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ABSTRACT 
 
 
 
This review collects information on sources of aquatic toxicity data and 

computational tools for estimation of chemical toxicity aquatic to aquatic organisms, 

such as expert systems and quantitative structure-activity relationship (QSAR) 

models. The review also captures current thinking of what constitutes an integrated 

testing strategy (ITS) for this endpoint. The emphasis of the review is on the 

usefulness of the models and for the regulatory assessment of chemicals, particularly 

for the purposes of the new European legislation for the Registration, Evaluation, 

Authorisation and Restriction of Chemicals (REACH), which entered into force on 1 

June 2007. Effects on organisms from three trophic levels (fish, Daphnia and algae) 

were subject of this review. In addition to traditional data sources such as databases, 

papers publishing experimental data are also identified. Models for narcoses, general 

(global) models as well as models for specific chemical classes and mechanisms of 

action are summarised. Where possible, models were included in a form allowing 

reproduction without consultation with the original paper. This review builds on work 

carried out in the framework of the REACH Implementation Projects, and was 

prepared as a contribution to the EU funded Integrated Project, OSIRIS.   
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1. Introduction 
 
Information on aquatic toxicity is required in order to assess hazard and risk of 

chemical substances to marine and freshwater organisms living in the water column. 

A detrimental effect of a chemical can be expressed in short term and/or long term 

exposure. The short term (acute) toxicity is most often measured as a concentration, 

which is lethal to 50% of the organisms (lethal concentration, LC50) or causes a 

measurable effect to 50% of the test organisms (effective concentration, EC50). Long 

term (chronic) toxicity is evaluated to assess the possible detrimental effect(s) of a 

chemical on survival, growth and reproduction. Typical endpoints for chronic toxicity 

include the no observed effect concentration (NOEC), lowest observed level 

concentration (LOEC), and maximum acceptable toxicant concentration (MATC), 

which is a geometric mean of the NOEC and LOEC. In risk assessment, one or more 

of these endpoints is extrapolated to obtain a Predicted No Effect Concentration 

(PNEC) for the aquatic compartment. This review focuses mainly on approaches for 

predicting acute aquatic toxicity but the estimation of chronic toxicity is also 

mentioned.  

 

On 18 December 2006, the European Council and European Parliament adopted 

legislation (EC 2006a, EC 2006b) for a new chemical management system called 

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals). The 

purpose of REACH is to ensure a high level of human health and the environment, 

including the promotion of alternative (non-animal) methods for assessment of 

hazards of substances, amongst others. Non-testing methods such as structure-activity 

relationships (SARs) and quantitative structure-activity relationships (QSARs), 

collectively refereed as (Q)SARs, are quoted are expected to be most useful for 

substances most lacking in experimental data, such as those manufactured and 

imported in low tonnages (e.g. between 1 and 10 tonnes per year). The (Q)SAR, 

chemical category and read-across approaches are referred to in several places in the 

REACH annexes, including Annex III (Criteria for substances registered in quantities 

between 1 and 10 tonnes), Annex VI (Information requirements referred to in Article 

10), Annexes VII–X (Standard information requirements for substances manufactured 

or imported in quantities of 1 tonne or more, of 10 tonnes or more, of 100 tonnes or 
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more, and of 1000 tonnes or more, respectively). The key message in the annexes, 

including Annex VI, is that all available data shall be assessed first before new tests 

are carried out. Annex XI introduces general rules for adaptation of the standard 

testing regime set out in Annexes VII to X, including (Q)SARs, grouping of 

substances and read-across. 

 
This review summarises different sources of ecotoxicological data, models and 

approaches described in the literature that are available (free or commercial) for the 

estimation of aquatic (pelagic) toxicity of chemical substances. This review builds on 

an earlier literature survey carried out by the ECB (Lessigiarska et al, 2005) which 

also describes literature-based QSAR models for acute aquatic toxicity (to aquatic 

bacteria, protozoa, algae, hydrozoa, daphnids, fish and amphibians) as well as some 

non-aquatic endpoints. The use of such approaches will facilitate the collection of 

non-testing information for REACH and its application in Integrated Testing 

Strategies (ITS) for aquatic toxicity is expected to lower the number of tests that need 

to be performed for regulatory purposes. 

 

1.1 REACH conditions regarding the use of (Q)SARs 
 
(Q)SARs for aquatic endpoints have been used for over 10 years, albeit in an ad hoc 

manner, in the regulatory assessment of chemicals within the EU. Examples of the 

historical use of (Q)SARs in hazard classification and in risk assessment are given in 

Gallegos Saliner et al (2007) and in Tsakovska et al (2007), respectively. 

 

Under REACH, the use of (Q)SARs is expected to be more frequent and consistent. 

Annex XI of the REACH proposal states that results obtained from valid (Q)SARs 

may indicate the presence or absence of a certain dangerous property. Results of 

(Q)SARs may be used instead of testing when the following conditions are met: 

• results are derived from a (Q)SAR model whose scientific validity has 
been established; 

• the substance falls within the applicability domain of the (Q)SAR model; 
• results are adequate for the purpose of classification and labelling and risk 

assessment; 
• adequate and reliable documentation of the method is provided. 

 



 

 3

With regard to validity, the OECD Principles for (Q)SAR validation (OECD, 2004) 

are applicable. According to the OECD definition: “to facilitate the consideration of a 

(Q)SAR model for regulatory purposes, it should be associated with the following 

information: 1) a defined endpoint; 2) an unambiguous algorithm; 3) a defined 

domain of applicability; 4) appropriate measures of goodness-of-fit, robustness and 

predictivity; 5) a mechanistic interpretation, if possible.” 

 

The principles for (Q)SAR validation identify the types of information that are 

considered useful for the regulatory review of (Q)SARs under REACH. Guidance on 

the practical interpretation of the OECD principles has been published by the ECB 

(Worth et al., 2005) and the OECD (OECD, 2007). The REACH framework for using 

(Q)SAR, grouping and read-across is described in Worth et al. (2007). The 

requirement for adequate and reliable documentation on (Q)SARs prompted the 

development of (Q)SAR Model Reporting Formats (QMRFs). For more information, 

visit the website of the European Chemicals Bureau: http://ecb.jrc.it/qsar/qsar-tools).  

 

1.2 REACH information requirements for aquatic toxicity 
 

With respect to aquatic (pelagic) toxicity, Annex VII (1 tonne or more) requires 

information on short-term toxicity testing on invertebrates (preferred species 

Daphnia) and growth inhibition study on aquatic plants (algae preferred); Annex VIII  

(10 tonnes or more) additionally requires short-term toxicity data on fish but the 

registrant can consider long-term toxicity data instead of short term; Annex IX (100 

tonnes or more) requires in addition long term toxicity data on invertebrates (preferred 

species Daphnia) and long-term toxicity data on fish (both necessary unless already 

provided as part of Annex VIII requirements); and Annex X (1000 tonnes or more) 

includes long-term toxicity data on invertebrates and plants (unless already provided 

as part of Annex IX requirements). Annexes VII and VIII also specify when the 

studies do not need to be conducted, one scenario being the presence of mitigation 

factors that indicate that the aquatic toxicity is not likely to occur.  

 

Bearing in mind the REACH provisions, and especially Annex VI, which calls for 

gathering of all existing available test data on a substance as well as collecting all 

other available and relevant information (including information from (Q)SARs and 

http://ecb.jrc.it/qsar/qsar-tools
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read-across), it seems that the in silico methods will play an important role for 

indicating presence or absence of a hazardous property, which in certain cases will be 

able to replace the results of animal tests for both hazard and risk assessment.  

 

1.3 Test methods for aquatic (pelagic) toxicity 
 

Information on aquatic toxicity may be acquired from studies performed according to 

existing national and international guidelines, such as the EU testing methods and 

OECD test guidelines (TGs) which refer to internationally agreed testing methods. 

The complete list of OECD Guidelines for the Testing of Chemicals can be found on 

the OECD website (http://www.oecd.org). Examples include TG 201 for 72-h growth 

inhibition of algae; TG 221 for up to 14 days growth inhibition to Lemna sp.; TG 202 

for up to 14 days acute immobilization Daphnia sp., TG 211 for 21 days reproduction 

to Daphnia; 203 for 96-h acute toxicity to fish; TG 204 for 14 days prolonged toxicity 

to fish, etc. For long-term toxicity to fish, REACH (Annex IX) recommends the fish 

early-life stage (FELS) test (TG 210), fish short-term toxicity test on embryo and sac-

fry stages (TG 212), and fish juvenile growth test (TG 215). American Society for 

Testing and Materials (ASTM) and International Organisation of Standardisation 

(ISO) also offer standardised methods than could offer acceptable alternatives to 

OECD guidelines. Experiments not carried out according to GLP or recognised 

guidelines could also provide useful data, however these data should be particularly 

assessed for their reliability, adequacy, relevance and completeness. Some so-called 

"difficult" substances may require special attention in terms of generation of new data 

or interpretation of existing data. Such substances might be associated with problems 

of solubility (not dissolving in the water phase), bioavailability (irregular exposure 

concentration for the duration of the test), and/or concentration measurement 

(suitability of the analytical method). Examples of problematic properties include low 

water solubility (typically below 1 mg/L), ionisation, ability to form complexes, 

surface activity, colour, volatility, adsorption, abiotic or biotic degradation and 

photodegradation.  

 
 

 

http://www.oecd.org/
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1.4 Classification schemes for modes of toxic action 
 

Various modes of toxic action (MOA) for chemicals in fish, extended to other aquatic 

organisms, have been identified. Currently, the Verhaar scheme seems to be best 

recognised and most extensively used. Verhaar et al. (1992) recognised four modes of 

action associated with different structural classes: class I – inert chemicals, class II – 

relatively inert chemicals, class III – reactive chemicals, and class IV – specifically 

acting chemicals. Class I is typically associated with non-polar narcosis. Class II is 

associated with polar narcosis. Class III summarises different types of reactive 

chemicals, which in principle are difficult to model together but the net result of 

reactivity in most cases is enhanced toxicity. Class IV is most often linked to 

chemicals that act as acetylcholinesterase inhibitors or provoke central nervous 

system effects. The Verhaar classification scheme is implemented in the Toxtree 

software, available from the ECB website (http://ecb.jrc.it/qsar/qsar-tools).  

 

The Verhaar classification system was challenged to predict the class of new 

chemicals with measured toxicity data (validation data available from the paper). It 

was observed that the system generally provides adequate predictions but additional 

research is needed to refine the rules for classification of certain chemicals (Verhaar et 

al., 2000). More specifically, the authors note that some compounds are slightly more 

toxic than predicted. These were identified as small reactive compounds or 

compounds amenable to biotransformation, with low log Kow values and high aqueous 

solubility (e.g. 2,4-pentanedione from Class I, aniline and phenol from Class II, 

acrolein, benzoquinone, and endothal from Classes III and IV). On the other end of 

the spectrum are some compounds that are less toxic than predicted, especially in the 

high log Kow range for Class I compounds (e.g. 1-nonanol, cyclododecatriene), and 

the in mid-to-high log Kow range for Class III and IV chemicals. As an additional 

reason for the appearance of outliers (both positive and negative), the species 

sensitivity differences were noted. Even though the estimation methods are based on 

data for P. promelas and P.reticulata, and the overlap in species between classes was 

very high, there is still the need to extrapolate the prediction to fish in general. 

Another problem with the Verhaar classification scheme is the appearance of a Vth 

Class, for which classification could not be done for various reasons and this class 

could be sizable compared to the data set of interest (about 30% in the case of the 

http://ecb.jrc.it/qsar/qsar-tools
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validation study in Verhaar et al., 2000). However, the authors note that lots of the 

unclassified chemicals belong to the chemical classes of organic acids and esters, for 

which classification should be feasible. In a different set (100 randomly selected 

discrete organic chemicals from EINECS), 50% of the chemicals remained 

unclassified (our unpublished results) using the Toxtree software for classification. It 

should be noted, however, that rules for specific mechanisms were not implemented 

in v. 1.20 of Toxtree. 

 

Russom et al. (1997) distinguish the uncoupling of oxidative phosphorylation, 

respiratory inhibition, and electrophilic/nucleophilic reactivity mechanisms. The latter 

can be further split for modelling purposes. The modes of action in ecotoxicology, 

their role in body burdens, species sensitivity, QSARs and mixture effects were 

critically reviewed by Escher and Hermens (2002). Recently, toxicogenomics was 

emphasized as a potential useful methodology for MOA identification and 

confirmation (Ankley et al., 2006). 
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2. Sources of test data on aquatic toxicity 
 
Information on test data can be found in various databases, some of which were 

designed for storing ecotoxicity information (e.g. EAT, ECOTOX) whereas others are 

more general (e.g. ESIS, OECD HPV database). The ECETOC Aquatic Toxicity 

(EAT) database (ECETOC 2003a) contains ecotoxicity data for more than 600 

substances, collected from the scientific literature starting from the 1970's. ECOTOX 

is maintained by the US EPA and contains toxicity information on aquatic and 

terrestrial organisms for more than 8400 chemicals. ESIS is hosted by the ECB. The 

OECD HPV database was compiled in the framework of the OECD HPV Chemicals 

programme. Information on aquatic toxicity can also be retrieved from the HERA 

(Human and Environmental Risk Assessment) database, TOXNET, N-class, Riskline, 

Canadian Priority Substances Lists, Japanese Ministry of Environment programs.   

 

Links to some useful databases are given in Table 1. 

 
Table 1. Databases containing information on the aquatic toxicity of chemicals 
 
Database and Provider Website  
  
ECOTOX Database 

US EPA 

http://cfpub.epa.gov/ecotox/ 

European chemical Substances 
Information System (ESIS) 

EC-JRC-ECB  

http://ecb.jrc.it/esis/ 

OECD HPV database 

OECD 

http://cs3-hq.oecd.org/scripts/hpv/ 

TOXNET 

US National Library of 
Medicine 

http://www.nlm.nih.gov/pubs/factsheets/toxnetfs.html 

N-class database 

KemI, Sweden 

http://apps.kemi.se/nclass/ 

Riskline 

KemI, Sweden 

http://apps.kemi.se/riskline/ 

Canadian Priority Lists 

Environment Canada 

http://www.ec.gc.ca/CEPARegistry/subs_list/Priority.cfm 

 
 

http://cfpub.epa.gov/ecotox/
http://ecb.jrc.it/esis/
http://cs3-hq.oecd.org/scripts/hpv/
http://www.nlm.nih.gov/pubs/factsheets/toxnetfs.html
http://apps.kemi.se/nclass/
http://apps.kemi.se/riskline/
http://www.ec.gc.ca/CEPARegistry/subs_list/Priority.cfm


 

 8

3.  QSARs for acute toxicity to fish 
 
The models identified in the literature are classified in several groups: 

• Models for narcoses; 
• Global QSARs (developed without respect of chemical class and MOA); 
• QSARs for specific chemical classes and MOA. 

 

QSAR models for narcoses were considered separately since trey predict baseline 

effect and were somewhat subject to more extensive modelling compared to other 

MOA. The same model classification approach was applied to QSARs for Daphnia 

and algae. If a paper describes modelling to two organisms from two or three tropic 

levels, it was classified taking into account the higher species, if not possible to 

separate the models.  

 

Some approaches require combination of data for different trophic levels. Such an 

approach is described in Jager et al. (2007). The authors proposed a mechanism-

oriented approach and introduced a method to decompose toxicity data in a 

contribution from the chemical (potency) and from the exposed species 

(vulnerability). They used a database for acute aquatic toxicity (4 algal species; 5 

arthropods (Daphnia and other); 1 mollusc, 5 fish species, and one protozoon) and 

focus on some well-defined chemical classes. The full data set is available upon 

request from the authors. The results showed that the potency is strongly related to 

hydrophobicity and vulnerability differences between species are small for narcotic 

compounds. Potencies show less relation with hydrophobicity and interspecies 

differences are larger for organophosphate and carbamate insecticides. Photosynthesis 

inhibitors generally act narcotic to animals, but were more potent for algae. Using 

potencies and vulnerabilities, acute toxicity values were well predicted by the 

proposed approach (within a factor of 3–6) but it still better understanding of MOA.  

 

3.1 QSARs for narcoses 
 

Compared with other toxicological endpoints, the modes of toxic action in 

ecotoxicology are relatively well understood, and consequently (Q)SARs for aquatic 

toxicity endpoints tend to be mechanistically based. The narcosis mode of action is 
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associated with altered structure and function of the cell membranes. In a consensus 

classification of 177 industrial chemicals more than 50% were classified as narcotics 

(Pavan et al., 2005a). 

 

Models for non-polar and polar narcosis (NPN and PN, respectively) were included in 

the European Technical Guidance Document in support of Commission Directive 

93/67/EEC on Risk Assessment for new notified substances, Commission Regulation 

(EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/8/EC 

of the European Parliament and of the Council concerning the placing of biocidal 

products on the market. Two models (one for NPN and one for PN), based on LC50 

values of chemicals classified as non-polar [Eq. 1] and polar narcotics [Eq. 2], to P. 

promelas (in mol/L, from 96-h test) were given there, as well as a model, estimating 

NOEC to B. rerio. 

 

log LC50 = -0.85 log Kow – 1.39 [1] 
n = 58, r2 = 0.94, q2 = 0.93, s = 0.36 
 
log LC50 = -0.73 log Kow – 2.16 [2] 
n = 86, r2=0.90, q2 = 0.90, s = 0.33 

 

The models were originally published by Verhaar et al. (1995), and were evaluated 

with aim to test reproducibility and external predictivity by Pavan et al. (2005a). The 

data for the training and test set chemicals are available from Pavan et al. (2005a). 

The latter authors developed also a general narcosis model [Eq. 3] by combining the 

training sets of the other two, with motivation to avoid uncertainty in discrimination 

between NPN and PN. The QSAR model was defined by the developer to be 

applicable to chemicals with octanol-water partition coefficient (log Kow) values in 

range from -1.31 to 6.20. However, the model is not recommended for chemicals with 

log Kow < 1 due to large error for both non-polar and polar narcotics. It works best in 

the range 3 < log Kow < 6. The structural domain includes aliphatic and aromatic 

hydrocarbons, halogenated aliphatic and aromatic hydrocarbons, ethers, alcohols, 

aromatic nitro compounds, anilines and phenols (only when a presence of an 

additional substituent on the benzene ring in case of phenols and anilines do not 

change the mechanism of action). 
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Log LC50 = -0.81 log Kow – 1.74 [3] 
n = 144, r2 = 0.88, q2 = 0.87, s = 0.45 

 

A quadratic function is used to describe the relationship between log Kow and the 

toxicity, when the former varies in a large range or the training set includes chemicals 

with log Kow above approximately 6. An equation of this type was used by Hermens 

et al. (1984), to describe the relationship between the log Kow and the 24-day toxicity 

of chemicals to guppy (P. reticulata, LC50 in µmol/L) for anilines and chloroanilines 

[Eq. 4]: 

 

Log (1/LC50) = -0.150 (log Kow )2 + 1.67 log Kow  – 4.56 [4] 
n = 11, r2 = 0.89, s = 0.27 

 

Similar equations can be found for fathead minnow in Veith et al. (1983), and for 

sheepshed minnow in Zaroogian et al. (1985). The advantage of the quadratic models 

compared to the linear ones is that the former account for decreasing toxicity above 

certain hydrophobicity, while the latter predict continuously increasing toxicity with 

increase of hydrophobicity. This can result in overestimation of toxicity for very 

hydrophobic chemicals. 

 

A log Kow-based model for baseline toxicity (narcosis type I, inert chemicals) for P. 

promelas was given also by Russom et al. (1997) [Eq. 5]. The concentration is 

calculated on molar basis (presumably mol/L) and data is from 96-h test with flow-

trough protocol.  

 

Log LC50 = -0.94 log Kow + 0.94 log (0.000068 log Kow +1) – 1.25 [5] 
Associated statistics not provided but the data is published 

 

Models for NPN [Eq. 6] and PN [Eq. 7] were developed also for P. reticulata (in 

mol/L, from 96-h test). The models are taken from Roberts and Costello (2003). The 

training set data are available. 

 

Log LC50 = -0.84 log Kow – 1.12  [6] 
n = 8, r2 = 0.97, q2 = 0.96, s = 0.24, F = 199 

 

Log LC50 = -0.76 log Kow – 2.00 [7] 
n = 11, r2 = 0.89, q2 = 0.84, s = 0.28, F = 72 
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QSARs for non-polar narcosis were developed by Lessigiarska et al. (2004), based on 

the EU New Chemicals Database (NCD) chemicals. These include models to O. 

mykiss (rainbow trout) [Eq. 8] and B. rerio (zebra fish) [Eq. 9]. LC50 is in mg/L, from 

96-h tests for both species. 

 

Log (1/LC50) = 0.47 log Kow – 3.28  [8] 
n = 34, r2 = 0.64, s = 0.50, F = 57 

 

Log (1/LC50) = 0.35 log Kow – 3.07  [9] 
n = 19, r2 = 0.47, s = 0.45, F = 15 

 

The limited goodness-of-fit, as presented by r2, could be due to the fact that for the 

development of the models, concentration in mg/L was used instead of molar 

concentration (practical difficulties for conversion observed), as well as the quality of 

data. Data was collected from different laboratories, and probably obtained under 

different experimental conditions. 

 

Papa et al. (2005) developed multiple linear regression (MLR) models for NPN and 

PN using different molecular descriptors and genetic algorithm (GA) for selection of 

variables. The LC50 data set was taken from Russom et al. (1997). For NPN [Eq. 10], 

the authors used log Kow calculated from ClogP program, while for PN [Eq. 11] 

models they used AlogP values. 

 

Log (1/LC50) = 0.72 log Kow – 0.13 ELUMO – 1.03 RARS + 2.6 [10] 
ntrain = 147, ntest = 116, r2 = 0.95, q2 = 0.95, q2

ext = 0.93, s = 0.28 
 

The model for NPN demonstrates excellent statistical characteristics but the inclusion 

of additional to log Kow descriptors could be questioned due to the fact that ClogP 

octanol-water partition coefficient alone gives r2 = 0.92. Here, ELUMO stands for the 

energy of the lowest unoccupied molecular orbital and RARS – R matrix average row 

sum-GETAWAY, inversely related to molecular dimension. 

 

Log (1/LC50) = 0.34 logKow + 0.82 BEHv3 + 0.18 nHDon – 0.65 C029 + 2.6 [11] 
ntrain = 57, ntest = 29, r2 = 0.90, q2 = 0.88, q2

ext = 0.84, s = 0.31 
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The model with AlogP octanol-water partition coefficient alone gives r2 = 0.77. 

Therefore, the inclusion of additional parameter(s) might be beneficial for the increase 

of predictivity, however the question is how the additional descriptors are better 

selected – in an automated statistical way or empirically, even showing lower 

goodness-of-fit. Here, BEHv3 means highest eigenvalue n.3 of Burden 

matrix/weighted by the Van der Waals volumes, nHDon – number of donor atoms for 

H-bonds), and C029 – atom centered fragment counting for groups derived from 

carboxylic acid R–CX–X.  

 

Yuan et al. (2007) developed a data mining scheme called "clustering first, and then 

modelling" to build local QSAR models for the subsets resulted from clustering of the 

training set according to structural similarity. The strategy includes: (1) clustering, 

where the training set is clustered into subsets according to structural similarity with 

an unsupervised pattern recognition technique; (2) classification, where the validation 

and test set are classified by a supervised pattern recognition method; (3) modelling, 

where local models for each subset were built; and (4) prediction, where the toxicity 

of the test set was predicted by both the corresponding local models and the global 

model and the performances of each model were evaluated. Hierarchical clustering 

was employed for cluster analysis, k-nearest neighbour for classification, and partial 

least squares (PLS) for the model generation, all algorithms being implemented in 

Matlab. The authors found that the predictive performances of the local models based 

on the subsets were much superior to those of the global model based on the whole 

training set. The procedure is interesting from methodological point of view with 

respect of combining different methods and techniques for data mining in an 

automated workflow, however some proportionality between the problem (modelling 

of 96-h baseline toxicity to P. promelas in this case) and complexity of the solution 

should exists. 

 

3.2 Global QSARs  
 

A model based on hydrophobicity/electrophilicity approach (referred to as “response-

surface” model) for 96-h acute toxicity to P. promelas, developed for aromatic 
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narcotics as well as for non-specific (soft) electrophiles was proposed by Veith and 

Mekenyan (1993) (redeveloped by Pavan et al.[2005b]): 

 

Log LC50 = -0.57 log Kow + 0.45 ELUMO – 2.44  [12] 
n = 114, r2 = 0.78, q2= 0.76, s = 0.48 

 

Where LC50 is in mol/L and ELUMO is the energy of the lowest unoccupied molecular 

orbital (in eV). Models of this type were published later by other workers (Dimitrov et 

al., 2003; Netzeva et al., 2005). Pavan et al. (2005b) performed a validation of Eq. 

[12] with external data from the OECD Screening Information Data Set (SIDS), 

which resulted in q2
ext = 0.75 for 25 chemicals. 

 

Huuskonen (2003) proposed a model for acute toxicity to P. promelas (fathead 

minnow) in 96-h-assay based on electrotopological (E-state) indices of diverse data 

set. The training set was available, and the algorithms allow redevelopment of the 

model (Pavan et al., 2005b), to test the accuracy and transferability (LC50 in mol/L). It 

was also validated with external set of 39 SIDS data (q2ext = 0.49). All data is 

available. 

 

Log LC50 = -0.916 – 0.194 SsCH3 – 1.707 SdsCH – 0.171 SssCH – 0.406 SsssCH 
– 0.200 SaasC – 0.332 SssssC – 0.054 SsNH2 – 0.058 StN + 0.951 SddsN – 0.080 
SsOH – 0.029 SdO – 0.098 SsF – 0.168 SsCl – 0.236 SsBr [13] 
n = 121, r2 = 0.84, q2 = 0.68, s = 0.39, F = 40 

 

Netzeva et al. (2005) published a number of multivariate models with log Kow and 

various electronic descriptors for 96-h acute toxicity to P. promelas. LC50 was 

converted from mg/L to mmol/L for the purposes of the study. The data set is listed in 

Appendix 11. The hydrophobicity alone, after exclusion of outliers accounted for 

about 65% of toxicity. 

 

Log (1/LC50) = 0.700 log Kow – 0.720  [14] 
n = 560, r2 = 0.65, r2

CV = 0.65, s = 0.80, F = 1034 
 

                                                 
 
1 The use of this data set requires citation of the original paper. 
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Six statistical outliers to Eq. [14], all with positive standardised residuals greater than 

3, were identified and excluded beforehand. These were strychnine, rotenone, 

acrolein, allyl alcohol, malononitrile, and N-vinylcarbazole. Two outliers with 

considerable negative residuals (4,4'-isopropylidenebis(2,6-dichlorophenol) and 

tetrabutyltin) were also identified.  

 
Netzeva et al. (2005) developed a series of multivariate MLR models with increasing 

complexity by the best subset selection techniques (all possibilities combinations are 

attempted and the model with highest r2 for a given number of descriptors is kept), as 

well as two partial least squares (PLS) models. The best (according to r2) MLR 

models with AM1 [15] and B3LYP [16] descriptors were:  

 

log (1/LC50) = 0.452 log Kow – 95.29 PIrrmx – 19.89 FPSA_3H + 0.228 DN – 
12.20   
n = 568, r2 = 0.692, r2

CV = 0.685, s = 0.771, F = 316 [15] 
  

log (1/LC50) = 0.563 log Kow – 0.227 ELUMO + 0.00223 DPSA_2Z - 0.778 Qp_mx – 
0.535  
n = 568, r2 = 0.689, r2

CV = 0.682, s = 0.775, F = 311 [16] 
 

The descriptors, used in the two equations, are the following: 

log Kow Octanol-water partition coefficient (calculated by Pallas v. 3.0) 

PIrrmx Maximum self-polarisability considering all atomic sites r in a molecule 

FPSA_3H Fractional positive surface area = PPSA / SA for 3H 

DN Sum of the acceptor delocalisabilities of all atomic sites of type Y in a molecule 

 (Y = C, H, N, O) 

ELUMO Energy of the lowest unoccupied molecular orbital 

DPSA_2Z Difference in charged partial surface area = PPSA_YY – PNSA_YY (YY = 1, 

 1Z, 2, 2Z, 3, 3Z), YY = 2Z 

Qp_mx Maximum positive atomic charge in a molecule considering all non-hydrogen 

 atoms 

 

Papa et al. (2005) developed a general model for estimating acute toxicity to P. 

promelas both with inclusion of logP [17] and without [18]. Descriptors were selected 

using GA from a pool of about 1200 calculated descriptors. The experimental toxicity 

data is available as supplementary material. In both models the goodness of fit (r2) 

was about 0.8. 



 

 15

 

Log (1/LC50) = 0.56 log Kow + 0.34 DP03 + 20.8 H8m – 0.79 GATS1v – 1.59 R1v 
+ 2.9  
ntrain = 249, ntest = 200, r2 = 0.1, q2 = 0.81, q2

ext = 0.72, s = 0.334 [17] 
 

Here, octanol-water partition coefficient was calculated as AlogP. DP03 means 

Randic molecular profile n.03, H8m – H autocorrelation of lag8/weighted on atomic 

mass, GATS1v – Geary autocorrelation of lag 1 weighted by the Van der Waals 

volumes, and R1v – R autocorrelation of lag 1 weighted by the Van der Waals 

volumes. 

 

Log (1/LC50) = 0.91 WA + 6.2 Mv +0.08 H-046 + 0.22 nCb – 0.19 MAXDP – 0.33 
nN – 2.54 
ntrain = 249, ntest = 200, r2 = 0.1, q2 = 0.79, q2

ext = 0.71, s = 0.38 [18] 
 

Here, WA is a topological descriptor representing the mean Weiner index, Mv the 

mean atomic van der Waals volume, nCb the number of C sp2 in substituted 

benzenes, H-046 the H attached to C-O sp3, MAXDP th maximal electrotopological 

positive variation, and nN is the number of nitrogen atoms. 

 

Pavan et al. (2006) developed a model for prediction of the acute toxicity towards the 

fathead minnow (P. promelas). A dataset of 408 heterogeneous chemicals with 96-h 

LC50 data was modelled by a diverse set of theoretical molecular descriptors using 

multivariate linear regression (MLR) and Genetic Algorithm – Variable Subset 

Selection (GA-VSS). Descriptors were calculated with DRAGON and Tsar software. 

Particular emphasis was given to statistical validity and applicability domain. External 

validation was performed by using OECD Screening Information Data Set (SIDS) 

data for 177 High Production Volume (HPV) chemicals, and good results in 

prediction were obtained (n = 49,q2ext = 84.4). Data are available.  

 

Log LC50 = - 2.09 – 0.578 ALogP + 0.397 ELUMO – 0.147 S2K – 0.887 nRNH2  
n = 408, r2 = 80.3, q2 = 80.1, s = 0.560, F = 410    [19] 

 

where LC50 is the concentration (in moles per litre) causing 50% lethality in P. 

promelas, after an exposure of 96 hours, AlogP is the octanol-water partition 

coefficient calculated from the Ghose-Crippen logP model, ELUMO is the energy of the 
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lowest unoccupied molecular orbital, S2K is an extension of the Kier shape index 

which accounts for the 2-path and nRNH2 is the number of the primary aliphatic 

amine functional groups. The model was developed for organic aromatic compounds, 

including alkyl, halogen benzenes, as well as similar substituents on phenols and 

anilines considered to act by a number of different MOA. These include non-polar 

and polar narcosis as well as unspecific electrophilicity. 

 

Mazzatorta et al. (2005) applied a hierarchical QSAR approach for the prediction of 

96-h acute toxicity of pesticides to O. mykiss (rainbow trout). Toxicological were 

extracted from the U.S. EPA-Office of Pesticides Programs, International Center for 

Pesticides and Health Risk Prevention, and the Federal Biological Research Center for 

Agriculture and Forestry. A total of 282 chemicals, spanning a wide range of chemical 

classes, were selected in this way after preliminary check of data for quality. A total 

of 729 descriptors were calculated. The experimental toxicity data is available as 

supporting information. Seven descriptors were selected by using GA (HACA-2 from 

MOPAC, HOMO-LUMO energy gap, 3 v
p – a connectivity index, HA dependent 

HDSA-1 from Zefirov’s indices, 1XBETA polarisability, FHBCA fractional HBSA 

(HBSA/TMSA) from MOPAC PC, and log Kow from EPIWin). It was coupled with 

counter-propagation artificial neural network (CPNN) to derive non-linear models. 

The model produced r2 of 0.81 for the training set (222 data points) and 0.79 for the 

test set (52 data points). The reduced number of chemicals (274 from 282) is a result 

of elimination of 8 chemicals in the descriptor calculation process. 

 

Casalegno et al. (2006) used fragment-based QSAR approach is presented to correlate 

LC50-96 h acute toxicity to O. mykiss (rainbow trout). The data set is the same used in 

Mazzatorta et al. (2005), and was compiled under the DEMETRA EU funded project. 

The approach exploits the possibility of prioritising fragments' contributions to 

toxicity through generation of atomic centred units (ACUs). On the assumption that 

one fragment might be mainly responsible for the molecular toxicity, a three-stage 

modelling strategy was developed to select the most important moieties and to 

establish their priorities at a molecular level. Quantitative toxicity prediction yielded 

r2 of 0.85 for the training set (239 data points) and 0.75 for the test set (41 data 

points). The main difficulty in the application of the fragment-based approach was the 

diversity in the data set. More than 20 pesticide classes were presented: organotins, 
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organochlorines, organophosphates, carbamates, formamidines, terpenes, pyrethroids, 

phenols, spinosyns, pyrroles, pyridazinones, benzoylureas, etc. Some of those classes 

contained only one or two compounds and this hampers the straightforward 

application of methods that demand structurally descriptive compounds to work 

properly, such as fragment-based ones. The outcome of the DEMETRA modelling 

process for pesticides and different organisms is presented in Amaury et al. (2007). 

The authors report the results of a very extensive study, that aims to investigate the 

influence of the descriptors and modelling technique on the predictivity of the models, 

the development of a hybrid model, including classification and prediction steps, as 

well as rules for restricting the domain and thus increasing the predictivity of the 

hybrid system for deriving of conservative predictions for regulatory purposes using 

O. mykiss data. 

 

Furusujö et al. (2006) developed Partial Least Squares (PLS) regression provides 

models and diagnostics that can be used to decide whether or not a substance is within 

the model domain. QSAR models for four different environmental end-points (55 

chemicals with 96-h LC50 to fish L. macrochirus, 45 chemicals with data with 48-h 

EC50 to D. magna, 83 chemicals with EC50 to P. subcapitata, also know as S. 

capricornutum, in growth rate inhibition test, and 93 chemicals with EC50 to V. 

fischeri) were used to demonstrate the importance of appropriate training set selection 

and how the reliability of QSAR predictions can be increased by outlier diagnostics 

(supplementary data available from doi). All models showed consistent results and 

test set prediction errors were very similar in magnitude to training set estimation 

errors when prediction outlier diagnostics were used to detect and remove outliers in 

the prediction data. The PLS models are not given in the text of the paper. 

 

Sild et al. (2006) reported the application of a new system for open distributed 

computing including analysis of delocalised and heterogeneous data sources, with 

utilization of different software tools for data mining and engineering to ECOTOX 

database. Even though details of the study are not provided, the paper is interesting 

from methodological point of view.  

 

Amini et al. (2007) reported a support vector inductive logic programming (SVILP), 

which was applied to a heterogeneous set of 576 chemicals, tested to P. promelas 
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(available from DSSTox database). The SVILP approach learns rules, followed by 

quantitative modelling. The first step is to prepare the background knowledge, 

namely, the chemical fragments in the form of logic relations. The logic relations 

identify the chemical fragments according to the atom and bond details. In addition to 

background knowledge, the chemicals in the training set are classified into more toxic 

(positives) and less toxic (negatives) according to the observed toxicities. ILP learning 

can then be conducted using the background knowledge and the observations. The 

software CProgol automatically learns the rules. The learned rules form the input for 

quantitative prediction of toxicity. ILP could provide also insight into the cause of 

toxicity for each chemical by analyzing the rules that were selected.  Examples of 

rules for high toxicity include: a phenyl group and an electron-donating group and 

distance between them is 7.3 ± 1.0 Å; a hydrophobic atom and an electron-

withdrawing group and distance between them is 9.1 ± 1.0 Å; …number of chlorine 

atoms greater than, or equal to 3. 

 

Hewitt et al. (2007) studied consensus regression, as compared to single multiple 

linear regression, models for the development of QSARs to several endpoints, 

included acute toxicity to fish (P. promelas) and protozoa (T. pyriformis). Summary 

of model equations is available as supporting information. For each data set, a genetic 

algorithm was used to develop a model population and the performance of consensus 

models was compared to that of the best single model. The authors concluded that the 

increase in model complexity when using consensus models does not seem warranted 

given the minimal improvement in model statistics. 

 

Knauer et al. (2007) examined acute toxicity to fish hepatoma cell line PLHC-1 and to 

juvenile rainbow trout for 18 plant diverse protection products with different 

mechanism of action. The main objective was to explore whether hepatoma cells 

could be used to predict acute toxicity in fish taking into account the mode of toxic 

action and compound properties. Acute fish toxicity was determined using the OECD 

guideline test 203 and compared to predicted baseline LC50 of acute fish toxicity 

calculated with a quantitative structure–activity relationship (QSAR) derived for 

guppy fish. Cytotoxicity was determined through the inhibition of neutral red uptake 

(NR50) into lysosomes and compared to predicted baseline cytotoxicity derived for 

goldfish GFS cells. In general, NR50 values were higher by a factor ranging from 3 to 
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3000 than the corresponding acute LC50. A weak correlation between NR50 and LC50 

values was found (log/log: r2 = 0.62). Also the lipophilicity (log Kow) was not a good 

predictor for cytotoxicity (r2 = 0.43) and lethality (r2 = 0.57) of these pesticides. The 

authors concluded that the neutral red assay is detecting general baseline toxicity only. 

Comparing LC50 data to QSAR results, the compounds can be classified to act as 

narcotics or reactive compounds with a specific MOA in fish. The results indicated 

limitation of the neutral red assay in predicting acute fish toxicity. A promising 

alternative might be the assessment of toxicity in a set of in vitro systems addressing 

also cell-specific functions which are related to the mode of toxic action of the 

compound. A different approach could be also to combine measured in vitro data and 

calculated descriptors of chemical structure, similar to the scenario, explored in Kahn 

et al. (2007). 

 

3.3 QSARs for specific chemical classes and MOA 
 

Wong et al. (1997) published structure activity relationships for acute toxicity of 

alcohol ethoxylate surfactants to 96-h toxicity to P. promelas. The concentrations in 

the models are presumably in µmol/L: 

 

Log LC50 = 4.35 – 0.34 (alkyl) + 0.05 (EO) [20] 
n = 9, r2 = 0.99 

 

It was found that surfactant toxicity tends to increase with increasing alkyl chain 

(alkyl), and decreasing average number of ethylene oxide (EO) groups. 

 

Boeije et al. (2006) revisited the data for the same class (alcohol ethoxylates) and 

same chemicals as above (n = 9). Two new QSARs for LC50 (mol/L) were proposed 

in order to capture the three important parameters and avoid over-fitting (statistics is 

the same). The authors propose also a model for chronic toxicity to P. promelas (not 

given here). 

 

Log LC50 = -0.60 log Kow – 2.48 [21] 
n = 9, r2 = 0.91, s = 0.06 

 

Log LC50 = -0.32 C + 0.05 EO – 1.78 [22] 
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n = 9, r2 = 0.91, s = 0.06 
 

Parkerton and Konkel (2000) developed QSARs for phthalate esters (PEs) that 

describe aquatic toxicity for different freshwater and marine species. Results for low-

molecular-weight PEs with log Kow < 6 indicate that toxicity data conform to a simple 

log Kow -dependent QSAR. Fish were found to be more sensitive than algae while 

invertebrates spanned a wide range in toxicological response. Freshwater and marine 

species demonstrated a similar distribution of sensitivities. Comparison of species-

dependent QSARs supported the hypothesis that biotransformation plays an important 

role in explaining toxicity differences observed between species. Estimated critical 

body residues (CBRs) for parent PE in fish were in the range reported for other polar 

organic chemicals while CBRs for parent PE plus associated metabolites were in the 

range reported for nonpolar narcotics (i.e., baseline toxicity) suggesting a possible 

putative role of PE metabolites. Results for high-molecular-weight PEs (log Kow > 6) 

indicated that these chemicals are not acutely or chronically toxic to freshwater or 

marine organisms due to the combined role of low water solubility and limited 

bioconcentration potential which precludes attainment of internal concentrations that 

are required to elicit adverse effects. The QSARs are not provided in mathematical 

form but the study is a good example for application of integrated approach for filling 

data gaps and PNEC derivation from available test and estimated data.  

 

Zvinavashe et al. (2006) collected fifteen literature datasets for acute toxicity of 

substituted (mono)nitrobenzenes to algae, daphnids, fish, protozoa, bacteria, and 

yeast. The logarithm of the octanol/water partition coefficient, log Kow, and ELUMO, 

were used as descriptors. QSAR models (0.65 < r2 < 0.98) were developed to predict 

acute toxicity of substituted mononitrobenzenes to the aquatic organisms. The log Kow 

was a sufficient descriptor for all cases, with the additional Elumo descriptor being 

required only for algae. The QSARs were found to be valid for neutral substituted 

mononitrobenzenes with no -OH, -COOH, or -CN substituents attached directly to the 

ring. The data are available as supplementary material. The models for 96-h toxicity 

to C. carpio [23] and 14-d P. reticulata [24] are given below (LC50 in µmol/L): 

 

Log LC50 = -0.520 log Kow + 4.40 [23] 
n = 11, r2 = 0.62, s = 0.283, F = 14.6 
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Log LC50 = -0.628 log Kow + 3.52 [24] 
n = 18, r2 = 0.69, s = 0.27, F = 35.6 

 

Lo Piparo et al. (2006) reported MLR and neural net models for 10 benzoxazinone 

allelochemicals with atom and field-based descriptors. The chemicals are described as 

natural pesticides produced by the plants at stress or damage. The group is of interest 

because could be natural alternative to pesticide production. The endpoint is 48-h 

EC50 to D. magna. The models are not explicitly given in the paper. 
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4. QSARs for Daphnia 
 

4.1 QSARs for narcoses 
 

Two log Kow-based QSARs for immobilization of Daphnia, expressed as 48-h EC50, 

were proposed by Verhaar et al. (1995): one for NPN [25] and one for PN [26]. These 

are listed below (concentrations in mol/L):  

 

Log EC50 = -0.95 log Kow – 1.32 [25] 
n = 49, r2 = 0.95, q2 = 0.94, s = 0.34 

 

Log EC50 = -0.56 log Kow – 2.79 [26] 
n = 37, r2 = 0.77, q2 = 0.73, s = 0.37 

 

Lessigiarska et al. (2004) published a QSAR for non-polar narcosis to D. magna (48-h 

immobilisation test, EC50 in mg/L) based on the EU NCD chemicals. Out of 156 

chemicals with available data for this endpoint, 56 chemicals were classified as NPN. 

 

Log (1/EC50) = 0.376 log Kow – 2.95  [27] 
n = 56, r2 = 0.54, s = 0.64, F = 63 

 

Von der Ohe et al. (2005) proposed similar models for 48-h mortality test 

(concentrations in mol/L) for NPN [28] and PN [29]:  

 
Log LC50 = -0.86 logKow – 1.28 [28] 
n = 36, r2 = 0.90, q2 = 0.94, s = 0.44, F = 311  

 

Log LC50 = -0.80 log Kow – 2.21 [29] 
n = 33, r2 = 0.74, q2 = 0.94, s = 0.45, F = 90 (without anilines) 

 

4.2 Global QSARs  
 

Faucon et al. (2001) collected acute Daphnia toxicity data for 96 substances from 297 

notification files about new chemicals, stored at the French Department of 

environment. This was further split into training (n = 61) and test set (n = 35). 

Unfortunately, the chemical structures are confidential. Presumably, 48-h EC50 values 



 

 23

from immobilization test were collected (concentration in mol/L). The best two-

parameter equation  from a pool containing log Kow, steric and electronic descriptors, 

was built with the hydrophobicity parameter and the descriptor hardness [Ha = ½ 

(EHOMO-ELUMO)]. The authors noted that further increase in the number of descriptors 

was accompanied by very weak increase of q2. The outliers were carefully analysed 

and the model was validated with external test set of 30 chemicals randomly collected 

from AQUIRE.  

 

Log LC50 = -0.57 log Kow + 0.45 ELUMO – 2.44 [30] 
n = 61, r2 = 0.54, q2 = 0.49, s = 0.71 

 

Tao et al. (2002) developed quantitative relationship between the median effective 

concentration (48-h EC50) of organic chemicals to Daphnia magna and the number of 

molecular fragments was investigated based on experimental EC50 values for 217 

chemicals derived from the literature (data set seems unavailable). A fragment 

constant model (r2 = 0.96) was developed based on a multivariate linear regression 

between the number of fragments and the logarithmically transformed reciprocal 

values of EC50 (units not clear). Functional correction factors were introduced into the 

model. The model was verified using an independent set of randomly selected data. 

The mean residual of the final model was 0.4 log-units. The model seems transparent 

but complex, which hampers the reproduction.  

 

Von der Ohe et al. (2005) performed an extensive literature search for toxicity data to 

Daphnia from AQUIRE database. D. magna was the preferred species. The authors 

found a total of 349 substances with at least one data point but those with LC50 that 

exceeded the water solubility were excluded from the analysis and 300 substances 

remained in the data set. More than 70 chemicals were associated with mortality data 

to other Daphnia species (e.g. D. pulex, dubia, macrocopa, pulicaria, carinata, and 

laevis). The data is available from the paper and provided in Appendix 22. The study 

aimed at developing a pragmatic approach to discriminate excess toxicity from 

narcotic effect levels and three discrimination schemes were presented. The 

                                                 
 
2 The use of this data set requires citation of the original paper. 
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discussion includes reaction mechanisms that can explain excess toxicity and 

structural alerts are provided in transparent form. 

 

Toropov and Benfenati (2006) examined three types of local graph invariants, the 

vertex degrees (0EC), the extended connectivity of first order (1EC), and the numbers 

of paths of length two (P2), as elementary invariants for construction of quantitative 

structure–activity relationships (QSAR). The authors examined also combined 

invariants, obtained by multiplying one of these three elementary types with another 

(i.e., [0EC · 1EC], [0EC · P2], and [1EC · P2]), as graph invariants. Finally, global 

(weighted) invariants were used in the QSAR analyses, codifying the presence and 

nature of cycles in the molecular structures under consideration. These descriptors 

have been used in one-variable models to predict toxicity toward 96-h LC50 (mmol/L) 

to D. magna for a set of 262 pesticides (data are available from the paper). The 

algorithm for calculation of descriptors and their role was discussed. The best model 

was based on the correlation weight of local topological parameters (the [0EC · P2]) 

together with the global topological parameters 

 

Log (1/LC50) = -226.3 + 227.5 0XCW(ak, [0ECk . P2k], CC) [31] 
n = 220, r2 = 0.7822, s = 0.849, F = 783 (training set)  
n = 42, r2 = 0.7388, s = 0.941, F = 113 (test set).  

 

Amaury et al. (2007) developed a complex hybrid model for the prediction of the 

acute toxicity of pesticides to Daphnia. The analysis of the possible outliers with data 

mining tools resulted in a compilation of number of structural and physico-chemical 

rules that lead to false negative predictions, for daphid as well as for fish. The 

implementation of these rules in a software such as Toxtree will extremely useful for 

identifying (a mixture of) reactive and specifically acting compounds, wich are 

relatively underpredicted in the implementation of the original Verhaar classification 

scheme. One can argue whether or not test data for one species only can cover the 

toxicity to the whole taxa and whether there is commonality between structural alerts 

for fish and daphnid. The latter is a task that deserves investigation on its own, 

bearing in mind that the chemical sets with experimental data are limited in size and 

diversity but there is a commonality in the toxic MOA, most often irrespectively  of 

the test organism. Nevertheless, the pesticide data set provides a kind of a worst case 

scenario as a training set, including biologically active chemicals that were used 
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exactly for this purpose as pesticides. Therefore, the rules derived from it could be 

seen as most demanding when screening for chemical and biological activity. 

 

4.3 QSARs for specific chemical classes and MOA 
 

Wong et al. (1997) published structure activity relationships for acute toxicity of 

alcohol ethoxylate surfactants to 48-h toxicity to D. magna. The concentrations in the 

models are presumably in µmol/L: 

 

Log LC50 = 4.23 – 0.38 (alkyl) + 0.10 (EO) [32] 
n = 9, r2 = 0.96 

 

Boeije et al. (2006) proposed new models for the same class (alcohol ethoxylates) and 

same chemicals as above (n = 9), referring to the rule of thumb that for each 

parameter to be fitted, about five data points should be available. Both new QSARs 

are in agreement with the understanding that with increase of log Kow or alkyl chain, 

the EC50 decreases (chemical more toxic). The contribution of the EO units to toxicity 

(EC50 in mol/L) in the new QSAR was found almost identical to that in Wong et al. 

(1997). The authors also propose a model for chronic toxicity to D. magna (not given 

here). 

 

Log EC50 = -0.58 log Kow – 2.70 [33] 
n = 9, r2 = 0.87, s = 0.30 

 

Log EC50 = -0.32 C +0.12 EO – 2.26 [34] 
n = 9, r2 = 0.85, s = 0.23 

 

Marchini et al. (1999) investigated the acute toxicity of aryl- and benzylhalides to D. 

magna. Halobenzenes and halotoluenes are generally agreed to be unambiguous 

baseline toxicants (class I) with the major exception of the benzylic structures, which 

are reactive in fish tests (class III). Eighty-nine percent of the arylhalides tested in this 

study matched a log Pow-dependent QSAR, including fluorinated, chlorinated, 

brominated, and iodinated derivatives, thereby confirming the validity of the baseline 

models also for variously halogenated compounds (other than only-chloro 

compounds). On some occasions, the assignment to the two classes in D. magna 
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deviates from the structural rules derived from fish, i.e., iodinated compounds as well 

as α,α-dichlorotoluenes. The QSARs derived on all tested data (1,3,5-trichlorotoluene 

excluded, data are available) revealed lower slopes and higher intercepts than typical 

baseline models, indicating that different ways to produce baseline toxicity could be 

possible. The 48-h EC50 (immobilization) to Daphnia [35] is in (µmol/L): 

 

Log (1/EC50) = 0.65 log Kow – 3.2  [35] 
n = 23, r2 = 0.74, s = 0.23, log Kow range = 2.89 to 5.18 

 

Liu et al. (2003) measured acute toxicity (48 h–EC50, µmol/L) of 20 α-substituted 

phenylsulphonyl acetates using Daphnia magna with a static method (data are 

available). On a basis of physicochemical parameters (log Kow and aqueous solubility 

log SW) linear models were developed. Charge model descriptors QSARs were also 

calculated. For the models with the physicochemical parameters log Kow and log SW, 

the low squared correlation coefficients (n = 20, r2 = 0.69 and r2 = 0.50, respectively) 

indicated that hydrophobicity plays a dominant role for the toxicity but 

hydrophobicity is not the only factor that influences the activity. The high activity of 

the compounds was explained with the disruption of van der Waals interactions 

between lipid and/or protein compounds within the membrane and the possibility of 

the compounds to form hydrogen bonds with the receptor molecules. The log Kow 

model [36] is listed below: 

 

Log EC50 = -0.193 log Kow + 2.384  [36] 
n = 20, r2 (adj) = 0.668, s = 0.139, F = 39 

 

Davies et al. (2004) reported a log Kow -based QSAR for quaternary alkylammonium 

sulfobetains (zwitterions) to D. magna (48-h OECD 202 Guideline). Log Kow was 

also measured using reverse-phase high performance liquid chromatography (data is 

available). The measured in immobilization test EC50 (mmol/L) was modelled by 

[37]: 

 

Log (1/EC50) = 0.61 log Kow + 2.69  [37] 
n = 16, r2 = 0.87, s = 0.36, F = 94 

 

On comparison with other QSARs, the authors argued that the quaternary ammonium 

chemicals are polar narcotics. 
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Hodges et al. (2006) developed QSARs for the acute aquatic toxicity of the anionic 

surfactants linear alkylbenzene sulphonates (LAS) [38] and ester sulphonates (ES) 

[39] to D. magna, the aim being to investigate the modes of action by comparing the 

QSARs for the two types of surfactant. The generated data for ES have been used to 

develop a QSAR [39] correlating toxicity with calculated log Kow  (48-h EC50 in 

mol/L, data available): 

 

Log(1/EC50) =  0.77 log Kow + 2.47 [38] 
n = 6, r2 = 0.99, s = 0.08 

 

Log(1/EC50) =  0.78 log Kow  + 1.37 [39] 
n = 21, r2 = 0.90, s = 0.26 

 

The latter equation [39] has an intercept 1.1 log units lower than a QSAR for linear 

alkylbenzene sulphonates [38]. The findings suggest that either ES surfactants act by a 

different mode of action to LAS and other anionic surfactants. The authors suggest 

that, unlike other anionic surfactants, which behave as polar narcotics, ES behave with 

a similar MOA to non-ionic surfactants, e.g. general narcosis. However, it also 

possible that he log Kow calculation method introduces a systematic overestimate 

when applied to ES. 

 

Zvinavashe et al. (2006) developed three hydrophobicity-based QSARs for substituted 

(mono)nitrobenzenes (OH, COOH, CN, NO2, and C6H5 excluded) to Daphnia. The 

endpoints are concentration immobilising 50% of the population (48-h IC50, µmol/L) 

to D. magna [40] and lowest rejected concentration (21-d LRCT, µmol/L) that 

significantly (p < 0.01) lowered the mean length of daphnid (D. magna) [41]. The 

model for D. carinata is not given here due to the low coefficient of determination (n 

= 12, r2 = 0.22).  

  

Log IC50 = -0.626 log Kow + 3.49 [40] 
n = 15, r2 = 0.55, s = 0.24, F = 15.8  

 

Log LRCT = -0.809 log Kow + 3.59 [41]  
n = 15, r2 = 0.65, q2 = 0.52, s = 0.25, F = 23.9  
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A model for 21-d EC50 to D. magna was also developed. For explanation of the 

endpoint a consultation with a cited (original) paper is needed. 
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5. QSARs for algae 
 

5.1 QSARs for narcoses 
 

A log Kow-based QSAR for growth inhibition to algae (S. capricornutum), expressed 

as 72-96-h EC50, was proposed by Van Leeuwen et al. (1992) (concentrations in 

mol/L) for NPN:  

 

Log EC50 = -1.00 log Kow – 1.23 [42] 
n = 10, r2 = 0.93, q2 = n.d., s = 0.17 

 

Worgan et al. (2003) reported NPN [43] and PN [44] models for EC50 obtained in a 

novel 15-min algal (C. vulgaris) assay. EC50 is reported in mmol/L. 

 

Log (1/EC50) = 1.04 log Kow – 3.28   
 [43] 
n = 10, r2 = 0.96, q2 = 0.95, s = 0.27, F = 206 

 

Log (1/EC50) = 0.641 log Kow – 1.91  [44] 
n = 10, r2 = 0.88, q2 = 0.84, s = 0.16, F = 69 

 

5.2 Global QSARs  
 

Global QSARs for algae were not identified in this review. 

 

5.3 QSARs for specific chemical classes and MOA 
 

Schmitt et al. (2000) determined proliferation toxicity of 19 nitrobenzenes toward the 

algae S. vacuolatus in a 24-h one-generation reproduction assay. The resultant EC50 

(presented in mol/L, data are available) values covering more than 4 orders of 

magnitude were subjected to a QSAR analysis using hydrophobicity in terms of log 

Kow, and calculated quantum chemical descriptors of molecular reactivity. For 13 

mononitro-derivatives and the highly hydrophobic trifluralin, a narcotic-type mode of 

action can explain most of the toxicity variation [45].  
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Log EC50 = -1.02 log Kow – 2.02  [45] 
n = 14, r2 = 0.78, s = 0.39, F = 42 

 

Adding  ELUMO yields a highly significant QSAR for 18 compounds (highly acidic 

picric acid was excluded): 

 

Log EC50 = -0.61 log Kow + 1.60 ELUMO – 1.19 [46]  
n = 18, r2 = 0.89, s = 0.42, F = 61  

 

Eq. [46] can be further improved when adding the maximum net atomic charge at the 

nitro nitrogen, qnitro-N, as the third descriptor (n = 18, r2 = 0.92). The best equation (n 

= 19, r2 = 0.92) was developed with octanol-water distribution coefficient (log Dow –  

accounting for ionization, instead of log Kow), ELUMO and qnitro-N (Eq. 47). Deviations 

from the narcosis MOA are explained with ionization, stepwise biotransformation 

(reduction) to aromatic amines, and possibility for redox-cycling. 

 

Log EC50 = -0.55 log Dow + 1.69 ELUMO – 34.3 qnitro-N + 18.4 [47]  
n = 19, r2 = 0.95, s = 0.32, F = 84  

 

Lu et al. (2000) reported measured 48-h toxicity of 40 substituted benzenes (nitro-, 

chloronitro-, dinitro-, anilines and phenols) to the alga S. obliquus in a growth 

inhibition assay. Data are available, concentration in mol/L. ELUMO was calculated 

with AM1 method in MOPAC. 

 

Log (1/EC50) = 0.272 log Kow – 0.659 ELUMO + 2.54 [48]  
n = 40, r2 = 0.79, s = 0.32, F = 71  

 

Yan et al. (2005) studied 25 nitrobenzenes with density functional theory (DFT) 

methods (B3LYP) to derive QSARs. The endpoint modelled was EC50 to alga S. 

obliquus (duration and type of the test not found in the paper, probably 48-h growth 

inhibition). Data are available, concentration in mol/L.  

 

Log (1/EC50) = 0.668 log Kow + 2.31  [49] 
n = 18, r = 0.90, s = 0.16, F = 72 
for mononitroaromatic compounds only 
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Log (1/EC50)  = 4.63 QNO2 – 26.5 ELUMO + 2.92 [50]  
n = 25, r = 0.85, s = 0.29, F = 29  

 

Log (1/EC50)  = 6.48 QNO2 – 25.1 ELUMO + 3.75 [51]  
n = 22, r = 0.93, s = 0.21, F = 57  
2,4-dinitroaniline, nitrobenzene and 2,4-dinitrophenol excluded 

 

Zvinavashe et al. (2006), developed several QSARs for substituted 

(mono)nitrobenzenes (OH, COOH, CN, NO2, and C6H5 excluded) to algae. The 

models for short term data (e.g. 15-min) are not included here. The endpoints in the 

listed QSARs are 96-h EC50 to C. pyrenoidosa [52, 53], 48-h EC50 to S. obliquus [54], 

and 96-h LC50 to S. obliquus [55, 56] (all concentrations in µmol/L). The authors 

found that ELUMO generally improves the QSARs for algae, which was not found for 

fish and daphnids. 

 

Log  EC50 = -1.07 log Kow + 4.48 [52]  
n = 15, r2 = 0.64, s = 0.33, F = 23.1  

 

Log EC50 = -0.589 + 1.450 ELUMO + 4.94 [53]  
n = 15, r2 = 0.80, q2 = 0.60, s = 0.26, F = 24.1  

 

Log EC50 = -0.360 + 0.645 ELUMO + 3.77 [54]  
n = 15, r2 = 0.83, q2 = 0.76, s = 0.17, F = 29.7  

 

Log  LC50= -0.567 log Kow + 3.49 [55]  
n = 13, r2 = 0.80, q2 = 0.70, s = 0.19, F = 42.7  

 

Log LC50 = -0.349 + 0.652 ELUMO + 3.75 [56]  
n = 13, r2 = 0.82, q2 = 0.71, s = 0.18, F = 23.5  

 

Escher et al. (2006) analysed non-target effects of β-blockers with a screening test 

battery non-specific, receptor mediated and reactive modes of action. The aquatic tests 

include 30-min V. fischeri test and 24-h fluorescence test with the alga D. subspicatus. 

For QSAR modelling, liposome-water distribution ratio at pH = 7 was measured. The 

authors concluded that all studied β-blockers were baseline toxicants but based on 

photosynthesis inhibition efficiency to algae, the compounds were 10 times more 

toxic than their modelled baseline toxicity. 
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Chen and Lin (2006) reported application of a closed system for algal toxicity test of 

chlorophenols to P. subcapitata. The dissolved oxygen production and the growth rate 

based on cell density were the response endpoints. Phenol and seven chlorophenols 

were tested using the above test technique. Median effective concentrations (EC50) 

range from 0.004 to 25.93 mg/l (based on DO production) and 0.0134 to 20.90 mg/l 

(based on growth rate). NOEC was also defined. The growth rate was found more 

sensitive response endpoint than the oxygen production, except for the case of 

pentachlorophenol. However, the differences in sensitivity between the two 

parameters were marginal. The new test method was argued more sensitive than the 

conventional algal batch tests. The results of the study indicated that the toxicity data 

of volatile organic chemicals derived by conventional algal toxicity tests may severely 

underestimate the impact of these toxicants. The results also showed that alga is very 

sensitive to chlorophenols compared to other aquatic organisms such as the 

luminescent bacteria (the Microtox test), D. magna, and rainbow trout. Two log Kow–

based QSARs are given in the paper and pKa also shows to be a good predictor of 

toxicity. The units used in the QSARs are not clear but the data are available so the 

models can be reproduced from raw data. 

 

Log (1/EC50)oxygen demand = 1.30 log Kow + 0.83  [57] 
n = 8, r2 = 0.93 

 

Log (1/EC50)growth rate = 1.16 log Kow + 1.33  [58] 
n = 8, r2 = 0.96 

 

Chen et al. (2007) developed QSARs for anilines, supposedly acting by polar 

narcosis. As an endpoint, they measured both dissolved oxygen production (DO) and 

algal growth rate EC50 to C. subcapitata (the data is available). Both tests revealed 

similar sensitivity of the alga to the effects of the anilines. The log Kow models for the 

two endpoints (EC50 in mmol/L) are: 

 

Log (1/EC50)oxygen demand = 1.14 log Kow – 1.77  [59] 
n = 19, r2 = 0.86, q2 = 0.83, s = 0.37, F = 131 

 

Log (1/EC50)growth rate = 0.946 log Kow – 1.10  [60] 
n = 20, r2 = 0.75, q2 = 0.72, s = 0.50, F = 55 
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These models were improved by inclusion of ELUMO: 

 

Log (1/EC50)oxygen demand = 0.588 log Kow – 1.33 ELUMO – 0.24  [61] 
n = 19, r2 = 0.92, q2 = 0.87, s = 0.33, F = 87 

 

Log (1/EC50)growth rate = 0.24 log Kow – 1.97 ELUMO + 0.81  [62] 
n = 18, r2 = 0.88, q2 = 0.82, s = 0.37, F = 57 

 

Two chemicals, 4-chloroaniline and 3,4-dimethylaniline, were found as outliers. An 

interesting observation was made on species sensitivity to anilines. They found that 

for various aquatic organisms, the relative sensitivity relationship for anilines is D. 

magna > V. fischeri ≥ P. reticulata ≥ P.  subcapitata ≥ P. promelas > T.  pyriformis. 

The susceptibility of P. subcapitata to anilines is similar to fish, but P. subcapitata is 

apparently less sensitive than the water flea. The lack of correlation between the 

toxicity revealed by different aquatic organisms (microalgae, D. magna, V. fischeri, 

and P. reticulata) suggests that anilines might have different metabolic routes in these 

organisms. 

 

Chen and coworkers (Chen et al., 2007; Huang et al, 2007) performed toxicity testing 

of various nitriles to P. subcapitata using a closed algal toxicity testing technique with 

no headspace. Two different response endpoints, i.e., dissolved oxygen (DO) 

production and algal growth rate, were used to evaluate the toxicity of nitriles. In 

general, the DO endpoint revealed higher inhibitory effects than that from algal 

growth rate. Halogen-substituted nitriles were found to be extremely toxic to P. 

subcapitata. With increasing numbers of the halogen atoms, higher toxicity was 

observed. The bromine substitutent also seems to be more toxic than chlorine 

substitutent. QSARs were established based on the chemicals’ ELUMO values and 

hydrophobicity (log Kow). For various aquatic organisms, the relative sensitivity 

relationship is: P. promelas > P. subcapitata > T. pyriformis > D. magna> 

luminescent bacteria (Microtox). The alga, P. subcapitata, was found to be quite 

sensitive to nitriles compared to other organisms.  

 

The correlations with log Kow alone for benzonitriles were relatively poor. However, 

reasonable correlations between 48-h EC50 (mmol/L) and ELUMO were observed. 

Log Kow was almost forced in the models after exclusion of outliers. 
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Log (1/EC50)oxygen demand = -51.8 ELUMO – 1.70  [63] 
n = 12, r2 = 0.85, q2 = 0.78, F = 58 

 

Log (1/EC50)growth rate = -53.7 ELUMO – 1.90  [64] 
n = 12, r2 = 0.85, q2 = 0.77, F = 58 

 

Log (1/EC50)oxygen demand = 0.0056 log Kow – 52.14 ELUMO – 1.51  [65] 
n = 10, r2 = 0.92, q2 = 0.81, F = 41 
(acetonitrile and benzonitrile excluded) 

 

Log (1/EC50)growth rate = 0.19 log Kow – 47.2 ELUMO – 1.65  [66] 
n = 9, r2 = 0.92, q2 = 0.51, F = 37 
(acetonitrile, benzonitrileand bromoacetonitrile excluded) 
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6. Quantitative activity-activity relationships 
 
Many quantitative activity-activity relationships (QAARs) have been published in the 

literature, although they have not been widely used in regulatory assessments. They 

are generally based on the premise that the chemicals might have the same mechanism 

of action across the species from different levels, although there might be more or less 

apparent exceptions. For example, the proelectrophiles (i.e. chemicals that become 

activated in vivo) might exhibit different toxicities depending on the compostion of 

the enzyme system in the test species. Chemicals active in the Central Nervous 

System will probably show excess toxicity in fish but could be narcotics in 

microorganisms. The anilines are considered to be narcotics to fish but are more toxic 

to Daphnia (Urrestarazu Ramos et al, 2002). It was also noted (Bearden and Schultz, 

1998) that the goodness-of-fit might be excellent for some mechanisms (e.g. different 

narcoses types) and can be relatively poor for other mechanisms (e.g. Schiff-base 

formation or Michael-type acception), to complete lack of correlation for 

proelectrophilicity. These examples show that QAARs should be applied with caution 

and with awareness for possible exceptions. 

 

There are several sources of non-standard data are frequently used to predict toxicity 

to higher species. The acute toxicity to the unicellular ciliate T. pyriformis is often 

used to predict acute toxicity to fish. Cronin et al. (1991) developed a relationship 

between 96-h LC50 to P. promelas and 48-h IGC50 for T. pyriformis, for a diverse set 

of 70 chemicals. Both toxicities are in mmol/L. 

 

Log (1/LC50) = 0.99 log (1/IGC50) + 0.35 [67] 
n = 74, r2 = 0.81, s = 0.44, f = 307 

 

This relationship was extended later to 256 chemicals. 

 

Log (1/LC50)   = 0.98 log (1/IGC50)  + 0.57 [68] 
n = 256, r2 = 0.74, q2 = 0.73, s = 0.63, F = 707   

 

Recently, Kahn et al. (2007) probed this correlation for 364 chemicals: 
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Log (1/LC50)   = 1.00 log (1/IGC50) + 0.56 [69] 
n = 364, r2 = 0.75, q2 = 0.75, s = 0.642, F = 1109   

 

Exclusion of 6 outliers (2-propen-1-ol, 2-propyn-1-ol, allyl methacrylate, N-

vinylcarbazole, 4-nitroaniline and diethanolamine) improved even more the 

correlation:  

 

Log (1/LC50)   = 1.02 log (1/IGC50)  + 0.54  [70] 
n = 358, r2 = 0.81, q2 = 0.80, s = 0.57, F = 1465   

 

Kahn et al. (2007) developed further quantitative structure-activity-activity 

relationships by adding calculated descriptors to the QAAR to improve the last 

equation but the improvement increases also the complexity of the solution. 

 

Toxicity to T. pyriformis was correlated also to the toxicity of other fish, such as 96-h 

LC50 to P. reticulata (Seward et al., 2002). LC50 and IGC50 are in mmol/L. 

 

Log (1/LC50) = 1.05 log (1/IGC50) + 0.56    [71] 
n = 124, r2 = 0.85, s = 0.42, F = 682  

 

Dimitrov et al. (2004) proposed a generic interspecies quantitative model that can be 

used to predict the acute toxicity of aldehydes to most species of aquatic organisms. 

The model is based on the flow-through LC50 to P. promelas combined with other 

selected fish acute toxicity data and on the static ciliate IGC50 to T. pyriformis data. 

The toxicity of Schiff-base acting aldehydes was defined using hydrophobicity, as the 

calculated log 1-octanol/water partition coefficient (log Kow), and reactivity, as the 

donor delocalizability for the aldehyde O-site (DO-atom). The fish model [72] 

compared favourably with the ciliate model [73] 

 

Log 1/LC50 = −2.50 + 0.48 log Kow + 18.98 DO-atom [72]  
n = 62, r2 = 0.62, s2 = 0.24, F = 48.0, q2 = 0.59 

 

Log 1/IGC50 = −0.985 + 0.53 log Kow + 11.37 DO-atom [73] 
n = 81, r2 = 0.651, s2 = 0.147, F = 72.9, q2 = 0.626.  
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The fish and ciliate surfaces appeared to be parallel, because they deviate significantly 

only by their intercepts. These observations lead to the development of a global 

QSAR for aldehyde aquatic toxicity (all concentrations are in mol/L): 

 

Log E−1 = bOrganismE + 0.505 log Kow + 14.31 DO-atom [74] 
n = 143, r2 = 0.698, s2 = 0.187, s2Fish = 0.244, s2Ciliate = 0.149,  
F = 98, q2 = 0.681 

 

This approach allows mixing of available toxicity data for development of more 

general models instead of series of species specific models on the assumption that 

chemicals acting by the same mechanism differ only with regard to the intercept in the 

QSARs. 

 

A number of correlations between acute toxicity to algae, Daphnia and fish are given 

in Lessigiarska et al. (2004). Unfortunately, the goodness-of-fit in some models is not 

good enough for all models to be recommended. Two of the models, however show 

acceptable statistical performance and allow to estimate 96-h LC50 to B. rerio from 

72-h EC50 to S. capricornutum (reduction in growth bioassay) [75] and 96-h LC50 to 

O. mykiss from 48-h EC50 to Daphnia [76]. Eq. [76] is trustworthy because of the 

large number of chemicals included despite the relatively low regression coefficient. 

Outliers were not removed in this study. The concentrations in both equations are 

expressed in mg/L. 

 

Log (1/LC50) = 1.00 log (1/EbC50) – 0.50 [75] 
n = 21, r2 = 0.67, s = 0.55, F = 39  

 

Log (1/LC50) = 0.77 log (1/EC50) – 0.27 [76] 
n = 360, r2 = 0.67, s = 0.63, F = 709  

 

Cronin et al. (2004) developed a novel rapid and economic 15-min algal (C. vulgaris) 

toxicity test (data are available). QAARs to other species were developed. The 

correlation with 48-h IGC50 T. pyriformis data was particularly good [77], shortly 

followed correlation to fish (96-h LC50 P. promelas, data are available, concentrations 

in mmol/L). The QAAR with V. fischeri is not given here due to the lower coefficient 

of determination (n = 50, r2 = 0.58). 
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Log (1/IGC50) = 0.696 log (1/EC50) + 0.551 [77]
  
n = 69, r2 = 0.86, q2 = 0.85, s = 0.40, F = 417  
(methyl acrylate, 2-hydroxyethyl acrylate, trans-2-pentenal, trans-2-hexenal 
excluded) 

 

Log (1/LC50) = 0.934 log (1/EC50) + 1.35 [78] 
n = 40, r2 = 0.84, q2 = 0.82, s = 0.69, F = 193  
(allyl methacrylate and 2-hydroxyethyl acrylate excluded) 

 

Tremolada et al. (2004) developed quantitative inter-specific chemical activity 

relationships for aquatic organisms in order to verify the utility of the QAARs for 

estimating toxicological data when no other information is available. Inter-specific 

toxicity relationships on fish, Daphnia and algae were performed for pesticides 

considering a large data set (more than 600 compounds) collected from pesticide 

manual (Tomlin, 1997), link to the compiled data not found) and grouping the data 

either on a functional (herbicides, fungicides and insecticides) or chemical class base. 

Good correlations were found between several fish species and they were improved 

by excluding, from the data set, highly specific compounds such as organophosphorus 

insecticides. Relationship between fish (rainbow trout) and Daphnia was significant 

for the whole data set, but clearly improves if congeneric classes of pesticides are 

considered. The most significant results were found for azoles (fungicides) and for all 

data set of pesticides with the exclusion of organophosphorus and carbamate 

insecticides. As expected, toxicity on algae does not correlate either with fish or with 

Daphnia on the whole data set, but excluding the classes acting specifically toward 

one organism (insecticides and several classes of herbicides), good relationships were 

found. It should be noted that the algal toxicity is compilation for at least three species 

(S. Subspicatus, S. capricornutum, Chlorella sp.) and two assays (photosynthesis 

inhibition or growth reduction) due to lack of sufficient amount of reliable data to a 

single species or test method. The analysis of the data permitted the conclusion that 

the specificity in the mode action of pesticides is the key parameter for expecting or 

not inter-specific relationships. The QAARs developed by Tremolada et al. (2004) are 

summarised in Table 2. 

 

Dyer et al. (2006) explored the potential of the U.S. EPA's Interspecies Correlation 

Estimation (ICE) program to predict single species toxicity values from a single 
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known toxicity value (http://www.epa.gov/ceampubl/fchain/webice/index.htm). ICE 

uses the initial toxicity estimate for one species to produce correlation toxicity values 

for multiple species, which can be used to develop species sensitivity distribution 

(SSD) and 5% concentration cut-off (HC5) from it. To test this approach to deriving 

HC5, the authors generated toxicity values based on measured toxicity for three 

surrogate species Pimephales promelas (Fathead minnow), Onchorynchus mykiss 

(Rainbow trout), and Daphnia magna (water flea). Algal taxa were not used due to the 

paucity of high quality algal-aquatic invertebrate and algal-fish correlations. The 

compounds used (dodecyl linear alkylbenzenesulfonate (LAS), nonylphenol, 

fenvalerate, atrazine, and copper) had multiple measured toxicity values and diverse 

MOA. Distribution parameters and HC5 values from the measured toxicity values 

were compared with ICE predicted distributions and HC5 values. While distributional 

parameters (scale and intercept) differed between measured and predicted 

distributions, in general, the ICE-based SSDs had HC5 values that were within an 

order of magnitude of the measured HC5 values. Examination of species placements 

within the SSDs indicated that the most sensitive species were coldwater species (e.g., 

salmonids and Gammarus pseudolimnaeus). 

 

http://www.epa.gov/ceampubl/fchain/webice/index.htm
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Table 2. QAAR models for diverse set of pesticides, developed by Tremolada et al. (2004). 
 
 
 
Target species Source species  QAAR Model Eq. 
Oncorhynchus mykiss 
96-h LC50 (mmol/L) 

Lepomis macrochirus  
96-h LC50 (mmol/L) 

Log Y = 0.95 log X – 0.19 
n = 199, r2 = 0.92, s = 0.44, F = 2168 
(herbicides, fungicides, insecticides) 

[79] 

Oncorhynchus mykiss 
96-h LC50 (mmol/L) 

Lepomis macrochirus  
96-h LC50 (mmol/L) 

Log Y = 0.99 log X – 0.16 
n = 174, r2 = 0.94, s = 0.39, F = 2557 
(without organophosphorus) 

[80] 

Oncorhynchus mykiss 
96-h LC50 (mmol/L) 

Leuciscus idus 
96-h LC50 (mmol/L) 

Log Y = 0.97 log X – 0.47 
n = 39, r2 = 0.92, s = 0.48, f = 447 
(herbicides, fungicides, insecticides) 

[81] 

Oncorhynchus mykiss 
96-h LC50 (mmol/L) 

Ictalurus sp. 
96-h LC50 (mmol/L) 

Log Y = 0.99 log X – 0.14 
n = 32, r2 = 0.91, s = 0.44, f = 298 
(herbicides, fungicides, insecticides) 

[82] 

Oncorhynchus mykiss 
96-h LC50 (mmol/L) 

Pimephales promelas  
96-h LC50 (mmol/L) 

Log Y = 1.00 log X – 0.22 
n = 12, r2 = 0.93, s = 0.52, f = 125 
(herbicides, fungicides, insecticides) 

 

Oncorhynchus mykiss 
96-h LC50 (mmol/L) 

Cyprinus sp. 
96-h LC50 (mmol/L) 

Log Y = 0.98 log X – 0.36 
n = 65, r2 = 0.83, s = 0.54, F = 314 
(without organophosphorus) 

[83] 

Oncorhynchus mykiss 
96-h LC50 (mmol/L) 

Cyprinus sp. 
96-h LC50 (mmol/L) 

Log Y = 0.98 log X – 0.36 
n = 65, r2 = 0.83, s = 0.54, F = 314 
(without organophosphorus) 

[84] 

Oncorhynchus mykiss 
96-h LC50 (mmol/L) 

Daphnia sp. 
(magna and pulex) 

Log Y = 0.61 log X – 0.65 
n = 267, r2 = 0.59, s = 0.98, F = 379 

[85] 
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48-h EC50 (mmol/L) 
immobilisation 

(diverse set of pesticides) 

Oncorhynchus mykiss 
96-h LC50 (mmol/L) 

Daphnia sp. 
(magna and pulex) 
48-h EC50 (mmol/L) 
immobilisation 

Log Y = 0.82 log X – 0.41 
n = 206, r2 = 0.77, s = 0.75, F = 683 
(without organophosphorus and  carbamates) 

[86] 

Oncorhynchus mykiss 
96-h LC50 (mmol/L) 

Daphnia sp. 
(magna and pulex) 
48-h EC50 (mmol/L) 
immobilisation 

Log Y = 1.0 log X – 0.21 
n = 19, r2 = 0.84, s = 0.24, F = 86 
(for azole and  carbamates insecticides) 

[87] 

Oncorhynchus mykiss 
96-h LC50 (mmol/L) 

Daphnia sp. 
(magna and pulex) 
48-h EC50 (mmol/L) 
immobilisation 

Log Y = 0.87 log X + 1.3 
n = 8, r2 = 0.80, s = 0.57, F = 24 
(for carbamate insecticides only) 

[88] 

Daphnia sp. 
(magna and pulex) 
48-h EC50 (mmol/L) 
immobilisation 

S. Subspicatus, S. capricornutum, Chlorella sp. 
96-h EC50 (mmol/L) 
photosynthesis inhibition or growth reduction 

Log Y = 0.70 log X – 0.40 
n = 60, r2 = 0.55, s = 0.83, F = 64 
(diverse set) 

[89] 

Oncorhynchus mykiss 
96-h LC50 (mmol/L) 

S. Subspicatus, S. capricornutum, Chlorella sp. 
96-h EC50 (mmol/L) 
photosynthesis inhibition or growth reduction 

Log Y = 0.58 log X – 0.71 
n = 56, r2 = 0.49, s = 0.67, F = 53 
(diverse set) 

[90] 
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7. Expert systems 
 
There are a number of expert systems developed that combine multiple QSAR models 

or use general models to predict aquatic toxicological endpoints. A comprehensive 

review of such expert systems is available from ECETOC (2003b). This review 

intended to develop awareness that expert systems and software exist and might be 

used to derive QSAR predictions for aquatic endpoints. It should be emphasized that 

if possible, several predictions can be obtained and compared in order to increase 

objectivity of the decision. However, they should be critically analysed for common 

problems. 

Amongst others, the following formalised expert system can be referenced: 

 
• ECOSAR uses a number of class-specific log Kow-based QSARs in order to 

predict the toxicity of chemicals to aquatic organisms (fish, daphnids, and green 

algae). The log QSARs are developed for chemical classes based on measured 

test data that have been submitted by industry to the U.S. Environmental 

Protection Agency (U.S. EPA). The ECOSAR Class Program has been 

developed primarily for the following scenario: (1) enter a SMILES notation; (2) 

computer determination of appropriate ECOSAR classes for the SMILES 

notation; and (3) calculate the ecotoxicity using a log Kow value. The program 

might be executes in batch mode and the result is available in text format. 

ECOSAR produces warnings in several occasions (e.g. when the water solubility 

is very low, or when the prediction is outside the range of log Kow in the training 

set). The software is freely available from the U.S. EPA (downloadable from 

http://www.epa.gov/oppt/exposure/docs/episuitedl.htm) 

• TOPKAT assesses the toxicity of chemicals from 2D molecular structure 

(SMILES notation but other input formats are also available). The program uses 

a range (Q)SAR models for assessing acute toxicity to fathead minnow and 

Daphnia. The (Q)SAR models in TOPKAT use electrotopological (E-state) 

fragments. (Q)SAR models (so called submodels) are available for different 

chemical classes and the program automatically selects the equation form the 

structural input. The program might be executed in batch mode and the result is 

available in format, directly readable by Excel for Windows. TOPKAT produces 

information for the (Q)SAR applicability domain at several levels: 1) the 

http://www.epa.gov/oppt/exposure/docs/episuitedl.htm
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prediction is within the “optimum prediction space” (OPS) of the model; 2) the 

model is within the limits of OPS; 3) all fragments identified in a molecule are 

known to the model. TOPKAT also makes visible experimental test data if such 

is available for the query chemicals (presumably used in the (Q)SAR training 

set). TOPKAT is commercial product of Accelrys Inc. (for information: 

http://www.accelrys.com/products/topkat) 

• MCASE is a knowledge-based system using fragment methodology to develop 

QSAR models for non-congeneric databases. MCASE (and MC4PC) evaluate 

the structural features of a set of non congeneric molecules and identify the 

substructural fragments, called biophores that may be responsible for the 

observed activity (i.e. chemical functionalities). The chemicals containing the 

same biophore are grouped into subsets for which independent QSAR models 

are developed. The descriptors of these models are called modulators and consist 

of fragments found within the individual sets as well as calculated transport and 

partition properties and quantum mechanical indices. The result of this operation 

is a set of QSAR models build for the congeneric sets of molecules containing 

the same biophore (identified as the “chemical functionality” responsible for the 

observed property. The domain of validity of the methodology is linked (and 

assessed) as a function of the probability that the corresponding biophore is 

related to activity and the determination that every three bonded non-hydrogen 

atom groups has been seen and therefore evaluated by the model builder or  not 

seen and therefore of questionable effect on the prediction results. Models for 

several fish species were developed (blue gill, fathead minnow, rainbow trout, 

and red killifish). Batch mode is available. MCASE is a commercial product of 

MultiCASE Inc. (for information: http://www.multicase.com). 

• OASIS uses the response-surface approach for modelling acute toxicity for two 

types of toxicochemical domains: non-covalent (reversible) acting chemicals 

and irreversible covalent bioreactive chemicals. The first domain includes 

chemicals, which meet the traditional structural requirements for neutral 

narcosis, amines, esters, phenols and anilines. The interaction of the non-

covalent acting chemicals with the lipid-bilayer region of membranes is 

delineated by descriptors assessing the bioconcentration (BCF) and global 

electrophilic character of molecules (ELUMO). The domain of reactive chemicals 

http://www.accelrys.com/products/topkat
http://www.multicase.com/
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is divided to sub-domains according to their putative mechanism of action 

conditioned by specific reactive groups. For modelling of specific chemical 

classes, the different reactivity parameters are used such as maximum donor and 

acceptor delocalizability at α-C-atom (for α,β-unsaturated alcohols), charge at 

carbonyl oxygen (for aldehydes), bond order between carbon and halogens (for 

α,β- unsaturated halides), etc. In addition, inter-species QSARs for acute 

toxicity to 17 aquatic species, such as fish, snail, tadpole, hydrozoan, crustacean, 

insect larvae, and bacteria were developed. The TIMES platform is used to 

predict the individual and interspecies models for acute aquatic toxicity (for 

information: http://www.oasis-lmc.org/software.php) 

• OECD (Q)SAR Application Toolbox. The OECD has started the development 

of a (Q)SAR Application Toolbox as a means of making QSAR technology 

readily accessible. The Toolbox is developed in two phases. The first phase, 

developed by the LMC, Bulgaria, emphasises technological proof-of-concept. 

The Toolbox currently contains several databases (also for aquatic toxicity), 

includes tools to assist the user in the formation of chemical categories and 

filling of data gaps by read across, and provides possibility for using a library of 

(Q)SAR models (this functionality will be extensively developed in the second 

phase, together with refinement of grouping schemes). The input is available in 

several formats, including SMILES and drawing structure. Searching facility is 

also available. For information, visit http://www.oecd.org, (Q)SARs Project). 

The “proof-of-concept” version of the Toolbox will be publicly available in 

March 2008. 

• TerraQSAR - FHM is a stand-alone neural network-based program to compute 

the acute toxicity (96-hr LC50) of organic chemicals to the fathead minnow using 

proprietary neural network algorithm. The chemical input is SMILES string. The 

output is either in mg/L, or in log (L/mmol). TerraQSAR – FHM is commercial 

product of TerraBase Inc. (for information: http://www.terrabase-inc.com). 

• ASTER (ASsessment Tools for the Evaluation of Risk) was developed by the 

U.S. EPA to assist regulators in performing ecological risk assessments. ASTER 

is an integration of the AQUIRE toxic effects database and the QSAR system, a 

structure-activity based expert system. When empirical data are not available 

mechanistically-based predictive models are used to estimate ecotoxicology 

http://www.oasis-lmc.org/software.php
http://www.oecd.org/
http://www.terrabase-inc.com/
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endpoints, chemical properties, biodegradation, and environmental partitioning. 

ASTER is currently not publicly available. 

• ChemProp (Chemical Properties Estimation Software System) was developed by 

the UFZ Centre for Environmental Research, Germany. Methods within 

ChemProp are implemented in a flexible form, allowing for regular updating and 

extension according to the scientific progress. The system contains calculation 

methods (from literature and original developments) for environmentally 

relevant physical-chemical and environmental fate properties, and toxicities. The 

software incorporates a new characterization scheme for acute toxicity to 

daphnid and algae, with fish system being under development. Structural input 

of one or many molecules is achieved either by means of a graphical molecule 

editor, via SMILES strings, input or compilation from MDL or SMD formatted 

molecule files, or by queries within the integrated structure database – e.g. 

name, registry number, property profile, substructures. The primary result output 

of ChemProp are formatted tables in HTML, visualised in an internal browser. 

Import to usual spreadsheet software is possible. Pure text output (ASCII), 

additional background information on calculation and model details as well as 

visualisation of substructure search results is available. Basic statistical analyses 

including respective plots and compound class specific analyses (either user-

specified or fully automated) are available. For information, visit: 

http://www.ufz.de; for availability, contact developer:  Dr Gerrit Schüürmann at 

gerrit.schuurmann@ufz.de). 

• PropertEst (Property Estimation) was developed by the Fraunhofer Institute, 

Germany. The system is regularly revised. The software system currently 

contains approximately 140 QSAR models. When developing the system, two 

aspects were important: 1) validation: chemicals not considered in the 

development of the model were tested for predicted compliance with measured 

data, and 2) user-friendliness: input of molecular structure/smiles codes, 

warning when extrapolating/reactive substructures, etc. There is a manual giving 

an overview on structure-activity-relationships, descriptors and classification 

models describes how to use PropertEst and lists all models included. Further 

indications are given on how to choose an adequate model for a certain 

substance. However, the user is still free to choose a QSAR model and to assess 

http://www.ufz.de/
mailto:gerrit.schuurmann@ufz.de
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the calculated values according to his “feelings”. For information, visit 

http://www.ime.fraunhofer.de/aoe/chp/expo/qsar.propertest.jsp; for availability, 

contact Dr Martin Müller (contact information available on the website). 

 

Salvito et al. (2002) used ECOSAR for refinement of LC50 estimates of fragrance 

materials to fish, derived from a general (log Kow-based) model. A predicted no-effect 

concentration (PNEC) was calculated by the QSAR estimate and assessment factor 

(AF). A conservative AF of 106 was applied to the endpoint if predicted by the 

general QSAR. PNEC was compared with the predicted environmental concentration 

(PEC) and if the ratio PEC/PNEC was grater than 1, the estimate was derived by 

ECOSAR. This procedure led to a reduction in the number of chemicals with 

PEC/PNEC > 1 from 27% to 8% from a total of 2141 substances. 

 

Sanderson et al. (2003) performed probabilistic hazard assessment of environmentally 

occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. 

In the absence of extensive ecotoxicological data, the authors scanned all the 

compounds observed in the environment for toxicological properties by QSARs. The 

results of the probabilistic distribution of environmental and effect concentrations and 

hazard quotients (HQs) did not indicate significant acute risks prior to application of 

assessment factors. Compared with measured effect concentrations SAR predictions 

(as from ECOSAR) were more “sensitive” in about 80% of the cases. Based on 

ECOSAR predictions, the following species sensitivity to drugs was noted: alga > 

daphnid > fish. However, it was recognized that most of the drugs are optimized to 

have specific effects and the models in ECOSAR are not generally trained on 

pharmaceuticals. 

 

Sanderson et al. (2004), extended the probabilistic study to 2986 different 

pharmaceuticals, grouped in 51 classes relative to estimated hazard with ECOSAR. 

The overall relative order of susceptibility (daphnids > fish > algae) was found 

different from the previous study. The paper is reach on details about ECOSAR. 

  

Moore et al. (2003) compared model predictions for 96-h LC50s to P. promelas to the 

corresponding measured toxicity values available in the AQUIRE database using a 

testing data set of 130 substances that had not been included in the training data sets 

http://www.ime.fraunhofer.de/aoe/chp/expo/qsar.propertest.jsp
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of the QSAR models. The testing data set was heavily weighted with neutral organics 

of low molecular weight and functionality. Many of the testing data set substances 

also had a nonpolar narcosis mode of action and/or were chlorinated. A variety of 

statistical measures (correlation coefficient, slope and intercept from a linear 

regression analysis, mean absolute and squared difference between log prediction and 

log measured toxicity, and the percentage of predictions within factors of 2, 5, 10, 

100, and 1,000 of measured toxicity values) indicated that the probabilistic neural 

network (PNN) model had the best model performance for the full testing data set of 

130 substances. The rank order of the remainder of the models depended on the 

statistical measure employed. TOPKAT also had excellent model performance for 

substances within its optimum prediction space. Only 37% of the substances in the 

testing data set, however, fell within this optimum prediction space. Other methods 

included in the study comprised ECOSAR, computational neural network (CNN), 

ASTER, and OASIS. 

 

In a study by de Roode et al. (2006), four QSARs were developed to predict toxicity 

for 170 compounds from a broad chemical class, using them as a black-box. 

Predictions were obtained for 122 compounds, indicating an important drawback of 

QSARs, i.e., for 28% of the compounds QSARs were not applicable. ECOSAR, 

TOPKAT, and QSARs for non-polar and polar narcosis generated predictions for 120, 

39, 24, and 11 compounds, respectively. Correlations between experimental and 

predicted effect concentrations were significant for TOPKAT and the QSAR for polar 

narcosis, but generally poor for ECOSAR and the QSAR for non-polar narcosis. 

When predicted effect concentrations for fish were allowed to deviate from 

experimental values by a factor of 5, correct predictions were generated for 77%, 

54%, 68%, and 91% of the compounds using ECOSAR, TOPKAT, and the QSARs 

for non-polar and polar narcosis, respectively. The authors found impossible to 

indicate specific chemical classes for which a QSAR should be used or not. The 

results show that currently available QSARs cannot be used as a black-box and some 

understanding is needed. 
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8. Integrated testing strategies 
 

Bradbury et al. (2004) published a vision paper on meeting the scientific needs of 

ecological risk assessment in a regulatory context. According to the authors, 

components of an intelligent testing strategy include exposure information, threshold 

of toxicological concern (TTC), QSARs, read-across methods and in vitro testing 

methodologies. TTC is an exposure threshold value for chemicals, below which no 

significant risk is expected. Combined with simple or more refined exposure 

scenarios, TTC values can form the basis of an intelligent testing approach in a tiered 

risk-assessment scheme. Figure 1 shows how this testing scheme can help to set data-

generation priorities. 

 

Gubbels-van Hal et al. (2005) exercised practically an alternative approach for the 

safety evaluation of new and existing chemicals, which the authors named as 

integrated testing. Various in vitro and in silico methods without animals were applied 

to 10 substances listed on the European List of Notified Chemical Substances 

(ELINCS) with a complete test database-set available. The hazard assessment for 

these substances was performed on basis of available non-animal data, QSAR, PBBK-

modelling and additional, new in vitro testing was applied. Based on these data 

predictions on fish toxicity, acute toxicity, skin- and eye-irritation, sensitisation, and 

toxicity after repeated dosing were made. The predictions were compared with the 

outcome of the in vivo tests. Nine out of ten predictions on fish LC50 proved to be 

correct. For skin- and eye-irritation 70% was predicted correctly. Sensitisation was 

predicted correctly for 7 out of 10 substances, but three false negatives were found. 

Acute oral toxicity (LD50) and repeated dose toxicity were less successful (5 out of 10 

and 2 out of 10 correct predictions, respectively). Application of the PBBK model 

proved successful. Acute dermal toxicity was predicted correctly in 9 out of 10 cases. 

In general an over-estimation of systemic toxicity was found, which can be explained 

by an over-prediction of cytotoxicity and worst case assumptions on absorption and 

binding to (plasma) proteins. This integrated approach revealed potential to a 38% 

reduction of test animals.  
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Figure 1. A scheme of efficient risk assessment, after Bradbury et al.  (2004). 
 

Arnot et al. (2006) reported a system for screening level Risk Assessment, 

Identification and Ranking (RAIDAR) for prioritisation of chemicals by estimating 

environmental fate and transport, bioaccumulation and exposure to human and 

wildlife. The authors argue that the system is applicable when little or no empirical 

property data exists and emission rates are known only approximately. Although the 

uncertainties in the output might be high, the results may be adequate to “bin” 

substances into groups of similar risk and thus compare high and low risk potential. 

The conceptual overview of the system is given in Figure 2. 
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Figure 2. Conceptual overview of the RAIDAR model, after Arnot et al. (2006). 
 
 
Grindon et al. (2006) described a research project sponsored by Defra on the status of 

alternatives to animal testing with regard to the European Union REACH 

(Registration, Evaluation and Authorisation of Chemicals) system for safety testing 

and risk assessment of chemicals. The project covered all the main toxicity endpoints 

associated with the REACH system. The paper focuses on the prospects for using 

alternative methods (both in vitro and in silico) for environmental (aquatic) toxicity 

testing. The manuscript reviews tests based on fish cells and cell lines, fish embryos, 

lower organisms, and the many expert systems and QSARs for aquatic toxicity 

testing. Decision-tree style integrated testing strategies are also proposed for acute 

aquatic toxicity (Figure 3) and chronic toxicity, including bioaccumulation (Figure 4), 

followed by a number of recommendations for the future facilitation of aquatic 

toxicity testing with respect to environmental risk assessment. 
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Figure 3. Decision-tree testing strategy for acute environmental toxicity testing after 
Grindon et al. (2006). Some details on the validation status of in vitro methods are omitted. 
UTC stands for Upper threshold concentration – Step Down approach, TG – for test 
Guideline, C & L – classification and labelling, RA – risk assessment. 
 

 
Figure 4. Decision-tree testing strategy for chronic environmental and bioaccumulation 
toxicity testing after Grindon et al. (2006). 
 
ECETOC (2005) proposed a two-tiered approach (Figure 5) with aim to avoid, where 

possible, using whole fish in aquatic toxicity assessment, or at least to minimize the 
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number of fish used, when there are no acceptable alternatives. The ECETOC 

integrated strategy is shown in Figure 5. The algal test refers to 72-h algal inhibitory 

assay (OECD TG 203) and the daphnid test refers to 48-h immobilization assay 

(OECD TG 202). In the comparison between algal and daphnid toxicity, if the ratio is 

< 0.5 or > 2 then, depending on data, fish acute step down procedure is suggested, or a 

limit test. If the ratio is between 0.5 and 2, then it should be assumed that the 

sensitivity of the two assays is similar and 48-h fish embryo toxicity assay is 

recommended to increase the confidence in predicting acute toxicity to fish. If either 

of the algal or daphnid EC50 is more sensitive than the 48-h embryo toxicity assay, 

then data from the most sensitive species will be used for risk assessment and no 

further testing will be required. The authors note, however, that the suggested 

approach is theoretical and should be evaluated thoroughly before being applied to 

risk assessment. 

 
 
Figure 5. Flow-diagram representing the proposed strategy for assessing acute aquatic 
toxicity using currently available techniques, after ECETOC (2005). 
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In August 2005, a consortium contracted to develop a scoping study on the 

Development of a Technical Guidance Document on information requirements on 

intrinsic properties of substances (RIP 3.3-1) delivered a report with 14 appendices, 

one of which (Appendix 10) aimed to define an Intelligent Testing Strategy (ITS) for 

assessing the aquatic toxicity of a substance, within the context of REACH. The 

scoping study is known also as the TAPIR (Three point three – A Project for the 

Information Requirements of REACH) project (ECB, 2007). Appendix 10 developed 

an integrated strategy guidance for data generation in a stepwise approach, where, in 

principle, a higher level would correspond to more relevant, certain and accurate data. 

The strategy builds on the concept that if the available information is not sufficient to 

meet the regulatory needs, further gathering of information at a succeeding step in the 

testing strategy is needed. If the available information is sufficient and the standard 

information requirements are met, no further gathering of information is required. The 

strategy starts with evaluation of available information and check whether it covers 

the tonnage band requirements as specified in different Annexes of REACH. 

Exposure information at this point can trigger data generation or possible waiving. If 

conclusion on the aquatic toxicity endpoint is possible, it should be done. If not, 

refinement of inadequate data and filling of data gap should be done, according to the 

information requirements and needs. The possible ways suggested are either through 

use of scientifically valid QSAR, grouping and read across, or by performing a test, if 

needed. The TAPIR ITS for aquatic toxicity formed a basis for the development of the 

Technical Guidance on Information Requirements for this endpoint under REACH 

Implementation Project (RIP) 3.3-2 (ECB, 2007). 

 

The REACH TGD proposes two different decision schemes for classification and 

labelling and for chemical safety assessment (PNEC derivation). For determination of 

the definitive toxicity criterion (NOEC < 0.01 mg/L) in the context of PBT 

assessment, chronic test must be performed. For determination of the screening 

toxicity criterion (L/EC50 < 0.1 mg/L), however, data from reliable non-standard tests 

and non-testing methods, including valid QSAR predictions, may also be used. If 

screening criterion is met, the substance is referred to definitive toxicity testing and 

chronic studies are required regardless of the tonnage band, unless the acute L/EC50 < 
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0.01 mg/L, which automatically confirms that the substance fulfils the definitive 

toxicity criterion. 

 

According to the REACH TGD, environmental classification and labelling of a 

substance is generally based on data from short-term tests to fish, invertebrate and 

algae (recommended tests and endpoints are given in Section 4 of this document). 

Classification & Labelling should be performed for all substances registered in 

REACH.  

 

 
 
Figure 6. Decision scheme for classification and labelling, after the TGD for REACH. 
 
As a first step, all available information on a substance has to be collected and 

evaluated (Figure 6). Further, informational requirements for tonnage bands (as an 

indicator for exposure) should be met. For substance between 1 and 10 tpa, if EC50 for 

invertebrates and algae/aquatic plants are available, and there are no mitigating factors 
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limiting the bioavailablility, the substance should be classified on the lowest effect 

value. It also reads there that if a reliable QSAR result for fish is available, or 

additional information (e.g. from read-across) can be provided, this value should be 

considered. For substances > 10 tpa, acute fish is required. However, derogations 

from the standard information requirements may be made in some circumstances. An 

interesting case is if acute data on invertebrates and algae are available and EC50 for 

both species is > 1 mg/L. In this case, information on acute toxicity to fish will be 

necessary. If calculation of an LC50 to fish with a reliable QSAR is possible, this 

information can be used together with the available effect data for the purpose of 

classification. QSARs can be also used to argue that fish is not the most sensitive 

species from the three trophic levels. 

 

The use of QSAR under reach for safety assessment and PNEC derivation will be 

more limited probably than for Classification & Labelling. QSAR for long 

term/chronic effects will be needed. QSARs for short term toxicity could be used in a 

weight of evidence approach and for estimation of species sensitivity. For the latter 

purpose, sets of models for different species and from different trophic levels will be 

required. 
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9. Conclusions 
 
The purpose of this review was to collect information for sources of aquatic toxicity 

data, recently published quantitative structure-activity relationship (QSAR) models, 

computational tools for estimation of chemical toxicity aquatic to aquatic organisms, 

and to capture the current understanding of what constitutes an integrated testing 

strategy (ITS) for this endpoint as well as in more general terms, in the scientific 

literature and for the purposes of REACH. Exhaustive review going back to the 80’ 

was not performed since the modelling of aquatic toxicity is a large field with many 

different aspects but an effort was done to review most recent papers in well rated 

journals. The understanding of the problems and possible solutions, however, require 

a widespread knowledge of recent and past achievements. Predictive capabilities do 

not increase overnight but gradually with increasing of data and improvement of 

computational facilities. 

 
With respect to data, several databases are known and lots of data is published in the 

literature. However, the number of tested chemicals with reliable and compatible test 

data remains small compared to regulatory inventories of interest. The biggest 

datasets used for QSAR modelling comprise about 550 diverse chemicals with 96-

LC50 to P. promelas (reported initially by Russom et al., 1997, and further updated). 

This data set has been used by various workers (Netzeva et al., 2005; Papa et al., 

2005; Amini et al., 2007; Kahn et al., 2007), and is generally available from 

publications. Another big fish toxicity dataset with about 270 96-h LC50 to O. mykiss 

was compiled for pesticides in DEMETRA (Mazzatorta et al., 2005; Casalegno et al., 

2006). This data set is also available from the papers. For Daphnia, the biggest data 

set compiled and used in the context of QSAR model development and knowledge 

mining was found in the paper of Von der Ohe et al. (2005). It contains 370 measured 

LC50 values for D. magna and other Daphnia species. The data set is available from 

the paper. Another big data set for Daphnia was reported by Toropov and Benfenati 

(2006). It contains 262 LC50 values to diverse set of pesticides (available). A large 

compilation of toxicity data (> than approx. 100) to algae was not detected. However, 

it could be thought possible from different sources available. One problem with algal 

data is the high variability of data due to the large diversity of methods and protocols 

used for its measurement. In fact, one of the biggest consistent data sets for aquatic 
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toxicity was developed for the ciliate T. pyriformis. The author of the database claims 

that the TETRATOX database is a collection of toxic potency data for more than 

2,400 industrial organic compounds of which more than 1,600 have been published 

(http://www.vet.utk.edu/TETRATOX). The data from TETRATOX have been 

extensively used for knowledge mining, QSAR and QAAR development as well as a 

milestone in testing of new modelling algorithms. QSARs to Tetrahymena, however, 

were not reviewed specifically in this study since protozoa remind outside of the 

recommended test methods for aquatic toxicity testing under REACH despite the fact 

that non-standard data could and should be compiled, when available, in order to 

apply weight of evidence hazard assessment of substances. Compared to the REACH 

expected inventory (registration of 30,000 chemicals), the experimental data used in 

QSAR models covers only about 1.8% with measured fish toxicity data and 1.2% 

with measured daphnid toxicity data on the assumption that all tested chemicals will 

be potentially registered. Therefore, existing data and non-testing methods will 

become increasingly important. 

  

With respect to the QSAR models reviewed, it seems that more and better quality 

models are developed for fish > daphnid > algae. Such subjective observation might 

be due to the magnitude of the saving potential of non-testing methods applied to 

toxicity testing but the environmental protection goal is to ensure concentrations that 

will be protective to the most sensitive species in the aquatic ecosystem. The review 

showed that for different chemical classes and different methodologies, the perception 

for the “most sensitive species” changes and fish do not always seem to be most 

sensitive. In this respect, development of models for toxicity to all trophic level is 

important.  

 

Narcosis seems to be the best represented MOA in terms of available QSARs. 

Narcotics demonstrate also low interspecies variability and are associated with low 

acute to chronic ratios (Ahlers et al., 2006) but problem in identifying narcotics still 

exist. In this respect, expanding the knowledge and computational capability to 

predict MOA from chemical structure is important but also the understanding of the 

biological component should not be neglected. In chemico and in vitro methods could 

be helpful to indicate the potential MOA, and assist in identifying reactive chemicals 

http://www.vet.utk.edu/TETRATOX
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(Schultz et al., 2006), In silico derived structural and physico-chemical rules  also 

have a large potential for identifying reactive chemicals (Amaury et al., 2007). 

 

A subjective observation is also that in the recent years the number of papers 

reporting complex computational approaches increase over the MOA-based papers. 

As the diversity of the methods to mine the same data is most cases is positive for 

increasing the confidence in the predictions from these data, the transparency and the 

availability of such approaches is some times shaded by the complexity of the 

approach. Thus, a potential solution could be development of databases with QSAR 

estimates, a need coming also from the utilisation of grouping and read-across, but the 

history of the models should be traceable and the quality should be good. The reality 

is that many models are developed with methodological goals and appreciation of one 

or more aspects of the QSARs is missing. Therefore, the development of a dynamic 

QSAR inventory with transparent and comprehensive documentation, as initiated by 

ECB (Worth et al., 2007), could increase the utility of many modelling efforts.  

 

The expert systems (public or commercial) provide a robust tool for estimation of 

toxicity. A progressive trend in increasing availability is noted by the influx of open 

source applications and automation of the estimation workflows. There is also an 

increased recognition of the need of reliable and accessible tools from OECD, ECB, 

national regulatory authorities and Industry. Traditionally, QSARs are implemented in 

the expert systems but QAAR models were also recognised as a potential means for 

filling of data gaps but also to study species sensitivity and derive PNEC from SSD.  

 

Finally, several literature-reported ITSs were reviewed. They all differ depending on 

the background and goals of the authors. Some of the strategies are general as a 

conceptual framework and others go in details about the tests to be used and their 

status. Some ITS target risk assessment with different balance in the accents on 

hazard and exposure, and others target only hazard assessment. Some of them are 

skewed towards regulatory purpose and others on avoiding testing. Despite of all 

differences, however, all reviewed ITSs identify the use of QSARs and in silico 

methods, in general, as an essential element of the integrated strategy.  
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Appendix 1. Chemical Abstract Number (CAS), name and acute toxicity to the 

fathead minnow (96-h log (1/LC50)) of the compounds studied by Netzeva et al. 

(2005). The use of this data set requires citation of the original paper. 

 

CAS 

 

Name 

 

Log (1/LC50) 

(mmol/L) 

10015 4-(hexyloxy)-m-anisaldehyde 1.947 

10026 5-bromo-2-nitrovanillin 0.576 

10048 p-chlorophenyl-o-nitrophenyl ether 2.114 

10059 3'-chloro-o-formotoluidide 0.561 

10060 di-n-butylisophtalate 2.490 

10071 1,1-diphenyl-2-propyn-1-ol 1.273 

10082 4,7-dithiadecane 1.375 

10117 4,9-dithiadodecane 1.839 

10151 2-chloroethyl-n-cyclohexyl carbamate 0.769 

50066 phenobarbital -0.319 

51285 2,4-dinitrophenol 1.141 

51796 urethane -1.770 

54217 salicylic acid, sodium salt -1.130 

55210 benzamide -0.737 

57147 1,1-dimethylhydrazine 0.884 

57330 pentobarbital 0.700 

57432 amobarbital 0.423 

58082 caffeine 0.109 

58275 2-methyl-1,4-naphthoquinone 3.195 

58902 2,3,4,6-tetrachlorophenol 2.352 

59507 4-chloro-3-methyl phenol  1.286 

59972 tolazoline hydrochloride -0.255 

60139 amphetamine sulfate 1.107 

60297 diethyl ether -1.538 

60413 strychnine hemisulphate salt 2.538 

62533 aniline -0.158 

63252 carbaryl  1.353 
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64175 ethanol -2.489 

65305 nicotine sulfate 1.535 

65452 2-hydroxybenzamide 0.133 

66251 hexanal  0.855 

66762 dicumarol 1.818 

67367 p-phenoxybenzaldehyde 1.634 

67561 methanol-rhodamine  -2.963 

67630 2-propanol  -2.205 

67641 acetone  -2.146 

67663 chloroform 0.228 

67685 methyl sulfoxide -2.639 

67721 hexachloroethane  2.190 

70304 2,2'-methylene bis(3,4,6-trichlorophenol) 4.287 

70699 4'-aminopropiophenone 0.009 

71238 1-propanol -1.887 

71363 1-butanol -1.368 

71410 1-pentanol -0.729 

71432 benzene  0.502 

71556 1,1,1-trichloroethane  0.402 

71738 thiopental,sodium salt 1.004 

75058 acetonitrile -1.603 

75070 ethanal  0.155 

75092 dichloromethane -0.589 

75478 iodoform 2.130 

75650 2-methyl-2-propanol -1.937 

75898 2,2,2-trifluoroethanol -0.075 

75978 3,3-dimethyl-2-butanone 0.061 

76017 pentachloroethane 1.429 

77714 5,5-dimethylhydantoin -2.109 

77747 3-methyl-3-pentanol -0.818 

77758 3-methyl-1-pentyn-3-ol -1.094 

78273 1-ethynyl-cyclohexanol -0.314 

78513 tris(2-butoxyethyl) phosphate 1.551 
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78831 2-methyl-1-propanol -1.285 

78875 1,2-dichloropropane -0.051 

78900 1,2-diaminopropane -1.134 

78922 2-butanol -1.695 

78933 2-butanone -1.650 

78966 1-amino-2-propanol -1.526 

79005 1,1,2-trichloroethane 0.213 

79016 trichloroethylene 0.474 

79209 methyl acetate  -0.635 

79345 1,1,2,2-tetrachloroethane 0.917 

79776 b-ionone 1.577 

79958 4,4'-isopropylidenebis(2,6-dichlorophenol) 2.440 

80466 p-tert-pentylphenol 1.802 

80524 1,8-diamino-p-menthane 0.416 

81196 a,a-2,6-tetrachlorotoluene 2.375 

83329 acenaphthene 1.950 

83341 3-methylindole 1.171 

83794 rotenone 4.943 

84628 diphenyl phthalate 3.600 

84662 diethyl phthalate 0.844 

84742 di-n-butylorthophthalate  2.515 

86500 azinphos-methyl 3.695 

87172 salicylanilide 1.732 

87683 hexachloro-1,3-butadiene 3.462 

87865 pentachlorophenol  3.079 

88062 2,4,6-trichlorophenol  1.334 

88302 3-trifluoromethyl-4-nitrophenol 1.355 

88686 anthranilamide -0.463 

88755 2-nitrophenol -0.061 

88857 2-sec-butyl-4,6-dinitrophenol 2.536 

90028 salicylaldehyde 1.725 

90153 1-naphthol 1.493 

90437 2-phenylphenol 1.442 
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90595 3,5-dibromosalicylaldehyde 2.518 

91203 naphthalene 1.320 

91225 quinoline 0.220 

91656 N,N-diethylcyclohexylamine 0.861 

91667 N,N-diethylaniline 0.959 

91883 2-(n-ethyl-m-toluidino)ethanol 0.530 

93914 1-benzoylacetone 2.169 

94097 ethyl p-aminobenzoate  0.662 

94622 piperine  1.561 

95012 2,4-dihydroxybenzaldehyde 1.023 

95476 o-xylene  0.811 

95487 o-cresol 0.888 

95501 1,2-dichlorobenzene 1.191 

95512 2-chloroaniline  1.351 

95523 2-fluorotoluene  0.756 

95578 2-chlorophenol  0.969 

95636 1,2,4-trimethylbenzene 1.192 

95750 3,4-dichlorotoluene 1.743 

95761 3,4-dichloroaniline  1.364 

96059 allyl methacrylate 2.105 

96139 2,3-dibromopropanol 0.487 

96173 2-methylbutyraldehyde 0.936 

96184 1,2,3-trichloropropane  0.346 

96220 3-pentanone -1.252 

96297 2-butanone oxime -0.986 

96800 2-(diisopropylamino)ethanol -0.141 

97029 2,4-dinitroaniline  1.072 

97234 2,2'-methylenebis(4-chlorophenol) 2.939 

98544 p-tert-butylphenol 1.465 

98828 isopropylbenzene 1.279 

98862 acetophenone -0.130 

98953 nitrobenzene 0.015 

99036 m-aminoacetophenone -0.451 
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99081 m-nitrotoluene 0.729 

99978 N,N-dimethyl-p-toluidine  0.415 

100016 p-nitroaniline 0.043 

100027 4-nitrophenol  0.375 

100107 p-dimethylaminobenzaldehyde 0.514 

100254 1,4-dinitrobenzene 2.374 

100378 N,N-diethylethanolamine -1.182 

100414 ethylbenzene  0.943 

100469 benzylamine 0.021 

100527 benzaldehyde  1.144 

100618 N-methylaniline 0.030 

100641 cyclohexanone oxime -0.264 

100709 2-cyanopyridine -0.843 

100710 2-ethylpyridine -0.587 

100798 solketal -2.102 

100970 hexamethylenetetramine  -2.551 

101848 phenyl ether 1.629 

102272 N-ethyl-m-toluidine 0.436 

102692 tripropylamine 0.449 

102716 triethanolamine -1.898 

103059 benzyl-tert-butanol 0.393 

103764 1-(2-hydroxyethyl)piperazine -1.692 

103833 N,N-dimethylbenzylamine 0.554 

103902 4-acetamidophenol -0.731 

104132 4-butylaniline 1.165 

104405 nonylphenol  3.197 

104767 2-ethyl-1-hexanol 0.664 

104881 4-chlorobenzaldehyde 1.805 

104905 5-ethyl-2-methylpyridine 0.174 

105146 5-diethylamino-2-pentanone -0.330 

105533 diethyl malonate  1.017 

105679 2,4-dimethylphenol 0.867 

105759 dibutyl fumarate  2.686 
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105997 dibutyl adipate 1.851 

106401 p-bromoaniline 0.559 

106423 p-xylene 1.078 

106445 4-methylphenol  0.817 

106478 4-chloroaniline  0.620 

106489 4-chlorophenol 1.323 

106490 4-toluidine  -0.143 

106638 isobutyl acrylate  1.788 

106945 1-bromopropane 0.262 

107028 acrolein  3.448 

107062 1,2-dichloroethane -0.138 

107073 2-chloroethanol  0.203 

107108 propylamine -0.717 

107120 propionitrile -1.441 

107142 chloroacetonitrile 1.748 

107153 ethylenediamine -0.564 

107186 allyl alcohol 2.259 

107197 2-propyn-1-ol  1.564 

107299 acetaldoxime -0.109 

107415 2-methyl-2,4-pentanediol -1.957 

107459 tert-octylamine 0.720 

107471 tert-butyl sulfide 0.701 

107879 2-pentanone -1.158 

108101 4-methyl-2-pentanone  -0.732 

108203 isopropyl ether -0.886 

108883 toluene  0.406 

108894 4-picoline -0.636 

108907 chlorobenzene 0.823 

108930 cyclohexanol -0.847 

108941 cyclohexanone  -0.873 

108952 phenol  0.514 

108996 3-picoline -0.190 

109013 1-methylpiperazine -1.361 
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109068 2-picoline -0.984 

109079 2-methylpiperazine -1.350 

109604 propyl acetate 0.231 

109648 1,3-dibromopropane 1.918 

109659 1-bromobutane 0.572 

109739 butylamine -0.564 

109751 allyl cyanide -0.433 

109762 1,3-diaminopropane -1.206 

109773 malononitrile  2.072 

109853 2-methoxyethylamine -0.844 

109897 diethylamine -1.068 

109977 pyrrole -0.496 

109999 tetrahydrofuran -1.476 

110009 furan 0.048 

110065 tert-butyl disulfide 2.115 

110123 5-methyl-2-hexanone -0.144 

110407 diethyl sebacate  1.981 

110430 2-heptanone -0.060 

110543 hexane 1.537 

110565 1,4-dichlorobutane 0.391 

110587 amylamine -0.308 

110623 valeraldehyde  0.842 

110656 2-butyne-1,4-diol 0.206 

110736 2-(ethylamino)ethanol -1.220 

110827 cyclohexane 1.269 

110861 pyridine  -0.127 

110883 s-trioxane -1.820 

110930 6-methyl-5-hepten-2-one 0.168 

111137 2-octanone 0.552 

111159 2-ethoxyethyl acetate 0.497 

111251 1-bromohexane 1.680 

111262 hexylamine 0.252 

111273 1-hexanol 0.019 
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111422 diethanolamine -2.651 

111466 2-hydroxyethyl ether -2.850 

111477 n-propyl sulfide 0.736 

111682 n-heptylamine 0.723 

111693 1,4-dicyanobutane -1.252 

111706 1-heptanol 0.527 

111831 1-bromooctane 2.363 

111864 octylamine 1.396 

111875 1-octanol  0.950 

111900 2-(2-ethoxyethoxy)ethanol -2.296 

112050 nonanoic acid 0.182 

112129 2-undecanone 2.055 

112209 nonylamine 1.822 

112276 triethylene glycol  -2.601 

112301 1-decanol 1.819 

114261 propoxur  1.376 

115195 2-methyl-3-butyn-2-ol -1.592 

115208 2,2,2-trichloroethanol -0.301 

115322 dicofol  2.788 

115866 triphenyl phosphate 2.574 

115902 fensulfothion 0.854 

116063 aldicarb 2.344 

118558 phenyl salicylate 2.259 

118616 ethyl salicylate 0.924 

118796 2,4,6-tribromophenol 1.704 

119346 4-amino-2-nitrophenol 0.629 

119619 benzophenone  1.108 

120070 N-phenyldiethanolamine -0.608 

120218 4-(diethylamino)benzaldehyde 0.870 

120809 catechol 1.077 

120821 1,2,4-trichlorobenzene 1.783 

120832 2,4-dichlorophenol 1.323 

121142 2,4-dinitrotoluene 0.875 
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121324 3-ethoxy-4-hydroxybenzaldehyde 0.278 

121335 vanillin  0.426 

121697 N,N-dimethylaniline  0.190 

121733 1-chloro-3-nitrobenzene 0.923 

121755 malathion 1.370 

121879 2-chloro-4-nitroaniline  0.961 

122032 p-isopropyl benzaldehyde 1.350 

122394 diphenylamine 1.650 

122996 2-phenoxyethanol -0.396 

123079 4-ethylphenol 1.070 

123159 2-methylvaleraldehyde 0.727 

123546 2,4-pentanedione  -0.243 

123660 ethyl hexanoate 1.210 

123728 butanal  0.654 

123864 butyl acetate 0.810 

123911 1,4-dioxane  -2.048 

124221 dodecylamine 3.255 

126738 tributyl phosphate  1.384 

126818 5,5-dimethyl-1,3-cyclohexanedione -1.914 

127004 1-chloro-2-propanol -0.414 

127184 tetrachloroethylene  1.093 

127662 2-phenyl-3-butyn-2-ol 0.112 

128370 2,6-di-tert-butyl-4-methylphenol 2.783 

128449 saccharin, sodium salt hydrate -1.950 

132649 dibenzofuran  1.959 

133119 phenyl 4-aminosalicylate  1.744 

134623 N,N-diethyl-m-toluamide 0.240 

137406 propionic acid, sodium salt -1.698 

140318 1-(2-aminoethyl)piperazine -1.229 

141037 dibutyl succinate 1.713 

141286 diethyl adipate  1.081 

141435 2-aminoethanol -1.530 

141786 ethyl acetate -0.417 
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141935 m-diethylbenzene 1.510 

142289 1,3-dichloropropane  -0.064 

142621 hexanoic acid -0.440 

142927 hexyl acetate 1.516 

142961 butyl ether 0.606 

143088 1-nonanol 1.403 

143168 di-n-hexylamine 2.376 

148538 o-vanillin  1.767 

150196 3-methoxyphenol 0.225 

150765 4-methoxyphenol 0.053 

150787 p-dimethoxybenzene 0.072 

271896 2,3-benzofuran 0.926 

280579 1,4-diazabicyclo[2.2.2]octane -1.188 

281232 adamantane 2.687 

298044 Disulfoton  1.839 

309433 secobarbital, sodium salt 1.043 

314409 bromacil 0.147 

329715 2,5-dinitrophenol 1.739 

330541 diuron 1.215 

330938 p-fluorophenyl ether  2.235 

333415 diazinon 1.513 

350469 1-fluoro-4-nitrobenzene 0.696 

368774 a,a,a-trifluoro-m-tolunitrile 0.555 

371404 4-fluoroaniline 0.818 

387451 2-chloro-6-fluorobenzaldehyde 1.227 

393395 a,a,a-4-tetrafluoro-o-toluidine 0.782 

446526 o-fluorobenzaldehyde 1.963 

447609 a,a,a-trifluoro-o-tolunitrile 0.608 

454897 a,a,a-trifluoro-m-tolualdehyde  2.277 

459596 4-fluoro-n-methylaniline 0.513 

464459 [(1S)-endo]-(-)-borneol  0.417 

464482 (1S)-(-)-camphor 0.952 

470826 cineole 0.180 
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471772 neoabietic acid  2.248 

496162 2,3-dihydrobenzofuran 0.168 

497370 exo-norborneol -0.308 

498668 norbornylene 0.974 

499832 2,6-pyridinedicarboxylic acid -0.285 

500221 3-pyridinecarboxaldehyde 0.815 

502567 5-nonanone 0.662 

513815 2,3-dimethyl-1,3-butadiene 1.075 

514103 abietic acid 2.104 

525826 flavone 1.803 

527606 2,4,6-trimethylphenol 1.020 

529191 o-tolunitrile 0.418 

529204 o-tolualdehyde 0.356 

532321 benzoic acid, sodium salt -0.526 

534521 4,6-dinitro-o-cresol  2.007 

538681 amylbenzene 1.938 

540885 tert-butyl acetate -0.449 

541731 1,3-dichlorobenzene 1.263 

544401 n-butyl sulfide 1.611 

552410 2'-hydroxy-4'-methoxyacetophenone  0.481 

552896 o-nitrobenzaldehyde  0.959 

555168 4-nitrobenzaldehyde 1.175 

563804 3-methyl-2-butanone -1.001 

573568 2,6-dinitrophenol 0.666 

583539 1,2-dibromobenzene 1.765 

589093 N-allylaniline 0.569 

589162 4-ethylaniline 0.220 

590863 isovaleraldehyde 1.423 

591786 2-hexanone -0.631 

593088 2-tridecanone 2.741 

596850 manool 3.384 

597648 tetraethyltin 4.330 

598743 1,2-dimethylpropylamine -0.513 
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600362 2,4-dimethyl-3-pentanol -0.147 

607001 N,N-diphenylformamide  0.875 

607818 diethyl benzylmalonate 1.664 

608719 pentabromophenol 3.720 

609234 2,4,6-triiodophenol 2.591 

613456 2,4-dimethoxybenzaldehyde 0.917 

614802 2-acetamidophenol  0.835 

615656 2-chloro-4-methylaniline 0.596 

616864 4-ethoxy-2-nitroaniline 0.846 

619501 methyl p-nitrobenzoate 0.881 

619807 4-nitrobenzamide 0.097 

620882 4-nitrophenyl phenyl ether 1.910 

621089 benzyl sulfoxide 0.459 

621421 3-acetamidophenol -0.874 

622402 4-(2-hydroxyethyl)morpholine -1.315 

623256 a,a'-dichloro-p-xylene 3.652 

625865 2,5-dimethylfuran 0.131 

628762 1,5-dichloropentane 0.746 

629049 1-bromoheptane 2.086 

629196 propyl disulfide 1.759 

629403 1,6-dicyanohexane -0.588 

634673 2,3,4-trichloroaniline 1.732 

635938 5-chlorosalicylaldehyde 2.308 

645567 4-propylphenol 1.093 

653372 pentafluorobenzaldehyde 2.251 

683727 2,2-dichloroacetamide -0.275 

693163 1-methyl heptylamine  1.403 

693549 2-decanone  1.438 

693652 pentyl ether 1.703 

693936 4-methyloxazole -1.223 

693981 2-methylimidazole -0.542 

700583 2-adamantanone 0.393 

706149 a-decanolactone 0.976 
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708769 4,6-dimethoxy-2-hydroxybenzaldehyde 1.832 

709988 propanil 1.404 

732263 2,4,6-tri-tert-butylphenol 3.634 

760236 3,4-dichloro-1-butene  1.127 

761659 N,N-dibutylformamide 0.246 

764012 2-butyn-1-ol 0.841 

764136 2,5-dimethyl-2,4-hexadiene 1.465 

768945 1-adamantanamine 0.782 

769288 3-cyano-4,6-dimethyl-2-hydroxypyridine -0.025 

771608 2,3,4,5,6-pentafluoroaniline 0.693 

786196 carbophenothion 3.155 

791286 triphenylphosphine oxide 0.715 

818611 2-hydroxyethyl acrylate 1.384 

818724 1-octyn-3-ol 2.485 

821556 2-nonanone 0.971 

822866 trans-1,2-dichlorocyclohexane 0.920 

831823 p-phenoxyphenol 1.575 

868779 2-hydroxyethyl methacrylate -0.242 

872311 3-bromothiophene 1.421 

874420 2,4-dichlorobenzaldehyde 1.988 

882337 phenyl disulfide 3.298 

886862 ethyl 3-aminobenzoate methanesulfonic acid salt  0.520 

920661 1,1,1,3,3,3-hexafluoro-2-propanol -0.162 

924414 1,5-hexadien-3-ol 0.411 

927742 3-butyn-1-ol 0.288 

928961 cis-3-hexen-1-ol -0.580 

928972 trans-3-hexen-1-ol -0.432 

932161 2-acetyl-1-methylpyrrole -0.105 

939231 4-phenylpyridine 0.984 

945517 phenyl sulfoxide 0.365 

999611 2-hydroxypropyl acrylate  1.557 

1072975 2-amino-5-bromopyridine -0.010 

1080326 diethyl benzylphosphonate -0.168 
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1122549 4-acetylpyridine -0.142 

1126461 methyl p-chlorobenzoate 1.191 

1126790 butyl phenyl ether 1.416 

1129357 methyl 4-cyanobenzoate 0.537 

1198556 tetrachlorocatechol 2.290 

1204213 a-bromo-2',5'-dimethoxyacetophenone  3.474 

1461252 tetrabutyltin 3.885 

1482151 3,4-dimethyl-1-pentyn-3-ol -0.262 

1484135 N-vinylcarbazole 4.781 

1484260 3-benzyloxyaniline 1.338 

1563662 carbofuran 2.419 

1634044 tert-butyl methyl ether -0.882 

1647161 1,9-decadiene 2.678 

1689823 p-phenylazophenol 2.229 

1689834 3,5-diiodo-4-hydroxybenzonitrile 1.737 

1689845 3,5-dibromo-4-hydroxybenzonitrile #1 1.382 

1740198 dehydroabietic acid 2.156 

1745819 2-allylphenol 0.952 

1746232 tert-butylstyrene 2.515 

1761611 5-bromosalicylaldehyde 2.189 

1871574 3-chloro-2-chloromethyl-1-propene 2.818 

1891958 3,5-dichloro-4-hydroxybenzonitrile 0.889 

1962750 di-n-butylterephthalate 2.674 

1965099 4,4'-dihydroxydiphenyl ether  1.588 

2008584 2,6-dichlorobenzamide -0.392 

2016571 n-decylamine 2.184 

2032599 aminocarb 2.029 

2034222 2,4,5-tribromoimidazole  1.583 

2104645 o-ethyl o-(p-nitrophenyl phenyl)phosphonothioate 3.614 

2117115 (+-)-4-pentyn-2-ol 0.380 

2138229 4-chlorocatechol 1.961 

2150472 methyl 2,4-dihydroxybenzoate 0.565 

2176627 pentachloropyridine 2.728 
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2216515 (1R,2S,5R)-(-)-menthol 0.917 

2232088 1-(p-toluenesulfonyl)imidazole 0.726 

2234164 2',4'-dichloroacetophenone 1.208 

2243278 n-octyl cyanide  1.453 

2357473 a,a,a-4-tetrafluoro-m-toluidine 0.775 

2362610 trans-2-phenyl-1-cyclohexanol 0.599 

2370630 2-ethoxyethyl methacrylate 0.757 

2416946 2,3,6-trimethylphenol 1.220 

2437254 n-undecyl cyanide 2.625 

2439772 o-methoxybenzamide 0.100 

2447792 2,4-dichlorobenzamide 0.298 

2455245 tetrahydrofurfuryl methacrylate 0.691 

2460493 4,5-dichloroguaiacol 1.635 

2495376 benzyl methacrylate 1.577 

2499958 hexyl acrylate  2.156 

2626837 p-(tert-butyl)-phenyl-n-methylcarbamate 1.317 

2759286 1-benzylpiperazine 0.570 

2859678 3-(3-pyridyl)-1-propanol -0.039 

2869343 tridecylamine 3.484 

2894511 2-amino-4'-chlorobenzophenone 2.039 

2905693 methyl 2,5-dichlorobenzoate 1.166 

2921882 chlorpyrifos  2.841 

2973764 5-bromovanillin 0.588 

3066715 cyclohexyl acrylate 2.018 

3206313 triethyl nitrilotricarboxylate 1.244 

3428248 4,5-dichlorocatechol 2.303 

3481207 2,3,5,6-tetrachloroaniline 2.932 

3558698 2,6-diphenylpyridine 3.042 

3698837 1,3-dichloro-4,6-dinitrobenzene 3.659 

3944761 2,3-dimethylvaleraldehyde 0.854 

4117140 2-decyn-1-ol 2.159 

4214793 5-chloro-2-pyridinol -0.944 

4253898 isopropyl disulfide 1.257 
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4460860 2,4,5-trimethoxybenzaldehyde 0.598 

4655349 isopropyl methacrylate 0.528 

4798441 1-hexen-3-ol 0.518 

4901513 2,3,4,5-tetrachlorophenol 2.752 

4916578 1,2-bis(4-pyridyl)ethane 0.086 

5217470 1,3-diethyl-2-thiobarbituric acid -1.353 

5292455 dimethyl nitroterephthalate 1.564 

5331919 5-chloro-2-mercaptobenzothiazole 1.798 

5372816 dimethyl aminoterephthalate 1.369 

5395755 3,6-dithiaoctane 0.397 

5407045 3-dimethylaminopropyl chloride hydrochloride 0.075 

5465656 4'-chloro-3'-nitroacetophenone 1.560 

5600215 2-amino-4-chloro-6-methylpyrimidine  -0.010 

5673074 2,6-dimethoxytoluene 0.877 

5683330 2-dimethylaminopyridine -0.017 

5813649 2,2-dimethyl-1-propylamine -0.736 

5835267 isopimaric acid 2.541 

5922601 2-amino-5-chlorobenzonitrile 0.727 

6001645 1,1,1-trichloro-2-methyl-2-propanol hydrate 0.119 

6175491 2-dodecanone 2.194 

6203185 4-dimethylaminocinnamaldehyde 1.473 

6284839 1,3,5-trichloro-2,4-dinitrobenzene 3.087 

6361213 2-chloro-5-nitrobenzaldehyde  1.689 

6575093 2-chloro-6-methylbenzonitrile 1.002 

6602320 2-bromo-3-pyridinol -0.431 

6636788 2-chloro-3-pyridinol -0.681 

6921295 tripropargylamine -0.353 

6948863 N,N-bis(2,2-diethoxyethyl)methylamine  -0.384 

7209383 1,4-bis(3-aminopropyl)piperazine -1.190 

7212444 3-hydroxy-3,7,11-trimethyl-1,6,10-dodecatriene 2.192 

7250671 1-(2-chloroethyl)pyrrolidine.hcl 0.046 

7307553 n-undecylamine 2.912 

7383199 1-heptyn-3-ol 1.804 
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10031820 p-ethoxybenzaldehyde 0.728 

10293068 [1(R)-endo]-(+)-3-bromocamphor 0.528 

10453868 resmethrin 4.740 

13071799 terbufos  4.336 

13209159 a,a,a',a'-tetrabromo-o-xylene 2.985 

13608872 2',3',4'-trichloroacetophenone 2.048 

13909734 2',3',4'-trimethoxyacetophenone  -0.037 

14064109 diethyl chloromalonate 2.311 

14321278 N-ethylbenzylamine 0.374 

14548459 4-bromophenyl 3-pyridyl ketone 1.109 

14548460 4-benzoylpyridine 0.250 

15045439 2,2,5,5-tetramethyltetrahydrofuran -0.117 

15128822 3-hydroxy-2-nitropyridine -0.076 

15972608 alachlor 1.732 

16245797 4-octylaniline 3.233 

16752775 methomyl (lannate) 1.886 

16879020 6-chloro-2-pyridinol -0.218 

17584122 3-amino-5,6-dimethyl-1,2,4-triazine -0.885 

17754904 4-(diethylamino)salicylaldehyde 1.557 

18368633 6-chloro-2-picoline -0.260 

19549985 3,6-dimethyl-1-heptyn-3-ol 0.457 

20662844 2,4,5-trimethyloxazole -0.606 

22104627 4-dimethylamino-3-methyl-2-butanone 1.182 

22726007 m-bromobenzamide 0.334 

23135220 oxamyl  1.422 

24544045 2,6-diisopropylaniline  1.096 

29553262 2-methyl-3,3,4,4-tetrafluoro-2-butanol -0.561 

30030252 chloromethyl styrene 2.692 

33966506 (+-)-sec-butylamine -0.575 

34274049 N-(3-methoxypropyl)-3,4,5-trimethoxybenzylamine 0.297 

34723825 2-(bromomethyl)tetrahydro-2H-pyran -0.059 

37529309 4-decylaniline 3.576 

39905572 4-hexyloxyaniline  1.839 
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42087809 methyl 4-chloro-2-nitrobenzoate 0.891 

42454068 5-hydroxy-2-nitrobenzaldehyde 0.601 

51630581 fenvalerate  4.916 

52645531 permethrin 4.388 

54576328 3,8-dithiadecane 1.469 

55792615 2'-(octyloxy)-acetanilide 2.767 

56108124 p-(tert-butyl)benzamide 0.745 

56348404 2,9-dithiadecane 1.247 

65337135 DL-3-butyn-2-ol 0.777 

69770236 3-(4-tert-butylphenoxy)benzaldehyde 2.837 

70124775 flucythrinate 6.376 

79124768 3-(3,4-dichlorophenoxy)benzaldehyde 2.950 

101836924 2,4-dinitro-1-naphthol sodium salt  1.838 
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Appendix 2. Chemical Abstract Number (CAS), name and acute toxicity to the 

Daphnia (48-h log LC50) of the compounds studied by von der Ohe et al. (2005). The 

use of this data set requires citation of the original paper. 

 
CAS 

 

Name 

 

Log LC50 

(mol/L) 

50293 DDT D. magna -7.89 

51285 2,4-dinitrophenol D. magna -4.62 

52686 trichlorofon D. magna -6.31 

55389 fenthion D. magna -6.79 

55630 nitroglycerine D. magna -3.85 

56235 tetrachloromethane D. magna -3.64 

56382 parathion D. magna -8.17 

58140 pyrimethamine D. magna -4.63 

58899 lindane D. magna -5.39 

58902 2,3,4,6-tetrachlorophenol D. magna -6.12 

59063 ethopabate D. magna -3.07 

59507 4-chloro-3-methylphenol D. magna -4.85 

60515 dimethoate D. magna -4.94 

60571 dieldrin D. magna -6.28 

62533 aniline D. magna -5.33 

62555 thioacetamide D. magna -3.64 

62566 thiourea D. magna -3.84 

62737 dichlorvos D. magna -9.10 

63252 carbaryl D. magna -7.33 

64175 ethanol D. magna -0.59 

67641 acetone D. magna -0.62 

67663 trichlormethane D. magna -2.72 

67721 hexachloroethane D. magna -4.83 

68122 N,N-dimethylformamide D. magna -0.70 

71238 1-propanol D. magna -0.93 

71432 benzene D. magna -2.48 

72208 endrin D. magna -6.38 
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74839 methyl bromide D. magna -4.63 

75058 acetonitrile D. magna -1.06 

75070 acetaldehyde D. magna -0.55 

75081 ethyl mercaptan D. magna -5.56 

75092 dichlormethane D. magna -2.59 

75150 carbon disulfide D. magna -4.56 

75218 ethylene oxide D. magna -2.32 

75252 bromoform D. magna -3.74 

75354 1,1-dichloroethene D. magna -3.28 

76017 pentachloroethane D. magna -3.97 

77474 hexachlorocyclopentadiene D. magna -6.72 

78591 isophorone D. magna -3.06 

78831 2-methyl-1-propanol D. magna -1.82 

78875 1,2-dichloropropane D. magna -3.34 

78999 1,1-dichloropropane D. magna -3.57 

79005 1,1,2-trichloroethane D. magna -3.09 

79016 trichloroethene D. magna -3.35 

79061 acrylamide D. magna -2.65 

79094 propionic acid D. magna -3.17 

79345 1,1,2,2-tetrachloroethane D. magna -3.45 

83410 1,2-dimethyl-3-nitrobenzene D. magna -4.56 

83421 2-chloro-6-nitrotoluene D. magna -4.61 

84662 diethyl phthalate D. magna -3.61 

84742 dibutyl phthalate D. magna -4.88 

85018 phenanthrene D. magna -5.36 

85687 butyl benzyl phthalate D. magna -5.19 

86306 N-nitrosodiphenylamine D. magna -4.40 

86748 carbazole D. magna -4.70 

87865 pentachlorophenol D. magna -5.64 

88722 1-methyl-2-nitrobenzene D. magna -4.14 

88733 1-chloro-2-nitrobenzene D. magna -3.64 

88857 2-(1-methylpropyl)-4,6-dinitrophenol D. magna -6.00 

88891 2,4,6-trinitrophenol D. magna -3.43 
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89598 4-chloro-2-nitrotoluene D. magna -4.27 

89612 1,4-dichloro-2-nitrobenzene D. magna -4.26 

90028 salicylaldehyde D. magna -4.45 

90040 o-aminoanisole D. magna -4.01 

90051 2-methoxyphenol D. magna -3.68 

90131 1-chloronaphthalene D. magna -5.01 

90437 2-phenylphenol D. magna -5.38 

91203 naphthalene D. magna -4.12 

91225 quinoline D. magna -3.53 

91645 coumarin D. magna -4.03 

91941 3,3’-dichlorobenzidine D. magna -5.38 

92524 biphenyl D. magna -4.66 

92693 4-phenylphenol D. magna -4.67 

94757 2,4-dichlorophenoxyacetic acid D. magna -3.17 

95158 benzo[b]thiophene D. magna -3.36 

95476 o-xylene D. magna -3.78 

95487 o-cresol D. magna -3.87 

95501 1,2-dichlorobenzene D. magna -4.81 

95512 2-chloroaniline D. magna -5.19 

95534 ortho-toluidine D. magna -5.31 

95578 2-chlorophenol D. magna -4.34 

95761 3,4-dichlorobenzenamine D. magna -5.95 

95829 2,5-dichloroaniline D. magna -4.74 

95954 2,4,5-trichlorophenol D. magna -4.86 

96093 1,2-epoxyethylbenzene D. magna -4.02 

96184 1,2,3-trichloropropane D. magna -3.72 

96457 ethylene thiourea D. magna -3.59 

97007 1-chloro-2,4-dinitrobenzene D. magna -5.40 

97745 bis(dimethylthiocarbamyl)sulfide D. magna -4.86 

97778 bis(diethylthiocarbamoyl)disulfide D. magna -5.56 

98828 cumene D. magna -3.64 

98953 nitrobenzene D. magna -3.48 

99081 1-methyl-3-nitrobenzene D. magna -4.04 
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99514 1,2-dimethyl-4-nitrobenzene D. magna -3.98 

99650 1,3-dinitrobenzene D. magna -3.59 

99876 cymene D. magna -4.32 

99990 4-methylnitrobenzene D. magna -4.01 

100005 4-chloronitrobenzene D. magna -4.31 

100027 4-nitrophenol D. magna -3.96 

100414 ethyl benzene D. magna -3.54 

100425 styrene D. magna -3.41 

100618 N-methylaniline D. magna -5.79 

101553 4-bromophenyl-phenyl ether D. magna -5.84 

101848 diphenyl ether D. magna -5.46 

102089 diphenylthiourea D. magna -3.53 

103695 ethylaniline D. magna -5.46 

103720 isothiocyanatobenzene D. magna -6.13 

103855 phenylthiourea D. magna -3.54 

104949 4-methoxybenzenamine D. magna -5.57 

105373 ethyl propionate D. magna -2.78 

105555 1,3-diethylthiourea D. magna -2.84 

105679 2,4-dimethylphenol D. magna -4.77 

106412 4-bromophenol D. magna -4.46 

106423 p-xylene D. magna -3.52 

106445 p-cresol D. magna -3.71 

106467 1,4-dichlorobenzene D. magna -4.17 

106478 4-chloroaniline D. magna -6.41 

106489 4-chlorophenol D. magna -4.42 

106898 epichlorohydrin D. magna -3.58 

107028 acrolein D. magna -6.00 

107039 1-propanethiol D. magna -6.10 

107062 1,2-dichloroethane D. magna -2.29 

107073 2-chloroethanol D. magna -2.61 

107119 allylamine D. magna -3.15 

107131 acrylonitrile D. magna -3.78 

107153 ethylenediamine D. magna -3.36 
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107211 1,2-ethanediol D. magna -0.48 

107415 2-methyl-2,4-pentanediol D. magna -1.22 

107926 n-butyric acid D. magna -3.16 

108189 bis(isopropyl)amine D. magna -2.35 

108383 m-xylene D. magna -3.43 

108394 m-cresol D. magna -3.76 

108429 3-chloroaniline D. magna -6.11 

108441 m-toluidine D. magna -5.17 

108850 bromocyclohexane D. magna -3.89 

108883 toluene D. magna -2.80 

108907 monochlorobenzene D. magna -3.77 

108952 phenol D. magna -3.44 

109466 dibutylthiourea D. magna -3.52 

109524 pentanoic acid D. magna -3.36 

109897 diethylamine D. magna -3.12 

110021 thiophene D. magna -2.42 

110838 cyclohexene D. magna -3.94 

110861 pyridine D. magna -1.77 

111422 2,2¢-iminobisethanol D. magna -2.93 

111444 2,2¢-dichlorodiethyl ether D. magna -2.78 

111706 1-heptanol D. magna -3.22 

111900 2-(2-ethoxyethoxy)ethanol D. magna -1.53 

111911 propoxur D. magna -2.94 

112276 triethylene glycol D. magna -0.46 

114261 

 

2-(1-methylethoxy)phenol, methyl 

carbamate 

D. magna 

 

-4.91 

 

115208 2,2,2-trichloroethanol D. magna -3.00 

115297 endosulfan D. magna -6.14 

115311 isobornyl thiocyanatoacetate D. magna -6.50 

115866 phosphoric acid D. magna -5.51 

116063 aldicarb D. magna -5.61 

118967 2,4,6-trinitrotoluene D. magna -4.39 

119653 isoquinoline D. magna -3.71 
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120821 1,2,4-trichlorobenzene D. magna -4.16 

120832 2,4-dichlorophenol D. magna -4.80 

120934 ethyleneurea D. magna -1.19 

121142 2,4-dinitrotoluene D. magna -3.72 

121299 pyrethrine II D. magna -7.40 

121733 3-nitrochlorobenzene D. magna -3.84 

121755 malathion D. magna -7.36 

121879 2-chloro-4-nitroaniline D. magna -4.49 

122145 fenitrothion D. magna -6.68 

122349 simazine D. magna -3.33 

122667 1,2-diphenylhydrazine D. magna -4.65 

123546 2,4-pentanedione D. magna -3.32 

124403 dimethylamine D. magna -2.96 

126738 tributyl phosphate D. magna -4.86 

127184 tetrachloroethene D. magna -4.04 

131113 dimethyl phthalate D. magna -3.77 

132650 dibenzothiophene D. magna -5.06 

135193 2-naphthol D. magna -4.61 

137268 thiram D. magna -6.06 

140669 4-tert-octylphenol D. magna -6.36 

141786 ethyl acetate D. magna -2.09 

141902 thiouracil D. magna -4.22 

142289 1,3-dichloropropane D. magna -2.61 

142961 butyl ether D. magna -3.70 

148016 dinitolmide D. magna -3.14 

149315 2-methyl-1,3-pentanediol D. magna -1.22 

150196 3-methoxyphenol D. magna -3.48 

156605 trans-1,2-dichloroethylene D. magna -2.64 

206440 fluoranthene D. magna -6.28 

260946 acridine D. magna -4.81 

298000 methyl parathion D. magna -7.34 

298022 phorate D. magna -7.13 

311455 diethyl p-nitrophenyl phosphate D. magna -9.14 
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333415 diazinon D. magna -8.45 

470906 chlorfenvinfos D. magna -6.56 

503877 2-thioxo-4-imidazolinone D. magna -3.77 

532558 benzoyl isothiocyanate D. magna -4.93 

534134 N,N’-dimethylthiourea D. magna -3.85 

534521 dinitro-o-cresol D. magna -4.79 

536903 3-methoxybenzeneamine D. magna -5.64 

541731 1,3-dichlorobenzene D. magna -4.18 

542756 1,3-dichloropropene D. magna -4.25 

542858 isothiocyanatoethane D. magna -5.31 

554007 2,4-dichloroaniline D. magna -5.43 

556616 isothiocyanatomethane D. magna -5.42 

576261 2,6-dimethylphenol D. magna -4.04 

578541 2-ethylbenzenamine D. magna -4.18 

589162 4-ethylaniline D. magna -6.13 

592825 1-isothiocyanatobutane D. magna -5.43 

598163 tribromoethene D. magna -4.33 

598527 methylthiourea D. magna -3.98 

602017 2,3-dinitrotoluene D. magna -5.44 

609198 3,4,5-trichlorophenol D. magna -5.46 

611063 2,4-dichloro-1-nitrobenzene D. magna -4.66 

618622 1,3-dichloro-5-nitrobenzene D. magna -4.46 

622786 benzylisothiocyanate D. magna -6.54 

625536 ethylthiourea D. magna -4.00 

626437 3,5-dichloroaniline D. magna -5.16 

630206 1,1,1,2-tetrachloroethane D. magna -3.84 

632224 1,1,3,3-tetramethylurea D. magna -1.60 

634673 2,3,4-trichloroaniline D. magna -5.43 

634833 2,3,4,5-tetrachloroaniline D. magna -5.56 

636306 2,4,5-trichloroaniline D. magna -4.76 

680319 hexamethyl phosphoramide D. magna -1.43 

693210 diethylene glycol dinitrate D. magna -3.34 

732116 phosmet D. magna -5.60 
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759944 

 

dipropylcarbamothioic acid, S-ethyl 

ester 

D. magna 

 

-4.61 

 

786196 carbophenothion D. magna -6.44 

825445 benzo[b]thiophene S,S-dioxide D. magna -4.07 

877430 2,6-dimethylquinoline D. magna -3.62 

935955 2,3,5,6-tetrachlorophenol D. magna -5.61 

944229 fonofos D. magna -7.43 

1014706 simetryn D. magna -3.63 

1016053 dibenzothiophene-5,5-dioxide D. magna -4.57 

1024573 heptachlor epoxide D. magna -6.21 

1516321 butylthiourea D. magna -3.85 

1563662 carbofuran D. magna -6.52 

1570645 4-chloro-o-cresol D. magna -5.69 

1570656 2,4-dichloro-6-methylphenol D. magna -5.65 

1582098 trifluralin D. magna -6.24 

1825214 pentachloroanisole D. magna -7.01 

1836777 chlornitrofen D. magna -5.88 

1897456 chlorothalonil D. magna -6.21 

1912249 atrazine D. magna -3.60 

1918021 picloram D. magna -3.61 

1982474 chloroxuron D. magna -4.99 

2008584 2,6-dichlorobenzamide D. magna -2.35 

2051607 2-chlorobiphenyl D. magna -5.42 

2051618 3-chlorobiphenyl D. magna -5.64 

2051629 4-chloro-1,1’-biphenyl D. magna -5.60 

2257092 (2-isothiocyanatoethyl)benzene D. magna -6.10 

2437798 2,4,2’,4’-tetrachlorobiphenyl D. magna -6.99 

2489772 trimethylthiourea D. magna -2.19 

2539175 2-methoxytetrachlorophenol D. magna -6.08 

2556425 tetrapropylthioperoxydicarbonicdiamide D. magna -6.19 

2668248 2-methoxy-4,5,6-trichlorophenol D. magna -5.37 

2741062 1-phenyl-3-ethyl thiourea D. magna -3.35 

2764729 diquat D. magna -5.01 
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2782914 tetramethyl thiourea D. magna -2.23 

2921882 clorpyrifos D. magna -8.64 

3209221 1,2-dichloro-3-nitrobenzene D. magna -4.62 

3483123 dithiothreitol D. magna -3.76 

3547044 DDE D. magna -6.86 

3689245 TEDP D. magna -9.15 

3766812 

 

2-(1-methylpropyl)phenol, 

methylcarbamate 

D. magna 

 

-6.32 

 

4044659 1,4-diisothiocyanatobenzene D. magna -6.40 

4104750 N-methyl-N-phenylthiourea D. magna -3.36 

6317186 thiocyanic acid, methylene ester D. magna -6.25 

6972050 N,N-dimethylthiourea D. magna -3.39 

7012375 2,4,4’-PCB D. magna -6.21 

8018017 mancozeb D. magna -5.21 

10605217 carbendazim D. magna -5.54 

12002481 trichlorobenzene D. magna -4.40 

15245440 2,4,6-trinitro-1,3-benzenediol D. magna -2.19 

15263533 dithiocarbamate D. magna -7.38 

18259057 2,3,4,5,6-PCB D. magna -7.61 

23564058 thiophanate-methyl D. magna -4.33 

25154523 nonylphenol D. magna -6.41 

25167833 2,3,4,5-tetrachlorophenol D. magna -5.76 

25875518 robenidine D. magna -6.65 

28249776 thiobencarb D. magna -4.67 

29232937 pirimiphos-methyl D. magna -9.14 

32598133 3,3’,4,4’-tetrachloro-1,1’-biphenyl D. magna -8.16 

33813206 

 

5,6-dihydro-3H-imidazo[2,1-c]-1,2,4-

dithiazole-3-thione 

D. magna 

 

-5.92 

 

33820530 isopropalin D. magna -7.01 

35065271 2,2’,4,4’,5,5’-hexachloro-1,1’-biphenyl D. magna -8.44 

35367385 diflubenzuron D. magna -7.77 

35693993 2,2’,5,5’-tetrachloro-1,1’-biphenyl D. magna -6.99 

37680652 2,2’,5-trichloro-1,1’-biphenyl D. magna -6.67 
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37680732 2,4,5,2’,5’-PCB D. magna -7.51 

38380073 2,2’,3,3’,4,4’-PCB D. magna -8.78 

51630581 fenvalerate D. magna -8.13 

52315078 cypermethrin D. magna -9.06 

52645531 permethrin D. magna -8.23 

52918635 deltamethrin D. magna -10.09 

55406536 iodopropynyl butylcarbamate D. magna -6.85 

57057837 3,4,5-trichloroguaiacol D. magna -5.56 

59756604 fluridone D. magna -4.86 

66230044 esfenvalerate D. magna -9.19 

68359375 cyfluthrin D. magna -9.42 

76738620 paclobutrazol D. magna -4.01 

91465086 cyhalothrin D. magna -8.72 

    

50293 DDT D. pulex -8.58 

51036 piperonyl butoxide C. dubia -5.71 

55389 fenthion D. pulex -8.35 

56382 parathion D. pulex -8.58 

57556 propylene glycol C. dubia -0.90 

58899 lindane D. pulex -5.14 

62533 aniline D. pulex -5.97 

62737 dichlorvos C. dubia -9.20 

63252 carbaryl D. pulex -7.53 

72208 endrin D. pulex -7.28 

72435 methoxychlor C. dubia -7.39 

75070 acetaldehyde C. dubia -0.88 

76448 heptachlor D. pulex -6.95 

85018 phenanthrene D. pulex -5.20 

87865 pentachlorophenol D. pulex -5.37 

88062 dowicide 2S C. dubia -4.69 

90028 salicylaldehyde D. pulex -4.36 

93721 silvex D. pulex -5.05 

94757 2,4-D D. pulex -4.84 
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95487 o-cresol D. pulex -4.05 

105373 ethyl propionate D. pulex -3.17 

105679 2,4-dimethylphenol C. dubia -4.43 

106445 p-cresol D. pulicaria -3.68 

106489 4-chlorophenol C. dubia -4.15 

107073 2-chloroethanol D. pulex -2.15 

107119 allylamine D. pulex -3.23 

108394 m-cresol D. pulicaria -3.04 

108463 resorcinol D. pulicaria -3.04 

108952 phenol D. pulex -3.13 

110861 pyridine D. pulex -2.14 

111422 2,2¢-iminobisethanol D. pulex -4.64 

115297 endosulfan D. carinata -5.93 

116063 aldicarb D. laevis -6.13 

121755 malathion D. pulex -8.22 

122145 fenitrothion M. macrocopa -6.85 

122349 simazine D. pulex -3.00 

123546 2,4-pentanedione D. pulex -3.30 

141786 ethyl acetate D. pulex -2.53 

145733 endothall C. dubia -3.59 

206440 fluoranthene C. dubia -6.65 

298000 methyl parathion C. dubia -7.94 

330541 diuron D. pulex -5.22 

333415 diazinon D. pulex -8.59 

470906 chlorfenvinfos C. dubia -8.95 

609198 3,4,5-trichlorophenol C. dubia -5.70 

709988 propanil C. dubia -4.75 

959988 alpha-endosulfan D. carinata -6.21 

1014706 simetryn M. macrocopa -3.82 

1031078 endosulfan sulfate D. carinata -5.75 

1194656 dichlobenil D. pulex -4.67 

1563388 carbofuran phenol C. dubia -6.01 

1563662 carbofuran D. pulex -6.74 
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1582098 trifluralin D. pulex -6.14 

1646873 

 

2-methyl-2-(methylsulfinyl)-propion-

aldehyde,O-(methylcarbamoyl)oxime 

D. laevis 

 

-6.34 

 

1646884 aldoxycarb D. laevis -5.34 

1836755 nitrofen C. dubia -6.12 

1912249 atrazine D. pulex -3.72 

2212671 molinate C. dubia -4.83 

2668248 2-methoxy-4,5,6-trichlorophenol C. dubia -5.10 

2921882 clorpyrifos D. pulex -8.48 

3766812 

 

2-(1-methylpropyl)phenol, 

methylcarbamate 

M. macrocopa 

 

-6.32 

 

7786347 mevinphos C. dubia -8.37 

8001352 toxaphene D. pulex -7.44 

8003347 pyrethrum D. pulex -7.12 

15972608 lasso D. pulex -4.44 

19666309 oxadiazon M. macrocopa -5.80 

21087649 metribuzin C. dubia -3.78 

25167833 tetrachlorophenol D. pulex -5.36 

28249776 thiobencarb C. dubia -5.70 

33213659 beta-endosulfan D. carinata -6.30 

51218452 metolachlor C. dubia -4.25 

52645531 permethrin D. pulex -7.70 

91465086 cyhalothrin C. dubia -9.18 

95737681 pyriproxyfen D. carinata -6.60 
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Abstract 
 
This review collects information on sources of aquatic toxicity data and 
computational tools for estimation of chemical toxicity to aquatic organisms, 
such as expert systems and quantitative structure-activity relationship (QSAR) 
models. The review also captures current thinking of what constitutes an 
integrated testing strategy (ITS) for this endpoint. The emphasis of the review 
is on the usefulness of the models and for the regulatory assessment of 
chemicals, particularly for the purposes of the new European legislation for 
the Registration, Evaluation, Authorisation and Restriction of Chemicals 
(REACH), which entered into force on 1 June 2007. Effects on organisms 
from three trophic levels (fish, Daphnia and algae) were subject of this review. 
In addition to traditional data sources such as databases, papers publishing 
experimental data are also identified. Models for narcoses, general (global) 
models as well as models for specific chemical classes and mechanisms of 
action are summarised. Where possible, models were included in a form 
allowing reproduction without consultation with the original paper. This review 
builds on work carried out in the framework of the REACH Implementation 
Projects, and is compiled here as a contribution to the EU funded Integrated 
Project, OSIRIS.   
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