
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Assessment of thermal fatigue crack growth in the high 
cycle domain under sinusoidal thermal loading 

An application – Civaux 1 case 
 
 

V. Radu  E. Paffumi  N. Taylor  K.-F. Nilsson  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 EUR 23223 EN  -  2007
 
 
 
 
 
 
 
 
 
 
 
 



The Institute for Energy provides scientific and technical support for the conception, 
development, implementation and monitoring of community policies related to energy. Special 
emphasis is given to the security of energy supply and to sustainable and safe energy 
production. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
European Commission 
Joint Research Centre 
Institute for Energy 
 
 
Contact information 
Address: N. Taylor 
E-mail: Nigel.taylor@ec.europa.eu 
Tel.: +31-224-565202 
Fax: +31-224-565641 
 
http://ie.jrc.ec.europa.eu 
http://www.jrc.ec.europa.eu 
 
 
Legal Notice 
Neither the European Commission nor any person acting on behalf of the Commission is 
responsible for the use which might be made of this publication. 
 
 
A great deal of additional information on the European Union is available on the Internet. 
It can be accessed through the Europa server 
http://europa.eu/ 
 
 
JRC 41641 
 
 
EU 23223 EN 
ISSN 1018-5593 
 
ISBN : 978-92-79-08218-4 
DOI : 10.2790/4943 
 
 
Luxembourg: Office for Official Publications of the European Communities 
 
© European Communities, 2007 
 
Reproduction is authorised provided the source is acknowledged 
 
 
Printed in The Netherlands 



 
 
 
 
 
 
 
 
 
 
 
 
 

Assessment of thermal fatigue crack growth in the high cycle 
domain under sinusoidal thermal loading 

An application – Civaux 1 case 
 
 

V. Radu  E. Paffumi  N. Taylor  K.-F. Nilsson 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  3 

 
 
 
 
CONTENTS 
 
Abstract ................................................................................................................................................. 4 

Nomenclature .................................................................................................................................... 5 
1. Introduction ....................................................................................................................................... 7 
2. Thermal stresses developed under sinusoidal thermal loading in pipes.......................................... 11 
3. Thermal fatigue crack growth approach.......................................................................................... 15 
4. Fatigue life associated with the critical frequencies for thermal stress ranges (Civaux 1 case) ..... 18 

4.1. Description of the Civaux 1 case.............................................................................................. 18 
4.2 The stress intensity factors for internal surface cracks in pipe for a highly nonlinear stress 
distribution ...................................................................................................................................... 20 
4.3 Application on the Civaux 1 case.............................................................................................. 22 

4.3.1 Critical frequencies for maximum stress ranges ................................................................ 23 
4.3.2 Stress intensity factor solution for long axial crack under hoop thermal stress................. 30 
4.3.3 Stress intensity factor solution for fully circumferential crack under axial thermal 
stress ............................................................................................................................................ 37 
4.3.4 Fatigue life assessment for crack growth ........................................................................... 44 

5. Summary and Conclusions.............................................................................................................. 46 
References ........................................................................................................................................... 47 
Appendix 1: Thermal stress components for a pipe subject to sinusoidal thermal loading……….....49 
Appendix 2: The first hundred roots of the transcendental equation (Civaux pipe geometry)………52 
Appendix 3: Specific critical frequencies associated with thermal stress components for a pipe 

subject to sinusoidal thermal loading…………………...……………………………...53 
Appendix 4: Benchmarking the stress intensity factor (KIaxial) for a long axial crack in a pipe under 

internal pressure.......................................................................................................…...58 
Appendix 5: Derivation of KI  for a long axial crack under hoop thermal stress……………………60 
Appendix 6: Derivation of KI  for fully circumferential crack under axial thermal stress……….….62 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  4 

 

 

Abstract 
 
The assessment of fatigue crack growth due to cyclic thermal loads arising from 

turbulent mixing presents significant challenges, principally due to the difficulty of 

establishing the actual loading spectrum. So-called sinusoidal methods represents a 

simplified approach in which the entire spectrum is replaced by a sine-wave variation of 

the temperature at the inner pipe surface. The amplitude can be conservatively 

estimated from the nominal temperature difference between the two flows which are 

mixing; however a critical frequency value must be determined numerically so as to 

achieve a minimum predicted life. The need for multiple calculations in this process has 

lead to the development of analytical solutions for thermal stresses in a pipe subject to 

sinusoidal thermal loading, described in a companion report. 

 Based on these stress distributions solutions, the present report presents a 

methodology for assessment of thermal fatigue crack growth life. The critical sine wave 

frequency is calculated for both axial and hoop stress components as the value that 

produces the maximum tensile stress component at the inner surface. Using these 

through-wall stress distributions, the corresponding stress intensity factors for a long 

axial crack and a fully circumferential crack are calculated for a range of crack depths 

using handbook K solutions. By substituting these in a Paris law and integrating, a 

conservative estimate of thermal fatigue crack growth life is obtained. The application of 

the method is described for the pipe geometry and loadings conditions reported for the 

Civaux 1 case. Additionally, finite element analyses were used to check the thermal 

stress profiles and the stress intensity factors derived from the analytical model. The 

resulting predictions of crack growth life are comparable with those reported in the 

literature from more detailed analyses and are lower bound, as would be expected 

given the conservative assumptions made in the model. 
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Nomenclature 
 
 a      - crack depth  
 l      - wall-thickness of the pipe 

ri , ro - inner and outer radii of the pipe 

θ - temperature change from the reference temperature 

To  - reference temperature 

r  - radial distance 

k  - thermal diffusivity 

λ  - thermal conductivity 

ρ - density 

c - specific heat coefficient 

F(t) - function of time representing the thermal boundary condition applied 

on the inner surface of the cylinder 

Jυ(z) , Yυ(z) - Bessel functions of first and second kind of order υ 

θ0  - amplitude of temperature wave  

ω  - wave frequency in rad/s 

f - wave frequency in Hz 

t - time variable 

sn  - positive roots of the transcendental equation (kernel of finite Hankel 

transform ) 

rε  - radial strain 

θε  - hoop strain 

zε  - axial strain  

rσ  - radial stress      

θσ  - hoop stress      

zσ  - axial stress  

x - radial local coordinate originating at the internal surface of the 

component 

 0σ  -uniform coefficient for polynomial stress distribution 

 1σ  -linear coefficient for polynomial stress distribution 
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 2σ  -quadratic coefficient for polynomial stress distribution 

 3σ  -third order coefficient for polynomial stress distribution 

 4σ  -fourth order coefficient for polynomial stress distribution   

E  - Young’s modulus 

α - coefficient of the linear thermal expansion 

ν  - Poisson’s ratio 

u -  radial displacement 

dN
da  - increment of crack growth for a given cycle 

C - fatigue crack growth law parameter 

n - fatigue crack growth law exponent 

∆Kmax=Kmax- Kmin  - maximum stress intensity factor range  

Kmax - maximum stress intensity factor 

Kmin - minimum stress intensity factor 

∆Kth - the threshold stress intensity factor range 

( )meff R
KK

−
∆

=∆
1

 - effective stress intensity range    

max

min

K
KR =  - stress intensity factor ratio      

m  - parameter in the ∆Keff  expression 

VMσ   - effective stress range intensity (Von Mises equivalent stress) 

rangeS∆   - effective equivalent stress range intensity  

G0, G1, G2, G3, G4  - the influence coefficients of hoop stress distribution 

G’0, G’1, G’2, G’3, G’4 - the influence coefficients of axial stress distribution 

KIaxial   - the Mode I stress intensity factor for an infinite longitudinal surface crack   

KIcirc  - the Mode I stress intensity factor for a fully circumferential surface crack  

 
 
 



  7 

 

1. Introduction 
 
Quantifying the thermal fatigue damage and subsequent crack growth which may arise 

due to thermal stresses from turbulent mixing or vortices in light water reactor (LWR) 

piping systems remains a demanding task and much effort continues to be devoted to 

experimental, FEA and analytical studies [1, 2, 3, 4]. 

 

The problem of thermal fatigue in mixing areas arises in pipes where a turbulent mixing 

or vortices produce rapid fluid temperature fluctuations with random frequencies. The 

results in temperature fluctuations can be local or global and induce random variations 

of local temperature gradients in structural walls of pipe, which lead to cyclic thermal 

stresses [5, 6]. These cyclic thermal stresses are caused by oscillations of fluid 

temperature and the strain variations result in fatigue damage, cracking and crack 

growth.  

 

The response of structures to thermal loads depend on the heat transfer process. In 

certain components the pipe wall does not respond to high frequency fluctuation of fluid 

temperature because of heat transfer loss, and low frequency components of fluctuation 

may not cause large thermal stresses because of thermal homogenization [7,8]. 

Numerical simulations of the type of thermal stripping1 and high-cycle thermal fatigue 

that can occur at tee junctions of LWR piping systems have shown that the critical 

oscillation frequency of surface temperature is the range 0.1-1 Hz [ 5, 6, 9, 10, 11]. 

 

In a previous work [12] an analytical set of solutions was developed for thermal stresses 

in a hollow cylinder subject to sinusoidal thermal loading based on the Hankel 

transform, properties of Bessel’s functions and the thermoelasticity governing 

equations. The solution of the time-dependence of temperature in a hollow cylinder 

allows the derivation of analytical solutions for the associated thermal stresses and their 

profiles through the wall-thickness.  

                                                 
1 Thermal striping is defined as effect of a rapid random oscillation of the surface temperature inducing a 
corresponding fluctuation of surface stresses and strains in adjacent metal. 
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In the present paper, the Civaux 1 case [1] was used to assess the application of these 

analytical thermal stress solutions in crack growth life assessment in the high cycle 

thermal fatigue domain. The time-dependent analytical solution for thermal stresses in 

pipe components were used to analyze critical frequencies for axial and hoop stresses 

as well as for von Mises equivalent stress intensities. Each critical frequency has been 

derived based on the maximum range of thermal stresses. The maximum stress 

intensity factor range ∆KI
max  is considered for two types of crack: a long axial crack and 

fully circumferential crack on inner surface of the pipe. The fatigue crack growth 

approach is based on the stress intensity factor solutions expressed in terms of a fourth 

order polynomial stress distribution through thickness. The crack growth analyses use a 

Paris-law type equation. Finally, the predictions are compared with the results of other 

analyses of the Civaux case reported in the literature.  

Figure 1 shows a flow-chart which describes the steps performed for analysis of thermal 

fatigue crack growth due to sinusoidal thermal loading. 
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Crack Growth
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dependent temperature profile through thickness 

Derive associated elastic thermal stress distribution: 
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Find minimum life for 
sinusoidal loading  of θ0
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Figure 1. Flow–chart for assessment of thermal fatigue crack growth life under sinusoidal thermal loading
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2. Thermal stresses developed under sinusoidal thermal 
loading in pipes 
 
The thermal stresses in a LWR piping subsystem are dependent on the temperature 

distribution arising from the various operation conditions. It should be noted that the 

assessment of temperature fields is easier to perform for a pipe than for components 

with complex geometries: a pipe can be represented as a hollow cylinder and for such a 

simple geometry it becomes possible to use analytical tools to get the time-dependent 

temperature profile through wall thickness. In a previous work [12] analytical solutions 

were developed for temperature fields and associated elastic thermal stress 

distributions for a hollow cylinder subject to sinusoidal transient thermal loading. Since 

these form the bases of the fatigue crack growth method presented in this report, some 

of the main features will be summarized in the following.  

A hollow cylinder, made of a homogeneous isotropic material with inner and outer radii ri 

and ro respectively is assumed. The one-dimensional heat diffusion equation in 

cylindrical coordinates and with axisymmetric thermal variations is [8, 13, 14]:  

tkrrr ∂
∂
⋅=

∂
∂
⋅+

∂
∂ θθθ 11

2

2

         (1) 

Here oTtrT −= ),(θ           (2) 

is the change in temperature from the reference temperature, To, which is the 

temperature of the body in the unstrained state or the ambient temperature before 

changing of temperature. 

Other parameters in Equation (1) are: 

r -  radial distance; 

k - the thermal diffusivity which is defined as: 

c
k

ρ
λ

=            (3) 

λ – the thermal conductivity; 

ρ - the mass density; 

c – the specific heat coefficient; 

The thermal boundary conditions (Dirichlet conditions) for a hollow cylinder were 

considered as follow:  
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- inner surface thermal loading 

)(),( tFtri =θ           (4) 

- outer surface (adiabatic condition hypothesis) 

0),( =troθ           (5)  

The initial condition for the through wall-thickness temperature was considered as 

0)0,( =rθ           (6) 

In Equation (4) the thermal loading given by function F(t) is a known function of time 

representing the thermal boundary condition applied on the inner surface of the cylinder. 

The sinusoidal thermal loading boundary condition is expressed as 

)2sin()sin()( 00 tfttF ⋅⋅⋅=⋅⋅= πθωθ        (7) 

where  

θ0 – amplitude of temperature wave; 

ω , f - the wave frequency in rad/s and cycles/sec, respectively; 

t – time variable. 

By means of Hankel transform methodology [15, 16, 17] and using some properties of 

Bessel functions, the solution for temperature distribution during a thermal transient for 

a hollow cylinder can be written as follows [12]: 

),(),,(),,(),( 32
1

1 nni
n

noi stsrrsrrktr θθθπθ ⋅⋅⋅⋅= ∑
∞

=

     (8) 

where 

)()(
)(),,( 2

0
2
0

2
0

2

1
inon

onn
noi rsJrsJ

rsJssrr
⋅−⋅

⋅⋅
=θ        (9) 

)()()()(),,(2 rsYrsJrsJrsYsrr noinonoinoni ⋅⋅⋅−⋅⋅⋅=θ     (10) 

ττθ τ dFeest
t

sktsk
n

nn )(),(
0

3

22

∫ ⋅⋅⋅⋅−=         (11) 

By substituting Equation 7 into Equation 11 and integrating are obtains: 

222

2

03 )(
)cos()sin()(

),,(
2

ω
ωωωω

θωθ
+⋅

⋅⋅−⋅⋅⋅+⋅
⋅=

⋅⋅−

n

n

n

sk
ttske

st
tsk

n     (12) 

 

Thus the complete formula for temperature distribution through wall-thickness of hollow 

circular cylinder in case of sinusoidal thermal loading is given by: 
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(13) 

where  sn are the positive roots of the transcendental equation 

0)()()()( =⋅⋅⋅−⋅⋅⋅ onoinoonoino rsYrsJrsJrsY       (14) 

Equation (13) shows that the temperature distribution is radial and it has been used in 

the general solution for thermal stress components.  

For thermal stress evaluation we assumed that the thermo-mechanical properties are 

the same as during the thermal transient analyses. 

The one-dimensional equilibrium equation in the radial direction for a hollow cylinder is 

[13, 14]: 

 0=
−

+
rdr

d rr θσσσ          (15) 

where σr and σθ are the radial and hoop stress respectively. In the axisymmetric 

problem with small strains, the strain-displacement relations are: 

dr
du

r =ε            (16) 

r
u

=θε            (17) 

0=θε r            (18) 

where u is the radial displacement. 

The displacement technique has been used to solve the axisymmetric problems of 

hollow cylinder. The components of stress in cylindrical coordinates can be expressed 

as 





 ⋅++⋅⋅+−⋅+

−
= ')'1(')'1('

'1
'

2 c
r
u

dr
duE

r νθανν
ν

σ      (19) 





 ⋅++⋅⋅+−+⋅

−
= ')'1(')'1('

'1
'

2 c
r
u

dr
duE νθανν

ν
σθ      (20) 

0=θσ r            (21) 

In the case of plane strain and plane stress, the meanings of the constants from 

Equations (19) and (20) are: 
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−=

E

E
E 21' ν    E –Young modulus       (22) 






−=

ν
ν
ν

ν 1'   ν - Poisson’s ratio       (23) 



 +

=
α

αν
α

)1(
'   α -coefficient of the linear thermal expansion   (24) 





=
0

' 0νε
c   ε0 – constant axial strain for plain strain state   (25) 

 

The substitution of Equations (19, 20) in Equation 15 yields 

dr
trd

dr
urd

rdr
d ),(')'1()(1 θαν ⋅⋅+=



 ⋅

⋅        (26) 

The general solution of Eq. (26) is 

r
CrCdrrtr

r
u

r

2
1),(1')'1( +⋅+⋅⋅⋅⋅+= ∫θαν       (27) 

The integration constants C1 and C2 may be determined from the boundary conditions. 

The radial stress component is negligible for thin-walled cylinder compared to the hoop 

and axial stress components. The hoop and axial stress components are given in the 

following relationships in the case of plane strain [12]: 

 









−⋅

−⋅
+

+⋅
−
⋅

= ),,(),(
)(

),,(1
1

),,( 2222

22

12 trtI
rrr

rrtrI
r

Etr
io

i ωθωω
ν

αωσθ    (28) 









−⋅

−−
⋅

= ),,(),(2
1

),,( 222 trtI
rr

Etr
io

z ωθων
ν

αωσ   for εz=0  (29) 









−⋅

−−
⋅

= ),,(),(2
1

),,( 222
0

trtI
rr

Etr
i

z ωθω
ν

αωσ   for εz=ε0  (30) 

 
The mathematical relationships for I1(r,ω,t) and I2(ω,t) with the complete equations for 

both thermal stress components are given in Appendix 1.  

The case with fixed boundary condition (εz=0) in axial direction of hollow cylinder gives 

a higher level of maximum axial thermal stress than when the end of the cylinder is free 
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to extend (εz=ε0 case). The predictions from the above equations for thermal stress were 

checked with those of finite element analyses performed with the ABAQUS computer 

code [12], with satisfactory results. 

3. Thermal fatigue crack growth approach 
 

Crack growth by fatigue arises from varying loads on the component, resulting in cyclic 

stresses in the crack tip region. The crack tip stress intensity factor is a very useful 

parameter for predicting crack growth behavior as long as the behavior of the material 

bulk is elastic and plastic deformation is limited to a small region at the crack tip. Linear 

elastic fracture mechanics (LEFM) has been validated to correlate the increment of 

crack growth per cycle to the applied stress intensity range through a fatigue crack 

growth law. In using fracture mechanics to describe fatigue crack growth the minimum 

value of the stress intensity factor in a cycle is usually taken to be zero (Kmin =0) when 

stress intensity factor ratio, 0
max

min ≤=
K
KR  [18]. The rate of the crack growth, da/dN , in 

terms of the crack tip stress intensity factor range, ∆K, can be written as: 

( )Kf
dN
da

∆=           (31) 

The equations commonly used to describe the function f(∆K) are based on the trends 

developed by experimental data. Numerous fatigue crack growth rate empirical and 

analytical relationships have been developed (see [18] for instance). 

  

Generally speaking, three regimes (I, II and III) are associated with fatigue crack growth 

(Figure 2). For region I (or fatigue regime A), the crack growth rate (da/dN) is low and 

the corresponding stress intensity range, ∆K, approaches a minimum value called the 

threshold intensity factor, ∆Kth , below which the crack does not grow. For region III (or 

fatigue regime C), the crack growth is rapid and accelerates until the crack tip stress 

intensity factor reaches its critical value. For region II (or fatigue regime B) the simplest 

and most common form of the fatigue crack growth law is the Paris law. It is applicable 

only in the middle region of crack growth curve, where the variation of log(da/dN) with 

respect to log (∆K) is linear. 
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Figure 2.  Fatigue crack growth regimes [18] 

 

 

In this model the crack growth rate is independent of the stress ratio: 

 

( )nKC
dN
da

∆= .          (32) 

where, 

dN
da  - increment of crack growth for a given cycle, 

C - scaling  parameter, 

n - exponent 

∆K =Kmax- Kmin, stress intensity factor range; if ∆K>∆Kth the crack will grow, 

otherwise the crack growth does not occur i.e. 
dN
da =0; 

Kmax - maximum stress intensity factor for a given cycle, 

Kmin - minimum stress intensity factor for a given cycle, 

∆Kth - the threshold stress intensity factor range. 

To use the Paris crack growth relation described by Equation (32) beyond its validity 

limit can result in life estimation error. A generalization of the Paris law is the Walker 

equation, which is also simple and has the form: 
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( n
effKC

dN
da

∆= . )          (33) 

where 

( )meff R
KK

−
∆

=∆
1

 - effective stress intensity factor range,   (34) 

max

min

K
KR =   - stress intensity factor ratio,    (35) 

m - material parameter. 

More advanced forms of fatigue crack growth laws that accounting for factors such as 

stress ratio, ranges of ∆K, effects of a threshold stress intensity factor ∆Kth and 

plasticity-induced crack closure are available for many materials and operational 

environments.  

 

An empirical equation describing the crack growth behaviour in regimes B and C, 

including the effect of R is Foreman equation: 

( )
( ) KKR

KC
dN
da

c

n

∆−−
∆⋅

=
1

         (36) 

C - material parameter, 

n - material parameter, 

Kc - the fracture toughness of material, thickness dependent. 

 

Equation (36) was later modified by Forman-Newman-de Koning (FNK) [18] to account 

for all regions of the crack growth curve, including the stress ratio and crack closure 

effects: 

( ) ( )

( ) ( )

q

c

n

p
thnn

KR
KR

K
KKfC

dN
da









−
∆

−−









∆
∆

−⋅∆⋅−
=

1
11

11
      (37) 

C,n,p,q - empirical derived constants; 

R - stress ratio; 

∆K - stress intensity factor range; 

∆Kth - the threshold stress intensity factor range 
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In order to perform comparison of the present results with those of reference [1], the 

crack growth life assessment in the present work was determined applying Equation 

(33), where the constants C and n are known and the effective stress intensity range is 

specified as: 

         (38) Ieff KRqK ∆=∆ ).(

Recommendations from reference [1] are the following:  

if R<0 , then   
R

RRq
−

−
=

1
.5.01)(       (39) 

and if R>0  
R

Rq
5.01

1)(
−

=       (40) 

 

Two types of cracks with constant depth were considered on the inner surface of the 

pipe: 

- infinite long  axial crack in radial-axial plane; 

- fully circumferential crack in radial-transverse plane. 

The stress distribution through wall-thickness used for the stress intensity factor 

assessment is based on the component of stress normal to the crack face. Therefore, 

for the state of stress at the location of a crack we consider elastic thermal stresses 

given by analytical solutions for hoop stress in first crack type, and axial stress (with 

εz=0) for the second one.  

 

4. Fatigue life associated with the critical frequencies for 
thermal stress ranges (Civaux 1 case) 

4.1. Description of the Civaux 1 case 
 
The methodology described in the following paragraphs considers crack growth life 

assessment in a thermal fatigue application. It is based on the analytical solutions 

obtained for elastic thermal stresses due to sinusoidal thermal loading on inner surface 

of a hollow cylinder and is applied to the leak event which occurred on the Civaux 1 

plant. The main characteristics of the piping system from Civaux 1 case have been 

described in [1]. Some of features concerning on this thermal fatigue damaging case 

are given in the following. 
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In 1998 a longitudinal crack was discovered at outer edge of an elbow in a mixing zone 

of the Residual Heat Removal System (RHRS) of the Civaux NPP unit 1 [1]. An 

extensive investigation was carried out and the conclusion was that the origin of this 

degradation phenomenon was cracking by thermal fatigue. The incident was caused by 

fluctuations in the temperature of the fluid downstream mixing tee. It is worth mentioning 

that the time between initiation of the crack and its development to a significant depth 

through the wall was only about ≈1500 hours, which is surprisingly low.  

 

Metallurgical examinations revealed substantial cracks and also some networks of small 

thermal fatigue cracks in the vicinity of the welds, but no fabrication defects. The section 

of interest is shown in Figure 3.  The system operated at a pressure of 36 bar, the hot 

leg contains water at 180o C and the cold leg contains water at 20oC. In the damage 

zone of interest the pipe inner radius was ri ≅120 mm and outer radius was ro =129 mm. 

The material properties are shown in Table 1. 

 
Table 1 Thermal and mechanical properties of austenitic steel (304L) at room temperature [1] 

c 







⋅Ckg

J  λ 





⋅Cm
W

 ρ 





3m
kg

 α 




C
1

 E 





2m
N

 ν k 







s

m2

 

480 14.7 7800 16.4.10-6 177.109 0.3 3.93×10-6 

c - specific heat coefficient, λ - thermal conductivity,  ρ - density, α - mean thermal expansion, 

k – thermal diffusivity coefficient. 

 

The temperature fluctuation was reported to be in the range 20-180o C and on the inner 

surface of the pipe the maximum temperature fluctuation range was estimated to be 

120oC [1].  
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Cold flow

Maximum 
damage area 

(elbow extrados)

 

Hot flow

Figure 3. The simplified sketch of piping subsystems with damaged  

area by thermal fatigue cracking [1] 

 

Analytical solutions for thermal stress components have been developed assuming a  

sinusoidal form of the  thermal loading on the pipe inner surface.  Therefore, the 

function applied as the inner thermal boundary condition, Equation (7), is 

)sin()( 0 ttF ωθ ⋅=          (41) 

For a maximum temperature range fluctuation of 120o C, as mentioned above, the 

temperature wave amplitude was set up to θ0 =60oC: 

)2sin(60)( tftF ⋅⋅⋅⋅= π         (41’) 

    

4.2 The stress intensity factors for internal surface cracks in pipe for a 
highly nonlinear stress distribution 
 
 
Fatigue cracks in piping components that develop due to fluctuation of thermal 

conditions are subjected to the thermal stresses which are usually highly nonuniform 

through wall-thickness. In many cases the available handbook stress intensity factors 

solutions are suitable for a direct crack growth assessment. For cracks in complex 
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stress fields such as residual or thermal stresses two methods are mostly used to 

calculate stress intensity factors:  

-  the weight function method 

- stress intensity factor solutions formulated in terms of a fourth order polynomial 

stress distribution. 

 

The weight function method has been used to  compute the stress intensity factor for an 

arbitrary through-wall stress distribution in some references [19, 20, 21, 22, 23, 24]. The 

thermal transient stress problems of a hollow cylinder containing some kinds of cracks 

have been treated, mostly for the stress intensity factors in a cylinder containing a 

semielliptical surface crack subjected to stress gradients in the directions of depth [25, 

26, 27, 28, 29, 30].  

 

For a long axial crack and a fully circumferential crack our approach to derive the stress 

intensity factors are based on the polynomial representation of stress components 

through the wall-thickness of the pipe. The fourth order polynomial distribution can be 

used for highly non-linear stress distributions, such as the hoop and axial stresses 

arising during a period of sinusoidal thermal loading, by curve-fitting the analytical stress 

distribution. 

The general form of the fourth order polynomial distribution is [31]: 
4

4

3

3

2

210)( 





+






+






+






+=

l
x

l
x

l
x

l
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where: 

x – radial local coordinate originating at the internal surface of the component; 

l – wall thickness; 

 0σ  -uniform coefficient for polynomial stress distribution (MPa); 

 1σ  -linear coefficient for polynomial stress distribution (MPa); 

 2σ  -quadratic coefficient for polynomial stress distribution (MPa); 

 3σ  -third order coefficient for polynomial stress distribution (MPa); 

 4σ  -fourth order coefficient for polynomial stress distribution.   

To evaluate the Mode I stress intensity factor, KI, for surface crack under thermal 

stresses, the procedure from ref [31] was followed, which uses the following relation: 



  22 

Q
a

l
aG

l
aG

l
aG

l
aGG

l
aK I

πσσσσσ

















+






+






+






+=

4

44

3

33

2

221100)(   (43) 

where G0, G1, G2, G3, G4 are the influence coefficients of the stress distribution. In the 

case of a long axial crack and also fully circumferential crack on inner pipe surface the 

Q parameter is considered as Q=1. 

 
Usually, the influence coefficient values are provided in published tables as function of 

the component and crack geometry, also with certain geometric/dimensional limits. In 

ref. [31] these limits are 

8.00.0 ≤≤
l
a           (44) 

10002 ≤≤
l
ri           (45) 

where  a- is the crack depth, l- is the wall thickness, ri –is the  inner radius 

For the pipe geometry of the Civaux 1 case, the ratio in Equation (45) is: 

13≈
l
ri .          (46) 

In our assessment a cubic spline interpolating method has been applied on labeled data 

in order to provide the adequate influence coefficients G0, G1, G2, G3, G4, for Civaux 1 

case geometry. 

 

4.3 Application on the Civaux 1 case 
 
The analytical solutions for the temperature distribution and associated thermal stress 

components were implemented by means of specially written routines in the MATLAB 

software package (MATLAB 7.3 version, with the Symbolic Math Toolbox) [12]. 

Assessment of the thermal response under sinusoidal thermal loading on inner surface, 

given by Equation (13), needs the positive roots sn of the transcendental Equation (14). 

The analytical solutions from Equations (28 to 30), which describe the associated elastic 

thermal stress components through wall – thickness, require also the positive roots of 

Equation (14). The analyses performed in a previous work [12], showed that using first 

one hundred positive roots provides a stable and optimized analytical response for 

stresses. For Civaux 1 case, where the geometry of the pipe consists in inner and outer 



  23 

radii by ri=0.1197m ≅ 0.120 m and ro=0.129 m, the first 100 roots of transcendental 

Equation (14) are given in Appendix 2.   

 

4.3.1 Critical frequencies for maximum stress ranges 
 

In order to obtain the KI dependence on crack depth versus time, during a thermal 

loading cycle, a first step is to define which frequency of loading spectra will be used for 

stress analysis. This frequency, which could be nominated as a “critical frequency”, is 

defined as the frequency at which the stress range is maximum (for hoop and axial 

stress or for effective stress range intensity). 

 

A detailed analysis of critical frequencies was performed for hoop stress (Appendix 3). 

The analytical formula for hoop stress under sinusoidal thermal loading allows 

determination of the critical frequencies associated with geometric points through the 

wall-thickness. These critical frequencies are referred as specific critical frequencies 

corresponding to the maximum hoop stress range at selected points. The analysis 

looked at the distribution of specific critical frequencies in the radial direction from inner 

surface up to a depth of 6 mm (the wall-thickness is 9 mm) (see Appendix 3). Moving 

into the wall from the inner surface of the pipe the specific critical frequencies take 

values between 0.01Hz and 4.5 Hz. The dependence of maximum amplitudes of hoop 

stress on associated critical frequencies through thickness are shown in Figure 4. It 

compares the hoop stress profile for fcr=0.3 Hz (associated with inner surface) with 

maximum hoop stress profile at specific critical frequencies for different geometric 

points through wall-thickness.  
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Figure 4. Comparison between maximum values of hoop stress at  specific  
critical frequencies fcrspec=0.09 - 4.5 Hz  and the values at fcr=0.3 Hz (critical  
frequency for maximum hoop stress on inner surface) 
 

There are no significant differences  between maximum hoop stress profiles derived 

from both approaches. On this basis for the crack growth analyses for an axial crack it is 

considered sufficient to use the profiles corresponding to the critical frequency  valid for 

the inner surface. The same approach is used for axial stress, i.e. when arising 

circumferential cracks. 

 

As already mentioned, for each set of boundary conditions there is a certain frequency 

(critical frequency), at which the component stresses range is maximum on inner 

surface. To find these critical frequencies for each thermal stress component we use the 

mathematical series expansion described by Equations 28, 29 and 30. In respect of this 

the frequency has been chosen as main variable, taking values in the range 0.01Hz - 10 

Hz and the r variable (radial coordinate) was set up r= 0.120 m (≈ inner pipe radius 

value). Figure 5 shows the stress range dependencies on thermal loading frequencies, 

for hoop and axial stress components at the inner surface.  
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Figure 5. Dependence of maximum stress ranges on thermal loading  
frequencies (inner surface, Civaux 1 case) 
 

The critical frequencies are listed in Table 2 with  the corresponding stress range values. 
 
Table 2 Critical frequencies for stress components in pipe under sinusoidal thermal loading 
Stress components 
 

Critical frequency 
f (Hz) 

Stress Range 
∆ σ (MPa) 

Notes/Comments 

Hoop stress 0.3 392  
Axial stress  0.1 440 εz=0 
Axial stress  0.3 388 εz=ε0 
 

Table 2 shows that the hoop stress range and axial stress range in the free 

expansion case (εzz=ε0) have the same critical frequency, f=0.3 Hz. For fixed axial strain 

(εzz=0), the critical frequency for axial stress range is fcr=0.1Hz, lower than for free 

expansion, and gives a higher value of axial stress range. From this reason, in the case 

of fully circumferential crack, we use only fixed axial case (most conservative) for crack 

growth analysis. 

In reference [32] the lifetimes of the same configuration under thermomechanical 

loading with different frequencies are compared to determine a critical interval of loading 
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frequency for crack growth. The frequencies around 0.1 Hz were found to be critical for 

crack growth of circumferential crack, consistent with the present analysis. 

The corresponding stress profiles, obtained by using Equations (28, 29, 30) with the 

critical frequency values already mentioned, are displayed in Figures 6, 7, and 8 for 

instants of time during the cycles with extreme values of stresses (in compression and 

tension) at inner surface. The same figures include both the smoothed polynomial fits 

and original analytical function predictions for the associated thermal stresses.  
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 Figure 6. The hoop stress distribution through wall-thickness  

with maximum range on inner surface (fcr=0.3 Hz). 
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Figure 7. The axial stress distribution through wall-thickness  
with maximum range on inner surface (fcr=0.1 Hz, εz=0) 
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 Figure 8. The axial stress distribution through wall-thickness  
with maximum range on inner surface (fcr=0.3 Hz, εz=ε0). 

 
An interesting task, from the fatigue crack initiation point of view, was to perform 

the same analysis for the effective stress intensities. Fatigue crack initiation in 
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components subjected to multiaxial stress states is assessed by the various codes and 

standards [1, 33, 34]]  by using of these specific stress-related parameters. The 

definition of this parameter is typically based on a maximum shear stress yield criterion 

(Tresca) or a maximum distortion energy yield criterion (von Mises). This latter is the 

most used, and therefore the following additional scalar stress parameters are 

evaluated at the critical frequencies: 

- effective stress intensity (Von Mises equivalent stress): 

 

( ) ( ) ( )
2

222
zrzr

VM
σσσσσσσ θθ −+−+−

=      (47) 

 

- effective equivalent stress range intensity (for application with a maximum 

distortion energy yield criterion in fatigue crack initiation): 
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=∆     (48) 

 

The values obtained are given in Table 3. Figures 9 and 10 show the frequency 

dependence of effective stress intensity (σVM) and effective equivalent stress range 

intensity (∆SVM) in both conditions: axial fixed (εz=0) and axial free (εz=ε0). 

 
Table 3. Critical frequencies for effective stress range intensities in pipe inner surface under 
sinusoidal thermal loading 
Stress  Critical frequency 

(Hz) 

Stress  

(MPa) 

Axial boundary 

conditions 

Maximum effective 
stress intensity (σVM) 

0.21 

0.38 

201 

186 

εz=0 

εz=ε0 

Maximum effective 
equivalent stress range 
intensity (∆SVM) 

0.25 

0.30 

410 

386  

εz=0 

εz=ε0 

 

For the mixing tee zone of the Civaux 1 structure (were the crack leak was produced), 

reference [1] reported that the equivalent stress distributions (in Von Mises sense) at 

the inner surface reached a maximum value of 358 MPa. This is consistent with the 
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prediction here of ∆SVM = 386 MPa, obtained at the critical frequency of sinusoidal 

thermal loading and for the fixed axial boundary condition (Table 3).  
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Figure 9. Dependence of maximum equivalent stress intensity   
(σVM) on thermal loading frequencies (Civaux case) 
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Figure 10. Dependence of maximum effective equivalent stress range  
intensity (∆SVM) on thermal loading frequencies (Civaux case) 

 

In summary, the critical frequencies (in sense of maximum range stress at inner 

surface) for sinusoidal thermal loading are  f∈[ 0.1, 0.3] Hz for the axial and hoop elastic 
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thermal stress components and f∈[ 0.21, 0.38] Hz for equivalent stress intensities. 

These results are in agreement with those reported in literature [5, 7, 10, 11], which 

consider the interval f∈[ 0.1, 1.0] Hz to be most damaging for thermal fatigue in high 

cycle domain. In ref [10, 11] the value f=0.5 Hz was considered as most critical 

frequency. In the next steps of analyses we use the stress profiles (maximum values) 

for hoop stress and axial stress (εz=0 case) at the critical frequencies given in Table 2.  

4.3.2 Stress intensity factor solution for long axial crack under hoop 
thermal stress 
 
To check the analytical prediction of the through-thickness hoop stress profile during 

thermal loading a comparison of FEA and analytical results was performed for fcr=0.3 

Hz (Figure 11). From an ABAQUS  output file, which comprises stress values for 

discrete values of time during a period of thermal loading, a specific instant of time was 

chosen to that as close as possible in the FE output file to that at which the inner 

surface stress was maximum.  
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Figure 11. Comparison between hoop stress profiles from FEA and  

analytical methods for  fcr=0.3 Hz  

 

There is a small difference between analytical prediction (either the function itself or the 

corresponding polynomial fit) and FEA results in the middle region of wall-thickness, 
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where the values of hoop stress are already in negative domain. It is worth mentioning 

that the stress gradients through the thickness are similar. Note: the instant of time used 

here does not correspond to that at which the maximum stress occurs on the inner 

surface. 

In the case of evaluation of the Mode I stress intensity factor in a pipe, KIaxial, for an 

infinite longitudinal surface crack under thermal hoop stress, the procedure from 

reference [31] was followed, which uses the following relation: 
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where G0, G1, G2, G3, G4 are influence coefficients, and Q=1 for this configuration. In 

our application for the pipe geometry of the Civaux 1 case, the inner radius/wall-

thickness ratio is 13≈
l
ri . The corresponding values of the influence coefficients of 

stress distribution do not be found directly from Table C9 of API 579 procedure [31]. 

Therefore, it is necessary to perform an interpolation to infer the influence coefficients 

G0, G1, G2, G3, G4, for mentioned pipe geometry. Table 4 displays the published values  

in the range of interest [31].    
  

Table 4 The influence coefficients of stress distribution for a longitudinal infinite length surface crack in a 
cylindrical shell from Table C9 -API 579 
ri/l 
 

a/l G0 G1 G2 G3 G4 

5 
 

0.0 
0.2 
0.4 
0.6 
0.8 

1.12 
1.307452 
1.8332 
2.734052 
3.940906 
 

0.682 
0.753466 
0.954938 
1.28757 
1.739955 

0.5245 
0.564296 
0.676408 
0.857474 
1.10621 

0.4404 
0.466913 
0.539874 
0.656596 
0.81823 

0.379075 
0.398757 
0.454785 
0.54072 
0.661258 

10 
 

0.0 
0.2 
0.4 
0.6 
0.8 

1.12 
1.332691 
1.957764 
3.223438 
5.543784 
 

0.682 
0.763153 
1.002123 
1.466106 
2.300604 

0.5245 
0.569758 
0.702473 
0.953655 
1.398958 

0.4404 
0.470495 
0.556857 
0.718048 
1.000682 

0.379075 
0.401459 
0.467621 
0.585672 
0.789201 

20 
 

0.0 
0.2 
0.4 
0.6 
0.8 

1.12 
1.345621 
2.028188 
3.573882 
7.388754 

0.682 
0.768292 
1.028989 
1.594673 
2.946567 

0.5245 
0.57256 
0.717256 
1.023108 
1.736182 

0.4404 
0.472331 
0.566433 
0.762465 
1.211533 

0.379075 
0.402984 
0.475028 
0.618437 
0.936978 
 

ri – inner radius; l- wall-thickness 
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The results of cubic spline interpolation (MATLAB function) for the influence coefficients 

of stress distribution in case of ratio 13≈
l
ri  are shown in Table 5. 

Table 5. Results of cubic spline interpolations for influence coefficients of hoop stress distribution for the 
case of an infinite axial crack on inner pipe surface case 
ri/l 
 

a/l G0 G1 G2 G3 G4 

13 
 

0.0 1.12 0.682 0.5245 0.4404 0.379075 

13 
 

0.2 1.3418 0.7667 0.5717 0.4718 0.4025 

13 
 

0.4 2.0039 1.0196 0.7121 0.5631 0.4724 

13 
 

0.6 3.4165 1.5367 0.9917 0.7424 0.6035 

13 
 

0.8 6.2878 2.5609 1.5349 1.0855 0.8487 

 
 
As can be seen in Table 5, each influence coefficient needs a new interpolation as 

function of the 
l
a  ratio, in order to consider the dependence of the stress intensity factor 

KIaxial on crack depth a. The following relationships give the required dependence: 
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A check was performed comparing the stress intensity factor calculated by means of the 

methodology described above with that from finite element analysis results. In Appendix 

4 a comparison between analytical predictions of  KIaxial  for long axial crack under hoop 
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stress due to internal pressure and FEA results are shown. The solutions for KIaxial are in 

a good agreement until the crack depth reaches the 80% from wall-thickness. 

 

For each instant of time during a period of thermal loading, we also need the 

coefficients of the hoop stress polynomial fit to derive KIaxial  for long axial crack under 

hoop thermal stress at frequency fcr=0.3 Hz. The required steps are complete described 

in full in Appendix 5 for the instant of time corresponding to maximum hoop stress range 

on inner surface and critical frequency fcr=0.3 Hz. The steps described in Appendix 5 

are used to generate through-wall stress profiles for several instants of time during a 

thermal loading cycle. These are curve-fitted by a fourth order polynomial distribution for 

each instant of time. The frequency fcr=0.3 Hz was considered. The general form of the 

fourth order polynomial distribution is as given by Equation (42). 

Figures 12 and 13 show the hoop stress profiles at several instants of time from T/2 to 

T, and also from T to 3T/2, respectively (where T is the period of the thermal loading 

cycle). The stress distributions available as 4th order polynomials were transformed to 

be consistent with the wall thickness coordinate in normalized form.  
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Figure 12. Through-wall hoop stress profiles (fcr=0.3 Hz), at various instants 
of time as function of normalized x/ l distance  (between T/2 and T) 
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Figure 13. Through-wall hoop stress profiles (fcr=0.3 Hz), at various instants 
of time as function of normalized x/ l distance (between T and 3T/2) 
 
This process the polynomial fits to be extracted and Table 6 provides the resulting 

values of the coefficients derived for hoop stress profiles shown in Figures 12 and 13.  

 
Table 6. Coefficients of polynomial fitting for hoop stress profiles at various instants of time during 

a period of sinusoidal thermal loading  

 σ0 σ1 σ2 σ3 σ4 

T/2 -3.3768 -673.9602 2765.1309 -3459.4409 1414.2546 

1.1T/2 55.951 -1020.8664 3337.5666 -3851.2798 1511.26 

1.2T/2 110.6402 -1276.251 3595.9905 -3867.3872 1457.431 

1.3T/2 155.2782 -1413.8301 3511.7821 -3503.7995 1257.6864 

1.4T/2 185.44.4 -1419.1325 3090.7992 -2794.6168 931.4656 

1.5T/2 198.1231 -1290.841 2372.519 -1808.3494 510.7206 

1.6T/2 192.0368 -1040.8689 1425.9824 -641.0138 36.7302 

1.7T/2 167.733 -693.156 342.9057 593.392 -443.9745 

1.8T/2 127.549 -281.2985 -771.3884 1774.1315 -884.1841 

1.9T/2 75.38 154.7597 -1808.3465 2785.6047 -1240.6439 
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T 16.2967 572.6517 -2666.8514 3528.7031 -1478.2951 

2.1T/2 -43.9507 931.7458 -3263.1647 3930.5379 -1573.7106 

2.2T/2 -99.4957 1197.1314 -3539.1379 3951.5945 -1517.3915 

2.3T/2 -144.9299 1343.0424 -3467.9279 3589.6133 -1314.6981 

2.4T/2 -175.8325 1355.3841 -3056.6366 2879.8207 -985.326 

2.5T/2 -189.2035 1233.1173 -2345.6261 1891.4874 -561.379 

2.6T/2 -183.7569 988.3622 -1404.5746 721.1522 -84.2265 

2.7T/2 -160.0472 645.2151 -325.6618 -516.8249 399.5462 

2.8T/2 -120.4153 237.3911 785.4507 -1701.4548 842.6981 

2.9T/2 -68.7588 -195.0747 1819.9588 -2716.9619 1201.9568 

3T/2 -10.1514 -609.7445 2676.5646 -3464.1157 1442.255 

 

By using the influence coefficients (Equations 50 to 54) and the coefficients of the 

polynomial fit to the hoop stress profiles (Table 6) we are able to derive KIaxial  for long 

axial crack under hoop thermal stress at frequency fcr=0.3 Hz (see Equation 49). 

Figures 14 and 15 show the dependence of KIaxial  on crack depth through thickness at 

different instants of time during a period of thermal loading. 
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Figure 14.  Dependence of KIaxial  for long axial crack under hoop stress  
at different instants of time between T/2 and T (fcr=0.3 Hz) 
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Figure 15.  Dependence of KIaxial  for long axial crack under hoop stress  
at different instants of time between T and 3T/2 (fcr=0.3 Hz) 

 

Figure 16 compares the maximum stress intensity values predicted in Figures 14 and 

15 with those obtained by finite element method (ABAQUS analysis) as a function of 

crack depth starting from the inner surface of the pipe wall.  
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Figure 16. Comparison of  max

IaxialK   for long axial crack: FEA versus 
analytical (fcr=0.3Hz) 
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To apply the generalized Paris law for crack growth propagation it is convenient to 

express the dependence on crack depth as polynomial function for both assessment:  

 
8429.84762.440101905.404763333.33333333)( 243max +⋅+⋅⋅−⋅= aaaanalytK Iaxial  (55) 

 
2582.62857.43064107.13566962617.181756397)( 23max +⋅+⋅−⋅= aaaFEAK Iaxial   (56) 

 
 

where is in  MPa√m and crack depth a is in m. These equations will be used with 

the Paris law integration to compute crack growth propagation time. 

max
IaxialK

4.3.3 Stress intensity factor solution for fully circumferential crack under 
axial thermal stress 
 
Appendix 6 describes all the steps for deriving the stress intensity factor for a fully 

circumferential crack for an instant of time which corresponds to the maximum axial 

stress on inner pipe surface (ε0=0, fcr=0.1 Hz). Figure 17 shows a comparison between 

FEA and analytical  predictions of the stress distribution. 
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Figure 17. Comparison between axial stress profiles from FEA and  

analytical for  fcr=0.1 Hz (ε0=0) 
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The Mode I stress intensity factor for fully circumferential surface crack, KIcirc, is: 
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where G’0, G’1, G’2, G’3, G’4 are influence coefficients of axial stress distribution, and 

Q=1 also for this configuration,. As already mentioned, for the pipe geometry of Civaux 

1 case, the ratio of inner radius to thickness is  13≈
l
ri . By performing a cubic spline 

interpolation, the influence coefficients G’0, G’1, G’2, G’3, G’4 were computed. Table 7 

shows these in the range of interest, for fully circumferential crack in the pipe.    

 
Table 7 Influence coefficients of axial stress distribution for a fully circumferential surface crack in a 

cylindrical shell from Table C10 - API 579 

ri/l 
 

a/l G’0 G’1 G’2 G’3 G’4 

5 
 

0.0 
0.2 
0.4 
0.6 
0.8 

1.12 
1.210829 
1.437161 
1.764266 
2.272892 

0.682 
0.718943 
0.807345 
0.928708 
1.156841 

0.5245 
0.546312 
0.596196 
0.656426 
0.801593 

0.4404 
0.454558 
0.487609 
0.519455 
0.627635 

0.379075 
0.390464 
0.415918 
0.447584 
0.528369 

10 
 

0.0 
0.2 
0.4 
0.6 
0.8 

1.12 
1.254559 
1.578769 
2.054427 
2.691796 

0.682 
0.735816 
0.860586 
1.033913 
1.302652 

0.5245 
0.555784 
0.625575 
0.712856 
0.877596 

0.4404 
0.46081 
0.506771 
0.555383 
0.675063 

0.379075 
0.395216 
0.43019 
0.47372 
0.561238 

20 
 

0.0 
0.2 
0.4 
0.6 
0.8 

1.12 
1.286308 
1.700591 
2.354964 
3.202288 

0.682 
0.748129 
0.906527 
1.143036 
1.480478 

0.5245 
0.562711 
0.650941 
0.771413 
0.970278 

0.4404 
0.465393 
0.523329 
0.592683 
0.732879 

0.379075 
0.398716 
0.442578 
0.500911 
0.601399 

ri – inner radius;  l- wall-thickness 
 

The results of cubic spline interpolation at 13≈
l
ri  for influence coefficients of axial 

stress distribution are shown in Table 8. 
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Table 8. Results of spline interpolations for influence coefficients: the radial-circumferential 3600 crack 
on inner pipe surface 
ri/l 
 

a/l G’0 G’1 G’2 G’3 G’4 

13 
 

0.0 1.12 0.682 0.5245 0.4404 0.379075 

13 
 

0.2 1.2719 0.7425 0.5595 0.4633 0.3971 

13 
 

0.4 1.6379 0.8828 0.6379 0.5148 0.4362 

13 
 

0.6 2.1838 1.0808 0.7380 0.5714 0.4854 

13 
 

0.8 2.8908 1.3719 0.9137 0.6976 0.5769 

 
 
A 3rd order fit for each of influence coefficient using the data from Table 8, gives the 

following :  
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For the stress profiles, the general form of fourth order polynomial distribution, given by 

Equation (42), was used  at the critical frequency fcr=0.1 Hz. The same instants of time 

were used as in previous section and the results derived from Figures 18 and 19 are 

shown in  Table 9. 
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Figure 18. Through-wall axial stress (εz=0 and fcr=0.1 Hz) at  
various instants of time as function of normalized x/l distance  
(between T/2 and T) 
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Figure 19. Through-wall axial stress (εz=0 and fcr=0.1 Hz) at  
various instants of time as function of normalized x/l distance 
(between T and 3T/2) 
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Table 9. Coefficients of polynomial fitting for axial stress profiles at various instants of time during 

a period of sinusoidal loading (fcr=0.1 Hz, ε0=0) 

 σ’0 σ’1 σ’2 σ’3 σ’4 

T/2 -4.9075 -565.5558 1485.14 -1328.7272 430.2012 

1.1T/2 60.2403 -719.9045 1486.5824 -1166.3144 349.8424 

1.2T/2 119.5714 -806.5893 1342.8453 -884.2742 232.3383 

1.3T/2 167.2621 -816.5557 1067.912 -511.2958 89.7714 

1.4T/2 198.6312 -748.3767 688.6368 -84.7623 -63.438 

1.5T/2 210.5979 -608.3667 242.1039 352.8728 -211.9203 

1.6T/2 201.9824 -409.9442 -228.0085 758.2085 -340.8435 

1.7T/2 173.6216 -172.3033 -675.707 1091.1177 -437.3498 

1.8T/2 80.2023 75.5051 -1065.7869 2343.3267 -503.5368 

1.9T/2 70.4103 326.7004 -1335.1218 1418.2548 -498.7183 

T 5.6554 539.48 -1482.3175 1379.9425 -457.3 

2.1T/2 -59.6426 699.0805 -1484.3752 1207.2831 -371.5043 

2.2T/2 -119.0937 789.9536 -1341.1011 917.0308 -249.6519 

2.3T/2 -166.8804 803.2636 -1066.5261 537.4081 -103.6086 

2.4T/2 -198.3262 737.7552 -687.5325 105.6903 52.3794 

2.5T/2 -210.3541 599.8789 -241.2228 -336.147 203.0826 

2.6T/2 -201.7876 -403.1612 228.7121 -744.8415 333.7808 

2.7T/2 -173.4659 166.8827 676.2691 -1080.4352 431.7055 

2.8T/2 -128.162 -85.8087 1057.6361 -1310.1162 487.2914 

2.9T/2 -70.3109 -330.1622 1335.4807 -1411.4322 495.1136 

3T/2 -5.5759 -542.2466 1482.6043 -1374.4902 454.4193 

 

In order to determine stress intensity factor, KIcirc , the influence coefficients (Equations 

58 to 62) and coefficients of polynomial fitting  (Table 9) were substituted into Equation 

57. Figure 20 and 21 show the KIcirc dependence on crack depth at different instants of 

time, as noted in Table 9. 
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Figure 20 Dependence of KIcirc on crack depth for fully circumferential  
crack under axial stress at different instants of time between T/2 and T  
(fcr=0.1 Hz, ε0=0) 
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Figure 21 Dependence of KIcirc  on crack depth for fully circumferential  
crack under axial stress at different instants of time between T and 3T/2  
(fcr=0.1 Hz, ε0=0) 
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The maximum values for KIcirc from analytical predictions (Figure 20), during a period of 

thermal loading were compared with FEA results. Figure 22 shows the good agreement 

obtained. 
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Figure 22. Comparison for for fully circumferential crack:  max

IcircK
FEA and analytical (fcr=0.1 Hz, ε0=0) 

 
It is convenient to express dependency of stress intensity factor  on crack depth from 

Figure 22 as polynomial functions of crack depth: 

max
IcircK

 
68.64762.55151429.8053576667.79166666)( 23max +⋅+⋅−⋅= aaaanalytK Icirc   (63) 

 
08.89524.41802857.2357146667.16666666)( 23max +⋅+⋅−⋅−= aaaFEAK Icirc   (64) 

 

where is in  MPa√m and crack depth a is in m. These equations will be used in the 

integration of the Paris law equation to compute the crack growth propagation time. 

max
IcircK
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4.3.4 Fatigue life assessment for crack growth 
 
The fatigue crack growth life assessment in our approach is based on the hypothesis 

that during thermal cycling a crack grows when at crack tip experiences the maximum 

value of KI . A crack growth threshold, ∆Kth=5.06 MPa√m was assumed. To obtain the 

rate of crack growth in case of long axial crack we apply a generalized Paris law, as is 

used in reference [1]: 

 

( n
effKC

dN
da

∆= . ) .         (65) 

The constant are referred as : C= 7.5 x 10-13 (m/cycle) and n= 4 [1].  

 

Based on the hypothesis already mentioned, effK∆   is expressed as function of the 

maximum stress intensity factor range for the relevant crack geometry.  

The effective stress intensity factor range is also dependent on the stress ratio and in 

the case with  ( R<0)    the following approach is considered [1]  effK∆

Ieff KRqK ∆=∆ ).( .         (66) 

and 
R

RRq
−

−
=

1
.5.01)( .        (67) 

The analytical model predicts an approximately symmetrical response of thermal hoop 

stress about the zero state. Hence by setting 
maxmin
IaxialIaxial KK −= .         (68) 

the range of stress intensity factor becomes 
max2 IaxialIaxial KK ⋅=∆ .         (69) 

In the meantime: R=-1 and q=3/4        (70) 

With above results the effective stress intensity factor is 

max

2
3

IaxialIaxialeff KKqK =∆=∆  .       (71) 

To compute the crack growth propagation time, Equation (65) is integrated between the 

limits  ai (initial crack depth) and af (final crack depth).  The same values used were as 

in reference [1]: ai=1 mm and af=7.2 mm, that means in term of crack/thickness ratio 

ai/l=0.1 and af/l=0.8. The number of cycles (N) required to advance a crack between ai 

and  af is given by:  
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∫ ∆
=

af

ai
n

eff aKC
daN

))((          (72) 

The corresponding time (T) in hours is given by 

 crf
NhoursT
⋅

=
3600

)(
         (73) 

Table 10 shows the results obtained for a critical frequency fcr=0.3 Hz.The results 

obtained in reference [1] are also includes . 

 
Table 10 Comparison of crack growth time predictions for long axial crack subjected to thermal 
hoop stress (fcr=0.3 Hz) 
Method  Number of cycles to propagate a 

crack to 80% of wall thickness 
Time (hours) to propagate a 
crack to 80% of wall thickness 

Analytical 88 263 82  

FEA 59 294 55 

Chapuliot, et al. [1] 372 720  517 

 

The results from the analytical and FEA approaches are in quite good agreement. They 

are conservative in comparison with those obtained in more advanced approaches 

referred [1]. We have to note that CEA results [1] were obtained in the following 

conditions: the stresses were obtained from an analysis of the full pipe elbow geometry 

and the KI  factors were derived from a plate model. 

The same methodology as above was performed for a fully circumferential crack, using 

Equations (63, 64) and Equation (72). Table 11 compares the results of the  present 

work and the Chapuliot et al. [1]. 

 
Table 11 Comparison of crack growth time predictions for fully circumferential crack subjected to 
thermal axial stress (fcr=0.1 Hz, ε0=0) 
Method  Number of cycles to propagate a 

crack to 80% of wall thickness 
Time (hours) to propagate a 
crack to 80% of wall thickness 

Analytical 16 161 45 

FEA 17 762 49 

Chapuliot et al. [1] 21 388 59 

 
It is considered that our simple approach to derive the thermal fatigue crack growth life 

gives conservative results because it used only the most critical frequencies from the 

loading spectra, i.e. these producing the maximum stress ranges. 
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5. Summary and Conclusions  
 
 
An analytical method for fatigue crack growth assessment in a pipe subject to sinusoidal 

thermal loading has been successfully developed and implemented in a MATLAB 

software environment. 

 

Its application is explained via analysis of the Civaux 1 case. Additionally, finite element 

analyses were used to check the thermal stress profiles and the stress intensity factors 

derived from the analytical model. 

 

The critical sine wave frequency is calculated for both the axial and hoop stress 

components from the value that produces the maximum tensile stress component at the 

inner surface (0.1 and 0.3 Hz, respectively). Using 4th order polynomial fits of these 

through-wall stress distributions the corresponding stress intensity factors for a long 

axial crack and fully circumferential crack were calculated for a range of crack depths 

using the K solutions given in API 579 procedure. The maximum range of stress 

intensity factors during a period of thermal loading, expressed as a function of crack 

depth is substituted in a Paris law to obtain thermal fatigue crack growth life. 

 

Agreement with results from independent assessment of Civaux case was 

demonstrated, although it must be noted the predictions from the present work are 

lower bound to these. This conservatism is explained by the use of only the critical 

frequencies to represent the entire loading spectrum. 

 

A beneficial aspect of this type of analytical solution in case of thermal stripping 

modeling is the fact that they can be easily manipulated in check the influence of 

various parameters (critical frequency, thermal stress component, crack geometry etc.) 

in a systematic way. They provide a useful option for initial assessments of real 

problems minimizing the need more time consuming finite element analyses. 

 



  47 

References 
[1] S. Chapuliot et al.  Hydro-thermal-mechanical analysis of thermal fatigue in a 

mixing tee, Nuclear Engineering and Design 235 (2005) 575-596 

[2] O. Ancelet, et al. Development of a test for the analyses of the harmfulness of 3D 

thermal fatigue loading in tubes, International Journal of Fatigue 29 (2007), 549-

564 

[3] B. Drubay, et al A 16: guide for defect assessment at elevated temperature, 

International Journal of Pressure Vessels and Piping 80 (2003) 499-516 

[4] N. Haddar Thermal fatigue crack networks: an computational study, International 

Journal of Solids and Structures 42(2005) 771-788 

[5] IAEA-TECDOC-1361, Assessment and management of ageing of major nuclear 

power plant components important to safety-primary piping in PWRs, IAEA, July 

2003 

[6] Lin-Wen Hu, et al., Numerical Simulation study of high thermal fatigue caused by 

thermal stripping, Third International Conference on Fatigue of Reactor 

Components, Seville, Spain 3-6 October 2004, NEA/CSNI/R(2004)21 

[7] Naoto Kasahara et al. Structural response function approach for evaluation of 

thermal stripping phenomena, Nuclear Engineering and Design 212 (2002) 281-

292 

[8] B.A. Boley, J. Weiner, Theory of Thermal Stresses, John Wiley & Sons, 1960 

[9] M. Dahlberg et al. Development of a European Procedure for Assessment of High 

Cycle Thermal Fatigue in Light Water Reactors: Final Report of the NESC-Thermal 

Fatigue Project, NESC Network Report NESC-06-04, published as European 

Commission EUR 22763 EN June 2007  

[10] D. Buckthorpe, O. Gelineau, M.W.J. Lewis, A. Ponter, Final report on CEC study on 

thermal stripping benchmark –thermo mechanical and fracture calculation,  

Project C5077/TR/001, NNC Limited 1988 

[11]  H.-Y.Lee, J.-B. Kim, B. Yoo  Tee-Junction of LMFR secondary circuit involving 

thermal, thermomechanical and fracture mechanics assessment on a stripping 

phenomenon, IAEA-TECDOC-1318, “Validation of fast reactor thermomechanical 

and thermohydraulic codes”, Final report of a coordinated research project 1996-

1999 (1999) 



  48 

[12] V. Radu, E. Paffumi, N. Taylor,  New analytical stress formulae for arbitrary time 

dependent thermal loads in pipes, European Commission Report EUR 22802 DG 

JRC, June 2007, Petten, NL  

[13] N. Noda, R.B. Hetnarski, Y. Tanigawa, Thermal Stresses, 2nd Ed., Taylor & Francis, 2003 

[14] S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, McGraw-Hill, New York, 

(1987) 

[15] I.N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York, (1993) 

[16] M. Garg, A.Rao, S.L. Kalla, On a generalized finite Hankel transform, Applied 

Mathematics and  Computation (2007), doi:10.1016/j.amc.2007.01.076 

[17] A.R. Shahani, S.M. Nabavi, Analytical solution of the quasi-static thermoelasticity 

problem in a pressurized thick-walled cylinder subjected to transient thermal 

loading, Applied Mathematical Modelling (2006), doi:10.1016/j.apm.2006.06.008 

[18] Bahram Farahmand Fatigue and Fracture Mechanics of High Risk parts: 

Application of LEFM& FMDM Theory, Chapman & Hall, 1997  

[19] X. J. Zheng, et al.  Weight functions and stress intensity factors for internal 

surface semi-elliptical crack in thick-walled cylinder, Engineering Fracture 

Mechanics vol. 58, No. 3, pp 207-221 (1997)  

[20 ] A.A. Moftakhar, G. Glinka Calculation of stress intensity factors by efficient 

integration of weight functions, Engineering Fracture Mechanics vol. 43, No. 5, pp 

7497-756 (1992)  

[21] A. Kiciak, G. Glinka, D.J. Burns Calculation of Stress Intensity Factors and 

Crack opening Displacements for Cracks Subjected to Complex Stress Fields,  

ASME Journal Pressure Vessels Technology 2003; 124:261-6  

[22] I.S. Jones “Impulse response model of thermal striping for hollow cylindrical 

geometries, Theoretical and applied fracture mechanics 43 (2005) 77-88 

[23] I.S. Jones, G. Rothwell  Reference stress intensity factors with 

application to weight functions for internal circumferential cracks in cylinders, 

Engineering Fracture Mechanics 68 (2001) 435-454 

[24] H.J. Petroski, J.D. Achenbach Computation of the weight function from a 

stress intensity factor, Engineering Fracture Mechanics, 1978, vol.18, 257-266 

[25] A.R.Shahani, S.E. Habibi Stress intensity factors in a hollow cylinder containing 

a circumferential semi-elliptical crack subjected to combined loading, International 

Journal of Fatigue 29 (2007) 128-140  



  49 

[26] A.R. Shahani, S.M. Nabavi Closed form stress intensity factors for a semi-

elliptical crack in a thick-walled cylinder under thermal stress, International Journal 

of Fatigue 28 (2006) 926-933 

[27] A.R. Shahani, S.M. Nabavi Transient thermal stress intensity factors for an 

internal longitudinal semi-eliptical crack in a thick-walled cylinder, Engineering 

Fracture Mechanics (2007), doi:10.1016/j.engfracmech.2006.11.018 

[28] H. Grebner, U. Strathmeier Stress intensity factors for longitudinal semi-elliptical 

surface cracks in a pipe under thermal loading, Engineering Fracture Mechanics, 

vol. 21, No.2, pp.383-389, 1985 

[29] R. Oliveira, X.R. Wu Stress intensity factors for axial cracks in hollow cylinders 

subjected to thermal shock, Engineering Fracture Mechanics, vol. 27, No.2, 

pp.185-197, 1987 

[30] Toshiyuki Meshii, Katsuhiko Watanabe Stress intensity factors evaluation of a  

circumferential crack in a finite length thin-walled cylinder for arbitrarily distributed 

stress on crack surface by weight function method, Nuclear Engineering and 

Design 2006 (2001) 13-20 

[31] API 579  Fitness-for-Service-API Recommended Practice 579, First Edition, 

January 2000, American Petroleum Institute 

[32 ] Mohammad Seydi, Said Taheri, Francois Hild Numerical modeling of crack 

propagation and shielding effects in a striping network, Nuclear Engineering and 

Design 236 (2006) 954-964 

[33] Brian B. Kerezsi, John W.H. Price, Using the ASME and BSI codes to predict crack 

growth due to repeated thermal shock, International Journal of Pressure Vessels 

and Piping 79 (2002) 361-371 

[34] O.K. Chopra, W.J. Shack Effect of LWR Coolant Environments on the fatigue 

Life of reactor Materials, Draft report for Comment, NUREG/CR-6909, ANL 06/08, 

July 2006, U.S. Nuclear Regulatory Commission , Office of Nuclear Regulatory 

Research, Washington, DC 20555-0001 

[35] S.R.Gosselin, F.A. Simonen, P.G. Heasler, S.R. Doctor  Fatigue Crack Flaw 

Tolerance in Nuclear Power Plant Piping – A Basis for Improvements to ASME 

Code Section XI Appendix L, NUREG/CR-6934, PNNL-16192, May 2007 
 
 
 
 



  50 

 
 
 

Appendix 1: Thermal stress components for a pipe subject to 
sinusoidal thermal loading 
 

The integrals I1 and I2 for the sinusoidal case are: 
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where sn  are the positive roots of the transcendental equation 
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The thermal stress components for a hollow circular cylinder subject to sinusoidal 

thermal loading are: 
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Hoop thermal stress  
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Axial thermal stress   

for εz=0 (fixed end) 

 

[ ] [{ }]

[ ]



















+⋅

⋅⋅−⋅⋅⋅+⋅
⋅×

×⋅⋅⋅−⋅⋅⋅
⋅−⋅

⋅⋅
⋅⋅−

−














+⋅

⋅⋅−⋅⋅⋅+⋅
⋅⋅

⋅







⋅⋅−⋅⋅⋅⋅−⋅⋅−⋅⋅⋅⋅×

×
⋅−⋅

⋅⋅
⋅⋅×





−−
⋅

=

⋅⋅−

∞

=

⋅⋅−

∞

=

∑

∑

222

2

0

1
2
0

2
0

2
0

2

222

2

0

1111

1
2
0

2
0

2
0

2

22

)(
)cos()sin()(

)()()()(
)()(

)(

)(
)cos()sin()(

)()()()()()(1

)()(
)(2

1
),,(

2

2

ω
ωωωω

θ

π

ω
ωωωω

θ

πν
ν

αωσ

n

n

n

n

n

n

sk
ttske

rsYrsJrsJrsY
rsJrsJ

rsJsk

sk
ttske

rsYrrsYrrsJrsJrrsJrrsY
s

rsJrsJ
rsJsk

rr
Etr

tsk

noinonoino
n inon

onn

tsk

inionoinoinionoino
n

n inon

onn

oi
z

 



  52 

            (A1.5)  

 

 

for εz=ε0 (free end) 
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Appendix 2: The first hundred roots of the transcendental 
equation (Civaux pipe geometry) 
 
For Civaux 1 case, considering a pipe with the inner and outer radii ri=0.120 m 

(≅0.1197m) and ro=0.129 m, the first 100 roots of the transcendental Equation (14) used 

in the analytical solutions for temperature and stress fields are: 

 

sn =[ 337.78; 675.5900; 1.0134e+003; 1.3512e+003; 1.6890e+003; 

    2.0268e+003; 2.3646e+003; 2.7024e+003; 3.0403e+003; 3.3781e+003; 

    3.7159e+003; 4.0537e+003; 4.3915e+003; 4.7293e+003; 5.0671e+003; 

    5.4049e+003; 5.7427e+003; 6.0806e+003; 6.4184e+003; 6.7562e+003; 

    7.0940e+003; 7.4318e+003; 7.7696e+003; 8.1074e+003; 8.4452e+003; 

    8.7830e+003; 9.1208e+003; 9.4587e+003; 9.7965e+003; 1.0134e+004; 

    1.0472e+004; 1.0810e+004; 1.1148e+004; 1.1486e+004; 1.1823e+004; 

    1.2161e+004; 1.2499e+004; 1.2837e+004; 1.3175e+004; 1.3512e+004; 

    1.3850e+004; 1.4188e+004; 1.4526e+004; 1.4864e+004; 1.5201e+004; 

    1.5539e+004; 1.5877e+004; 1.6215e+004; 1.6553e+004; 1.6890e+004; 

    1.7228e+004; 1.7566e+004; 1.7904e+004; 1.8242e+004; 1.8580e+004;  

    1.8917e+004; 1.9255e+004; 1.9593e+004; 1.9931e+004; 2.0269e+004; 

    2.0606e+004; 2.0944e+004; 2.1282e+004; 2.1620e+004; 2.1958e+004; 

    2.2295e+004; 2.2633e+004; 2.2971e+004; 2.3309e+004; 2.3647e+004; 

    2.3984e+004; 2.4322e+004; 2.4660e+004; 2.4998e+004; 2.5336e+004; 

    2.5674e+004; 2.6011e+004; 2.6349e+004; 2.6687e+004; 2.7025e+004; 

    2.7363e+004; 2.7700e+004; 2.8038e+004; 2.8376e+004; 2.8714e+004; 

    2.9052e+004; 2.9389e+004; 2.9727e+004; 3.0065e+004; 3.0403e+004; 

    3.0741e+004; 3.1078e+004; 3.1416e+004; 3.1754e+004; 3.2092e+004; 

    3.2430e+004; 3.2768e+004; 3.3105e+004; 3.3443e+004; 3.3781e+004]; 
 
By using this set of values in the analytical solutions given by Equations (A1.4, A1.5, 

A1.6) the corresponding sums will have the same number of terms. 



  54 

Appendix 3: The specific critical frequencies associated with 
thermal stress components for a pipe due to sinusoidal 
thermal loading 
 
 
The analytical formula for hoop stress under sinusoidal thermal loading is used to 

determine the critical frequencies associated with geometric points (characterized by 

the r variable) through the wall-thickness.  
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These critical frequencies are referred to as specific critical frequencies corresponding 

to the maximum hoop stress range at selected points. We can define the following 

function as the hoop stress range (between two values at π phase each from other) at 

each point through thickness by means of 
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The above function has been studied by keeping rk constant and varying the frequency f 

between f=0.01 Hz and 10 Hz. The frequency at which the positive maximum of function 

DH occurs gives the specific critical frequency, fcr (rk), at the point rk  through the wall-

thickness. Figures A3.1 to A3.7 show the dependence of the function (A3.2) on 

frequency range at different points through thickness, starting at the inner surface 

(r=0.120m) and continuing up to 6 mm depth (r=0.126 m).  
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Figure A3.1 Hoop stress range: r=0.120 m, fcr=0.3 Hz 
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Figure A3.2 Hoop stress range: r=0.121 m, fcr=0.1 Hz, f’cr=4.5 Hz 
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Figure A3.3 Hoop stress range: r=0.122 m, fcr=0.01 Hz, f’cr=1.3 Hz 
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Figure A3.4 Hoop stress range: r=0.123 m, fcr=0.01 Hz, f’cr=0.6 Hz 
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Figure A3.5 Hoop stress range: r=0.124 m,  fcr=0.3 Hz 
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Figure A3.6 Hoop stress range: r=0.125 m, fcr=0.15 Hz 
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Figure A3.7  Hoop stress range: r=0.126 m, fcr=0.01 Hz 
 

As can be seen from these figures, in several cases there are two specific critical 

frequencies, for which the maximum values of the DH function are different. For each 

point through the thickness, we are able to find the maximum stress amplitude during a 

loading period by applying the analytical function of hoop stress at the specific critical 

frequency, and after that to derive the maximum stress hoop stress range.  
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Appendix 4: Benchmarking the stress intensity factor (KIaxial) 
for a long axial crack in a pipe under internal pressure  
 
A simple benchmark was performed to check the prediction of KIaxial according to the 

methodology in section 4.3.2, with a 4th order polynomial distribution of hoop stress, 

obtained from finite element analysis. A pipe with inner radius ri=0.120 m and wall 

thickness 9 mm is assumed to have a long axial crack on its inner surface. The internal 

pressure is Pi=50 MPa.  The radial displacement and hoop stress distributions for the 

elastic case are given by the analytical solution [14]: 
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Figure A4.1 shows the comparison between the analytical profile (Equation A4.2) and 

FEA results (ABAQUS). 
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Figure A4.1 Hoop stress through thickness at internal pressure: P=50MPa (Civaux case) 
 
The profile from Figure A4.1 allows us to fit coefficients of a  4th polynomial function and 

then  to use them in Equation 49 (following the methodology already mentioned). The 

dependence of KIaxial  on crack depth is shown in Figure A4.2. 
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Figure A4.2 KIaxial comparison for long axial crack on inner surface of the pipe  
(Civaux geometry) under internal pressure Pi=50 MPa 
 

In comparison with the FEA prediction a small difference (around 4-7%) is found over  

the range of crack depth/thickness ratio examined. Therefore, the benchmark confirms 

the accuracy of the analytical KI value given knowledge of the stress distribution 

coefficients through thickness. 
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Appendix 5: Derivation of KI  for a long axial crack under 
hoop thermal stress 
 
The dependence of the stress intensity factor solution,  on a is obtained from a 

forth order polynomial stress distribution, fitted to the analytical stress distribution 

(Equation 42). The following describes the methodology used for an instant of time 

corresponding to that at which the maximum value of hoop stress occurs at the inner 

surface, i.e. for 

IaxialK

crf
t

.4
3

1 = and critical frequency fcr=0.3 Hz (see Table 1). 

Step1. The 4th order polynomial expression is fitted to the through-wall hoop stress 

profile at instant of time t1 as a function of the radial coordinate, r, of the hollow cylinder; 

Step2. The analytical expression from Step 1 is transformed into a function of 

normalized distance 
l
xrnorm =  (x= radial coordinate through the wall thickness starting at 

the inner surface, with l= wall thickness) giving the following of the hoop stress profile:  
432
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The shape of the stress profile described by Equation A5.1 is shown in Figure A5.1. 
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Figure A5.1. The hoop stress profile for normalized radial distance (fcr=0.3 Hz, t1=3Tcr/4) 

Step3. The analytical expression from Equation (A5.1) allows extraction of the following 

polynomial coefficients by comparison with Equation (42): 
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1231.1980 =σ  MPa; 

841.12901 −=σ  MPa; 

519.23722 =σ  MPa;        (A5.2) 

3494.18083 −=σ  MPa; 

7206.5104 =σ  MPa; 

Step4.  Using the influence coefficients (Equation 52 to 56) and the coefficients from 

Equation (A5.2), the dependence of the stress intensity factor KIaxial on crack depth a is 

given by 
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(A5.3) 

 
 

Step 5. By setting the wall thickness of the pipe as l=0.009 m from the Civaux 1 case, 

the KIaxial form depends only on crack depth a; 

 
Step 6. The same steps are performed for each instant of time chosen during a thermal 

loading period. 
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Appendix 6: Derivation of KI  for fully circumferential crack under 
axial thermal stress 
 
In the case of a fully circumferential crack under axial thermal stress the procedure to 

determine stress intensity factor   is the same as in Appendix 5, taking into account 

fixed boundary conditions (ε

)(aKIcirc

z=0) and critical frequency fcr=0.1Hz (see Table 2). The stress 

intensity factor solution is obtained by using the fourth order polynomial stress distribution 

obtained by curve-fitting the analytical stress distribution (Equation 42) at a instant of time 

with the maximum value of axial stress component at inner surface(εz=0),i.e. for 
crf

t
.4
3

1 = . 

Step1. The 4th order polynomial expression is fitted to the through-wall axial stress profile as 

a function of the radial; 

Step2. The analytical expression from Step1 is  transformed into a function of normalized 

distance 
l
x  as 

432
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The shape of the stress profile described by Equation A6.1 is shown in Figure A6.1. 
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Figure A4.2. Elastic axial stress function in normalized form (fcr=0.1 Hz, t1=3Tcr/4) 

Step3. The analytical expression in Equation (A6.1) allows extraction of the following 

polynomial coefficients by comparison with Equation (42): 

5979.2100 =σ  MPa; 



  64 
3667.6081 −=σ  MPa; 

1039.2422 =σ  MPa;         (A6.2) 

8728.3523 =σ  MPa; 

9203.2114 −=σ  MPa; 

Step4.  Using the influence coefficients of axial stress distribution (Equation 58 to 62) and the 

coefficients from (A6.2),we obtain the dependence of the stress intensity factor KIcirc on crack 

depth  
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  (A6.3) 

 
 

Step 5. By setting the wall thickness of the pipe as l=0.009 m from the Civaux 1 case, the 

final form of KIcirc depends only on crack depth; 

 
Step 6. The same steps are performed for each instant of time during a thermal loading 

period.   
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