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EXECUTIVE SUMMARY 

Current seismic evaluation and design tendencies for reinforced concrete bridges, in which 
performances under design conditions need to be estimated, require, even in the most simplified 
methods, an accurate description of the stiffness and energy dissipation characteristics of the 
piers forming the substructure. This description involves not only the use of sound analytical 
techniques, but also their calibration against existing results from experimental tests on large scale 
specimens. 

Considering that the most widely used approach for the Displacement Based Design of bridges is 
based on the use of secant stiffness and equivalent viscous damping of the piers, both evaluated 
at maximum pier displacement, in this report the stiffness and energy dissipation characteristics, 
necessary to estimate these parameters, are obtained for reinforced concrete hollow rectangular 
bridge piers. This work involves the use, first of a continuous non-linear behaviour section model 
and then a pier model based on the plastic hinge approach and on the results obtained by the 
section model of the previous step. 

The analysis starts from the identification of the parameters that play a major role in determining 
the behaviour of pier sections and their ranges of variation. The following parameters were 
chosen: the section aspect ratio, the mechanical properties of the reinforcement steel and 
concrete, the longitudinal reinforcement ratio, the normalized axial force and the confinement 
level. The range of variation of each of these parameters was determined on the basis of current 
practice and the prescriptions contained in the Eurocodes. As a result of this preliminary analysis, 
2700 possible section designs were considered.  

To determine the moment-curvature envelope of all the sections considered, nonlinear finite 
element analyses (using a 2D fibre model) under monotonically increasing curvatures were 
carried out. These capacity curves, representing the envelope curves of each section, are 
approximated with bilinear curves to be used either for evaluation or design purposes. In this 
way, the capacity curve of the generic section may be represented through four parameters: yield 
curvature and moment, and ultimate curvature and moment, which were used to summarize the 
results in a series of charts. The cyclic behaviour of each section is reproduced through nonlinear 
analysis under increasing cyclic loading, for which experimental results were also available. The 
results of these analyses were expressed in terms of a dimensionless parameter that is related to 
the energy dissipated per unit length by the section in a cycle. It was found that this parameter 
does not depend on the section aspect ratio, while it depends strongly on the normalized axial 
force, although this dependence becomes less strong as the longitudinal reinforcement ratio 
increases. 

The properties derived at the section level are used to compute the force-displacement envelope 
and the energy dissipation characteristics of a pier of length L for a given level of ductility of the 
section; the calculations are performed assuming an expression derived from literature for the 
computation of the plastic length. 

The equivalent properties of bridge piers, namely, equivalent stiffness and equivalent damping at 
maximum displacement, are calculated for rectangular hollow sections, and represent a significant 
design tool of direct application to the Displacement Based Design (DBD) of bridges, based on 
the concept of a substitute linear structure as originally defined by Gulkan and Sozen in 1967. 

From the analysis of the experimental data it was observed that the shear contribution to the pier 
displacements can be significant. A state of art was produced concerning the different 
approaches that may be adopted to model the shear effects in reinforced concrete columns. The 
following models were analysed: the truss model, the classical Ritter-Morsch model, the concrete 
contribution model, the variable truss model, the strut and ties model, Compression Field Theory 
(CFT) and the Modified CFT (MCFT). 
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1

1. INTRODUCTION 

A number of important bridges and viaducts which incorporate reinforced concrete thin-walled 
hollow piers have been constructed during the past decades in seismic prone regions. The main 
advantage of this type of piers is that their mass is significantly smaller than that of piers with 
solid column sections of equivalent performance, thus reducing the amount of material used and 
decreasing the size of the inertial forces induced by earthquake loads. In spite of the more 
complex reinforcement layout and formwork construction, hollow columns are considered, in 
general, to be cost effective for large scale projects and for pier heights exceeding 20 m. 

In spite of the use of hollow column sections for the construction of large bridge piers, their 
behaviour has not been extensively studied; in particular, a limited number of experimental tests 
have been performed to describe the load-deformation and energy dissipation characteristics of 
such members. The aim of this report is to describe these characteristics for different levels of 
deformation to be used within the context of Performance Based Design (PBD). 

The report is subdivided in two parts: the first part (Part A) describes the moment-curvature 
relations and the energy dissipation characteristics of rectangular pier hollow sections of various 
design configurations, and the second part (Part B) describes the shear effects on reinforced 
concrete bridge piers. 

In Part A, the stiffness and energy dissipation characteristics of the pier are derived based on 
energy principles from the section properties at the base of the pier. The stiffness properties of 
the section are described by a bilinear moment-curvature model defined by the bending moments 
and curvatures at yield and at the ultimate capacity of the section, derived from nonlinear analysis 
using a 2D fibre model initially calibrated from experimental results. The energy dissipation 
characteristics of the section are derived directly from the numerical model at increasing levels of 
ductility. Parametric analysis is performed for a large number of design configurations of the pier 
section, including the aspect ratio of the section, the normalised axial load, the percentage of 
longitudinal reinforcement, the level of confinement, and the strength of concrete and steel, and 
the results are summarised in series of charts that can be used by the designer to defined the 
moment-curvature diagram (including stiffness to yield and maximum curvature capacity) for a 
particular section. Similarly, a number of charts are presented, describing the energy dissipation 
for several section configurations for different levels of ductility. 

In Part B, the state-of-the-art on the different approaches to model the effects of shear on 
reinforced concrete column sections is presented, starting from the truss model, that considers 
only the contribution of the steel stirrups, up to the modified compression field theory, that takes 
into account the three dimensional contribution along the section of both shear and bending. 
The theoretical explanation is supported by experimental tests performed on reinforced concrete 
hollow sections considering shear, as well as on walls that may be approximated to the webs of 
the pier. However, there is a need to extend the more detailed models to cyclic loading and to 
perform target tests on large scale piers to model the combined effects of shear and flexure. 
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PART A: STIFNESS AND ENERGY DISSIPATION 

EQUIVALENT PROPERTIES

2. SELECTION OF THE EXPERIMETAL DATA 

2.1 GENERALITIES 

The numerical models used in this research were calibrated against the results of experimental 
tests conducted on large-scale models of hollow reinforced concrete piers at the European 
Laboratory for Structural Assessment (ELSA) in Ispra (Italy) [Pinto et al., 1996]. These 
experimental models used in the tests were chosen with the aim to reduce as much as possible 
the consequences of the scale effect in the calibration process. 

Only a few number of documents are found in the technical literature focused on the scale effect 
on experimental tests of reinforced concrete bridge piers: [Stone and Cheok, 1989], [Hoshikuma 
et al., 2002] and [Yeh et al., 2002]. Stone and Cheok [1989] conducted a series of cyclic loading 
tests on full-scale circular columns, with a diameter of 1524 mm, and their relative well-scaled 
replica model, to determine the size effect on inelastic behaviour of reinforced concrete columns 
subjected to seismic forces. They found that the scale effect does not appear when reinforcement 
details including bar diameter and vertical hoop spacing are precisely scaled. 

Hoshikuma et al. [2002] tested a full-scale column with a 2400 mm square section and a 1/4 scale 
replica model. The columns were subjected to a quasi-static, cyclically reversed horizontal load 
until the columns were completely failed. No vertical loads were applied to the prototype nor to 
the model. As Stone and Cheok [1989], they concluded that if the reinforcement details are 
precisely scaled, the size effect on the inelastic ductile behaviour of reinforced concrete bridge 
columns is not significant. 

Yeh et al. [2002] carried out experimental tests on square hollow reinforced concrete bridge 
columns. Two prototypes and four models of such columns were tested under constant axial 
loads and quasi-static, cyclically reversed horizontal loads. The prototype cross sections were 
1500 x 1500 mm and the scale factor of the models was equal to 1/3. Yeh et al. [2002] found that 
the prototypes have greater ductility factors than those given by the models and pointed out two 
possible sources for this discrepancy: a difference in the yielding characteristics between the 
rebars used as longitudinal reinforcement in the prototypes and those used in the models, and the 
effect of low-cycle fatigue, which has a stronger influence on the small size rebars used in the 
models. However, it should be noted that the scaling criteria applied by Stone and Cheok [1989] 
and in Hoshikuma et al. [2002] were not completely satisfied by Yeh et al. [2002]. It is opinion of 
the author that this could be the reason for the strong scale effect observed by Yeh et al. [2002], 
since differences in the yielding characteristics of the reinforcement and low-cycle fatigue affects 
were also present in Stone and Cheok [1989] and in the Hoshikuma et al. [2002] tests.  
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On the basis of these results, it can be concluded that the models tested by Pinto et al. [1996] can 
reasonably represent the actual behaviour of hollow reinforced concrete bridge piers, since they 
satisfy the scaling criteria applied by Stone and Cheok [1989] and Hoshikuma et al. [2002]. In fact, 
Pinto et al. [1996] used rebars with diameters ranging between 10 mm and 14 mm as longitudinal 
reinforcement in the flanges of the models (according to Mander [1984], the flange walls 
determine the behaviour of hollow rectangular concrete piers). Considering that the model scale 
factor was 1:2.5, these rebars correspond to prototype rebars having diameters in the range of 25-
35 mm, which are commonly used in current practice for this type of structures. Analogous 
considerations can be made for the size of transverse reinforcement (5 mm for the models and 
12.5 mm for the prototypes) and spacing of transverse reinforcement along the pier (50 mm for 
the models and 125 mm in the prototypes). If a criticism can be made on these models, is that 
the longitudinal reinforcement is not uniformly distributed on the section, as generally happens in 
current practice.  

2.2 DESCRIPTION OF THE EXPERIMENTAL SET-UP AND RESULTS 

The experimental tests preformed by Pinto et al. [1996] consisted in testing single piers subjected 
to cyclic loading, as well as testing of a complete bridge structure by means of the pseudo-
dynamic (PSD) sub-structured test method, which integrates physical testing of the pier models 
for which the load-displacement behaviour is to be determined, with numerical models of those 
parts of the bridge for which the force-displacement response is known or remains elastic (i.e., 
the deck). Several bridge configurations composed of three piers were studied, according to their 
degree of irregularity in terms of the heights and capacities of the piers. The results obtained 
from the medium pier of the bridge B232 configuration were used for the calibration of the 
numerical model. 

The geometric characteristics and the reinforcing steel lay-out of the pier model are presented in 
Figure 1. In order to determine the mechanical characteristics of concrete and steel, a set of 
specimens from the construction of the model were tested. The mechanical characteristics of 
concrete and steel reinforcement (Tempcore B500B) are reported in Table 1 and Table 2. 

The footing of the pier was rigidly attached to the strong floor of the laboratory by means of 
post-tensioned steel bars passing through the floor. The footing was prestressed in order to limit 
cracking when developing the maximum strength at the base of the pier. 

A stiff steel cap was connected with bolts and epoxy resin to the top of the pier (see Figure 1b). 
The cap was used to apply the horizontal loads coming from the PSD test method, and to 
impose the vertical loads needed to simulate the weight of the bridge superstructure. 

2.2.1 Applied Horizontal Displacements 

Two actuators were connected by spherical joints to the steel cap of the pier, on one side, and to 
a steel plate attached to the reaction wall on the opposite side, and were used to impose 
horizontal displacements. The pier was tested as part of a bridge configuration for two 
consecutive earthquakes using the PSD technique. The first earthquake, hereafter denoted as 
“design earthquake”, was a stationary artificial earthquake with a PGA of 0.35g compatible with 
the prEN 1998-2 [CEN, 1993] spectrum for soil type B. The second earthquake was obtained by 
multiplying the ordinates of the first one by a factor 2. In Figure 2 and Figure 3 are reported the 
displacement and force time-histories measured at the top of the considered pier during these 
two tests. Finally, the pier was isolated from the bridge model and tested cyclically until failure. 
Figure 4 illustrates the displacement and force time-histories applied at the top of the pier during 
the cyclic test. 
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2.2.2 Applied Vertical Load 

A vertical force of 1700 kN, corresponding to a 10% normalized axial force, was applied at the 
top of the pier and was kept practically constant during the whole duration of the test. The 
vertical load was applied by means of four actuators resting on top of the steel cap and hinged 
connected to post-tensioning steel rods running through the hollow core of the pier section; the 
steel rods were embedded at the base of the pier footing and instrumented with strain gages to 
monitor the axial load. The direction of the axial force follows the direction of post-tensioning 
(see Figure 5a) and can be decomposed into a horizontal (P·sin α) and a vertical component 
(P·cos α), so that the moment M at the column interface with the footing can be evaluated as: 

cosM V L P V L P α′= ⋅ + ⋅ Δ = ⋅ + ⋅ ⋅ Δ  (2.1) 

while the total lateral force applied to the column is: 

αsin⋅−=′ PVV  (2.2) 

When a horizontal displacement history is applied to the pier, the gravity loads of the deck keep 
on acting along the vertical direction while the structure undergoes deformations (see Figure 5b). 
For this reason, Dutta et al. [1999] concluded that the post-tensioning method does not correctly 
model the P-∆ effect. Nevertheless, as noted by Asadollah and Xiao [2002], it can be asserted that 
the conventional method of post-tensioning is valid without any deficiency as long as the true 
forces P' and V' are used in the data analysis. It is worth noting that α is typically small: during 
the cyclic test it attained a maximum value of about 0.03 rad, as a result P’ can be assumed to be 
equal to P. 

2.2.3 Moment-Curvature Time-Histories  

The evaluation of the moment-curvature behaviour along the column was carried out on the 
basis of the data given by a set of displacements transducers (LVDT) placed along the two 
external opposite faces of the pier model. (See Figure 1b).  The average curvature in a slice can be 
expressed as: 

v i v j

D l
, ,Δ Δ

χ
−

=
⋅

 (2.3) 

where χ is the average curvature over the considered slice, Δvi and Δvj are the relative vertical 
displacements measured by two transducers at the same height on the two sides of the pier, D is 
the distance in plan between the two transducers and l is the height of the slice. The 
corresponding moment is calculated at the middle height of the slice, using the recorded values 
for the horizontal force and axial load and the relative horizontal deflection at the corresponding 
step. 

Figure 6 and Figure 7 show the moment-curvature responses of slice #1 (at the base of the pier) 
of the medium pier of bridge B232 subjected to the design earthquake and to the design 
earthquake multiplied by a factor of two, respectively. Figure 8 shows the analogous response of 
the pier tested under increasing cyclic displacements until failure. 
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3. NUMERICAL MODEL 

3.1 GENERALITIES 

With the purpose of simulating the behaviour of pier sections with characteristics different from 
those in the laboratory, a fibre model was implemented in Castem 2000 [Maillard, 1993] and 
checked against the experimental results described in Section 0. 

Four different material models: reinforcement steel in the longitudinal direction, unconfined 
concrete, flange confined concrete and web confined concrete, were used to build the section 
model. 

3.2 STEEL AND CONCRETE MODELS 

The monotonic behaviour of the steel fibre is represented by a three-stage stress-strain curve: 
linear elastic followed by a yielding plateau and a hardening zone modelled with a fourth degree 
polynomial. The model for cyclic loading follows the monotonic curve until the strain falls below 
a pre-established level after unloading from a postyielding position. From this point on, the 
stress-strain curve follows the Menegotto-Pinto [1973] model.  

The rebar buckling is modelled after Monti and Nuti [1992]. This model, which neglects the 
influence of concrete and transverse reinforcement, was calibrated against experimental tests 
conducted on Italian reinforcing rebars FeB 44k characterized by a more pronounced hardening 
when compared with that shown by the modern Tempcore B500B rebars. This difference implies 
that Tempcore B500B bars are more prone to inelastic buckling than the FeB 44k rebars. For this 
reason, a recalibration of the model, which at present has not been performed, would have been 
desirable.  

The values reported in Table 1 were assigned to the parameters of the steel model. The ultimate 
tensile strain was reduced by 30%, recognizing that under cyclic loading involving sequential 
tensile and compressive strains, the ultimate tensile strain is in general smaller than that obtained 
from monotonic testing [Priesley et al. 1996b]. The onset of strain hardening was assumed at a 
strain equal to 2%.  

The Hognestad [1951] model was adopted for the concrete under monotonic compressive 
loading. A parabolic function defines the ascending part of the curve from zero to the maximum 
compression stress point. A straight line represents the concrete softening behaviour after 
maximum strength until failure. The slope of this line depends on the degree of confinement of 
concrete (see Figure 9). In order to improve the model for confined concrete, a third branch is 
considered after the softening compression branch and before reaching failure: a zero slope 
straight line defining a compression plateau. This additional condition accounts for the residual 
strength of the concrete core for important axial post-peak deformations. Following the 
recommendations of Park et al. [1982], a residual strength equal to 20% of the peak strength was 
assumed in the model. 

The compression monotonic curve models the envelope of the behaviour of concrete under 
compression cyclic loading. Unloading from the envelope follows a law similar to the one 
proposed by Mercer and Martin [1987]: a straight line with a slope that depends on the maximum 
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strain reached during the loading history (see Figure 10). The degradation of the material stiffness 
is taken into account by decreasing the slope of the unloading branch as the maximum strain 
increases. The reloading compression curve is also a straight line from the zero stress point to the 
last loading point reached on the envelope; no strength degradation is considered. 

A bilinear model was used to represent the behaviour of concrete under monotonic tensile 
loading: a first linear branch with a slope equal to the initial compression Young’s modulus, from 
zero to the maximum tensile stress point, and a second linear branch from the maximum tensile 
stress point to a zero stress point (see Figure 10); the post-cracking softening behaviour models 
the “tension-stiffening” effect. Details on the model for cyclic tensile loading can be found in 
Guedes et al. [1994]. 

No attempt was made to simulate the crack closing, since no reliable model has been 
implemented in Castem 2000 [Maillard, 1993] yet. As a result, the numerical model is expected to 
show more pinching than the actual behaviour of the pier-section. 

3.2.1 Confined Concrete 

The behaviour of the confined concrete in the flanges of the pier section plays a major role in 
determining the seismic performance of the pier. For this reason, special effort has been devoted 
to model its behaviour. Many different stress-strain relationships have been developed for 
confined concrete: Sheik et al. [1982], Fafitis and Shah [1985], Mander et al. [1988], Saatcioglu and 
Razvi [1992], Sakino et al. [1993]. Among the aforementioned models, that proposed by Mander 
et al. [1988] is the only one that can be applied to all section shapes at all levels of confinement, 
furthermore it has also been accepted in prEN1998-2 [CEN, 2003], Annex E. 

Unfortunately, the model proposed by Mander et al. [1998] is not implemented in Castem 2000 
[Maillard, 1993]. As a result, an effort was made to evaluate the differences between the two 
models.  

In Castem 2000 [Maillard, 1993] the confinement effect is modelled through the confinement 
parameter β, which affects the strength, the strain at the maximum strength and the slope of the 
post peak branch, as shown in the Equations (3.1), (3.2) and (3.3) 

ccc ff ⋅= β,  (3.1) 

1
2

,1 ccc εβε ⋅=  (3.2) 

( )
β

β α ω ε
−

=
⋅ ⋅ ⋅ + +w c c

Z
,

0.85
0.1 0.0035

 (3.3) 

where fc,c and εc1,c represent the maximum strength and the strain at the maximum strength for 
confined concrete, while fc and εc1 represent the analogous parameters for unconfined concrete; Z 
is the slope of the post peak branch (see Figure 9). The parameter β is defined as: 

( )β α ω α ω= + ⋅ ⋅ + ⋅ ⋅w wmin 1 2.5 ,1.125 1.25  (3.4) 

where  

( )
ω

⋅ ⋅
=

⋅ ⋅
∑st yw w

w
c

A f l s
b h f0 0

 (3.5) 

represents the mechanical volumetric ratio of the stirrups and  
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α
⎛ ⎞ ⎛ ⎞⎛ ⎞= − ⋅ − ⋅ −⎜ ⎟ ⎜ ⎟⎜ ⎟⋅ ⋅ ⋅⎝ ⎠ ⎝ ⎠ ⎝ ⎠

s s
n b h0 0

81 1 1
3 2 2

 (3.6) 

expresses the effect of the number of longitudinal restrained rebars n and the density of the 
stirrups on the degree of confinement of the concrete core. In Equations (3.5) and (3.6) Ast, fyw 
and lw represent the area of the cross-section of the leg, the yielding stress and the total length of 
the stirrups, respectively; s is the distance between stirrups along the member axis, and b0 and h0 
are the dimensions of the confined concrete core measured from the centre-line of the stirrups. 

In Mander et al. [1998], the behaviour of the confined concrete is represented through a 
continuous equation:  

r
cc

c

xr
rx

f +−
⋅

=
1,

σ  (3.7) 

where 

cc

cx
,1ε

ε
=  (3.8) 

secEE
E

r
c

c

−
=  (3.9) 

cc

ccf
E

,1

,
sec ε

=  (3.10) 

The confinement is taken into account by the confinement parameter λc : 

254.1
2

94.71254.2 −
⋅

−⋅+⋅=
c

e

c

e
c ff

σσ
λ  (3.11) 

which directly affects the maximum concrete strength and the corresponding strain: 

cccc ff λ⋅=,  (3.12) 

c c
c c

c

f
f
,

1, 0.002 1 5 1ε
⎡ ⎤⎛ ⎞

= ⋅ + ⋅ −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

  (3.13) 

The confinement parameter λc is a function of the effective confinement pressure: 

e w ywfσ α ρ= ⋅ ⋅  (3.14) 

where: 

sn ααα ⋅=  (3.15) 
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ρ =
⋅
sw

w
A
s b

 (3.18) 

where bi is the distance between consecutive engaged bars, Asw is the total area of hoops or ties in 
the direction of confinement and b is the dimension of the concrete core perpendicular to the 
direction of the confinement under consideration, measured to the outside of the perimeter 
hoop. 

For rectangular sections, the confinement effects should be evaluated in two orthogonal 
directions, say directions 2 and 3. When the values of ρw in these two directions are not equal, the 
effective confining stress may be estimated as: 

σ σ σ= ⋅e e e2 3  (3.19) 

The Mander et al. [1998] and the Castem 2000 [Maillard, 1993] models were compared for the 
confined concrete of the flanges of the medium pier of bridge B232. The parameters of the two 
models corresponding to this case are reported in Table 3 and Table 4. Figure 11 shows the 
results given by the two models. It can be seen that the two models give different values for the 
maximum concrete strength, with large differences in the softening branch. The results given by 
the Castem 2000 [Maillard, 1993] model has been in part improved by equating the maximum 
concrete strength given by the two models. The value of the parameter β is set equal to the value 
of the λc parameter in Mander’s model and the corresponding value of the product α·ωw is 
determined through Equation (3.19). The results are shown in Figure 11. 

3.3 VALIDATION OF THE NUMERICAL MODEL 

In order to judge the ability of the numerical model to represent the actual behaviour of pier 
sections, the numerical results were compared with those obtained by the tests described in 
Section 0. 

The comparison was first focused on the initial stiffness of the sections. With this aim, the results 
relative to the initial part of the design earthquake were considered. The results of the 
comparison are shown in Figure 12, Figure 13, Figure 14 and Figure 15, for slice #1, #2, #3 and 
#4, respectively. It can be observed that the cracked stiffness of the section is well predicted for 
all the four pier slices considered in the analysis. The uncracked stiffness is well predicted for 
slices #3 and #4, while for slice #2, it was not possible to derive any considerations as the 
experimental data was affected by noise. For slice #1 the initial stiffness is equal to the cracked 
stiffness, showing that this portion of the pier was already cracked at the beginning of the test. 
This was probably due to the presence of a cold joint between the plinth and the pier. In fact, the 
pier was made in a precast concrete workshop and then transported to the ELSA site where the 
plinth was cast in a separate phase. 

Finally, the ability of the numerical model to predict the section behaviour after the yielding point 
was checked. With this aim, the numerical results were compared with the experimental ones 
which had been obtained applying the design earthquake to the bridge model. The results are 
shown from Figure 16 to Figure 19. From these results, it is evident that the numerical model is 
able to follow the skeleton curve of the section. Furthermore, it can be observed that the 
behaviour predicted by the numerical model is characterized by a very pronounced pinching that 
is not exhibited by the experimental results. This discrepancy, as previously mentioned, is due to 
the lack of a good crack opening-closure law in the numerical model. 

On the basis of the comparison between the numerical and the experimental results relative to 
the design earthquake, it is concluded that the considered numerical model can be reasonably 
used to obtain the skeleton curve of the behaviour of a generic rectangular hollow section. It is 
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less clear if the numerical model is able to represent the hysteretic energy dissipated by sections 
due to a more pronounced pinching of the numerical model. With the aim of clarifying this 
point, a cyclic path of curvatures with increasing amplitude was applied to the numerical model 
and the results were compared with those obtained experimentally from the cyclic test described 
in Section 2.2. From Figure 20 it can be observed that the numerical model gives a rather good 
estimation of the energy dissipated by the section, at least in the case of cyclic tests. It should be 
noticed that overall, the different curvature paths used for the experimental and numerical tests 
seem not to affect the results. 

4. PARAMETRIC ANALYSIS OF THE SECTIONS 

4.1 GENERALITIES 

The aim of this parametric analysis is to evaluate the moment-curvature behaviour of bridge pier 
sections within the framework of Displacement Based Design (DBD) according to the 
prescriptions prEN 1998 [CEN, 2003]. 

The analysis started from the identification of the parameters that play a major role in 
determining the behaviour of the section. The parameters that were considered are: the concrete 
class and the steel reinforcement yield strength, the wall thickness, the section aspect ratio, the 
longitudinal reinforcement ratio, the axial load level, and the confinement level. 

The definition of the range of variation for each of these parameters is discussed in Sections 4.2 
to 4.7, while the values that were considered in the analysis are reported in Table 22. For each of 
the 2700 combinations of these values, two nonlinear static analyses, one monotonic, and one 
cyclic, were performed in order to obtain the skeleton curve and the damping properties of the 
corresponding pier section. Finally, each skeleton curve was approximated through a bilinear 
curve. 

4.2 STEEL AND CONCRETE CHARACTERISTICS 

According to prEN 1998-1 5.3.2 (1)P [CEN, 2003], class B or C steel reinforcement, as defined 
in Table C.1 in Normative Annex C of prEN 1992-1-1 [CEN, 2003], should be used in primary 
seismic elements. Tempcore B500B reinforcing steel, which belongs to class B as defined by 
Normative Annex C, was considered in the analysis, with the following assumptions: steel tensile 
strength ft equal to 1.19⋅fy [Priestley et al., 1996b]; elongation at maximum force εu and strain at 
the beginning of hardening equal to 0.11 and 0.02, respectively. 

According to prEN 1998-1 7.2.1 (1) [CEN, 2003], the prescribed concrete class in plastic regions 
should not be lower than C20/25, and not higher than C40/50. In the parametric analysis, 
concrete classes C25, C30 and C35 were considered. 

According to prEN 1998-1 4.3.3.4 (4) [CEN, 2003], the element properties should be based on 
the mean values of the material properties. For new structures, the mean values of the material 
properties may be estimated from the corresponding characteristic values on the basis of 
information provided in Annex E of prEN 1998-2 [CEN, 2003] and Table 3.1 of prEN 1992-1-1 
[CEN, 2003] (see Table 5 and Table 6) for the values assumed in the parametric analysis). This 
provision recognizes the difference between designing for gravity loads and for earthquake 
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actions. In the case of gravity load design, it is important to have an adequate reserve of strength 
in order to avoid structural failure: the member properties are derived from a lower percentile of 
material properties (characteristic values). On the contrary, in the case of seismic design, 
structures are allowed to respond inelastically e.g., the action level overcomes the structural 
strength, therefore there is no point in providing for a reserve of strength. 

4.3 WALL THICKNESS 

From a survey of a number of bridge designs it was observed that the thickness of the walls that 
constitute the hollow sections varies between 0.30 m and 0.50 m. In the parametric analysis a 
constant value of 0.40 m was chosen for the wall thickness. 

4.4 SECTION ASPECT RATIO 

Poston et al. [1985] conducted experimental tests on four bridge pier models. The objective of 
this work was to investigate the axial-load-moment-curvature behaviour of hollow columns and 
to examine the validity of the plane-section assumption. On the basis of their results and from 
those obtained by Proctor [1976, 1977] and Jobse [1982], Poston et al. [1985] concluded that the 
assumption is completely valid when the cross-sectional unsupported wall length to thickness 
ratio does not exceed 6. For ratios greater than 6, a strength reduction due to non-planar action 
and local instability is recommended. Taylor and Breen [1994], on the basis of the 
aforementioned experimental results and from those obtained after testing twelve piers models, 
concluded that wall slenderness ratios greater than 35 should not be allowed in practice, and that 
the normal design procedure used to design solid piers should only be applied to hollow piers 
when the slenderness ratio is lower than 15. For wall slenderness ratios greater than 15, Taylor 
and Breen [1994] proposed a simplified design method that formed the basis for the provisions 
contained in the AASHTO Specification [1998]. The validity of the results obtained by Taylor 
and Breen [1994] was confirmed by Santa Maria [2001], who tested five models of concrete 
bridge piers. It is worth noting that all the previous tests where conducted monotonically and 
quasi-statically. Furthermore, only the effect of axial loads and bending moments were 
considered in the analyses, with no reference to the effects of shear. 

According to prEN 1998-2 6.2.4 (2) [CEN, 2003], in plastic regions the wall slenderness ratio 
should not exceed 8. Since in the parametric analysis the wall thickness was equal to 0.40 m, the 
maximum clear width of the wall is equal to 3.20 m. Furthermore, in the parametric analysis it 
was considered a monocellular hollow pier with the outer dimension of the flange constant and 
equal to 2.00 m resulting in a section aspect ratio of 2.0 when the maximum wall slenderness 
ratio allowed by prEN 1998-2 [CEN, 2003] is considered. In the parametric analysis aspect ratio 
values ranging between 1.0 and 3.0 have been considered, exceeding the maximum allowed 
slenderness ratio for aspect ratios larger than 2. 

4.5 LONGITUDINAL REINFORCEMENT RATIO 

The longitudinal reinforcement ratio is defined as: 

ρ = s
L

c

A
A

 (3.20) 

where As and Ac are the total areas of longitudinal reinforcement and concrete cross-section. 

Lower and upper limits to longitudinal reinforcement ratio are usually specified by design codes. 
There is, however, an important variation in codified limits and in common design practice 
among different countries [Priestley et al., 1996b]. In the United States, it is permitted to vary the 
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longitudinal reinforcement ratio for columns between 0.01 and 0.08. In New Zealand, the 
permitted range is from 0.008 to 0.08. In Japan much lower reinforced ratios are permitted, and 
values as low as 0.005 are common. According to prEN 1998-1 5.4.3.2.2 (1) [CEN, 2003], the 
total longitudinal reinforcement ratio should not be less than 0.01 and not more than 0.04. In 
design practice, reinforcement ratios are usually between 0.01 and 0.03. In the present study, 
reinforcement ratios between 0.005 and 0.04 were considered, distributed in two layers as 
commonly observed in practice. Furthermore, it was assumed that the reinforcement rebars, 
having all the same size, are uniformly distributed across the section. 

4.6 AXIAL LOAD LEVEL 

The normalized axial force is defined as: 

=
⋅
Ed

k
c ck

N
A f

ν  (3.21) 

where Ned is the axial force corresponding to the seismic design condition, Ac is the area of the 
concrete section and fck is the characteristic value of concrete strength. 

According to prEN 1998-2 2.2.2.1 5(P) [CEN, 2003], plastic hinges shall not be formed in 
reinforced concrete sections where the normalized axial force exceeds 0.6. Furthermore, if the 
normalized axial force is greater than 0.30, even in a single ductile member, the value of the 
bridge behaviour factor should be reduced (prEN 1998-2 4.1.6 5(P) [CEN, 2003]). As a result, in 
design practice, normalized axial force values usually range between 0.10 and 0.30. 

4.7 CONFINEMENT LEVEL 

The confinement level of concrete in a section is related to the amount of transverse 
reinforcement and its arrangement, which in turn is related to the amount and arrangement of 
the longitudinal reinforcement. The confinement level can be evaluated through Mander’s 
parameter λc, as suggested by Annex E of prEN 1998-2 [CEN, 2003], using Equations from (3.7) 
to (3.19). 

In order to evaluate the range of variation of λc, a 1.00 m section of a wall with a thickness of 
0.40 m was considered (see Figure 21). By assuming a value i for the distance between the centres 
of two consecutive rebars, the rebar size can be evaluated in terms of the longitudinal 
reinforcement ratio (see Table 7). It is reasonable to assume that the diameter of the longitudinal 
reinforcement of bridge piers may vary between φ16 mm and φ32 mm, so that any bar diameter 
resulting from the combination of the selected distance i and longitudinal reinforcement ratio ρ is 
discarded if it falls out of this range (see Table 7). 

For each spacing value i, the distance bi between two consecutive engaged rebars is evaluated. 
According to prEN 1998-2 6.2.4 (4) [CEN, 2003], if νk ≤ 0.2 the requirements concerning 
buckling of longitudinal compression reinforcement given in Section 6.2.2 need to be met; 
otherwise the confinement provisions given in Section 6.2.1 need to be met as well. 

According to prEN 1998-2 6.2.2 [CEN, 2003], longitudinal rebars should be restrained against 
outward buckling through: i) a perimeter tie engaged by intermediate cross-ties at alternate 
locations of longitudinal bars at a horizontal spacing not exceeding 200mm (see Table 8); ii) 
transverse reinforcement at a vertical spacing not exceeding the value of the product between the 
diameter of the longitudinal rebars and factor δ (see Table 10), defined as: 

( )tk ykf f5 2.5 2.25 6δ≤ = ⋅ + ≤  (3.22) 



 

 

12 

where ftk and fyk are the characteristic values of the tensile and yield strength of the transverse 
reinforcement, respectively. Following Priestley et al. [1996b], a value equal to 1.19 has been 
assumed for the ratio ftk/fyk, resulting in a value of δ equal to 5.  

According to prEN 1998-2 6.2.1 [CEN, 2003], the transverse distance between hoop legs or 
supplementary cross-ties should not exceed 1/3 of the smallest dimension of the concrete core to 
the hoop centreline, nor 200 mm (see Table 9) and the spacing of hoops or ties in the vertical 
direction should be smaller than 6 times the longitudinal bar diameter and 1/5 of the smallest 
dimension of the concrete core measured to the hoop centreline. 

For each of the considered reinforcement arrangements, the values of the parameters αn, αs and 
α, defined according to Equations (3.16), (3.17) and (3.15), are evaluated. The results are shown 
in Table 12 and Table 17. 

According to prEN 1998-2 6.2.2 (4)P [CEN, 2003], if νk ≤ 0.2, the minimum amount of 
transverse ties is given by: 

s yst

T yt

A fA
s f

2min (mm /m)
1.6

⋅⎛ ⎞
=⎜ ⎟ ⋅⎝ ⎠

∑  (3.23) 

where At is the area of one tie leg (in mm2), sT is the vertical distance between tie legs (in m), ΣAs 
is the sum of the areas of the longitudinal bars restrained by the tie (in mm2), fyt is the yield 
strength of the tie and fys is the yield strength of the longitudinal reinforcement. From Equation 
(3.23), At and the relative transverse reinforcement ratio can be determined for each considered 
couple of As and sT values (see Table 18 and Table 19). 

For νk > 0.2, both prEN 1998-2 6.2.1 (provisions against buckling) and 6.2.2 (confinement 
provisions) [CEN, 2003] should be met. The quantity of confining reinforcement is defined 
through the mechanical reinforcement ratio: 

wd w yd cdf fω ρ= ⋅  (3.24) 

where ρw is the transverse reinforcement ratio defined as: 

sw
w

L

A
s b

ρ =
⋅

 (3.25) 

where Asw is the total area of hoops or ties in one direction of confinement; sL is the spacing of 
hoops or ties in the vertical direction, b is the dimension of the concrete core perpendicular to 
the direction of confinement under consideration, measured outside of the perimeter hoop. 

The minimum amount of confining reinforcement is determined, for rectangular hoops and cross 
ties, as follows: 

wd r w req w, , ,min
2max ,
3

ω ω ω⎛ ⎞≥ ⎜ ⎟
⎝ ⎠

 (3.26) 

where: 

( )ω λ ν ρ= ⋅ ⋅ + ⋅ ⋅ −ydc
w req k L

cc cd

fA
A f, 0.13 0.01  (3.27) 
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where Ac is the concrete gross section area; Acc is the confined concrete area of the section to the 
hoop centreline, ωw,min and λ are factors specified in Table 20 and ρL is the reinforcement ratio of 
the longitudinal reinforcement. From Figure 22 it is possible to observe that the plot of Equation 
(3.27) in the νk-ρL-ωwd,r space is represented by a plane with a slope that depends on the values of 
the parameter λ given in Table 20. Figure 22 also shows the maximum transverse reinforcement 
ratio 0.016 (ωwd,r = 0.346) needed to achieve a ductile seismic behaviour when νk = 0.60 and ρL = 
0.04. 

It can be concluded then that the transverse reinforcement ratios range between a minimum of 
0.003, obtained for νk ≤ 0.20 and a low amount of longitudinal reinforcement (see Table 19), and 
a maximum ratio of 0.016. Assuming that the transverse reinforcement ratio is the same in both 
directions, orthogonal and parallel to the wall of Figure 21, the range of values of the 
confinement pressure σe and of the confinement parameter λc can be evaluated through 
Equations (3.14) and (3.11), respectively. The results are reported in Table 21. 

In the parametric analysis, λc ranges between 0.0 and 2.0. For the concrete classes given in Table 
5 and the λc values considered in the parametric analysis, the corresponding values of σe are 
evaluated (see Figure 23) as a function of the transverse reinforcement ratio ρw. The limits of this 
range correspond to the minimum and maximum values attained by the confinement 
effectiveness parameter α (from about 0.6 to about 0.8) (see Table 14 and Table 17). 

4.8 FAILURE CRITERIA OF THE SECTIONS 

Failure of the reinforced concrete section is achieved when one of the following conditions 
occurs: i) the reinforcing steel attains its ultimate tensile strain; ii) the confined concrete reaches 
its ultimate compressive strain. 

In design and analysis of members subjected to earthquake loads, a reduced effective ultimate 
tensile strain should be adopted, since there is evidence that under cyclic loading involving 
sequential tensile and compressive strains, the ultimate tensile strain is less than that obtained 
under monotonic testing [Priestley et al., 1996b]. The requirement that the reinforcement tensile 
strain εs should not be greater than 0.70⋅εsu, where εsu is the reinforcement steel elongation at 
maximum stress, is generally conservative, except for members with high axial compression 
forces. 

The confined concrete attains its ultimate compressive strain, according to prEN1998-2 E.2.1 
[CEN, 2003], when:  

s ym um
cu c

cm c

f
f,

,

1.4
0.004

ρ ε
ε

⋅ ⋅ ⋅
= +  (3.28) 

where ρs = 2⋅ρw for orthogonal hoops, fym and εum are the mean values of the yield stress and 
elongation at maximum stress of the reinforcement steel, respectively, and fcm,c is the mean value 
of the compressive strength of the confined concrete. It should be noted [Priestley et al., 1996b] 
that Equation (3.28) has been formulated from considerations of confined sections under axial 
compression. When used to estimate the ultimate compression strains of sections subjected to 
bending, or combined bending and axial compression, Equation (3.28) tends to be conservative 
by at least 50%. 
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4.9  IDEALIZED MOMENT-CURVATURE RELATIONSHIP 

The nonlinear skeleton curves obtained from the parametric analysis were approximated through 
bilinear curves. With this aim, the first yield point and the point corresponding to failure are 
evaluated for each nonlinear skeleton curve. 

The first yield point corresponds to the point on the moment-curvature relationship at which 
either the first steel fibre reaches the yield strain in tension or the extreme compression fibre 
attains a strain of 0.002, whichever occurs first. The latter condition only applies when the 
column axial load is high, typically for values of νk ≥ 0.35. [Priestley et al., 1996a]. 

The failure point is obtained when one of the conditions given in Section 4.8 is reached. The line 
that joins the origin and the first yield point gives the initial slope of the bilinear curve; the line 
that extends through the failure point and balances the areas between the actual and the idealized 
moment-curvature relationships beyond the first yield point gives the slope of the second branch 
(see Figure 24). 

It is worth noting that sections with different detailing, and hence with different reinforcement 
ratios ρw (see Figure 23), may lead to the same value of the confinement parameter λc. Since the 
ultimate compressive strain εcu,c depends on the amount of ρw (see Equation (3.28)), for the same 
value of λc, different values of εcu,c are obtained. However, in the parametric analysis, the skeleton 
nonlinear curves are derived, among other parameters, as a function of λc, with ρw only 
determining the level at which the maximum curvature is attained. As a result, during the 
bilinearization procedure previously described, for the same skeleton curve (i.e., same λc), 
different bilinear diagrams are obtained for different levels of the ultimate curvature (i.e., 
different values of ρw).Some examples of bilinear curves obtained by the parametric analysis are 
shown in Figure 25 and Figure 26. 

5. RESULTS ON EQUIVALENT SECTION PROPERTIES: 
MOMENT-CURVATURE AND ENERGY DISSIPATION 

With the purpose of serving as a tool for the analysis and design of rectangular hollow bridge pier 
sections, the results of the parametric analysis are represented in terms of dimensionless 
parameters. 

Concerning the bilinear skeleton curves, the following parameters have been chosen (see Figure 
24): 

H(dimensionless curvature) χ ⋅  (4.1) 

(curvature ductility)  u yμ χ χ=  (4.2) 

2(dimensionless yield moment)  y

cm

M
f B H′ ⋅ ⋅

 (4.3) 

( )
( )(post yielding stiffness ratio)  u y y

yu y

M M M
α

χχ χ

−
=

−
 (4.4) 
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where B and H are the section width and depth, respectively, and f’cm  is the mean value of the 
concrete compressive strength. The results of the parametric analysis, for class C25 concrete and 
normalized axial load ranging between 0.10 and 0.40, are shown from Figure 27 to Figure 55. 

The hysteretic energy dissipated by the section in a cycle is represented in a dimensionless form 
by the following parameters: 

W
Mmax max2

η
π χ

=
⋅ ⋅ ⋅

 (4.5) 

where W is the energy dissipated in one cycle, Mmax and χmax are the maximum moment and 
curvature cyclic amplitude, respectively. The obtained results are shown in Figure 56. It can be 
observed that η does not depend on the section aspect ratio, while it depends strongly on the 
normalized axial force, although this dependence becomes less important when the longitudinal 
reinforcement ratio increases. 

6. FROM SECTION TO MEMBER PROPERTIES 

The charts that represent the results of the parametric analysis of reinforced concrete hollow 
sections were derived with the purpose of serving as a tool for the performance based 
assessment/analysis of bridges, which need the evaluation of two main parameters: equivalent 
stiffness and equivalent damping, both evaluated for a cantilevered pier in terms of top 
displacement and shear force; this section explains how to derive these properties from the 
properties of the section at the base of the pier.  

The equivalent stiffness of the pier is defined as the secant stiffness K and is computed in terms 
of the secant-to-yield stiffness Ky and the ductility of the pier μd corresponding to the evaluation 
of K. Considering that the force-displacement envelope of the pier is bilinear with a post-yield 
stiffness ratio αd, the secant stiffness of the pier is expressed as: 

( )
μ

α μ
μ

μ

= ≤⎧
⎪ + −⎨ = >⎪
⎩

y d

d d
y d

d

K K

K K

when 1

1 1
when 1

 (5.1) 

The secant-to-yield stiffness Ky of the pier is computed in terms of the yield moment My and the 
yield curvature χy of the section, such that for a pier of length L with an inverted triangular 
bending moment distribution the following expression is obtained: 

y
y

y

M
K

L3

3
χ

⋅
=

⋅
 (5.2) 

The ductility μd may be expressed as a function of the plastic and yield displacements Δp and Δy, 
respectively, at the top of the pier: 

Δ
μ

Δ
= + p

d
y

1   (5.3) 
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Where the yield and plastic displacements are equal to: 

χ
Δ = y

y

L2

3
  (5.4) 

( )( )Δ Δ χ χ
⎡ ⎤

= − + − −⎢ ⎥
⎢ ⎥⎣ ⎦

u
p y p u y p

y

M L L L
M

1 0.5  (5.5) 

By substituting Equations (5.4) and. (5.5) into Equation (5.3), and by relating Mu to My through 
the post yield stiffness ratio α and curvature ductility μ of the section, μd is expressed as follows, 
for a pier height L and plastic hinge length Lp: 

( )μ μ α
⎡ ⎤⎛ ⎞

= + − + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

p p
d

L L
L L

3
1 1 1 0.5   (5.6) 

The plastic hinge length is computed from [Priestley et al., 1996b]: 

= ⋅ + ⋅ ⋅p bL yL L d f0.08 0.022 (MPa)   (5.7) 

where dbl and fy are the diameter and yield stress of the longitudinal steel reinforcement, 
respectively. 

The post yield stiffness ratio αd of the pier is computed in terms of the plastic hinge length Lp 
and the post yield stiffness ratio α of the section, such that for a pier length L the following 
expression is obtained: 

α

α

=
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

d
p pL L

L L

1
3

1 1 0.5
 (5.8) 

Equation (5.8) shows that αd is larger than α, as the post yield stiffness of the pier takes into 
account the stiffness contribution of the elastic portion of the pier. The value of αd is practically 
independent of the length of the pier, as Lp is nearly proportional to L, especially for large values 
of L (see Equation (5.7)). 

Experimental tests performed on bridge piers with varying span ratios [Pinto et al., 1995 and 
1996] using Tempcore steel have shown that for pier ductilities larger than one, the ratio of 
secant stiffness K with respect to the secant to yield stiffness Ky of the pier can be approximated 
by using Equation (5.1) with αd equal to zero, such that the following simplified expression may 
be used: 

μ

μ
μ

= ≤⎧
⎪
⎨ = >⎪⎩

y d

d
d

K K

K

when 1
1 when 1

 (5.9) 

The results of the tests performed by [Pinto et al., 1995 and 1996] are presented in graphical form 
in Figure 57, showing good agreement with Equation (5.9). 

The equivalent damping ratio of the pier ξ is calculated from the total dissipated energy Wd and 
the total energy Ed stored by the pier at a ductility μd: 
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ξ
π

= d

d

W
E2

 (5.10) 

where 

( )
χ

μ α μ= + −⎡ ⎤⎣ ⎦
y

d d y

L
E M 1 1

3
 (5.11) 

Considering that the portion of the pier that remains elastic does not dissipate energy, Wd can be 
approximated by: 

= ⋅d pW W L  (5.12) 

where W is the energy dissipated by the section and is expressed as a function of the 
dimensionless hysteretic energy η and the energy E stored by the section: 

π η=W E2  (5.13) 

where 

( )χ μ α μ= + −⎡ ⎤⎣ ⎦y yE M 1 1  (5.14) 

By substituting Equation (5.11) through (5.14) into (5.10), it is possible to express ξ as follows: 

μξ η
μ

= p

d

L
L

3  (5.15) 

Summarising, the expressions proposed in the present section allow constructing the force 
displacement envelope (Ky, Δy, αd and μd) and the equivalent viscous damping ratio ξ of a pier of 
length L, as a function of the properties My, χy, α and η of the section for a given ductility μ at 
the base of the pier. 
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PART B – SHEAR EFFECTS ON BRIDGE PIERS

7.  SHEAR TESTS ON HOLLOW COLUMNS 

The correct evaluation of the seismic performance of reinforced concrete hollow piers is a 
fundamental step for the reliable assessment of the seismic performance of large bridges in 
seismic prone areas. It is well known that compared to steel, the inelastic response of reinforced 
concrete members to cyclic loading is in general more difficult to evaluate. This is due to many 
factors: cracking, crushing and shrinking of concrete; yielding, strain hardening, buckling and 
rupture of the steel reinforcement; bond-slip of the longitudinal reinforcement and the degree of 
confinement of concrete offered by the transverse steel reinforcement. The influence of these 
factors on the behaviour of reinforced sections has been modelled with more or less success for 
the case of axial and flexural forces, however, the behaviour in shear, especially for the case of 
short hollow column sections, is yet not well understood. 

In this part of the document, the results of experimental tests conducted by several research 
groups on hollow piers are first reported. Then, the different approaches to the problem of 
modelling shear effects in the design and assessment of bridge columns are presented. These 
approaches range from the original truss model proposed by Ritter (1899) and Mörsch (1909) to 
the very recent Modified Compression Field Theory (CFT) proposed by Vecchio & Collins 
(1986). Finally, some short considerations are made about the shear effects in the case of hollow 
reinforced concrete piers. 

Mander [1984] carried out experimental tests on small models of hollow reinforced concrete 
bridge piers with the purpose of assessing their seismic performance and checking the 
applicability of the New Zealand Concrete Design Code [1982] for the detailing of plastic hinge 
regions. The main conclusions of Mander were that the seismic performance of hollow 
reinforced concrete piers is dominated by the behaviour of the flanges, therefore, good 
performances in terms of strength and energy dissipation characteristics are attained by designing 
the flanges as solid column members. 

Pinto et al. [1995] reported on the experimental results obtained from the testing of a squat 
hollow bridge pier scaled model (1:2.5) designed according to ENV 1998-2 [CEN, 1993] and 
subjected to a step-wise increasing displacement history. In spite of the low shear span ratio 
(1.75), the pier attained a displacement ductility of six while maintaining its load carrying capacity. 
It was observed that the shear deformations contributed to one third of the total displacements at 
the top of the pier, while the energy dissipated in shear represented 10% of the total energy 
dissipation. During the experimental tests the warping of one section of the pier was measured, 
showing that up to a ductility of three the deformed section assumes the well-known S-shape 
profile, while for higher levels of ductility this profile is modified by the severe amount of shear 
cracking that takes place along the pier. 
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Another series of tests carried out by Pinto et al. [1996] on similar piers as those tested in [1995], 
but with higher span ratios of 3.5 and 5.25, showed that even though the failure mechanism was 
determined by flexure, shear deformations play a role in contributing to the total deformations of 
the pier, but to a more limited extent than for the squat pier. Likewise, the maximum ductility 
attained for these piers was on the order of six, similar to the maximum ductility observed for the 
pier with the lower span ratio of 1.75. 

Inoue and Egawa [1996] investigated and compared the flexural and shear behaviour of a set of 
solid and hollow reinforced concrete beams subjected to cyclic deflections. It was observed that 
for the hollow beams, diagonal cracks are generated at an early stage of loading, leading to a 
considerable increase in the strain of the stirrups, thus increasing the contribution of shear to the 
total displacement of the beam. It was observed that shear deformations contributed up to 50% 
of the ultimate deflection of the hollow beam. For the solid beams, diagonal cracks appeared at 
the onset of yielding of the longitudinal reinforcement, while the contribution of shear 
deformations to the total deflection of the beam was rather limited, even when reaching the 
ultimate deflection. Furthermore, Inoue and Egawa [1996] found that the strains of stirrups and 
the principal strain in concrete could be well evaluated using the CFT. 

Takahashi and Iemura [2000] investigated the seismic performance of hollow reinforced concrete 
piers using both static cyclic tests and pseudo dynamic tests on small scale models. The results of 
the static cyclic tests showed that the flexural cracks in the flange change drastically into diagonal 
cracks when these progress into the web. These diagonal cracks intersecting each other generate 
vertical cracks at the centre of the web, inducing large strains in stirrups. On the base of these 
observations, Takahashi and Iemura [2000] concluded that the influence of shear cannot be 
neglected and a rational shear design method, which is able to account for the effects of the 
deterioration of concrete resistance due to cyclic loading, should be established. Comparing the 
results of cyclic loading and pseudo dynamic tests, different crack patterns were observed: in the 
latter it was found that the flexural cracks did not turn into shear cracks, even when progressing 
into the web. Takahashi & Iemura suggested that this difference can be explained considering the 
non-symmetric damage distribution induced in the pier by the considered earthquake; concluding 
that the loading history may strongly influence the performance of the pier. 

Yeh et al. [2002] performed pseudo-dynamic and cyclic tests on two prototypes and four models 
of hollow bridge piers subjected to constant levels of axial load. The tested piers were found to 
have acceptable seismic performance, reaching flexural failure with ductility factors for the model 
and prototype of 5.26 and 11.1, respectively. An important result from the test was that the 
prototypes showed higher ductilities than the models, and that the ductility capacity of the 
sections is reduced as the level of axial load increases.  

8. RITTER – MÖRSCH TRUSS MODEL 

Current design procedures for reinforced concrete members in shear stem from the original truss 
model proposed by Ritter [1899] and Mörsch [1909]. In this model it is assumed that a cracked 
reinforced concrete beam acts like a truss with parallel longitudinal chords and a web composed 
of steel ties and diagonal concrete struts inclined 45° with respect to the longitudinal axis (Figure 
58); the tensile stresses in the diagonally cracked concrete are neglected. According to this model, 
when transverse loads act on a reinforced concrete member, the diagonal compressive concrete 
stresses push apart the loaded faces, while the tensile stresses in the stirrups pull them together. 
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Shear failure of reinforced concrete members can be classified as either diagonal tension failure 
or diagonal compression failure. The former occurs after the formation of cracks inclined with 
respect to the member axis. As loading continues, crack opening may disrupt the load carrying 
mechanism, thus leading to failure. The latter may occur either before or after the formation of 
inclined cracks and results in crushing of the concrete along a diagonal compression strut. 
Diagonal compression failure may occur when either the column axial force or the transverse 
reinforcement ratio, or both, are relatively high, or alternatively, if the aspect ratio1 is relatively 
low. However, for the case of elements with an aspect ratio greater than 2 with axial load near or 
below the balanced point, diagonal tension failure seems to be the controlling mechanism. In this 
case the shear resistance is given by: 

v v vyA d f
V

s
⋅ ⋅

=  (7.1) 

where Av is the area of shear reinforcement within a distance equal to the stirrup spacing s, dv is 
the effective shear depth taken as the flexural lever arm of the member and fvy is the yield stress 
of the shear reinforcement. 

For rectangular columns, the appropriate definition of Av may be illustrated through the example 
reported in Figure 59, taken from Priestley et al. [1996]. In this example a column reinforced with 
12 longitudinal bars and two possible arrangements of transverse reinforcement is considered. 
Both arrangements include a peripheral hoop: in one alternative the eight internal longitudinal 
bars are confined by an octagonal hoop, whereas in other alternative the bars are confined by two 
independent rectangular hoops, shown as dashed lines in Figure 59. 

Considering a flexure-shear crack inclined at θ = 45° to the column axis, as shown in Figure 59, 
the resisting force crossing the crack depends on whether the crack crosses the hoop layer in the 
outer regions, indicated by lines 1-1, or in the centre region, indicated by line 2-2. The peripheral 
hoop contributes fully at all sections, but in the outer sections the yield force in the octagonal 
hoop is at 45° with respect to the direction of the applied shear force and must be resolved back 
to the line of action on Vs. Considering the case where the section is reinforced by the peripheral 
and octagonal hoops, the resisting force F parallel to the applied shear force is: 

Octagonal case, section 1-1: 

h vy h vyF A f A f22 3.41
2

⎛ ⎞= + ⋅ ⋅ = ⋅ ⋅⎜ ⎟
⎝ ⎠

 (7.2) 

Octagonal case, section 2-2: 

( ) h y h vyF A f A f2 2 4.00= + ⋅ ⋅ = ⋅ ⋅  (7.3) 

where Ah is the area of one leg of the hoops. 

Similarly, for the case with peripheral hoop and overlapping internal hoops, four hoop legs are 
crossed by the crack at section 1-1 and six legs are crossed at section 2-2. Hence: 

Rectangular case, section 1-1: 

h vyF A f4= ⋅ ⋅  (7.4) 

                                                      

1 The aspect ratio of an element is defined as the ratio between the shear span and the width of the element 
cross section.  
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Rectangular case, section 2-2: 

h vyF A f6= ⋅ ⋅  (7.5) 

Since an inclined crack will cross approximately twice as many hoop sets in the outer (1-1) than 
in the inner (2-2) section, the average effective area of transverse reinforcement for the two cases 
is: 

Octagonal case: 

v h hA A A2 3.41 1 4 3.61
3

⋅ + ⋅⎛ ⎞= ⋅ = ⋅⎜ ⎟
⎝ ⎠

 (7.6) 

Rectangular case: 

v h hA A A2 4 1 6 4.67
3

⋅ + ⋅⎛ ⎞= ⋅ = ⋅⎜ ⎟
⎝ ⎠

 (7.7) 

It can readily be shown that the efficiency of the two alternatives (shear strength divided by 
volume of steel) is the same. The octagonal case will generally be preferable because of the 
reduced steel congestion in the core. 

In applying Equation (7.1) to circular sections reinforced with spirals or circular hoops, codes 
have generally recommended taking Av = 2·Ah and d = 0.8·D. However, it is clear from the 
discussion above, that resolving hoop forces parallel to the applied shear force is inappropriate. 
In Figure 59, the component F of the hoop force exposed by a diagonal flexure-shear crack and 
parallel to the applied shear force is: 

h vyF A f cosα= ⋅ ⋅  (7.8) 

where α is the angle between the tangent to the spiral and the direction of the shear force, and 
varies from 0° to 90° as the distance x perpendicular to the column axis varies from 0 to 0.5 of 
diameter D’ of the spiral or hoop. It can readily be shown that the total shear resistance, 
assuming a 45° crack inclination, is: 

h vyA f D
V

s2
π ′⋅ ⋅

= ⋅  (7.9) 

Although this assumes that the crack traverses the full diameter of the section, the error resulting 
from a compression zone extending into the core is negligible, since the contribution of the hoop 
force to resist shear in the regions where x is maximum is negligible. 

Experimental tests have revealed that the results given by the model proposed by Ritter and 
Mörsch are generally quite conservative. In fact, it neglects important sources of shear resistance 
as aggregate interlock, dowel action of the longitudinal steel and shear carried across the 
uncracked concrete. It is also evident that this model does not account for the effects of axial 
force on shear resistance. 
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9. TRUSS MODELS 

Considering that the results obtained with the Ritter – Mörsch truss model underestimate the 
actual shear strength of reinforced concrete members, most construction standard and norms (e.g. 
ACI 318–2002, CSA - Canadian Standard Association 1994) have accepted to add an empirical 
correction term to the original truss equations. This term, known as the “concrete contribution”, 
and generally denoted as Vc, is meant to represent those sources of shear resistance that the basic 
truss model is not able to capture. With this assumption, the nominal shear resistance can be 
expressed as: 

= +s cV V V  (8.1) 

where Vs represents the transverse reinforcement contribution to shear resistance. This 
contribution is equal to Equation (7.1) in which fvy has been replaced by the tensile stress fv of the 
stirrups. The concrete contribution is taken as the shear force corresponding to the initiation of 
diagonal cracking, which has been assessed empirically from experimental data and may be 
expressed from the following expressions as found in the ACI and CSA construction codes: 

⎛ ⎞
′= ⋅ + ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠

c c v
g

PV f b d
A

ACI 318 - 2002 0.166 1 (MPa)
13.8

 (8.2) 

  ′= ⋅ ⋅ ⋅c c vV f b dCSA 1994 0.20 (MPa)  (8.3) 

where f’c is the compressive strength of concrete, b is the width of the member, dv is the effective 
depth of the member, Ag is the gross area of the member section, and P is the axial load (positive 
if compressive). 

When comparing Equation (8.2) and Equation (8.3), it is possible to observe that only the first 
equation takes into account the effect of axial force on shear resistance: axial compressive loads 
increase the shear load at which flexural and inclined cracking occurs. The dependency of Vc on 
the axial load may be thought as a way to account for the effects of axial loads on the shear 
mechanisms neglected in the Ritter - Mörsch truss model, i.e., axial compression forces generate a 
larger compression zone characterized by a greater shear strength; on the contrary, axial tensile 
forces reduce the depth of the compression zone and may lead to premature yielding of the 
longitudinal reinforcement, which in turn rapidly destroys the aggregate interlock mechanism. It 
is worth noting that some codes (e.g. ACI 318-89) consider the beneficial effect of axial loads on 
shear resistance only for the case of axial forces coming from external sources, such as gravity 
loads, while for axial forces generated from self-equilibrated systems, no beneficial effects are 
considered. 

Acknowledging the conservative results given by the Ritter – Mörsch truss model, the European 
Code prEN 1992-1 [CEN, 2003] does not use the corrective term Vc, instead adopts a method 
known as the “variable – angle truss method” 2, which is based on a truss model in which the 

                                                      

2 A combination of the variable-angle truss and a concrete contribution has also been proposed. This 
procedure has been referred to as the modified truss model approach [CEB, 1978; Ramirez and Breen, 
1991] 
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concrete struts can form with the member axis an angle θ that can vary up to a value of 45°. The 
method recognises that due to shear mechanisms different from those considered by the Ritter– 
Mörsch truss model, the compressive stresses in the member web may have an inclination lower 
than 45°. According to this model the shear resistance of a member may be reached either for 
yielding of the stirrups: 

= ⋅ ⋅ ⋅v
v vy

AV d f
s

cotθ  (8.4) 

or for crushing of the concrete web struts: 

( )ν θ θ′= ⋅ ⋅ ⋅ +v cV b d f / cot tan  (8.5) 

where ν is the strength reduction factor for concrete cracked in shear and is computed as a 
function of the compressive stress f’c derived from cylinder tests: 

′⎛ ⎞= ⋅ −⎜ ⎟
⎝ ⎠

cf0.6 1
250

ν   (f’c in MPa)  (8.6) 

Equation (8.6) accounts for the lower compression resistance of the concrete forming the struts 
with respect to the compression resistance derived from standard cylinder tests. This reduction in 
resistance is due to the high tensile strains that exist in the struts normal to the direction of the 
struts and to the effects of the stirrups crossing the struts. 

For a given amount of transverse reinforcement the maximum shear resistance is attained when 
the yielding of the shear reinforcement and the crushing of the web concrete struts are reached 
simultaneously. This assumption leads to the following condition for angle θ: 

ωθ
ω
−

= v

v

1cot  (8.7) 

With the mechanical percentage of web reinforcement ωv equal to: 

⋅
=

′⋅ ⋅ ⋅
v vy

v
c

A f
s b f

ω
ν

 (8.8) 

Considering the values of θ  given by Equation (8.7), the shear strength may be expressed as a 
function of the amount of shear reinforcement, and may be plotted in a dimensionless format as 
shown in Fig. 2.1, indicating that larger shear capacities are obtained with respect to the Ritter – 
Mörsch truss model, which assumes a strut inclination of θ equal to 45°. 

The norm prEN 1992-1 [CEN, 2003] suggests to use as shear resistance of a member the lowest 
value resulting from Equations (8.4) and (8.5) for a given amount of shear reinforcement and for 
a given value of θ. For members subjected to axial compressive forces, the same code suggests to 
multiply the value given by Equation (8.5) by a factor αc ranging between 0 and 1.25 (see Fig. 
2.2), which depends on the mean compressive stress σp acting on the section of the member. 
prEN 1992-1 [CEN, 2003] does not consider any distinction between the loads inducing the 
compressive stresses, which may be either external (i.e., gravity loads) or due to prestressing or 
postensioning. It should be noted that prEN 1992-1 [CEN, 2003] does not give any indication on 
the effects on shear resistance associated to loads inducing tensile stresses on the section. 

Both of the approaches presented in the previous paragraphs (e.g., concrete contribution method 
as given by Equation (8.1) and the variable angle truss model) are insensitive to the magnitude 
and consequences of the member deformations. Mechanisms such as tension stiffening, 
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aggregate interlock and dowel action, all fail as the deformation of the section increases or after 
several cycles of load reversal. It is evident that this model deficiency becomes crucial when the 
seismic response of a reinforced concrete member has to be evaluated. 

In view of the difficulty of modelling the concrete behaviour, a number of codes reduce or even 
neglect the concrete contribution term. For example, in the case of bridges subjected to seismic 
actions, prEN1998-2 [CEN, 2003] suggests to assume a value of θ equal to 45° when designing 
plastic hinge regions for shear, i.e., the Ritter - Mörsch truss model should be adopted with no 
concrete contribution. In other codes, the concrete contribution reduction depends on the value 
of the compressive stress: if it is less than a small fraction of f’c, the concrete contribution is set 
equal to zero, otherwise it is taken as a fraction of its value corresponding to the static case, as 
given for example by Equations (8.2) and (8.3). Unfortunately, experiments have shown that the 
resulting estimate of the nominal shear strength is over-conservative at low values of 
displacement ductility demand and under-conservative at higher values of displacement ductility. 

The dependence of shear strength on deformation demand has been acknowledged as early as 
1975 in a comprehensive study of reinforced concrete columns subjected to large transverse 
displacements reversal [Wight and Sozen, 1975] 3. In 1983, the Applied Technology Council 
[ATC, 1983] published guidelines for seismic retrofit of bridges in which a conceptual model was 
proposed to model the relationship between shear demand and supply at different ductility levels 
(see Figure 62). This model has inspired some of the contemporary approaches that have been 
proposed in order to modify the concrete contribution term in the design code guidelines. In 
general, the contribution of concrete Vc is assumed to be independent on the level of 
deformation at low displacement ductility values. 

Most of the proposed models suggest a constant initial value for Vc up to a displacement ductility 
of 1 [Wong et al., 1993; Lehman et al., 1996] or 2 [Ang et al., 1989; Priestley et al., 1994]. At larger 
displacement ductilities (usually in excess of 4), Vc is assigned a fixed residual value, with the 
exception of the expression reported in Lehman et al. [1996], where Vc is set to zero for 
displacement ductility values greater than 4. The shear contribution of concrete is assumed to 
decay linearly for displacement ductilities that fall between these two limits. 

In some experimental studies [Ang et al., 1989, Aschheim and Moehle, 1992; Wong et al., 1993], it 
has been observed that the concrete contribution is enhanced by an increase in the amount of 
shear reinforcement. This behaviour is represented by the models proposed by Ang et al. [1989] 
and Aschheim and Moehle [1992]: in the former, the residual shear stress is proportional to the 
amount of transverse reinforcement, while in the latter, the concrete shear contribution increases 
with the amount of transverse reinforcement. In the experimental studies by Ang et al. [1989] and 
Wong et al. [1993] it was also observed that when the flexural ductility increases to values above 
two (>2), the inclination of the diagonal compression struts of the truss mechanism with respect 
to the longitudinal axis decreases (< 45°), thus increasing the shear carried by the transverse 
reinforcement and hence that of the overall truss. 

Hereafter, two models, developed by Priestley et al. [1994] and Sezen and Moehle [2004], are 
presented in more detail. 

                                                      

3 It should be noticed that some researchers (e.g. Konwinsky et al. 1995) have found that column shear 
strength was independent on displacement ductility demand. 
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9.1 PRIESTLEY ET AL. [1994] 

According to this model, the shear strength of columns subjected to cyclic lateral loads results 
from the summation of three contributions: concrete, Vc; a truss mechanism, Vs; and an arch 
mechanism, Vp: 

= + +n c s pV V V V   (8.9) 

The concrete component is given by: 

( )′= ⋅ ⋅ ⋅c c gV k f A0.8 (psi)  (8.10) 

in which the parameter k, within plastic end regions, depends on the member displacement 
ductility demand as defined in Figure 63, where the concrete contribution is reduced to one-third 
of its initial value for large ductility demands. For columns subjected to ductile demands in the 
two orthogonal directions, the reduction factor k assumes even lower values than for the uniaxial 
ductility demand. For regions of columns outside the plastic end regions, the concrete 
component is computed with the value of k corresponding to a ductility demand of one. 

The contribution of transverse reinforcement to shear strength is based on a truss mechanism 
using an angle θ equal to 30° between the diagonal compression struts and the column 
longitudinal axis. For rectangular columns this contribution is given by: 

′⋅ ⋅
= ⋅v vy

s
A f D

V
s

3  (8.11) 

and for circular columns by: 

′⋅ ⋅
= ⋅ ⋅h vy

s
A f D

V
s

3
2
π  (8.12) 

where Ah is the area of one hoop leg; fvy is the yield strength of transverse reinforcement; s is the 
spacing of the layers of stirrups or hoops along the member axis; Av is the total area of transverse 
reinforcement in a layer in the direction of the shear force; D’ is the core dimension, from centre 
to centre of the peripheral hoop. 

The shear strength enhancement resulting from axial compression is considered as an 
independent component of shear strength, resulting from a diagonal compression strut, as shown 
in Figure 64, given by: 

= ⋅pV P tanα  (8.13) 

For a cantilever column, α is the angle formed between the column axis and the strut from the 
point of load application to the centre of the flexural compression zone at the column plastic 
hinge critical section. For a column in reverse or double bending, α is the angle between the 
column axis and the line joining the centres of flexural compression at the top and bottom of the 
column. The justification for the foregoing approach is that since the axial load must be 
transmitted through the flexural compression zone, an angle is formed between the column axis 
and the compression strut, thus creating a horizontal component of force that opposes the 
external action of the shear force. 
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9.2 SEZEN AND MOEHLE [2004] 

More recently, Sezen and Moehle [2004] have proposed a shear strength model for lightly 
reinforced concrete columns (e.g., characterized by a diagonal tension failure). In this model, the 
concrete contribution is estimated using the following considerations: it is assumed that the onset 
of diagonal tension cracking in an element under a uniform stress state can be related to the 
nominal principal tension stress acting on the element. Assuming a plain stress condition within 
the x-y plane, the principal tension stress σ1 is defined as: 

+ −⎛ ⎞
= + +⎜ ⎟

⎝ ⎠

x y x y
2

2
1 2 2

σ σ σ σ
σ τ  (8.14) 

where σx, σy are the normal tension stresses in the x and y directions, respectively, and τ 
represents the shear stresses acting on the faces normal to the x and y directions. In reinforced 
concrete columns the normal stress σy in the direction of the shear force is equal to zero, based 
on the assumption that the confinement effect of poorly detailed transverse reinforcement is very 
small. σx. The normal stress σx, parallel to the direction of the column longitudinal axis, is defined 
as P/Ag. Assuming that tensile cracking occurs when σ1 reaches the nominal tensile strength fct = 
0.5·(f ’c)0.5 (in MPa), Equation (8.14) can be solved to find the shear stress at the onset of diagonal 
tension cracking: 

′= ⋅ ⋅ −
′⋅ ⋅c

c g

Pf
f A

0.5 1 (MPa)
0.5

τ  (8.15) 

According to Equation (8.15) the shear stress corresponding to the onset of diagonal tension 
cracking will increase as the axial load level increases. 

The stress state in a reinforced concrete column subjected to axial and lateral loading is further 
complicated by the non-homogeneous nature of reinforced concrete, and by the presence of 
bond and flexural cracks. As a result Equation (8.15) does not provide a direct measure of the 
onset of inclined cracking, as it overestimates the inclined cracking load. This is especially true for 
columns with larger ratios between shear span (distance from the maximum moment section to 
the point of inflection) and the effective section depth.  

Using an effective concrete area of 0.8·Ag and the shear stress τ at the onset of cracking from 
Equation (8.15) the concrete contribution to shear strength may be expressed as: 

= ⋅ ⋅c gV A
a d

0.8 (MPa)τ  (8.16) 

where 2 ≤  a / d ≤  4. 

Considering that experimental results have shown that shear strength decreases with the increase 
of the displacement ductility demand, Sezen and Mohele [2004] suggested to introduce a 
ductility-related k factor similar to the one introduced by Priestley et al. [1994]. It should be noted 
that Priestley et al. [1994] applied the factor k only to the concrete contribution, based on the fact 
that crack opening leads only to degradation of the load-carrying capacity of concrete, with no 
associated degradation of the reinforcement. However, the damage of concrete leads to a loss of 
anchorage of the transverse reinforcement as well as to a reduction in the bond capacity of the 
longitudinal and transverse reinforcement, thus reducing the strength of the truss mechanisms. 
Based on these considerations, Sezen and Mohele [2004] decided to apply the k factor to both 
the concrete and truss contributions. Considering that the truss contribution Vs to shear strength 
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is given by Equation (7.1), the proposed model to compute shear strength is expressed by the 
following equation: 

⋅ ⋅
= + = ⋅ + ⋅ ⋅ ⋅v vy

s c g
A f d

V V V k k A
s a d

0.8 (MPa)τ  (8.17) 

The k factor is defined equal to 1.0 for displacement ductilities less than 2 and equal to 0.7 for 
displacement ductilities exceeding 6, varying linearly for intermediate displacement ductilities. 

9.3 STRUT-AND-TIE MODEL 

The strut and tie model is strictly an equilibrium model and is based on the lower theorem of the 
plasticity theory. The “strut and tie” term is generally reserved for disturbed or D-regions and the 
term “truss” is used for beam or B-regions. In B-regions, plane sections remain plane and a 
uniform compression fields developed. In D-regions, arch action, as opposed to beam action, is 
exhibited. D-regions extend about one member depth at both ends from the concentrated loads, 
reactions, or abrupt changes in the section or direction of the member. The regions between the 
D-regions are treated as B-regions. As the slenderness of the reinforced concrete member 
increases, the behaviour shifts from a D-region to a B-region dominant behaviour.   

Concerning shear, the difference in behaviour of the two regions can be expressed as follows 
[MacGregor, 1992]: 

( )dd d d
d d d d

v v
v

T dM T dV d T
x x x x

⋅
= = = ⋅ + ⋅  (8.18) 

where M and T represent the bending moment and the shear force demand and x is the distance 
of the generic cross section from one member end. 

In B-regions, the lever arm remains constant and the tension force adjusts to equilibrate the 
internal moment: 

d
d v
TV d
x

= ⋅  (8.19) 

The quantity dT/dx is the shear flow (shear stress multiplied by the beam width) across any 
horizontal plane between the longitudinal reinforcement and the compression zone and is typical 
of beam behaviour. 

In D-regions, the tension force remains constant and the lever arm adjusts to equilibrate the 
internal moment: 

d
d

vdV T
x

= ⋅  (8.20) 

The strut and tie, and the truss models, provide a consistent design approach for B- and D-
regions. If the level of accuracy and simplicity used in the design of D-regions were considered 
satisfactory for B-regions, the “endless discussion on shear can be put to bed” [Schläich et al., 
1987]. Although the behaviour of short (or deep) members and slender members is different, the 
models are consistent, being important to account for arching action where it exists. As the shear 
span ratio of a member decreases, the role of the web reinforcement changes from that of 
carrying primarily direct tension to that of serving primarily as shear friction reinforcement, thus 
preventing sliding failure along the inclined crack.  
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Strut-and-tie models are discrete representations of statically equivalent distributed stress fields. 
Upon cracking of concrete, some stress redistribution occurs, which is limited by the plastic 
deformation capacity of the concrete. It is therefore important, in highly stressed regions, to 
orient the strut-and-tie model along the internal forces predicted by the theory of elasticity. In 
less stressed regions, significant deviations from the theory of elasticity can be accommodated 
without exceeding the ductility of the structure. Schläich et al. (1987) suggest two guidelines in 
selecting a workable strut-and-tie model: 

• The compatibility of deformations may be approximately considered by orienting the struts 
and ties within 15° of the force systems obtained from a linear elastic analysis of uncracked 
members and connections. 

• The most valid model tends to be one which minimizes the amount of reinforcement, since 
this corresponds to the minimum strain energy solution. 

Marti (1985) recommends three rules when using strut-and-tie models: 

• Draw truss models to scale. 

• Visualize the force flow using consistent equilibrium considerations. 

• Ensure that truss member forces can be developed and transferred at the required locations.  

10. COMPRESSION FIELD THEORY (CFT) 

Discussing the problem concerning the evaluation of the inclination angle θ of the compressive 
struts in the truss model, Mörsch [1922] stated, “it is absolutely impossible to mathematically 
determine the slope of the secondary inclined cracks according to which one can design the 
stirrups”. Seven years after Mörsch’s statement, another German engineer, Wagner [1929], solved 
an analogous problem while dealing with the post-buckling shear resistance of thin-webbed metal 
girders. Wagner assumed that after buckling, the thin metal skin continues to carry shear by 
transverse frames and longitudinal stringers. He assumed that the angle of inclination of the 
diagonal tensile stresses in the buckled thin metal skin would coincide with the angle of 
inclination of the principal tensile strain as determined from the deformations of the skin, of the 
transverse frame and of the longitudinal stringers. This approach became known as the tension 
field theory. 

Shear design procedures for reinforced concrete that, in the same way as the tension field theory, 
determine the angle θ by considering the deformations of the transverse reinforcement, the 
longitudinal reinforcement, and the diagonally stressed concrete, have become known as 
compression field approaches. With these methods, equilibrium conditions, compatibility 
conditions and stress-strain relationships for both the reinforcement and the diagonally cracked 
concrete are used to predict the load-deformation response of a section subjected to shear. 

To illustrate the Compression Field Theory (CFT) a membrane element representing a uniform 
thickness and relatively small portion of a reinforced concrete structure containing an orthogonal 
grid of reinforcement is used (see Figure 65). The considered x and y axes are chosen to coincide 
with the directions of longitudinal and transverse reinforcement, respectively. Loads acting on 
planes at the edges of the element are assumed to consist of uniform axial stresses fx and fy, and 
shear stress νxy, (see Figure 65a). Deformation of the element is assumed to occur such that the 
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edges remain straight and parallel (Figure 65b). The deformation state is defined by the two 
normal strains εx, εy, and by the shear strain γxy. 

The problem at hand is to determine how the three in-plane stresses fx, fy and νxy are related to the 
three in-plane strains εx, εy and γxy. To solve this problem, the following additional assumptions 
need to be made: 

• For each strain state exists only one corresponding stress state. Situations in which the 
influence of loading history is significant are ignored. 

• The considered strains are average values: they are measured over base lengths that are 
greater than the crack spacing. In a similar manner the stresses are also average values; i.e., 
they are averaged over a length greater than the crack spacing. 

• The concrete and the reinforcing bars are perfectly bonded together at the boundaries of the 
element. 

• The longitudinal and transverse reinforcing bars are uniformly distributed over the element. 

10.1 COMPATIBILITY CONDITIONS 

Having assumed that the reinforcement is perfectly bonded to the surrounding concrete, 
compatibility requires that any deformation experienced by the concrete must be matched by an 
identical deformation of the reinforcement (see Figure 66a), i.e., non-prestressed reinforcement 
has the same initial strain as the surrounding concrete. Hence: 

sx cx xε ε ε= =  (9.1) 

and 

sy cy yε ε ε= =  (9.2) 

If the three strain components εx, εy and γxy are known, the strain in any other direction can be 
easily determined by using the Mohr’s circle (see Figure 66b). Useful relationships, which can be 
derived from its geometry, include: 
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where θ is the angle of inclination of the principal strains to the x-axis; ε1 and ε2 are respectively 
the principal tensile strain and the principal compressive strain. 

10.2  EQUILIBRIUM CONDITIONS 

The forces applied to the reinforced concrete element are resisted by the stresses in the concrete 
and in the reinforcement. For the free-body diagram shown in Figure 67a, the requirement that 
the forces add up to zero in the x-direction can be written as: 

c s

x cx c sx s
A A A

f dA f dA f dA= +∫ ∫ ∫  (9.6) 
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where A is the area of the element section normal to the x-axis; Ac and As are respectively the 
concrete area and the steel area of the section. 

Ignoring the small reduction in concrete cross-sectional area due to the presence of 
reinforcement, Equation (9.6) becomes: 

x cx sx sxf f fρ= + ⋅  (9.7) 

where ρsx denotes the reinforcement ratio in the x-direction. 

In a similar way, the following equilibrium conditions can be derived: 

y cy sy syf f fρ= + ⋅  (9.8) 

xy cx sx sxv v vρ= + ⋅  (9.9) 

and 

xy cy sy syv v vρ= + ⋅  (9.10) 

Assuming that: 

cx cy cxyv v v= =  (9.11) 

The stress conditions in the concrete are completely defined if fcx, fcy and vcxy are known. A Mohr’s 
circle for concrete stresses is drawn so that the following relationships can be deduced (see 
Figure 67b): 

1 tancx c cxy cf f v θ= −  (9.12) 

1 tancy c cxy cf f v θ= −  (9.13) 

and 

( )2 1 tan 1 tanc c cxy c cf f v θ θ= − ⋅ +  (9.14) 

where fc1 and fc2 are respectively the principal tensile stress and principal compressive stress in 
concrete, and θc is the angle of inclination of the principal stresses along the concrete with 
respect to the x-axis. 

10.3 STRESS-STRAIN RELATIONSHIP 

Since the CFT was published, a large amount of experimental research aimed at determining the 
stress-strain characteristics of diagonally cracked concrete has been conducted. This work has 
typically involved testing of reinforced concrete elements subjected to uniform membrane 
stresses in special-purpose machines. 

The results of these experimental studies have shown that it is reasonable to assume that the 
principal strain and principal stress axes coincide for concrete.  In the case of reinforced concrete 
elements loaded in combined tension and shear, and containing reinforcement only in the 
direction of tension, the direction of the principal stresses in concrete can differ up to 20° from 
the direction of the principal strains [Bhide and Collins, 1989]. The predicted angle, based on the 
assumption that the direction of the principal stress coincides with the direction of the principal 
strain, lays about half-way between the observed strain and the stress directions. In case of 
reinforced concrete elements with both longitudinal and transverse reinforcement, the direction 
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of principal stresses in the concrete typically deviates less than 10° from the direction of the 
principal strains [Vecchio and Collins, 1986]. 

The same experimental results indicate that the concrete compressive stress fc2 is a function not 
only of compressive strain ε2, but also of the co-existing principal tensile strain ε1. Thus, cracked 
concrete subjected to high tensile strains in the direction normal to the compression strut is 
softer and weaker than concrete in a standard cylinder test. Vecchio and Collins [1986] suggested 
the following relationship: 

2
2 2
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c c

f f ε ε
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Considering that ε’c is usually set equal to -0.002, Equation (9.16) becomes (see Figure 68): 
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Note that fc2max/f ’c decreases with the increase of ε1. 

The CFT assumes that after cracking, no tensile stresses in the concrete can occur. However, 
tests on reinforced concrete elements have demonstrated that even after extensive cracking, 
tensile stresses still exist in the cracked concrete, and that these stresses significantly increase the 
ability of the cracked concrete to resist shear stresses. Vecchio and Collins [1986] proposed the 
modified compression field theory (MCFT), which is a further development of the CFT that 
accounts for the influence of the tensile stresses in the cracked concrete. 

Based on Vecchio & Collins’ [1986] tests on reinforced concrete panels, Collins & Mitchell 
[1991] proposed a relationship between the average principal tensile stress and the average tensile 
strain in concrete. The suggested relationship prior to cracking (i.e. ε1 < εcr) is (see Figure 69): 

1 1c cf E ε= ⋅  (9.18) 

where Ec is the modulus of elasticity of concrete, which is taken as 2f ’c/ε’c. The suggested 
relationship after cracking (i.e. ε1 > εcr) is (see Figure 69): 
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Concerning reinforcement, the MCFT assumes that the axial stress depends only on axial strain, 
and that the average shear stress on the plane normal to the reinforcement is equal to zero. The 
axial stress is related to the axial strain through the bilinear uniaxial stress-strain relationship as 
follows: 

sx s x yxf E fε= ⋅ ≤  (9.20) 

sy s y yyf E fε= ⋅ ≤  (9.21) 

0sx syv v= =  (9.22) 
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where Es is the modulus of elasticity of the reinforcement, and fxy and fyy are the yield stresses of 
the x and y-reinforcement, respectively. 

The stress-strain formulations presented in the previous equations are related with average values 
and do not give any information regarding local variations. However, local variations are 
important, because failure may be governed by local stresses that occur at a crack, rather than by 
the size of the average stresses. 

Figure 70 compares the calculated average stresses (a) with the actual local stresses that occur at a 
crack (b); the crack direction is assumed normal to the principal tensile strain direction. While on 
a plane parallel to the crack direction the calculated average shear stress is zero (i.e., in terms of 
average stresses the plane parallel to the crack direction is a principal plane), there may be local 
non-zero shear stresses vci at the crack. 

As the applied external forces fx, fy and vxy are fixed, the two sets of stresses shown in Figure 70 
have to be statically equivalent.  Assuming that in both cases the considered inclined plane has a 
unit area, the equivalence in x-direction requires that: 

( ) 1 tan
ci

sx sxcr sx c
vf f fρ

θ
⋅ − = +  (9.23) 

and in the y-direction: 

( ) 1 tan
ci

sy sycr sy c
vf f fρ

θ
⋅ − = −  (9.24) 

Equations (9.23) and (9.24) can only be satisfied for the non shear stress condition on the crack 
if: 

( ) ( ) 1sx sxcr sx sy sycr sy cf f f f fρ ρ⋅ − = ⋅ − =  (9.25) 

considering that the stress in the reinforcement at a crack cannot exceed the yield strength: 

sxcr yxf f≤  (9.26) 

and 

sycr yyf f≤  (9.27) 

Hence, if the calculated average stress in either of the x or y reinforcement is high, it may not be 
possible to satisfy Equation (9.25). In this case, the condition of equilibrium requires the 
existence of shear stresses on the crack. 

For normal concrete, cracking occurs along the interface between the cement paste and the 
aggregate particles4, so that the resulting rough cracked surface can transfer shear by aggregate 
interlocking. The maximum possible value of vci is taken by Bhide and Collins [1989] to be related 
to the crack width w and the maximum aggregate size a by the following relationship: 

                                                      

4 This is not the case for high-strength concrete, i.e., concrete characterized by a compressive strength 
greater than 50 MPa. The shear failure surface in high-strength concrete members is smoother than in 
normal-strength concrete members, with cracks propagating through coarse aggregate particles rather than 
around them.  
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( ) ( )
′⋅

=
+ ⋅ +max

0.18
(MPa, mm)

0.3 24 16
c

ci
f

v
w a

 (9.28) 

The average crack width w may be taken as the product of the principal tensile strain and the 
diagonal crack spacing sθ: 

1w sθε= ⋅  (9.29) 

where 

1
sin cos

mx my

s

s s

θ θ θ=
+

 (9.30) 

smx and smy are indicators of the crack control characteristics of the x-reinforcement and y-
reinforcement, respectively. These indicators can be roughly estimated by the relationships: smx = 
1.5 x (maximum distance from x-bars) and smy = 1.5 x (maximum distance from y-bars) or by 
using more refined formulas such as the equation given by the CEB-FIP Model Code [1990]: 

1

1

2 0.25
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x bx
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y by
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s ds c k

s d
s c k

ρ

ρ

⎛ ⎞= ⋅ + + ⋅ ⋅⎜ ⎟
⎝ ⎠

⎛ ⎞
= ⋅ + + ⋅ ⋅⎜ ⎟

⎝ ⎠

 (9.31) 

where c is the distance to reinforcement, s is the bar spacing, db is the bar diameter, ρ is the 
reinforcement ratio and k1 is equal to 0.4 for deformed bars or 0.8 for plain bars. The subscripts 
x and y denote the x- and y-directions, respectively. 

Assuming that the y-reinforcement is weaker than the x-reinforcement, at high loads the average 
strain εy exceeds the yield strain of the reinforcement. In this case, both fsy and fsycr are equal to the 
yield stress in the y-reinforcement and Equation (9.24) becomes: 

1 tanc cif v θ= ⋅  (9.32) 

Substituting Equation (9.28) into Equation (9.32), the following relationship is obtained: 

( )
θ′⋅ ⋅

≤
+ ⋅ +1

0.18 tan
(MPa, mm)

0.3 24 16
c

c
f

f
w a

 (9.33) 

11. ANALYSIS OF RC MEMBERS SUBJECTED TO SHEAR, 
MOMENT AND AXIAL LOAD USING THE MCFT 

The MCFT was developed to analyze reinforced concrete elements under general in-plane stress 
conditions. Vecchio and Collins [1988] extended the theory to the analysis of reinforced concrete 
beams loaded in combined shear, moment and axial load. In their procedure the considered beam 
is considered to be composed of a series of m concrete layers and n steel elements (see Figure 71). 
Each individual concrete layer is defined by its width bi, depth hi, amount of transverse 
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reinforcement ρyi and position relative to the top of the beam yci. The steel elements are defined 
by their cross-sectional area Asj and position ysj relative to the top of the beam. At the level of 
layers and elements, conditions of compatibility and equilibrium are controlled by the MCFT, 
while uniform stress conditions are assumed to exist in each layer. At the section level, the only 
compatibility requirement used is the Bernoulli’s hypothesis (i.e., plane sections remain plane). 
Thus, the longitudinal strains in each of the concrete layers and reinforcing bar elements are 
determined as a function of the top and bottom fibre strains εt and εb of the section: 

( )b t
xi t in

i
i

y
h

ε ε
ε ε

+
= + ⋅

∑
 (9.34) 

At the section level, equilibrium requires that the following conditions are satisfied: i) to balance 
the shear, moment, and axial load acting on the section; ii) to balance the horizontal shear. 

The procedure estimates the longitudinal strain distribution along the member and the shear 
stress distribution across the section; each individual layer is analyzed separately. The stresses fsxj 
in the steel elements are determined from the longitudinal strains, while the longitudinal stresses 
fcxi in the concrete layers are calculated according to the MCFT, as the longitudinal strains and the 
shear stresses normal to the layers are known. The resultant of these stresses must satisfy the 
following conditions: 

1 1

n m

cxi i i sxj sj
i j

f b h f A N
= =

⋅ ⋅ + ⋅ =∑ ∑  (9.35) 

( ) ( )
1 1

n m

cxi i i ci sxj sj sj
i j

f b h y y f A y y M
= =

⋅ ⋅ ⋅ − + ⋅ ⋅ − =∑ ∑  (9.36) 

1

n

ci i i
i

v b h V
=

⋅ ⋅ =∑  (9.37) 

where N, M and V are the axial load, moment and shear acting about the centroid of the section; 
y is the distance from the top to the centroid of the section. If these conditions are not satisfied, 

the assumed longitudinal strain gradient is readjusted and the analysis is repeated until 
equilibrium at the section level is satisfied. 

The correct shear stress distribution is obtained by analyzing a second section of the beam 
located at a small distance from the first. According to this method, often referred as “dual 
section analysis”, both sections are analyzed for the same shear stress distribution to satisfy the 
equilibrium of the section. 

Let Ci1 denote the compressive force acting on the face of concrete layer i at Section 1; Ci2 
denotes the force acting on the face at Section 2. Section 1 and 2 are separated by a distance S 
usually taken equal to H/6. The compressive force Ci is computed as: 

i cxi i i siC f b h C= ⋅ ⋅ +  (9.38) 

where Csi is the force in the steel element, set equal to zero if the considered concrete layer does 
not contain any reinforcing bars. If concrete layer k, shown in Figure 72, is considered, the 
horizontal shear forces acting on layers Fk-1 and Fk are determined as follows: 

( )
1

1 1 2
1

k

k i i
i

F C C
−

−
=

= −∑  (9.39) 
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1 1 2k k k kF F C C−= + −  (9.40) 

The normal shear force Vk can then be determined from rotational equilibrium of the free-body 
shown in Figure 72 as: 

( )1

2
k k k

k
F F hV

S
−+

= ⋅  (9.41) 

Hence, the average shear stress acting on the vertical face of concrete layer k is calculated as: 

k
k

k k

Vv
b h

=
⋅

 (9.42) 

The shear stresses calculated following the present procedure should match, for each layer, the 
shear stresses initially assumed. If they do not, then the assumed shear flow distribution is 
corrected and the analysis repeated until convergence.  

12. DESIGN PROCEDURE BASED ON THE MCFT 

Collins and Mitchell [1991] suggested a shear design method based on the MCFT. This method 
has been adopted by a number of codes, such as the Ontario Highway Bridge Design Code 
[1991], the Norwegian Code [1992], the Canadian Standards Association Concrete Design Code 
[1994] and the AASHTO LRFD [1994] specifications.  

According to this method, the shear stresses are assumed to be uniform over the effective shear 
area, b·dv. Assuming that the x- and y-directions are parallel to the member axis and the 
transverse reinforcement, respectively, the largest longitudinal strain εx occurring within the web 
is used to calculate the principal tensile stress ε1. For the design of non-prestressed elements (see 
Figure 73), εx can be approximated as the strain in the flexural tension reinforcement, equal to: 

( ) 30.5 0.5 cot
0.2 10v

x
s s

M d N V
E A

θ
ε −+ ⋅ + ⋅ ⋅

= ≥ − ⋅
⋅

 (10.1) 

where As is the area of longitudinal reinforcement on the flexural tension side of the member. 
According to strain compatibility conditions, the principal tensile strain ε1 can be related to εx, the 
direction of the principal compressive stresses θ, and the magnitude of the principal compressive 
strain ε2: 

( ) 2
1 cotx x cε ε ε ε θ= + − ⋅  (10.2) 

Solving Equation (9.15) with respect to ε2: 

( )2 2 2 max1 1c c cf fε ε ′= ⋅ − −   (10.3) 

where ε’c is generally taken equal to -0.002 and the principal compressive stress fc2 can be 
conservatively taken as: 

( )2 tan cotc xyf v θ θ= ⋅ +  (10.4) 
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where: 

xy
v

Vv
b d

=
⋅

 (10.5) 

From Equations (10.2), (10.3) and (10.4) ε1 can be expressed as: 

( ) ( )

ε ε ε ε θ

ε θ θ ε

⎡ ⎤= + + ⋅⎣ ⎦
⎛ ⎞

= ⋅ − − ⋅ + ⋅ + ⋅⎜ ⎟
⎜ ⎟′⎝ ⎠

* 2
1

*
1

cot

0.002 1 1 tan cot 0.8 170

x x x

xy
x

c

v
f

 (10.6) 

Considering the MCFT as a truss model with a concrete contribution equal to the transverse 
component of the shear stresses vci transferred across the crack (see Figure 70), the shear strength 
may be expressed as: 

1

cot

cot cot

v vy
s c v ci v

v vy
v c v

A f
V V V d v b d

s
A f

d f b d
s

θ

θ θ

⋅
= + = ⋅ ⋅ + ⋅ ⋅

⋅
= ⋅ ⋅ + ⋅ ⋅ ⋅

 (10.7) 

Substituting Equation (9.19) into Equation (10.7): 

cotv vy
v c v

A f
V d f b d

s
θ β

⋅
′= ⋅ ⋅ + ⋅ ⋅ ⋅  (10.8) 

where 

θβ
ε

⋅
= ≤

⋅+ ⋅ +
+

1

0.33 cot 0.18 (MPa,mm)241 500 0.3
16
w

a

 (10.9) 

In order to use Equation (10.8) for the evaluation of the required amount of transverse 
reinforcement, it is necessary to determine appropriate values of θ and β which must satisfy 
Equation (10.6). These values are generally given as function of the longitudinal strain εx and 
shear stress level νxy/f ’c in the form of tables or diagrams. The values given as example in Table 
23 ensure that the tensile strain in the stirrups is at least equal to 0.002 and that the compressive 
stress fc2 does not exceed the crushing strength fc2max of concrete. In determining these values it 
was assumed that the amount and spacing of the stirrups would limit the crack spacing to about 
300 mm.  

13. CYCLIC LOAD MODELING THROUGH THE MCFT 

It is worth discussing why some codes have maintained an approach based on the truss model 
even when more rational methods exist, such as the MCFT, which is now adopted, for example, 
in the Canadian, Norwegian and AASHTO LRFD codes. As observed in Duthinh and Carino 
[1996], the reason may be behind the fact that a whole generation of engineers has learned and 
used methods based on the truss approach. However, design engineers should take into account 
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that there is a fundamental difference between the two approaches. According to ACI-ASCE 
Committee 326 [1962], “diagonal tension is a combined stress problem in which horizontal 
stresses due to bending as well as shear stresses must be considered”.  

Collins [1993] explains that this combination of flexure and shear is what has made the shear 
problem so intractable. He contrasts the traditional type of shear tests (beam), which are simple 
to perform, but difficult to analyze, with the more recent tests (panel), which are more difficult to 
perform but simpler to analyze. In the tests of beams simply supported with two concentrated 
loads, the behaviour of the member changes from section to section along the shear span and 
also over the depth of the beam. In contrast, the state of stresses in a panel loaded in pure shear, 
or in a combination of shear and axial forces, is uniform.  

Because shear is studied independently of bending, the shear carried by the compression zone is 
not taken into account by the MCFT. In addition, the shear carried by dowel action is neglected; 
only the shear carried by aggregate interlock is accounted for. 

The contribution to shear strength due to dowel action is rather small, while the contribution 
related to the shear carried by the compression zone can account for 25-30% of the total 
concrete contribution in beams with typical reinforcement ratios. Nevertheless, when the MCFT 
is applied to traditional beam tests, it performs rather well as a predictor of strength. The reason 
of this good agreement is related to the choice of the location (mid-span) of εx, which reflects the 
redistribution of shear stresses transferred from the most highly strained portions of the cross 
section to the less highly strained portions. However, it would be conservative to use the highest 
value of εx, as an increase in εx decreases the shear capacity. So, implicitly, the higher shear 
capacity of the uncracked or least strained region is taken into consideration. 

The Seismic Shear Wall International Standard Problem documented by the Nuclear Power 
Engineering Corp. of Japan [1996] has brought to the fore the inability of the proposed methods 
of analysis and modelling of concrete to give a reliable evaluation of the peak strength and the 
ductility of structural walls subjected to reversed cyclic loading. Among these methods the 
smeared crack approach5, which assumes fixed cracks, tends to be the most favoured. Okamura 
and Maekawa [1991] and Sittipunt and Wood [1995], among others, have documented models 
assuming a fixed crack approach and have demonstrated a good agreement with experimental 
results. However, the fix cracked method requires separate formulations to model the normal 
stress and the shear stress hysteretic behaviour. This is somewhat at odds both with the test 
observations and with common elasticity approaches to constitutive modelling. 

An alternative approach based on the smeared rotating crack assumption was proposed by 
Vecchio [1989, 1990]. The procedure was based on an iterative, secant stiffness formulation, 
where the concrete is treated as an orthotropic material with its principal axes corresponding to 
the directions of the principal average tensile strains and principal average compressive strains, 
modelled according to the constitutive relations of the MCFT. The secant stiffness formulation is 
marked by excellent convergence and numerical stability characteristics. Correlations to 
experimental data for structures subjected to monotonic loading conditions are generally very 
good. Vecchio [1999] has demonstrated that secant stiffness based procedures can be also used 
to effectively model reversed cyclic load effects in reinforced concrete structures. This result has 
been obtained employing strain offsets to model the plastic components of strain in the concrete 
and reinforcement, as hereafter illustrated in some details (Palermo and Vecchio [2003]). 

                                                      

5 Smeared crack approach simulate cracking with a fictious constitutive model, thereby avoiding the need 
for changing geometry and mesh model. 
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Palermo and Vecchio [2004] verified their algorithm through analyses that include slender walls, 
which are controlled by flexural effects, and squat walls, where the response is dominated by 
shear-related mechanisms. The results have shown that ultimate strength, ductility, energy 
dissipation and failure mechanisms are well simulated. The procedure proposed by Palermo and 
Vecchio [2003] was also able to simulate second-order mechanisms such as the elongation of the 
flange wall and the horizontal expansion of the web wall. The first mechanism can be considered 
a measure of the extent of flexural cracking and ratcheting6 in the flange walls, while the second 
mechanism represents the dilatation of the web wall due to cracking and yielding of the web 
reinforcement, and the extent of compression softening of the concrete in the web wall. 

13.1 PLASTIC OFFSET FORMULATION 

The concrete average strain in the average principal direction may be expressed as the sum of the 
elastic strain component e

cε  and the plastic strain component (or plastic offset) p
cε : 

e p
c c cε ε ε= +  (13.1) 

The elastic strain is then used to compute the secant modulus of concrete on the base of the 
concrete average stress fc: 

e
c c cE f ε=  (13.2) 

In a similar way, the average strain in the reinforcement may be computed from the sum of the 
elastic and plastic components of strain: 

e p
si si siε ε ε= +  (13.3) 

and the secant modulus for the reinforcement is calculated on the base of the steel average stress 
fsi: 

e
si si siE f ε=  (13.4) 

Plastic offsets may be incorporated in a finite element algorithm in the form of prestrains 
([Vecchio and Collins, 1990], [Vecchio, 1992]).  With this aim the concrete plastic offsets in the 
principal directions and the reinforcement plastic strain are first resolved into components 
relative to the reference axes, giving the vectors: 

p
cx

p p
c cy

p
c xy

ε

ε ε

γ

⎡ ⎤
⎢ ⎥

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

 (13.5) 

and 

( )
( )
( )

1 cos 2 2

1 cos 2 2

sin 2

p
si i

p p
si si i

p
si i

ε α

ε ε α

ε α

⎡ ⎤⋅ +⎡ ⎤⎣ ⎦⎢ ⎥
⎡ ⎤ = ⋅ −⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

⎢ ⎥⋅⎣ ⎦

 (13.6) 

                                                      

6 Ratcheting is a term used to describe the vertical stretching of the flange due to irrecoverable strains that 
accumulate in the postyield cycles. 
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where αi defines the reinforcement orientation. The unconstrained joint displacements are 
determined from prestrains and the element geometry. Then, given the unconstrained 
displacements, the plastic prestrain nodal force vectors of concrete [ p

cF ] and reinforcement [ p
sF ] 

can be separately evaluated as the product of the corresponding element secant stiffness matrices 
[Kc] and [Ks] and the unconstrained joint displacements. The forces thus obtained are added to the 
externally applied joint loads to determine the total nodal forces [F]. 

The total nodal displacements are obtained by multiplying the total nodal force vector by the 
inverse of the global stiffness matrix [K], equal to the sum of the stiffness contributions of 
concrete and steel reinforcement: 

[ ] [ ] [ ]c s i
i

K K K= + ∑  (13.7) 

From these displacements the strains and stresses are recalculated, and the new secant moduli of 
concrete and steel reinforcement are evaluated; the procedure is repeated until convergence on 
the secant stiffness is achieved.  

The plastic strains that take place in the concrete are defined through the Mohr’s circle. For this, 
the principal direction θ is determined on the basis of the elastic strain components, and the 
plastic strains in the directions corresponding to the principal axes are computed from the 
concrete plastic strains in the x and y axes: 

( ) ( )1 cos 2 sin 2
2 2 2

p p p p p
cx cy cx cy cxyp

c
ε ε ε ε γ

ε θ θ
+ −

= + +  (13.8) 

( ) ( )2 cos 2 sin 2
2 2 2

p p p p p
cx cy cx cy cxyp

c
ε ε ε ε γ

ε θ θ
+ −

= − −  (13.9) 

For calculations performed at increasing or varying load steps, further plastic straining may occur. 
Let 1

e
cΔε  and 2

p
cΔε  represent the increments (negative or positive, regardless of whether the total 

strains are tensile or compressive) of the plastic strains in the principal directions, the parameters 
defining the envelope of plastic strains are updated as follows: 

( ) ( )' 1 21 cos 2 1 cos 2
2 2

p p
p p c c

cx cx
Δε Δεε ε θ θ= + + + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (13.10) 

( ) ( )' 1 21 cos 2 1 cos 2
2 2

p p
p p c c

cy cy
Δε Δεε ε θ θ= + − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (13.11) 

( ) ( )'
1 2sin 2 sin 2p p p p

cxy cxy c cγ γ Δε θ Δε θ= + ⋅ − ⋅  (13.12) 

Mohr’s circle approach can also be used to approximately calculate the maximum concrete strain 
corresponding to an arbitrary direction: the maximum concrete strain attained during the load 
history is evaluated in order to calculate the concrete stress from the stress-strain constitutive 
model used to model the hysteretic behaviour of concrete. For example, the maximum 
compressive strains in the principal directions attained during the loading history are given by: 

( ) ( )1 cos 2 sin 2
2 2 2

cmx cmy cmx cmy cmxy
cm

ε ε ε ε γ
ε θ θ

+ −
= + +  (13.13) 

( ) ( )2 cos 2 sin 2
2 2 2
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ε ε ε ε γ
ε θ θ

+ −
= − −  (13.14) 
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where εcmx, εcmy and γcmxy are quantities defining maximum compressive strains relative to the x,y – 
axes. 

If the current total compressive strains are greater than those previously recorded, the maximum 
strain envelope must be updated. Thus, the strain increments Δεm1 and Δεm2 are defined as: 

1 1
1

1 1 1 1

0 if
if

cm
cm

cm cm

ε ε
Δε

ε ε ε ε
>⎧

= ⎨ − <⎩
 (13.15) 

2 2
2

2 2 2 2

0 if
if

cm
cm

cm cm

ε ε
Δε

ε ε ε ε
>⎧

= ⎨ − <⎩
 (13.16) 

The parameters defining the compressive strain envelope are then updated as follows: 

( ) ( )1 21 cos 2 1 cos 2
2 2
cm cm

cmx cmx
Δε Δεε ε θ θ′ = + + + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (13.17) 

( ) ( )' 1 21 cos 2 1 cos 2
2 2
cm cm

cy cmy
Δε Δεε ε θ θ′ = + − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (13.18) 

( ) ( )'
1 2sin 2 sin 2cxy cmxy cm cmγ γ Δε θ Δε θ′ = + ⋅ − ⋅  (13.19) 

An envelope for the maximum tensile strains in the concrete is developed in a similar manner. 
Note that the Mohr’s circle used for computing the maximum strain does not represent a 
compatible strain condition, however, it represents a convenient way of keeping track of the 
maximum strain in any given direction. 

13.2 CONCRETE STRESS-STRAIN MODEL 

In the following description of the concrete model it is assumed that compression and tension 
responses occur along the average principal strain directions 2 and 1, respectively. 

13.2.1 Compression response 

The backbone curve typically follows the monotonic response, i.e., Hognestad [1955] parabola or 
Popovics [1973] formulation, including the compression softening effects according to the 
MCFT. The shape and the slope of the unloading and reloading responses depend on the plastic 
offset strain. The plastic offset is used as a parameter in defining the unloading path and in 
determining the degree of damage in concrete due to cycling. Palermo and Vecchio [2003] have 
suggested for the plastic strain offset the following relation: 

2

' 2 20.166 0.132p p c c
c

p p

ε εε ε
ε ε

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= ⋅ ⋅ + ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (13.20) 

where εp is the strain at peak stress and ε2c is the strain at the onset of unloading from the 
backbone curve. The plastic offset strain remains unchanged unless the previous maximum strain 
in the history of loading is exceeded. Tests conducted by Buyukozturk and Tseng [1984] have 
shown that the plastic offset is not affected by the confining stresses or strains. 

In order to describe the unloading branch of concrete, Palermo & Vecchio (2003) have adopted a 
Ramberg – Osgood formulation (see Figure 74): 
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where  

2cΔε ε ε= −  (13.22) 

and 
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with ε equal to the instantaneous strain in the concrete. The initial unloading stiffness Ec2 is 
assigned a value equal to the initial tangent stiffness of concrete Ec, calculated as f’c/ε’c. The 
unloading stiffness Ec3, which defines the stiffness at the end of the unloading phase, is defined 
as 0.071Ec, while f2c is the stress calculated from the backbone curve at the peak unloading strain 
ε2c. 

Reloading is modelled by a linear response that takes into account the degradation in the 
reloading stiffness resulting from load cycling. The reloading stiffness is defined as a degrading 
function of the strain recovery during unloading (see Figure 75): 

( )0 1 0c r c c rf f E ε ε= + ⋅ −  (13.24) 

where fc and εc are the stress and the strain on the reloading path; fr0 is the stress in concrete at a 
reloading reversal and corresponds to the strain εr0; and Ec1 is the reloading stiffness, calculated 
as: 

( )max 0
1

2

d r
c
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f f
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β
ε ε
⋅ −

=
−

  (13.25) 

where 

( )0.5
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1 0.10
d c p

rec p

β ε ε
ε ε
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 (13.26) 

and  

( )0.6
1 for

1 0.175
d c p

rec p

β ε ε
ε ε

= >
+ ⋅

 (13.27) 

and 

max minrecε ε ε= −  (13.28) 

βd is a damage indicator, fmax is the maximum stress in concrete for the current unloading loop, 
and εrec is the amount of strain recovered in the unloading process and is the difference between 
the maximum strain εmax and the minimum strain εmin for the current hysteresis loop. The 
minimum strain is limited by the compressive plastic offset strain. βd is calculated for the first 
unloading/reloading cycle and remains constant until the previous maximum unloading strain is 
attained or exceeded. Therefore, no additional damage is induced in the concrete for hysteresis 
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loops occurring at strains less than the maximum unloading strain. A model for partial 
unloading/reloading has also been proposed by Palermo and Vecchio [2003]. 

13.2.2 Tension response 

For the tension model, Palermo and Vecchio [2003] have proposed as backbone curve the two 
branch curve adopted by the MCFT. Similar to the concrete in compression, the plastic offset in 
tension is dependent on the unloading strain from the backbone curve: 

2
1 1146 0.523p

c c cε ε ε= ⋅ + ⋅  (13.29) 

where p
cε is the tensile plastic offset, and ε1c is the unloading strain from the backbone curve. To 

describe the unloading branch in tension, Palermo and Vecchio [2003] have adopted a Ramberg 
– Osgood formulation (see Figure 76): 

( ) ( ) ( )
( )

5 6
1 5 1

1

N
c c

c c c Np
c c

E E
f f E

N

Δε
Δε Δε

ε ε
−

⎡ ⎤− ⋅⎢ ⎥= − +
⎢ ⎥⋅ −⎣ ⎦

 (13.30) 

where 

1 -cΔε ε ε=  (13.31) 

and 

( ) ( )
( )

5 6 1

5 1 1
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c c c c

p
c c c c

E E
N

E f

ε ε

ε ε

− ⋅ −
=

⋅ − −
 (13.32) 

f1c is the unloading stress from the backbone curve, and Ec5 is the initial unloading stiffness, equal 
to the initial tangent stiffness Ec. The unloading stiffness Ec6, which defines the stiffness at the 
end of the unloading phase, is calculated as: 

( )6 1 10.071 0.001 0.001c c c cE E ε ε= ⋅ ⋅ ≤  (13.33) 

( )6 1 10.053 0.001 0.001c c c cE E ε ε= ⋅ ⋅ >  (13.34) 

In order to model the reloading of concrete in tension, Palermo and Vecchio [2003] have 
suggested adopting a linear behaviour, taking into account the degrading reloading stiffness (see 
Figure 77). The reloading stress is then calculated as: 

( )max 4 1c t c c cf tf Eβ ε ε= ⋅ − ⋅ −  (13.35) 

where 

( )max 0
4

1

t r
c

c ro

tf tf
E

t
β

ε
⋅ −

=
−

 (13.36)  

fc is the tensile stress on the reloading curve and corresponds to a strain of εc. Ec4 is the reloading 
stiffness, βt is a tensile damage indicator, tfmax is the unloading stress for the current hysteresis 
loop, and tfr0 is the stress in concrete at a reloading reversal corresponding to a strain tr0. The 
damage parameter βt is calculated from the following relation: 
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( )0.25
1

1 1.15
t

rec

β
ε

=
+ ⋅

 (13.37) 

where 

max minrecε ε ε= −  (13.38) 

εrec is the strain  recovered during an unloading phase, and is equal to the difference between the 
unloading strain εmax and the minimum strain at the onset of reloading εmin, which is limited by 
the plastic offset strain. A model for partial unloading/reloading has been also proposed for 
concrete in tension by Palermo and Vecchio [2003]. 

13.2.3 Cracking-closing model 

The re-contact strain, defined as the strain at which the two cracked surfaces come into contact, 
is assumed to be equal to the plastic offset strain of concrete in tension.  The stiffness of the 
concrete during closing of cracks is smaller than that after cracks are completely closed. The 
latter is assumed equal to the initial tangent stiffness. The crack-closing stiffness Eclose is calculated 
from: 

close
close p

c

fE
ε

=  (13.39) 

where fclose is the stress imposed on the concrete as cracked surfaces come into contact, and is 
given by: 

( )6
10.0016 50 10close c cf E ε −= − ⋅ ⋅ + ⋅  (13.40) 

The stress on the closing-of-cracks path is then determined from the following expression: 

( )p
c close c cf E ε ε= ⋅ −  (13.41) 

After the cracks have completely closed and loading continues into the compression strain 
region, the reloading rules for concrete in compression are applicable, with the stress in concrete, 
at the reloading reversal point, equal to fclose. 

For reloading from the closing-of-cracks curve into the tensile strain region, the stress in the 
concrete is assumed to be linear, following the reloading path previously established for the 
tensile reloading of concrete. 

13.3 REINFORCEMENT MODEL 

The monotonic response of steel reinforcement is assumed to be trilinear. The initial response is 
linear elastic, followed by a yield plateau and ending with a strain-hardening portion. The 
hysteretic response of the reinforcement is modelled after Seckin [1981], and the Bauschinger 
effect is represented by a Ramberg – Osgood formulation. 
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14. CONCLUSIONS 

The present report has described the structural behaviour of rectangular reinforced concrete 
hollow piers of bridge structures subjected to lateral deformations. 

The first part of the work focused on the derivation of equivalent properties in terms of load-
displacement envelopes and energy dissipation characteristics based on the properties of the 
section at the base of the pier. The properties at the section were derived, for a large number of 
design configurations, based on nonlinear numerical analysis calibrated against experimental 
results. The results of this work can be summarised as follows: 

• The nonlinear numerical model based on the discretization of the section in fibres offers a 
good representation of the nonlinear cyclic behaviour of sections of rectangular reinforced 
concrete hollow piers; 

• The nonlinear monotonic skeleton curve of the moment-curvature relationship of the 
section can be well represented by a bilinear curve, defined by the yield and ultimate bending 
moment and curvatures of the section; the ultimate curvatures are determined based on the 
ultimate strains reached by either the concrete or the steel fibres; 

• Parametric analyses were performed for a large combination of designs of the section, 
including the aspect ratio of the section, the normalised axial load, the percentage of 
longitudinal reinforcement, the level of confinement, and the strength of concrete and steel. 
The results of the parametric analysis are summarised in charts giving the yield and ultimate 
bending moment and curvatures in a dimensionless form, thus allowing the construction of 
the bilinear moment-curvature of the section; 

• Similarly, the energy dissipation characteristics of the different designs of the section are 
given in the form of charts for different levels of curvature ductility of the section; 

• The force-displacement bilinear diagram of the pier can be obtained by integrating the bi-
linear moment-curvature diagram of the section along the plastic hinge length and by adding 
the elastic deformation of the remaining portion of the pier. Similarly, the equivalent 
damping of the pier can be computed from energy principles based on the damping 
characteristics of the section and the plastic hinge length. 

The results given by the charts proposed in the present work offers the possibility to the designer 
to construct the equivalent properties of the pier in terms of secant stiffness and equivalent 
damping for a given level of ductility for a large combination of design possibilities in a more 
reliable way than the current expressions available in literature for solid reinforced concrete 
column sections. These properties can then be used within the context of Performance Based 
Design. 

In the second part of the work, the different approaches to model shear effects on reinforced 
concrete beam-column elements are documented. Since at present the methods available to date 
do not allow a proper definition of the shear load-deformation characteristics of the pier in the 
same way as done for the first part of the report using a fibre model, a work on the state-of-the-
art was presented, identifying the following main issues: 

• Hollow reinforced concrete piers exhibit a good seismic performance, including shear and 
flexural behaviour, if the flanges are properly confined. 

• For hollow reinforced concrete squat piers, the shear contribution to the total deformation is 
important and cannot be disregarded. The shear deformation, in general negligible for long 
span ratios of solid sections, needs also to be considered for for tall reinforced concrete 
hollow sections. 
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• Acknowledging that hollow sections are composed by thin walls, the MCFT seems to be the 
more effective way to take into account the effects of shear. 

• It is necessary to extend and improve the MCFT to model the cyclic behaviour of reinforced 
concrete members and calibrate these models through dedicated tests to model the shear 
effects on rectangular reinforced concrete hollow. 



 

 

47

REFERENCES 

PART A 

Comité Européen de Normalisation (CEN) [1993] ENV 1998-2 Structures in seismic regions (bridges), Draft 
Document TC250/SC8/N76, Brussels, Belgium. 

Comité Européen de Normalisation (CEN) [2003] prEN 1992-1-1 Eurocode 2: Design of concrete structures for 
earthquake resistence - Part 1-1: General rules and rules for building, Final Draft, Brussels, Belgium. 

Comité Européen de Normalisation (CEN) [2003] prEN 1998-1 Eurocode 8: Design of structures for earthquake 
resistence - Part 1: General rules, seismic actions and rules for building, Final Draft, Brussels, Belgium. 

Comité Européen de Normalisation (CEN) [2003] prEN 1998-2 Eurocode 8: Design of structures for earthquake 
resistence Part 2: Bridges, Draft Document TC250/SC8/N370, Brussels, Belgium. 

Dutta, A., Mander, J.B., Kokorina, T. (1999) “Retrofit for control and repairability of damage”, Earthquake 
Spectra, Vol. 15, No. 4, pp. 657-79. 

Esmaeily-Gh., A., Xiao, Y. [1999] “Seismic behaviour of bridge column subjected to various loading 
patterns”, PEER Report 2002/15, Pacific Earthquake Engineering Research Centre, College of 
Engineering, University of California, Berkeley, U.S. 

Fafitis, A., Shah, S.P. [1985] “Prediction of ultimate behavior of confined columns subjected to large 
deformations”, Journal of the American Concrete Institute, Vol. 82, No. 4, pp. 423-433. 

Guedes, J., Pegon, P., Pinto, A.V. [1994] “A fibre/Timoshenko beam element in Castem 2000”, Special 
publication No. I.94.31, Joint Research Center, European Commission, Ispra, Italy. 

Hognestad, E. [1951] “A study of combined bending and axial load in reinforced concrete members”, 
Bulletin Series No. 399, University of Illinois Engineering Experiment Station, U.S. 

Hoshikuma, J., Unjoh, S., Nagaya, K. [2001] “Size effect on ductile behaviour of reinforced concrete 
columns under cyclic loading”, Proceeding of the 17th U.S. – Japan Bridge Engineering Workshop, Tsukuba, 
Japan. 

Jobse, H.J. [1982] Applications of high strength concrete for highway bridges, Report No. FHWA/RD-
82/097, Concrete Technology Corporation, Tacoma, U.S. 

Maillard A. [1993] “Castem 2000, Guide d’utilisation”, Rapport CEA 93/007, CEA, Saclay, France. 

Mander, J.B. [1984] “Experimenatl behaviour of ductile hollow reinforced concrete columns”, Proceeding of 
the 8th World Conference on Earthquake Engineering, San Francisco, U.S. 

Mander, J.B., Priestley, M.J.N., Park, R. [1988] “Theoretical stress-strain model for confined concrete”, 
Journal of Structural Engineering, ASCE, Vol. 114, No. 8, pp. 1804-1826. 



 

 

48 

Menegotto, M., Pinto, P.E. [1973] “Method of analysis for cyclically loaded reinforced concrete plane 
frames including changes in geometry and non-elastic behaviour of elements under combined normal 
force and bending”, Proceedings of the IABSE Symposium on resistance and ultimate deformability of structures 
acted on by well-defined repeated loads, Lisbon, Portugal. 

Mercer, C., Martin, J. [1987] “A beam element for cyclically loaded reinforced concrete structures”, 
Technical Report No. 98, FRD/UCT Centre for Research in Computational and Applied Mechanics, 
University of Cape Town, South Africa. 

Monti, G., Nuti, C. [1992] “Nonlinear cyclic behavior of reinforcing bars including buckling”, Journal of 
Structural Engineering, ASCE, Vol. 118, No. 112, pp. 3268-3284. 

Park, R., Priestley, M.J.N., Gill, W.D. [1982] “Ductility of square-confined concrete columns”, Journal of the 
Structural Division, Vol. 108, No. ST4, pp. 929-950.  

Pinto, A.V., Verzelletti, G., Negro, P., Guedes, J. [1995] Cyclic testing of a squat bridge-pier - Report EUR 16247 
EN, Joint Research Center, European Commission, Ispra, Italy. 

Pinto, A.V., Verzelletti, G., Pegon, P., Magonette, G., Negro, P., Guedes, J. [1996] Pseudo-dynamic testing of 
large-scale R/C bridges - Report EUR 16378 EN, Joint Research Center, European Commission, Ispra, 
Italy. 

Poston, R.W., Gilliam, T.E., Yamamoto, Y., Breen, J.E. [1985] “Hollow concrete bridge pier behaviour”, 
ACI Journal, Vol. 82, No. 6, pp. 779-787. 

Priestley, M.J.N., Ranzo, G., Benzoni, G., Kowalsky, M.J. [1996a] “Yield displacement of circular bridge 
column”, Proceedings of the Fourth Caltrans Workshop, Sacramento, U.S.  

Priestley, M.J.N., Seible, F., Calvi, G.M. [1996b] Seismic design and retrofit of bridges, John Wiley & Sons, New 
York, U.S. 

Proctor, A.N. [1976] “Hollow concrete columns”, Civil Engineering, September, pp. 53-55. 

Proctor, A.N. [1977] “Hollow rectangular reinforced concrete columns”, Civil Engineering, September, pp. 
45-49. 

Saatcioglu, M., Razvi, S. [1992] “Strength and ductility of confined concrete”, Journal of Structural Engineering, 
ASCE, Vol. 118, No. 6, pp. 590-1607. 

Santa Maria, R. [2001] “Behavior of hollow, rectangular concrete piers subjected to biaxial bending”, PhD 
Dissertation, The Univesrity of Texas at Austin, U.S. 

Sheikh, S.A., Uzumeri, S.M. [1982] “Analytical model for concrete confinement in tied columns”, Journal of 
Structural Division, ASCE, Vol. 108, No. ST12, pp. 2703-2722. 

Stone, W.C., Cheok, G.S. [1989] Inelastic behavior of full-scale bridge columns subjected to cyclic loading, NIST 
Building Science Series 166, National Institute of Standards and Technology, U.S. Department of 
Commerce, Washington, U.S. 

Sun, Y., Sakino, K. [1993] “Experimental study on ductility improvement method for reinforced concrete 
columns using high-strength materials”, Proceedings of the Japan Concrete Institute, Vol. 15, No. 2, pp. 719-
724. 



 

 

49

Taylor, A.W., Breen, J.E. [1994] “Design recommendations for thin-walled box piers and pylons”, Concrete 
International, Vol. 16, No. 12, pp. 36-41. 

Watson, S., Zahn, F.A., Park, R. [1992] “Confining reinforcement for concrete columns”, Journal of 
Structural Engineering, Vol. 120, No. 6, pp. 1798-1823. 

Yeh, Y.-K., Mo, Y.L., Yang, C.Y. [2002] “Seismic performance of rectangular hollow bridge columns”, 
Journal of Structural Engineering, ASCE, Vol. 128, No. 1, pp. 60-68. 

PART B 

American Association of State Highway and Transportation Officials [1994] AASHTO LRFD bridge design 
specifications and commentary, Washington, D.C, U.S. 

Ang, B.G., Priesley, M.J.N., Paulay, T. [1989] “Seismic shear strength and deformability of RC bridge 
columns subjected to inelastic cyclic displacements”, Rep. No. UCB/EERC-92/04, Earthquake 
Engineering Research Center, University of California at Berkeley, Berkeley, CA, U.S. 

Ang, B.G., Priestley, M.J.N., Paulay, T. [1989] “Seismic shear strength of circular reinforced concrete 
columns”, ACI Structural Journal, Vol. 86, No. 1, pp. 45-59. 

Applied Technology Council [1983] Seismic retrofitting guidelines for highway bridges, ATC 6-2, Redwood 
City, CA, U.S. 

ASCE-ACI Committee 445 on shear and torsion [1998] “Recent Approaches to shear design of structural 
concrete”, Journal of Structural Engineering, ASCE, Vol. 124, No. 12, pp. 1375-1417. 

Bhide, S.B., Collins, M.P. [1989] “Influence of axial tension on the shear capacity of reinforced concrete 
members”, ACI Structural Journal, Vol. 86, No. 5, pp. 570-581. 

Buyukozturk, O., Tseng, T.M. [1984] “Concrete in biaxial cyclic compression”, Journal of Structural 
Engineering, ASCE, Vol. 110, No. 3, pp. 461-476. 

Comité Européen de Normalisation (CEN) [1993] ENV 1998-2 Structures in seismic regions (bridges), Draft 
Document TC250/SC8/N76, Brussels, Belgium. 

Collins, M.P., Mitchell, D. [1991] Prestressed concrete structures, Prentice Hall, Englewood Cliffs, New Jersey, 
U.S. 

Collins, M.P. [1993] “The use of rational design methods for shear”, ACI SP 157 Proc. Thomas Paulay Symp. 
Recent developments in lateral force transfer in building, September 1993, pp. 351-374, University California 
San Diego, U.S. 

Comité Euro-International du Beton (CEB) – Fédération International de la Precontrainte (FIP) [1993] 
Model Code 1990 (MC90), Thomas Telford, London, U.K. 

Comité Euro-International du Beton (CEB) [1978] Shear and torsion, June: Explanatory and viewpoint 
papers on Model Code Chapter 11 and 12, prepared by CEB Committee V, CEB Bull. 12, Paris, 
France. 



 

 

50 

CSA Committee A23.3 [1994] Design of concrete structures: structures (design) – A national standard of Canada, 
Canadian Standards Association, Rexdale, Canada. 

Duthinh, D., Carino, N.J. [1996] “Shear design of high-strength concrete beams: a review of the state-of-
the-art”, NISTIR 5870, Building and Fire Research Laboratory, National Institute of Standards and 
Technology, Gaithersburg, MD 20899, U.S. 

Hognestad, E., Hansen, N.W., McHenry, D. [1955] “Concrete stress distribution in ultimate strength 
design”, ACI Journal, Vol. 52, No. 12, pp. 455-479. 

Inoue, S., Egawa, N. [1996] “Flexural and shear behavior of reinforced concrete hollow beams under 
reversed cyclic loading”, Proceedings of 11th World Conference on Earthquake Engineering, Paper No. 1359, 
Mexico.  

Konwinsky, C.M., Ramirez, J.A., Sozen, M.A. [1995] “Shear strength of reinforced concrete columns 
subjected to seismic loading”, Proceedings of National Seismic Conference on bridges and highways: progress in 
research and practice, pp. 10-13, San Diego, U.S. 

Lehman, D.E., Lynn, A.C., Aschleim, M.A., Moehle, J.P. [1996] “Evaluation methods for reinforced 
concrete columns and connections”, Proceedings of 11th World Conference on Earthquake Engineering, Paper 
No. 673, Mexico. 

MacGregor, J.G. [1988] Reinforced concrete, Prentice Hall, Englewood Cliffs, New Jersey, U.S., ISBN 0-13-
771742-3. 

Mander, J.B. [1984] “Experimental behaviour of ductile hollow reinforced concrete columns”, Proceedings of 
8th World Conference on Earthquake Engineering, San Francisco, U.S. 

Marti, P. (1985) “Truss models in detailing”, Concrete International, Vol. 7, No. 12, pp. 66-73 

Mörsch [1909] Concrete-Steel Construction (Der Eisenbetonbau), English translation of the 3rd German edition, 
McGraw-Hill Book Co., New York, U.S. 

Mörsch, E. [1922] Der Eisenbetonbau-seine theorie und anwendung, 5th Ed., Vol. 1, Part 2., Wittwer, Stuttgart, 
Germany. 

MTO, OHBDC Committee [1991] Ontario Highway Bridge Design Code, 3rd Edition, Ontario Ministry of 
Transportation Officials, Downsview, Canada. 

Norwegian Council for Building Standardization [1992] Norwegian Standard NS 3473 E, Norwey. 

Nuclear Power Engineering Corporation of Japan (NUPEC) [1996] “Comparison report, seismic shear 
wall ISP, NUPEC’s seismic ultimate dynamic response test”, Report No. NU-SSWISP-D014, 
Organization for Economic Co-Operation and Development, Paris, France. 

Okamura, H., Maekawa, K. [1991] Nonlinear analysis and constitutive models of reinforced concrete, Giho-do Press, 
University of Tokyo, Japan. 

Palermo, D., Vecchio, F.J. [2003] “Compression field modelling of reinforced concrete subjected to 
reversed loading: formulation”, ACI Structural Journal, Vol. 100, No. 5, pp. 616-625. 

Pinto, A.V., Verzelletti, G., Negro, P., Guedes, J. [1995] Cyclic testing of a squat bridge-pier - Report EUR 16247 
EN, Joint Research Center, European Commission, Ispra, Italy. 



 

 

51

Pinto, A.V., Verzelletti, G., Pegon, P., Magonette, G., Negro, P., Guedes, J. [1996] Pseudo-dynamic testing of 
large-scale R/C bridges - Report EUR 16378 EN, Joint Research Center, European Commission, Ispra, 
Italy. 

Popovics, S. [1973] “A numerical approach to the complete stress-strain curve of concrete”, Cement and 
Concrete Research, Vol. 3, No. 5, pp. 583-599.  

Priestley, M.J.N., Seible, F., Benzoni, G. [1994] “Seismic response of columns with low longitudinal steel 
ratios”, Structural System Research Project, Report SSRP-94/08, University of California, San Diego, U.S. 

Priestley, M.J.N., Verma, R., Xiao, Y. [1994] “Seismic shear strength of reinforced concrete columns”, 
Journal of Structural Engineering, ASCE, Vol. 120, No. 8, pp. 2310-2239 

Priestley, M.J.N., Seible, F., Calvi, G.M. [1996] Seismic Design and retrofit of bridges, John Wiley & Sons, New 
York, U.S., ISBN 0-471-57998-X. 

Ramirez, J.A., Breen, J.E. [1991] “Evaluation of a modified truss-model approach for beam in shear”, 
Struct. J. Am. Concrete Inst., Vol. 88, No. 5, pp. 562-571. 

Ritter, W. [1899] “Die Bauweise Hennebique”, Schweizerische Bauzeitung, Zürich, Switzerland. 

Schläich, J., Schafer, K., Jennewein, M. [1987] “Toward a consistent design of structural concrete”, 
Precast/Prestressed Concrete Institute Journal, Vol. 32, No. 3, pp. 74-150. 

Seckin, M. [1981] “Hysteretic behaviour of cast-in-place exterior beam-column sub-assemblies”, PhD thesis, 
University of Toronto, Toronto, Canada. 

Sezen, H., Moehle, J.P. [2004] “Shear Strength Model for Lightly Reinforced Concrete Columns”, Journal of 
Structural Engineering, ASCE, Vol. 130, No. 11, pp. 1692-1703. 

Sittipunt, W., Wood, S.L. [1995] “Influence of web reinforcement on the cyclic response of structural 
walls”, ACI Structural Journal, Vol. 92, No. 6, pp. 745-756. 

Standards Association of New Zealand [1982] The design of concrete structure, Wellington, New Zealand. 

Takahashy, Y., Iemura, H., [2000] “Inelastic seismic performance of RC tall piers with hollow sections”, 
Proceedings of 12th World Conference on Earthquake Engineering, Paper No. 1353, New Zealand. 

Vecchio, F.J. [1989] “Nonlinear finite element analysis of reinforced concrete membranes”, ACI Structural 
Journal, Vol. 86, No. 1, pp. 26-35. 

Vecchio, F.J. [1989] “Towards cyclic load modelling of reinforced concrete”, ACI Structural Journal, Vol. 96, 
No. 2, pp. 132-202. 

Vecchio, F.J. [1990] “Reinforced concrete membrane element formulations”, Journal of Structural Engineering, 
ASCE, Vol. 116, No. 3, pp. 730-750. 

Vecchio, F.J. [1992] “Finite element modelling of concrete expansion and confinement”, Journal of Structural 
Engineering, ASCE, Vol. 118, No. 9, pp. 2390-2406. 

Vecchio, F.J., Collins, M.P. [1986] “The modified compression-field theory for reinforced 
concrete elements subjected to shear”, ACI Journal, Vol. 83, No. 2, pp. 219-231. 



 

 

52 

Wong, Y.L., Paulay, T., Priestley, M.J.N. [1993] “Response of circular reinforced concrete columns to 
multi-directional seismic attack”, ACI Structural Journal, Vol. 90, No. 2, pp. 180-191. 

Yeh, Y.K., Mo, Y.L., & Yang, C.Y. (2002) “Seismic performance of rectangular hollow bridge 
columns”, ASCE Journal of Structural Engineering, Vol. 128, No. 1, pp. 60-68.



 

 

53

TABLES 

PART A 

Table 1 Mechanical properties of reinforcement steel (average values) 

Nominal Bar 
Diameter 

[mm] 

Number of 
Tests 

Average Bar 
Diameter 

[mm] 

fy [MPa] fu [MPa] εu [%] 

Φ5 7 4.7 699.5 730.9 1.6 
Φ8 4 8.2 503.4 563.0 12.3 
Φ12 4 11.9 558.2 646.8 12.8 
Φ14 4 13.8 477.2 577.7 13.0 

 

Table 2 Mechanical properties of concrete (average values) 

Cubic 
Compressive 

strength [MPa] 
(16 tests) 

Tensile Strength 
[MPa] Brazilian 

Test (5 tests) 

Initial Tangent 
Modulus [GPa] 

35.4 3.1 29.4 
 

Table 3 Values of the parameters of the model implemented in Castem2000 [Maillard, 1993] for confined 
concrete referred to the flanges of the section of the medium pier of bridge B232 

Ah 

[mm2] 

lw 

[mm] 

b0 

[mm] 

h0 

[mm] 

ωw α 

19.64 2860 779 139 0.1969 0.642 

β fc,c 

[N/mm2] 
εc1,c Z   

1.2831 39.4 0.00441 28.8   
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Table 4 Values of the parameters of the Mander’s model for the confined concrete. They refer to the concrete 
in the flanges of the section of the medium pier of the bridge B232 

Asw2 

[mm2] 

Asw3  

[mm2] 

b02 

 [mm] 

b03  

[mm] 

ρ2  

[%] 

ρ3  

[%] 

157.1 39.3 779 139 0.336 0.471 

αn αs α σe2 

[N/mm2] 

σe3 

[N/mm2] 

σe  

[N/mm2] 

0.768 0.754 0.579 1.361 1.908 1.612 

f’c,c/f’c εc1,c Esec  

[N/mm2] 

Ec 

[N/mm2] 

r  

1.324 0.00524 7757 30800 1.337  
 

Table 5 Stress and deformation characteristics of concrete according to prEN 1992-1-1 [CEN, 2003]: fck and 
fcm are the characteristic and mean values of the compressive strength, respectively; fctm is the 
mean value of the tensile strength and Ecm is the mean value of the modulus of elasticity  

 C25 C30 C35 

fck [MPa] 25 30 35 
fcm [MPa]1 33 38 43 
fctm [MPa] 2.6 2.9 3.2 
Ecm [GPa] 31 32 34 

 1 
cm ck

f f8= +  

Table 6 Stress and deformation characteristics of steel reinforcement according to prEN 1998-2 E.2.2 [CEN, 
2003]: fyk and fym are the characteristic and mean values of the yield stress, respectively. εuk and 
εum are the characteristic and mean values of  elongation at maximum strength, respectively 

Tempcore B500B 

fyk [MPa] 500 
fym [MPa] 1.15⋅fyk  

εum εuk 
 

Table 7 With reference to Figure 21, steel reinforcement diameter (mm) as a function of bar spacing i and 
rlongitudinal reinforcement ratio ρL; only bar diameters between 16mm and 32mm have been 
accepted.  

 ρL 

i [mm] 0.005 0.010 0.020 0.030 0.040 

100 11 16 23 28 32 
150 14 20 28 34 39 
200 16 23 32 39 45 

 



 

 

55

Table 8 Allowed distances (mm), in the horizontal plane, between two consecutive engaged rebars for the 
case νk ≤ 0.2 

 ρL 

i [mm] 0.005 0.010 0.020 0.030 0.040 

100 - 100 200 100 200 100 200 100 200 
150 - 150 150 - - 
200 200 200 200 - - 

 

Table 9 Allowed distance (mm), in the horizontal plane, between two consecutive engaged rebars for the case 
νk > 0.2  

 ρL 

i [mm] 0.005 0.010 0.020 0.030 0.040 

100 - 100 100 100 100 
150 - - - - - 
200 - - - - - 

 

Table 10 Allowed spacing (mm), along the vertical direction, for transverse reinforcement for the case νk ≤ 0.2 

 ρL 

i [mm] 0.005 0.010 0.020 0.030 0.040 

100 - 80 113 138 160 
150 - 98 138 - - 
200 80 113 160 - - 

 

Table 11 Allowed spacing (mm), along the vertical direction, for transverse reinforcement for the case νk > 0.2  

 ρL 

i [mm] 0.005 0.010 0.020 0.030 0.040 

100 - 68 683 68 68 
150 - 68 68 - - 
200 68 68 68 - - 

 

Table 12 Values of the factor αn defined according to Equation (3.16) for the case νk ≤ 0.2 

 ρL 

i [mm] 0.005 0.010 0.020 0.030 0.040 

100 - 0.902 0.804 0.902 0.804 0.902 0.804 0.902 0.804 
150 - 0.853 0.864 - - 
200 0.804 0.804 0.804 - - 
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Table 13 Values of factor αs defined according to Equation (3.17) for the case νk ≤ 0.2 

 ρL 

i [mm] 0.005 0.010 0.020 0.030 0.040 

100 - 0.847 0.847 0.787 0.787 0.742 0.742 0.704 0.704 
150 - 0.814 0.742 - - 
200 0.847 0.787 0.704 - - 

 

Table 14 Values of the confinement effectivness factor α evaluated according to Equation (3.15) for the case 
νk ≤ 0.2 

 ρL 

i [mm] 0.005 0.010 0.020 0.030 0.040 

100 - 0.764 0.681 0.710 0.633 0.669 0.596 0.635 0.566 
150 - 0.695 0.641 - - 
200 0.681 0.633 0.566 - - 

 

Table 15 Values of factor αn defined according to Equation (3.16) for the case νk > 0.2 

 ρL 

i [mm] 0.005 0.010 0.020 0.030 0.040 

100 - 0.902 0.902 0.902 0.902 
150 - - - - - 
200 - - - - - 

Table 16 Values of factor αs defined according to Equation (3.17) for the case νk > 0.2 

 ρL 

i [mm] 0.005 0.010 0.020 0.030 0.040 

100 - 0.869 0.869 0.869 0.869 
150 - 0.869 0.869 - - 
200 0.869 0.869 0.869 - - 

 

Table 17 Values of the confinement effectiveness factor α evaluated according to Equation (3.15) for the case 
νk > 0.2 

 ρL 

i [mm] 0.005 0.010 0.020 0.030 0.040 

100 - 0.784 0.784 0.784 0.784 
150 - - - - - 
200 - - - - - 
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Table 18 Transverse reinforcement rebar sizes (mm) for the case νk ≤ 0.2  

 ρL 

i [mm] 0.005 0.010 0.020 0.030 0.040 

100 - 6 8 8 11 10 14 11 16 
150 - 8 12 - - 
200 8 11 16 - - 

 

Table 19 Transverse reinforcement ratios for the case νk ≤ 0.2 

 ρL 

i [mm] 0.005 0.010 0.020 0.030 0.040 

100 - 0.003 0.003 0.004 0.004 0.005 0.005 0.006 0.006 
150 - 0.004 0.005 - - 
200 0.003 0.004 0.006 - - 

 

Table 20 Coefficients of Equations (3.26) and (3.27), as given in Table 6.1 of prEN 1998-2 [CEN, 2003]. 

Seismic behaviour λ ωw,min 

Ductile 0.37 0.18 
Limited ductile 0.28 0.12 

 

Table 21 Confinement pressure and confinement parameter for different shear reinforcement ratios and 
classes of concrete 

 ρw σe [MPa] λc 

 min max min max min max 
C25 0.003 0.018 1.23 6.27 1.24 1.94 
C30 0.003 0.016 1.23 7.18 1.21 1.93 
C35 0.003 0.014 1.23 8.08 1.19 1.93 

 

Table 22 Values of the parameters considered in the parametric analysis 

Parameter values 

Wall thickness [m] 0.40 
Concrete C25   C30   C35 

H/B 1.0    1.5    2.0    2.5    3.0 
steel Tempcore B500B 

ρL 0.005   0.010   0.020   0.030   0.040 

νk 0.10   0.20   0.30   0.40 

λc 1.0   1.2   1.3   1.4   1.6   1.8   2.0 
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PART B 

Table 23 Values of θ and β for members containing at least the required minimum amount of stirrups 

εx ·103 
xy

c

v
f ′

 
-0.20 -0.10 -0.05 0 0.125 0.25 0.50 0.75 1.00 1.50 2.00 

22.3° 20.4° 21.0° 21.8° 24.3° 26.6° 30.5° 33.7° 36.4° 40.8° 43.9°
0.075 

6.32 4.75 4.10 3.75 3.24 2.94 2.59 2.38 2.23 1.95 1.67 

18.1° 20.4° 21.4° 22.5° 24.9° 27.1° 30.8° 34.0° 36.7° 40.8° 43.1°
0.100 

3.79 3.38 3.24 3.14 2.91 2.75 2.50 2.32 2.18 1.93 1.69 

19.9° 21.9° 22.8° 23.7° 25.9° 27.9° 31.4° 34.4° 37.0° 41.0° 43.2°
0.125 

3.18 2.99 2.94 2.87 2.74 2.62 2.42 2.26 2.13 1.90 1.67 

21.6° 23.3° 24.2° 25.0° 26.9° 28.8° 32.1° 34.9° 37.3° 40.5° 42.8°
0.150 

2.88 2.79 2.78 2.72 2.60 2.52 2.36 2.21 2.08 1.82 1.61 

23.2° 24.7° 25.5° 26.2° 28.0° 29.7° 32.7° 35.2° 36.8° 39.7° 42.2°
0.175 

2.73 2.66 2.65 2.60 2.52 2.44 2.28 2.14 1.96 1.71 1.54 

24.7° 26.1° 26.7° 27.4° 29.0° 30.6° 32.8° 34.5° 36.1° 39.2° 41.7°
0.200 

2.63 2.59 2.52 2.51 2.43 2.37 2.14 1.94 1.79 1.61 1.47 

26.1 27.3 27.9 28.5 30.0 30.8 32.3 34.0 35.7 38.8 41.4 
0.225 

2.53 2.45 2.42 2.40 2.34 2.14 1.86 1.73 1.64 1.51 1.39 

27.5 28.6 29.1 29.7 30.6 31.3 32.8 34.3 35.8 38.6 41.2 
0.250 

2.39 2.39 2.33 2.33 2.12 1.93 1.70 1.58 1.50 1.38 1.29 



 

 

59

FIGURES 

PART A 

160 480 160

800

16
00

16
0

12
80

16
0

20 φ8

φ126

14 φ14

2

3

4

5

6

7

8

SLICES #

1

5.60

units [m]units [mm]

49
2

49
2

49
2

136

136

136

φ5 @50

@50φ5 

@50φ5 

13
6

13
6

13
6

346 346

330

@50φ5 

φ5 @50 @50φ5 

(a) (b)

1.60

0.80 0.16

LV
D

Ts

LV
D

Ts

0.14
0.12

0.24

0.24

0.24

0.24

0.24

0.24

F

 
Figure 1 (a) Reinforcement layout of the pier section; (b) Geometric characteristics of the pier and 

instrumentation placement 
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Figure 2 Displacement and force time-history applied at the top of the pier in the horizontal direction during 

the first PSD test (bridge subjected to the design earthquake) 
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Figure 3 Displacement and force time-history applied at the top of the pier in the horizontal direction during 

the second PSD test (bridge subjected to two time the design earthquake) 
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Figure 4 Displacement and force time-history applied at the top of the pier in the horizontal direction during 

the cyclic test 
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Figure 5 Application of the vertical load to the pier: (a) post-tensioning method; (b) correct approach needed 
for testing 
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Figure 6 Moment-curvature plot of the response of the pier to the design earthquake at slice #1  
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Figure 7 Moment-curvature plot of the response of the pier to two time the design earthquake at slice #1 
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Figure 8 Moment-curvature plot of the response of the pier to the cyclic excitation at slice #1 
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Figure 9 Concrete model for monotonic loading 

ε

σ

 
Figure 10 Concrete model for cyclic loading 
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Figure 11 Comparison between Mander’s model and Castem 2000 [Maillard, 1993] model for the confined 

concrete in the flanges of the section of the medium pier of bridge B232 

 
Figure 12 Comparison between the numerical and experimental results relative to slice #1 of the pier when 

subjected to the first few seconds of the design earthquake 

 
Figure 13 Comparison between the numerical and experimental results relative to slice #2 of the pier when 

subjected to the first few seconds of the design earthquake 
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Figure 14 Comparison between the numerical and experimental results relative to slice #3 of the pier when 
subjected to the first few seconds of the design earthquake 

 
Figure 15 Comparison between the numerical and experimental results relative to slice #4 of the pier when 

subjected to the first few seconds of the design earthquake 
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Figure 16 Comparison between the numerical and experimental results relative to slice #1 of the pier when 

subjected to the entire duration of the design earthquake 

 
Figure 17 Comparison between the numerical and experimental results relative to slice #2 of the pier when 

subjected to the entire duration of the design earthquake 

 
Figure 18 Comparison between the numerical and experimental results relative to slice #3 of the pier when 

subjected to the entire duration of the design earthquake 
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Figure 19 Comparison between the numerical and experimental results relative to slice #4 of the pier when 

subjected to the entire duration of the design earthquake 
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Figure 20 Comparison between the energy dissipated per cycle by the numerical model and by the sections 

belonging to different pier slices for cyclic tests of increasing amplitude 

 
Figure 21 Typical section of the bridge pier wall considered in the parametric analysis 
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Figure 22 Plot of Equation (3.27) which gives the minimum amount of confining transverse reinforcement 

when νk > 0.20. The white dots represent the minimum amount of transverse reinforcement 
against buckling requested by prEN 1998-2  when νk ≤ 0.20. It is evident that when νk ≤ 0.20 the 
provisions against buckling are more stringent than the confining provisions 

 

 
Figure 23 Evaluation of the range of transverse reinforcement ratio values ρw corresponding to a given value 

of the confinement parameter λc 

 
Figure 24 Construction of the bilinear approximation of the nonlinear skeleton curve of the pier section 

behaviour 

ρL 
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Figure 25 Bilinear skeleton curves corresponding to sections characterized by different aspect ratios (section 

depth and width are expressed in m) and different longitudinal reinforcement ratios. The 
remaining parameters are common to all the sections: concrete C25, νk = 0.60, λc = 1.4 
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Figure 26 Bilinear skeleton curves corresponding to sections characterized by different aspect ratios (section 

depth and width are expressed in m) and different longitudinal reinforcement ratios. The 
remaining parameters are common to all the sections: concrete C25, νk = 0.10, λc = 1.4 
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Figure 27 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.005, λc = 1.0) 
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Figure 28 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.005, λc = 1.2) 
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Figure 29 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.005, λc = 1.4) 
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Figure 30 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.005, λc = 1.6) 
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Figure 31 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.005, λc = 1.8) 
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Figure 32 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.005, λc = 2.0) 
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Figure 33 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.010, λc = 1.0) 
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Figure 34 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.010, λc = 1.2) 
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Figure 35 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.010, λc = 1.4) 
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Figure 36 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.010, λc = 1.6) 
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Figure 37 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.010, λc = 1.8) 
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Figure 38 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.010, λc = 2.0) 
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Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.020, λc = 1.0) 
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Figure 39 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.020, λc = 1.2) 
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Figure 40 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.020, λc = 1.4) 
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Figure 41 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.020, λc = 1.6) 
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Figure 42 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.020, λc = 1.8) 
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Figure 43 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.020, λc = 2.0) 
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Figure 44 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.030, λc = 1.0) 
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Figure 45 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.030, λc = 1.2) 
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Figure 46 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.030, λc = 1.4) 
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Figure 47 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.030, λc = 1.6) 
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Figure 48 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.030, λc = 1.8) 
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Figure 49 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.030, λc = 2.0) 
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Figure 50 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.040, λc = 1.0) 
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Figure 51 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.040, λc = 1.2) 
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Figure 52 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.040, λc = 1.4) 
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Figure 53 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.040, λc = 1.6) 
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Figure 54 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.040, λc = 1.8) 
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Figure 55 Results of the parametric analysis (f’cm = 33 MPa, ρL = 0.040, λc = 2.0) 
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Figure 56 Parameter that represents the hysteretic energy dissipated by piers 
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Figure 57 Comparison between Equation (5.1) and experimental results obtained from three piers 

characterized by different shear span ratio: 1.75 for Pier 1, 3.50 for Pier 2 and 5.25 for Pier 3. 
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Figure 58 Ritter-Morsch model 

 
Figure 59 Effectiveness of transverse reinforcement for shear resistance of columns (adapted from Priestley et 

al. [1996]) 
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Figure 60 Dimensionless shear strength v as a function of the mechanical percentage of web reinforcement, 

ωv 
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Figure 61 Values of factor αc affecting Equation (8.5) for members subjected to axial compressive loads 

 
Figure 62 Applied Technology Council Model for shear strength degradation 

 
Figure 63 Relationship between ductility and strength of concrete shear-resisting mechanisms (adapted from 

Priestley et al. [1994]) 
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Figure 64 Contribution of axial force to column shear strength for (a) simple bending and (b) reversal 

bending (adapted from Priestley et al. [1994])  

 
Figure 65 CFT of a reinforced concrete membrane element 

 
Figure 66 Mohr’s circle for average strains 
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Figure 67 Mohr’s circle for average stresses 

 
Figure 68 Average stress-strain relationship for cracked concrete in compression 

 
Figure 69 Average stress-strain relationship for cracked concrete in tension 
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Figure 70 (a) Calculated average stresses. (b) Local stresses at a crack 

 

Figure 71 Layered model of the member section 

 
Figure 72 Free-body diagram for concrete layer k 
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Figure 73 Determination of strain εx for a non-prestressed beam 

 
Figure 74 Hysteresis model for concrete in compression: unloading branch (from [Palermo and Vecchio, 

2003]) 

 
Figure 75 Hysteresis model for concrete in compression: reloading branch (from [Palermo and Vecchio, 

2003]) 
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Figure 76  Hysteresis model for concrete in tension: unloading branch (from [Palermo and Vecchio, 2003]) 

 
Figure 77 Hysteresis model for concrete in tension: reloading branch (from [Palermo and Vecchio, 2003]) 
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