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Abstract

The report presents the results of a case study on "Investigation of component age dependent
reliability models" implemented by INPE and JRC IE in the frame of EC JRC Ageing PSA Network
Task 4 activities. Several cases of Generalized Linear Model were proposed and investigated for the
cases of continues and discrete data. The Fisher Chi-2 minimization approach was applied for
goodness of fit test and parameters elaboration. Finally, uncertainty analysis was done for estimated
parameters and model extrapolations. The results were analyzed and compared with other
approaches.
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1. Introduction
1.1. General background.

IAEA PRIS data concerning aging profile of nuclear generation shows that actually (on the date of
3/08/2007) 115 units are between 30 and 40 years in operation and 213 are between 20 and 30 years
old, which in total represent about 3/4 of 438 reactors operated worldwide.

More and more utilities, nowadays, move to the long-term operation policy. In USA, for example, at
July 2006, approximately one-half of the licensed plants either have received, or are under review for
license renewal.

What means that in the next decade the aging management and life extension issues will became one
of the key points of nuclear safety.

The PSA as a safety evaluation tool could be more integrated into these programs to help with
identification and prioritization of ageing issues and optimization of ageing management activities.

For applying PSA to characterize potential risks associated with ageing effects, PSA should be as
realistic as practical and appropriate support data should be available for the review.

- If PSA could be applied for ageing assessments?

- How realistically PSA models reflect important ageing issues?

- If any modifications or revisions of PSA assumptions are needed to apply PSA approach for risk-
informed decision making in case of ageing evaluation?

- What data are available and how representative they are with regards to the important ageing issues?
These and other related issues are under consideration of EC JRC Network on the Use of Probabilistic
Safety Assessment (PSA) for the Evaluation of Ageing Effects on the Safety of Energy Facilities
(Ageing PSA).

The initial motivation behind the Ageing PSA Network was the fact that current standard PSA tools do
not adequately address important ageing issues, which could have a significant impact on the
conclusions drawn from PSA studies and applications where plants are operated at an advanced age or
long term.
The knowledge resulting from the Ageing PSA Network should help PSA developers and users:
e to incorporate the effects of equipment ageing into current PSA tools and models to perform
engineering analysis,

e where PSA cannot be applied (where there are no or inadequate probabilistic ageing models or
a lack of data, etc.), to specify and prioritise reliability monitoring actions/approaches to ensure
that any decrease in the reliability of SSC is identified and corrected in time,

e to promote the use of PSA for ageing management and risk-informed applications for nuclear
power plants.

The Ageing PSA Network is under development as part of JRC FP-7 institutional Project No 52101
"Analysis and Management of Nuclear Accidents" (AMA).

One of the tasks identified for the Network working plan relates to the reliability and data analysis for
active components. The expected results is a demonstration the methods to elaborate the reliability
parameters for Aging PSA model and classify the data needed. The results will help

e to improve reliability and maintenance data collection system,

e to choose the appropriate reliability model for the parameters estimation,

e to address ageing and maintenance effects in component failure models,

e to evaluate the model uncertainties.




The Case Study presented in the report was performed in collaboration between EC JRC Institute for
Energy and Obninsk State Technical University of Nuclear Power Engineering from Russian
Federation.

1.2. Task specification

The goal of the study is a demonstration of methods to build up and assess the component age-
dependent reliability models.

The following tasks were performed :

- verification of models validity,

- parameters estimation,

- identification of increasing trend,

- characterisation of uncertainties of estimated parameters and hole model,

- assessment on possible extrapolation and uncertainties of extrapolation.

2. Initial data sets

To demonstrate the method applicability and compare the results with other case studies JRC proposes
to use two data sets :

e Data set 1, presented in Annexe 1, is a binned data on failure rates estimated at the bins. These
data characterise component failure modes as fail to function, fail to run etc. The data
correspond to the continuously distributed times to failure,

e Data set 2, described in Annexe 2, is a binned data on failure probability on demand per bin.
This data set represents the failures on demand which could be described by discrete
distributions.

All data in the data sets are "virtual". However, the statistic, which is provided for the case study is
quite close to the real operating experience data collected on the French [], German or US power
generation plants []. In particular, data include large samples that represent of components from the
same technological group.

Binned data on failure rates for standby or continuously operated components (data set 1).
The failure rates were calculated on equal one-year intervals, sequence of which represents the time in
operation or age of the component. This data has two particularities :
o there are some intervals without failures, consequently, failure rates are estimated as equal to 0,
o the cumulated operating time is different from one interval to another, this leads to the
differences in confidence intervals for failure rates.
These particularities were taken into account during data analysis.

Failure on demand data (data set 2).
For these data time in operation means number of demands. Failure probability on demand calculated
per equal bins. Each bin represents an interval of number of demands and it isn’t equal to the same
time periods in case of pulling different groups of components in the same sample.
These data have the same particularities as data set 1 :
o there are some intervals without failures, consequently, failure probabilities are estimated as
equal to 0,
o the cumulated number of demands is different from one interval to another, this leads to the
differences in confidence intervals for failure probabilities.
These particularities were taken into account during data analysis.




3. Models and approach.
3.1 Models applied in case of data set 1.

For continuous time to failure (failure rate) variable it was proposed to apply following statistical
models :

1. Constant failure rate : go(é ;t) =Const;
2. Linear failure rate : (p(é;t) =6 +6,t;
3. Log-linear or exponential failure rate : In go(é; t) =6 +6.,t;
Nota : for this model all calculations were done supposing In (p(é; t) =1In(6,)+6,¢. Estimated

(1P

interception parameter “a” presented in the results, corresponds to & and not to 8, = In#, . In these
terms failure rate function is (p(é;t) =brexp (6 1).
4. Power-low (Weibull) failure rate model : go(é;t) ="

For models 2-4 the fact that parameter 6, > 0 means positive trend in time, i.e. component failure rate
increases with age of the component.

3.2 Models applied in case of data set 2

For discrete failures per demand the following models were applied :
1. Constant: ¢)(§;t)=C0nst;

exp (6, +6,1)

2. Logit: ¢(6;t)= ;
o8l (o( ) 1+exp (6, +6,1)
3. Probit: ¢(6;¢)=®(6,+6,);
4. Exponential: go(é;t) =exp(6 +6,t),
X 2
Here @ (x)= ﬁ _J; exp (—%Jdu - is a normal distribution function N (0;1).
3.3 Proposed approach

The applied approach is the same for continuously and discreetly distributed data. The difference is
only with interpretation of “time” which is a time in operation for continuous functions and number of
demands for discrete functions.

To choose the model, which better fits with observed data, first, the goodness of fit test was performed

using Fisher’s criterion %7, then confidence limits for model parameters = (6,;6,) and for resulting

function (p(é;t) were constructed.

To check the trend in failure rate (probability per demand) function, the hypothesis test was performed
for selected model.

3.4 Goodness of fit test and parameters estimation

The hypothesis of a parametric model form describing the behaviour of a failure rate parameter in time
t is tested with the help of Fisher’s criterion y°, the statistic of which is:




L | v(8)-e(0:8)T 2

where (p(é;t) is one of the fore functions proposed to describe the failure rate A (t)

Here

ALA,,.., A s the selected X-axis division,

v(A,)is the number of failures per interval A,,

T, is the cumulated operating time of all components been in operation within the interval A, .
The hypothesis to be tested is presented as follows :

Hy:30: 4 =9(0:t), )

where A, is the averaged failure rate per interval A, .

To calculate the statistic, an unknown value of @ is substituted by an estimate & obtained using the
method of minimum y°:

ézargmin;/(é). (3)

0
The criterion for testing a hypothesis of conformity is a simple comparison of p - value and a chosen
confidence level « . Here, a p - value is calculated as:

p=[f, (t)dt @
wherez

z=y’ (0:),

f (¢) is the density of distribution y*with s—r degrees of freedom,

s is the number of group intervals A, (where v(A,)should differ from 0),
ris the number of estimated parameters. For constant failure rate model (model 1 in 3.1 and 3.2) r =1,

for other proposed models (2 -4 in 3.1 and 3.2) r=2.
The hypothesis (2) is accepted in case, if p >« , otherwise it is rejected. Besides, if the hypothesis (2)

is accepted for several models, preference is to be given to the model with a greater p - value.

The method is described in various statistical books, for example in references [2-5].
The detailed procedure of parameters estimation and model verification by using EXEL software is
provided in a file procedure.doc.

3.5 Parameters uncertainties

In case of two parameters model (models 2-4 in 3.1 and 3.2) the task of definition of confidence
intervals for each of parameter is transformed in a task of definition of confidence areas.
When constructing the confidence areas the following statistic was used :

- 2
Lo v(A)-el0s) T
=) (o(ﬁ;t,. ) T,
Let 1—-¢ be the confidence level of a confidence area. Solving the equation

o= [ 1, ()




with a given ¢ value, determined is the parameter x_ .
Then a transcendental inequality was solved by numerical methods:

2
V(A -
( ’)—(0(9;1,-)
2(0)=X1, L <u,. (%)
i1 go(@;t,.)
To construct the ellipsoids of concentration (confidence areas for §), Compaq Visual Fortran

Professional with a Graphor graphic package, or MatLab can be applied. Isolines are easily plotted in
these packages.

3.6 Trend verification

As it was previously mentioned, for models 2-4 in chapters 3.1 and 3.2, the fact that parameter 6, > 0
means positive trend in time, i.e. component failure rate or probability per demand increases with age
of the component. A verification of presence of trend was done by formal hypothesis test presented
below.

The null hypothesis (absence of trend) is defined as : H,:6, =0

Alternative hypothesis is H, : 6, >0

Test for hypothesis about - is intimately related to the confidence intervals for this parameter.
So, the hypothesis Hy is rejected in favor of hypothesis H; at significance level ¢ if and only if the
100(1 - £)% confidence interval for € 1is entirely upper then zero.
The visual verification could be performed using confidence areas for 8 defined in chapter 3.5.
Numerical solution to define a confidence interval is proposed below.
The 4 statistic with fixed parameter &; could be used:

~ 2
7'(0.0 )‘X[V(Af)_¢(91’92;tf)'@]
v i=l (P(épez;ti)'Ti

; (6)

here 671 is the mean point estimation of &, obtained by solving equation (3).

Then the same procedure as it is described in chapter 3.5 could be applied. Solving the equation
e= |1, (t)dt
He

with a given ¢ value, determined is the parameter /£, .

It should be noted that the number of degrees of freedom has decreased by 1.

Then a transcendental inequality is solved by numerical methods:

[ etnnsn)]

2(g, =>T d . 7
g (01’02) = (P(élaez;ti) - @

A solution of (7) is the confidence interval for parameter, : (Q2;§2). It should be stressed, that
calculation of lower and upper bounds of confidence interval (Qz;éz) is possible, if p-level of point

estimates @ meets the condition: p > &.




More detailed description of the numerical solution realized in EXEL is presented in file
procedure.doc.

3.7 Model uncertainties and extrapolations

The following approach is applied to construct the confidence interval for a trend line. To construct the
upper limit at moment ¢ the extreme problem is solved

go(@;t)—)mglx, 3
2
V(A -
o)
with the restriction 7 (5) =y [ =—"—— <u,.
im1 (o(e;t,.)
To construct the lower limit at time ¢ the extreme problem is solved
(z)(é;t)—)n%in, ©)
2
V(A -
o)
with the restriction 7 (5) =y [ —1—— <u,.
im1 (o(e;t,.)

As soon as chosen trend ¢ functions have no local extreme points, restrictions of the inequality type
can be substituted by the following equality :

v(A) 2T
o {Tl_‘?)(@%)}
)2 G

since the solution will be inside of confidence ellipse area.

:lLls’

4. Results of calculations
4.1 Presentation of the results
Data set 1.

In case of continuous distributions the results of goodness-of-fit test (fitted model parameters
6 =(6,;6,) and p-values) are presented in a Table 1.

More detailed presentation of the results is provided in Annex 3 and in the EXEL files:
CS2006 2 TA1 F1,CS2006 2 TA2 F1,CS2006 2 TA3 F1,CS2006 2 TA4 Fl1.

The graphical interpretation of parameters and models uncertainties are provided in Annex 5.

Table 1. Summary of parameters estimation for data set 1.

Component Models

Parameters . . . Comments
group Constant Linear Log-linear Weibull
0 0.030 0.012 0.015 0.013
#3 0, 0.0017 0.0637 0.0017 ~ homedent
p-value 0.002 0.006 0.006 0.003
0, 0.023 0.014 0.013 0.014
#6 0, 0.0010 0.0539 02179 ~ homedent
p-value 0 0 0 0




Component
group

#6.1

#7

#7.1

#8.1

#11.1

#13.3

#14.1

#16.2

#17.1

#19.1

#30.1

#32.2

#34.1

#35.1

#36.2

#38.1

Parameters

0

0>
p-value

0

0,
p-value

01

0,
p-value

01

0>
p-value

01

0>
p-value

0

0>
p-value

p-value

0,
p-value

0

Constant
0.029

0.006
0.019

0.019
0.019

0.041
0.015

0.057
0.021

0.203
0.003

0.748
0.00028

0.967
0,000

0,923
0.002

0.912
0.039

0.493
0.045

0.023
0.005

0.543
0,025

0,807
0,055

0,008
0,094

0,229
0,006

Models

Linear Log-linear
0.017 0.018
0.0011 0.0415
0.014 0.015
0.010 0.011
0.0010 0.0546
0.542 0.567
0.004 0.007
0.0012 0.0792
0.429 0.492
0.011 0.012
0.0004 0.0161
0.051 0.046
0.009 0.012
0.0012 0.0503
0.278 0.271
0.001 0.002
0.0002 0.0426
0.762 0.728
0.00035 0.00034
-0.00001 -0.02360
0.938 0.934
0,000 0,000
0,0000 -0,0670
0,995 0,987
0.003 0.003
-0.0001 -0.0880
0.976 0.962
0.061 0.071
-0.0030 -0.0914
0.669 0.704
0.073 0.158
-0.0023 -0.0992
0.102 0.108
0.004 0.004
0.0002 0.0333
0.534 0.532
0,021 0,020
0,0003 0,0148
0,773 0,778
0,024 0,024
0,0027 0,0704
0,079 0,148
0,122 0,121
-0,0023 -0,0213
0,242 0,232
0,003 0,003

Weibull
0.016
0.2697
0.012
0.009
0.3414
0.360
0.003
0.7255
0.365
0.007
0.3073
0.100
0.006
0.5482
0.303
0.001
0.4667
0.793
0.00028
0.00001
0.926
0,001
-0,3802
0,948
0.003
-0.3929
0.920
0.081
-0.4775
0.873
0311
-0.7772
0.045
0.004
0.1223
0.489
0,022
0,0379
0,758
0,024
0,3551
0,028
0,120
-0,1020
0,194
0,003

Comments

No model fit
with the data

Log-linear fits
the best (slow

ageing)

Log-linear fits
the best (slow

ageing)

Weibull fits the
best (slow

ageing)

Weibull fits the
best (slow

ageing)

All models fit the
data, but Weibull
fits the best

All models fit the
data, but const.
fits the best (no

ageing)
All models fit the
data (no ageing)

All models fit the
data (no ageing)

Weibull fits the
best (no ageing)

No ageing

All models fit the
data, but const.
fits the best

All models fit the
data, but const.

fits the best

Log-linear fits
the best (slow
ageing)

No ageing

Log-linear fits




Component
group

#39.1

#43.1@

#44.1

#45@

#47.1

#48.2

#48.3

#49.5

#50

#55

#56

#56.1

#57

#58

Parameters
0,
p-value
0,

0,
p-value
01
0,
p-value
01
0,
p-value
0,

0,
p-value
0,

0,
p-value
0,

0,
p-value
0,

0,
p-value
0,

0,
p-value
01
0,
p-value
01
0,
p-value
0,

0,
p-value
0,

0,
p-value
0,

0,
p-value
0,

0,

Constant

0,437
0,067

0,001
0,020

0,893
0,001

0,298
0,008

0,862
0,006

0,112
0,001

0,189
0,001

0,045
0,001

0,810
0,011

0,828
0,005

0,422
0,021

0,176
0,021

0,889
0,029

0,902
0,017

Models

Linear
0,0002
0,495
0,006
0,0045
0,023
0,009
0,0013
0,906
0,002
-0,0001
0,761
0,011
-0,0003
0,923
0,003
0,0003
0,150
0,001
0,0000
0,112
0,002
-0,0001
0,074
0,001
0,0000
0,728
0,010
0,0001
0,727
0,006
-0,0001
0,294
0,029
-0,0007
0,137
0,022
-0,0001
0,853
0,026
0,0002
0,864
0,025
-0,0007

Log-linear
0,0487
0,519
0,013
0,1099
0,071
0,010
0,0761
0,911
0,002
-0,1251
0,663
0,013
-0,0522
0,946
0,002
0,0817
0,214
0,001
-0,0433
0,184
0,002
-0,0716
0,116
0,001
-0,0176
0,721
0,010
0,0125
0,727
0,006
-0,0073
0,293
0,026
-0,0164
0,131
0,022
-0,0058
0,853
0,026
0,0087
0,865
0,027
-0,0499

Weibull

0,2676
0,424
0,005

0,9965
0,021
0,008

0,4249
0,890
0,002

-0,4689
0,360
0,017

-0,4009
0,954
0,004

0,2051
0,085
0,003

-0,5343
0,362
0,004

-0,6499
0,543
0,001

0,0592
0,714
0,010

0,0693
0,725
0,004

0,1833
0,305
0,015

0,1504
0,130
0,022

-0,0206
0,851
0,030

-0,0167
0,861
0,031

-0,3202

Comments

the best (slow

ageing)

No model fit
with the data

Log-linear fits

the best (slow

ageing)

No ageing

No ageing

Log-linear fits

the best (slow

ageing)

No ageing

No ageing

No ageing

No ageing

No ageing

No ageing

No ageing

No ageing

No ageing




Component
group

#59.1

#59.1@WR

#62.2

#63.1

#65

Data set 2.

Parameters

p-value
0,

0,
p-value
0,

0,
p-value
01
0,
p-value
01
0,
p-value
01

0>
p-value

Constant
0,666
0,057

0,257
0,151

0,031
0,052

0,854
0,002

0,778
0.046

0.005

Models

Linear
0,694
0,012
0,0030
0,482
0,059
0,0068
0,138
0,037
0,0015
0,859
0,003
-0,0001
0,742
0.075

-0.0027
0.458

Log-linear

0,702
0,017
0,0782
0,561
0,066
0,0575
0,187
0,037
0,0326
0,864
0,003
-0,0479
0,741
0.104

-0.0830
0.539

Weibull
0,723
0,008

0,7312
0,438
0,039

0,5348
0,113
0,034

0,1923
0,844
0,004

-0,3450
0,759
0.116

-0.4365
0.073

Comments

Log-linear fits
the best (slow
ageing)
Log-linear fits
the best (slow
ageing)
Log-linear fits
the best (slow

ageing)

No ageing

Log-linear fits
the best (no
ageing)

For the discrete data the results of parameters estimation and goodness-of-fit test are presented in a

Table 2. Detailed presentation

is provided

in Annex 4 and correspondent EXEL file:

CS2006 2 DS2 ABC DEF. The graphical interpretation of uncertainties is given in Annex 6.
The presented cases are those where initial data contains more then 10 failures per component group.
For other groups the results could be found in EXEL file CS2006 2 DS2 ROI.

Table 2. Summary of parameters estimation for data set 2.

Component
group

U C

DEF

Parameters

0

0>
p-value

0

0>
p-value

0

02
p-value

01

0>
p-value

01

0>
p-value

Constant
0.003

0.26
0.004

0.09
0.0018

0.57
1.46E-05

0.03
0.00013

0.53

Models
Logit Probit
-5.63 -2.69
-5.16E-04  -1.71E-04
0.15 0.15
-3.88 -2.08
-8.11E-03  -2.78E-03
0.67 0.68
-5.50 -2.66
-1.19E-03  -3.60E-04
0.89 0.88
-11.01 -4.15
-2.38E-05  -5.30E-06
0.05 0.05
-8.54 -3.55
-0.00084 -0.00021
0.86 0.86

Exponential
-5.63
-5.13E-04
0.15
-3.88
-8.11E-03
0.67
-5.50
-1.19E-03
0.89
-11.00
-2.38E-05
0.05
-8.54
-0.00084
0.86

Comments

Constant model
fits the best

Decreasing trend
(no ageing)

Decreasing trend
(no ageing)

No model fits
with the data

Decreasing trend
(no ageing)




4.2. Results analysis and interpretation
4.2.1. ldentification of component susceptible to ageing

Analysis of results could be performed in three stages :
e on the first stage, the component groups for which one or more proposed models fit well with
the data could be selected. It was decided to consider all models where p-value is more then
0,1.
o secondly, component groups for which best fitted model shows negative “ageing” parameter
(62<0) could be ignored for following assessement,
o then, component groups with positive ageing trends could be identified by comparing the
“ageing” parameter (0,) and its confidence intervals with zero. In case if the lower bound of
90% confidence interval for “ageing” parameter 0, is above 0, the ageing trend could be
assumed.
The confidence intervals for “ageing” parameter were calculated as it is described in chapter 3.6.
Annex 7 represents the results of calculations. The following paragraphs present the results of the
screening.

Data set 1.

The results of the screening show that from 37 component groups from Data Set 1 the positive ageing
trend could be assumed for 10 component groups listed below :

o #7 (best fitted model is log-linear with 6, = 0.055),

o #7.1 (best fitted model is log-linear with 6, = 0.079),

o #8.1 (best fitted model is Weibull, p = 0.1, with 6, = 0.31),

o #11.1 (best fitted model is Weibull with 6, = 0.55),

o #13.3 (best fitted model is Weibull with 6, = 0.47),

o #35.1 (best fitted model is log-linear, p=0.15, with 6, = 0.07),

o #38.1 (best fitted model is log-linear with 6, = 0.049),

o #47.1 (best fitted model is log-linear with 6, = 0.082),

o #59.1 (best fitted model is log-linear with 6, = 0.078),

o #59.1@WR (best fitted model is log-linear with 6, = 0.057).
For 2 component groups log-liner model with positive ageing parameter was identified as well fitted,
but the value of 90% low bound of “ageing” parameter is below zero.

o #43.1 (best fitted model is log-linear with 6, = 0.076),

o #62.2 (best fitted model is log-linear with 6, = 0.033).

For following 10 component groups the best fitted model is constant : #14.1, #32.2, #34.1, #49.5, #50,
#55, #56, #56.1, #57, #63.1.

For the rest 16 component groups the situations are as following : even no model fits with the data, i.e.
p-value is very small (for example, component groups #3, #6, #6.1, etc.), or negative “ageing”
parameter are obtained (see for example, #17.1, #19.1, #30.1, etc.).

For better understanding of obtained results and importance of ageing trends, relative increasing in
failure rate in time with regard to constant failure rate are presented in Table 3.




Table 3. Failure rate increasing.

Component Best Parameters
group fted 6 o=c ¢ (0,10)/o=c (0,20)/0=c o (0,30)/¢=c
0,
#7 fnge " 0%051416 0.019 0.58 1.73 2.98
#7.1 fnge " 0%070972 0.019 0.37 1.80 3.96
yg  Weibull 093000773 0.015 0.95 1.17 1.33
g1 Weibull 09:5040862 0.021 1.01 1.48 1.84
4133 Weibull 094060617 0.003 0.98 1.35 1.63
#35.1 fnge " 0%072044 0.055 0.44 1.78 3.61
#59.1@ fnge " 0%056765 0.151 0.44 1.38 245

These figures show that application of constant failure rate model could provide underestimated
unavailability values in case of aged NPPs. The interception point of constant and time-dependent
failure rates corresponds to the plant ages between 10 and 20 years. Taking into account the delay
between data collection, parameters estimation and PSA update it could lead to underestimation in
final PSA results.

In presented data examples the data collection covers the ages window between 0 and 20 years in
operation. Now, if 10 years periodicity of PSA update will be assumed and for the 30-years
examination this data set will be applied, the underestimate of failure rates could rise up to the factor 4
(see @ (0, 30) / p=c for component group #7.1, for example).

Of cause, it is true in case if the trend will continue in time.

Data set 2.

There are no component groups in this data set, which show increasing trend of failure rate. The
following analysis does not include the examples from data set 2, but the main conclusions of the
analysis provided in chapter 4.2.7 could be valid for discrete data as well.

4.2.2. Comparison with results of non-parametric inversion test

A non-parametric inversion test was performed for most of component groups. As a result increasing
failure rates were identified for component groups : #3, #6, #6.1, #7, #11.1, #39.1, #43.1, #45, #47.1,
#50.1, #56, #58, #62.2.

For component groups #7, #7.1, #11.1, #43.1, #47.1 and #62.2 conclusions of inversion test were
confirmed by parametrical modeling. The results of goodness of fit test for component groups #3, #6,
#6.1 and #39.1 show that no model fit with the data. For the rest cases parametrical models do not
confirm the ageing trend.

From the other hand, inversion test does not identify ageing trends in case of #8.1, #13.3, #35.1, #38.1,
#59.1 and #59.1@. This again shows the weakness of non-parametrical tests and the necessity to apply
different methods for ageing detection.




4.2.3. Impact of burn-in failures

Visual examination of data permits to suppose existence of burn-in failures for certain component

groups, for example : #3, #6, #6.1, #7.1, #32.2, #35.1, #38.1, 39.1, #45@, #48.2, #48.3.

Additional examination was done for these component groups by excluding first intervals from data

sets.

The results for groups #3, #6, #6.1 show an increase of “ageing” parameter, but p-value still resides

very low.

Results of calculation for other component groups are presented in Table 4.

Table 4. Impact of burn-in failures.

Component
group

#7.1

#7.1 /burn-
in failures
excluded

#32.2

#32.2
/burn-in
failures

excluded

#35.1

#35.1/burn-
in failures
excluded

#38.1
#38.1/burn-
in failures
excluded
#39.1
#39.1/burn-
in failures
excluded

#45.@

#45@/burn-

Best

fitted
model

log-
linear

linear

const

Weibull

log-
linear

log-
linear

log-
linear

Weibull

log-
linear

Log-
linear

Weibull

Log-

Parameters
01
0>
p-value
0.007
0.0792
0.49
0.0014
0.0015

0.47
0.005

0.54
0.0018
0.49

0.65

0.024
0.0704
0.15
0.015
0.1
0.35
0.0032
0.049
0.52
0.00024
1.22
0.58
0.013
0.11
0.07
0.0032
0.18
0.14
0.017
-0.40
0.954
0.00031

0.019

0.019

0.005

0.005

0.055

0.054

0.006

0.006

0.067

0.075

0.078

0.0048

¢ (0,10)/p=c ¢ (6,20)/ p=c ¢ (6,30)/p=c

0.81

0.86

0.88

0.76

0.53

0.66

0.58

0.26

0.87

0.68

1.80

1.65

1.78

2.05

1.42

1.75

1.56

0.66

1.30

3.96

2.44

1.91

3.61

5.58

232

2.54

5.26

9.45

0.56

1.92




in failures  linear 2.97E-04

excluded 0.999
0.017
#48.2 Weibull -0.40 0.078 0.87 0.66 0.56
0.36
#48.2/burn- 0.00068
in failures Const 0.00068 1 1 1
excluded 0.56
#48.3 Weibull 0.0035
-0.65 0.0011 0.72 0.46 0.35
0.54
#48.3/burn-  Log- 0.00021
in failures liner 0.081 0.00064 0.74 1.66 3.74
excluded 0.997

Consideration of burn-in failures could improve the result of goodness of fit test, as for example in
case of group #39.1, which was initially excluded from the screening because of very small p-value.
Results of additional examination permit to conclude about the existence of ageing trend for this
component group.

Consideration of burn-in failures (excluding them from data) could change the conclusion about
existence or absence of ageing trend, as for example in case of groups #32.2, #45@), #48.2 and #48.3.
Three of these groups (#32.2, #45@, #48.3) could be added to the list of components with identified
ageing trend.

For group #32.2 the conclusion of first calculation was that failure rate is constant with significance
level 0.54 but all others models also fitted quite well. Neglecting of burn-in failures leads to the
conclusion that Weibull model fits the best (p-value = 0.64) but the constant failure rate still fits good
with p-value = 0.51. Choice of constant failure rate model could lead to underestimation of
unavailability for 30-years aged component by factor 1,9 (¢ (6, 30) / p=const.) in comparison with
Weibull model.

In case of component group #48.3 where conclusion from the first examination is an existence of
decreasing trend (i.e. reliability of component is increasing with time), the consideration of burn-in
failures changed the conclusion to opposite one : i.e. existence of increasing trend.

In some cases the burn-in failures do not impact a lot to the time-dependent models extrapolations, so
the calculated failure rate values are close to each other.

An example is the group #38.1. Here, analysis of complete data set provides best fitted log-linear
model with significance level 0.52. Excluding burn-in failures from the analysis gives a conclusion
that Weibull fits the best with significance level 0.58. Comparison of failure rate extrapolations up to
the age of 30 years for both of these models with constant failure rate (which is the same in both of the
cases) provides about the same level of underestimation : 2.32 in case of complete sample and 2.54 in
case where the burn-in failures neglected.

In one case, group #39.1, the excluding of burn-in failures has led to increasing in failure rate by order
of magnitude in comparison with constant failure rate value.

All those examples show the importance of consideration of burn-in failures in the ageing assessment.

4.2.4. Comparison with other parametrical methods

The results of the calculations were compared with estimations by other parametrical methods in the
frame of Ageing PSA Task Group 4 activities.

As the alternative methods the Bayesian analysis with non informative priors and Stochastic

Expectation Maximization were chosen.

In case of Bayesian analysis the same sets of binned data were analyzed.




To check the validity of the model, it was used the posterior predictive distribution for the number of
failures in each bin to compare observed and replicated chi-square statistics. The overlap probability,
is referred to here as a Bayesian p-value.

Analysis was done by free-available software WinBUGS [6].

The calculations were performed for two component groups #3 and #7.1. The results of calculation are
presented in Table 5.

Table 5. Comparative parameters estimation (frequentist vs Bayesian).

Component Parameters Models Comments
group Constant Linear Log-linear Weibull
i 0, 0.030 0.012 0.015 0.013 No model fit
o0 model fi
Chi-2 min. 0, 0.0017 0.0637 0.0017 with the data
p-value 0.002 0.006 0.006 0.003
“ 0, 0.023 0.007 0.01 0.007 No model fit
o model fi
Bayesian 02 0.002 0.07 0.62 with the data
p-value 0.004 0.01 0.01 0.007
0, 0.019 0.004 0.007 0.003
o 0, 0.0012 0.0792 0.7255  Loglinear fits
Chi—2.min. 92 90% conf. (88E-4, (0059, (0 63.0 82) the bes.t (slow
interval 0.0017) 0.099) D ageing)
p-value 0.041 0.429 0.492 0.365
0, 0.017 0.004 0.007 0.003
1 0 0.001 0.079 0.814 Log-linear fits
i 6, 90% conf. (7.0E-4 the best (slow
Bayesian 2 5 :
interval 0002) (004, 012) (041, 127) ageing)
p-value 0.046 041 0.47 0.33

In case of component group #3 the Bayesian analysis leads to the same conclusion as a frequentist one
that no model fit with the data (for all models the p-value is very small). That could be the reason of
slight difference in parameters estimation.

Comparison of the results for group #7.1 shows that Bayesian approach with non informative priors
provides numerical results similar (or very close) to frequentist analysis : the calculated model
parameters for best fitted models (linear and non-linear) are the same and the p-values are very close to
each other. The 90% confidence interval is a little bit more tight in case of frequentist analysis, but still
comparative with figures provided by Bayesian estimation.

Stochastic Expectation Maximization (SEM) [7] method was applied for the times to failure data,
which were used to develop initial data sets from Annex 1. The SEM algorithm was realized only for
Weibull model parameters estimation and has some limits from application point of view. The
algorithm provides the point estimations only.

The comparison was done for three component groups : #8.1, #11.1 and 13.3. For these groups the
goodness of fit test identified the Weibull as best fitted model. The results of the calculations are
presented in Table 6.

In all three cases the SEM provides more conservative estimation of “ageing” parameter. As a
consequence, the extrapolated values of failure rates are much higher. For example in case of
component group #13.3, the “ageing” parameter estimated by SEM more then twice higher of those
estimated with Chi-2 minimization approach.

One possible explanation of this difference is that times to failure data are more informative that
binned one. But more detailed investigation of this issue is necessary.




Table 6. Comparative parameters estimation (Chi-2 min. vs SEM).

Component Best Parameters
oo géiiil 9'1 o=c ¢(0,10)/o=c ¢ (6,20)/p=c ¢ (6,30)/ ¢=c
0,

Sil o webnll 000 o015 095 117 133
;fﬁ;d Weibull 0'09229 0.015 1.06 143 170
#Cﬁé Weibull 00'95056 0.021 1.01 1.48 1.84
ZIEIN} Weibull 0'09833 0.021 0.91 1.72 2.50
#cﬁg Weibull 06&071 0,003 008 e L
?Eﬁ Weibull 0'(1)91()225 0.003 1.10 2.39 376

4.2.5. Uncertainties of extrapolation.

To apply developed time dependent reliability models in PSA it is necessary to perform some
predictive estimation of failure rates. Uncertainties of predictive extrapolations and impact of the
choice of the model to extrapolation results were analyzed in the frame of the study. The Annex 5
provides a graphical interpretation of parameters and models uncertainties.

Table 7 presents the results of relative increase of extrapolated failure rate with regards to constant
failure rate model.

Table 7. Failure rate extrapolations with different time dependent models.

Component Fitted Parameters

group model :
0, o=c ¢(6,10)/9p=c ¢ (6,20)/po=c ¢ (6,30)/p=c
0,
p-value
0.004
#7.1 linear 0.0012 0.019 0.84 1.47 2.11
0.43
o 0.007
#7.1 i 0.0792 0.019 0.37 1.80 3.96
inear
0.49
0.003
#7.1 Weibull 0.73 0.019 0.85 1.41 1.89
0.37
0.009
#43.1 linear 0.0013 0.02 1.10 1.75 2.40
0.906
log- 0.01
#43.1 lincar 0.076 0.02 1.07 2.29 4.89
0.911
#43.1 Weibull 0.008 0.02 1.08 1.45 1.73
0.43




0.89
-0.0010
#38.1 linear 0.0005 0.006 0.69 1.54 239
0.58
0.00150
0.092 0.006 0.63 1.57 3.95
0.53
0.00024
#38.1 Weibull 1.22 0.006 0.66 1.55 2.54
0.58

log-

#38.1 .
linear

Comparison of results of extrapolation leads to the conclusion that in all of the cases the most
conservative estimation is provided by log-linear model.

This is an important observation. The p-values (used here as a criteria for choice of the model) are
quite close in all presented cases, but the extrapolated up to the 30-years age failure rates are different.
For example in case of component group #43.1 the difference in estimation using log-linear and linear
model is more then of factor 2. If log-linear calculation is compared with result of Weibull model the
difference rises up to the factor 2.8.

From the other side, log-linear model provides more uncertain extrapolations. This is shown in the
Figures 1- 6.
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Figure 1. Component group #7.1 — linear extrapolation.
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Figure 2. Component group #7.1 — log-linear extrapolation.
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Figure 3. Component group #7.1 — Weibull extrapolation.
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Figure 4. Component group #43.1 — linear extrapolation.
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Figure 5. Component group #43.1 — log-linear extrapolation.
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Figure 6. Component group #43.1 — Weibull extrapolation.

The following issues are open and have to be discussed :
e what model to chose for extrapolation if several time-dependent models fit well with the data,
e how to take into account the extrapolation uncertainties when introduce parameters into PSA
model,
e and, what are the ways to reduce the uncertainties.

5. Conclusions and recommendations

1) Proposed approach permitted to identify the component groups with increasing failure rate and to
choose best fitted reliability model. The following 10 component groups were identified as susceptible
for ageing :

o #7 (best fitted model is log-linear with 6, = 0.055),

o #7.1 (best fitted model is log-linear with 6, = 0.079),

o #8.1 (best fitted model is Weibull, p = 0.1, with 6, = 0.31),

o #11.1 (best fitted model is Weibull with 6, = 0.55),

o #13.3 (best fitted model is Weibull with 6, = 0.47),

o #35.1 (best fitted model is log-linear, p=0.15, with 6, = 0.07),

o #38.1 (best fitted model is log-linear with 6, = 0.049),

o #47.1 (best fitted model is log-linear with 6, = 0.082),

o #59.1 (best fitted model is log-linear with 6, = 0.078),

o #59.1@WR (best fitted model is log-linear with 6, = 0.057).

2) In addition, for 2 component groups log-liner model with positive ageing parameter was identified
as well fitted, but the value of 90% low bound of “ageing” parameter is below zero :

o #43.1 (best fitted model is log-linear with 6, = 0.076),

o #62.2 (best fitted model is log-linear with 6, = 0.033).

3) Examination of the impact of burn-in failures provided fore additional groups to the list of
components susceptible for ageing :

o #32.2 (best fitted model is Weibull with 6, = 0.46),

o #39.1 (best fitted model is log-linear with 6, = 0.18),

o  #45@ (best fitted model is log-linear with 6, = 0.0003),

o #48.3 (best fitted model is log-linear with 6, = 0.081).
For these gropes 90% confidence intervals for estimated parameters were not examined.




4) Consideration of burn-in failures could improve the result of goodness of fit test, as for example in
case of group #39.1, and could change the conclusion about existence or absence of ageing trend, as
for example in case of groups #32.2, #45@, #48.2 and #48.3.

5) The results of the calculations were compared with estimations by other parametrical methods :
Bayesian analysis with non informative priors and Stochastic Expectation Maximization (SEM).
Bayesian analysis was performed with the same representation of data, i.e. binned data, when SEM
calculations were done by using times to failure type data.

Bayesian approach with non informative priors provides numerical results similar (or very closes) to
those obtained by frequentist analysis.

6) The SEM algorithm applied for times to falure type data provides more conservative estimation of
“ageing” parameter. As a consequence, the extrapolated values of failure rates are much higher of
those estimated with Chi-2 minimization approach.

One possible explanation of this difference is that times to failure data are more informative that
binned one. But more detailed investigation of this issue is necessary.

7) The impact of the choice of the model to extrapolation results were analyzed. Comparison of results
of extrapolation leads to the conclusion that in all of the examined cases the most conservative
estimation is provided by log-linear model.

From the other side, log-linear model provides more uncertain extrapolations.

8) With regards to extrapolation of failure rate functions the following issues are open and have to be
discussed :
e what model to chose for extrapolation if several time-dependent models fit well with the data,
e how to take into account the extrapolation uncertainties when introduce parameters into PSA
model,
e and, what are the ways to reduce the uncertainties.
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