o f two variables was chosen (see Fig.2) that looks

like:

/ ( * ! , *  2 )  =  0 ' 5
sin 2 2 + x % ) -  0 - 5

(l + 0 .001 ■ (x ,2 + x 2 ) ) 2

It is evident that the global maximum o f this fonction is at point (0, 0), that is f(0, 0)=T. Since 
the task o f  DE will be to find just the maximum o f  the function, this solution (at the beginning 
of co-ordinates) does not seem to be effective from the viewpoint o f  the task complexity. Due 
to this the function was changed as follows:

/ ( x , , x 2) =  0 . 5 -
si n 2^ ( x ,  — 18.171 )2 + (x2 + 4 0 . 2 2 5 ) ^ - 0 . 5  

(l + 0.001 • ((x, -18 .171  )2 + (x2 + 40 .225)2 f

It means that the solution is a point (18.171, -  40.225).

Fig.2. Graph o f function f(xj, x2)

4. Experiments
The results o f the experiments performed are given in Table 1. The space o f  search 

(initialisation limits) for all the experiments and each variable are similar: Xj^=-63.0, 
x /u)=63.0. The aim o f each experiment was to increase the effectiveness o f  the algorithm based 
on the results o f the previous experiment. For this, the effectiveness o f  each (G+l)th iteration 
was calculated by formula
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NP NP

I / f c J - I / f t « )

NP

I / C U
i=\

By this expression one can determine an increment o f  the average fitness value, that is the 
measure o f  effectiveness. Table 1, in its turn, shows average efficiency values for each o f 
algorithms, i.e. the mean result after 200 generations or after occurrence o f the complete 
convergence when the average fitness value equals the maximum value.

Table 1.
Control parameters and results o f different DE

Algorithm Results after 200 iterations
Experiment 1 (standard DE)

Size of population, NP 150 Maximum fitness 0.99891
Mutation, F 0.9 Average fitness 0.99026
Crossover rate, CR 0.9 1 ’st best result (generation) no

Complete convergence (generation) no
Average effectiveness values 0.34617

Experiment 2 (standard DE)
Size of population, NP 150 Maximum fitness 1.00000
Mutation, F 0.5 Average fitness 1.00000
Crossover rate, CR 0.5 l ’st best result (generation) 176

Complete convergence (generation) 185
Average effectiveness value 0.3713

Experiment 3 (standard DE)
Size of population, NP 50 Maximum fitness 1.00000
Mutation, F 0.5 Average fitness 1.00000
Crossover rate, CR 0.5 1 ’st best result (generation) 157

Complete convergence (generation) 165
Average effectiveness value 0.43744

Experiment 4 (modified DE)
Size of population, NP 50 Maximum fitness 1.00000
Mutation, F ? Average fitness 1.00000
Crossover rate, CR 0.5 1 ’st best result (generation) 125

Complete convergence (generation) 138
Average effectiveness value 0.53731

As a result o f  the first three experiments, the adjustment o f  control parameters o f  the standard 
DE was made. More particularly, in the first and in the second experiment optimal values of 
mutation and crossover rate have been derived empirically. Respectively, the mean 
effectiveness in the second experiment was higher than in the first one. The third experiment 
has shown a possibility o f using a less population size (three times less) that also yielded an 
increase in the algorithm’s effectiveness. The computational costs were also three times less. In 
the fourth experiment the standard DE was varied. The variations produced a positive effect. 
The operator modified was mutation, speaking more precisely, the size o f  mutation. In the 
ordinary algorithm this is normally a constant value that is assigned for the whole time o f  
evolution process. In the last experiment the size o f  mutation was varied (a new value was 
generated) every time when the value o f effectiveness was dropping as compared to that at the 
previous generation.
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5. Conclusions
The task o f the DE algorithm effectiveness raise, set in this study, was solved both by 

the standard and a new approach.

• Standard approach: adjustment o f  control parameters, CR, F, and NP.
• N ew  approach: controlled variation o f  the mutation size, i.e. this is not a mutation constant

any more but the value adjusted by the algorithm itself.

It is natural that at this moment the “adjustability” o f  the algorithm is o f dual character. 
From the one side the algorithm knows for sure when to change the size o f  mutation (if the 
effectiveness drops), from the other side, however, the variation made is o f  random character. 
Practical results, however, show that the introduction o f such additional randomness has the 
advantage over the standard algorithm.

As a whole, based on the results o f  the study it is possible to conclude about the 
possibility o f using the adjustable mutation in DE instead o f  the existing standard (static) 
operator. Further research in this area will be oriented towards the development o f  less 
randomised mechanism o f mutation size variation.
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JĒDZIENU VISPĀRINĀŠANAS ALGORITMA CORA SAVIENOŠANA AR 
LĒMUMU KOKU ĢENERĒŠANAS ALGORITMU C4.5 

INTEGRATION OF CONCEPTS GENERALISATION ALGORITHM 
CORA WITH DECISION TREE INDUCTION ALGORITHM C4.5

Ēriks Tipāns, Rīgas Tehniskā universitāte, ASTF, Informācijas tehnoloģijas institūts 
Lēmumu atbalsta sistēmu profesora grupa, e-pasts: eriks@ibm.cs.ru.lv

Abstract. There are considered possibilities to create the new concepts generalization 
algorithm in this paper, which would combine methods used in decision trees induction 
algorithm C4.5 and concepts generalization by features algorithm- CORA. The newly created 
algorithm will be named CORA 4.5.

1. Ievads -  algoritms CORA
Bibliogrāfijā, kas veltīta mākslīgā intelekta problēmām, ir plaši apskatīti dažādi 

populāri jēdzienu vispārināšanas algoritmi (rnaflyH, 1987), tomēr jāatzīst, ka pietiekoši plašu 
popularitāti nav guvis M. Bongarda 60. gados izstrādātais algoritms CORA (Bongard, 1970), 
kas veic jēdzienu vispārināšanu, balstoties uz klasificējamo objektu pazīmju kompleksu
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