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ABSTRACT 

 

ANTIPARASITIC PEPTIDE FROM THE OCEAN: DISCOVERY, SYNTHESIS AND 

STRUCTURE-ACTIVITY RELATIONSHIP STUDY 

 

 

 

By 

Kh Tanvir Ahmed  

December 2020 

 

Dissertation supervised by Dr. Kevin J. Tidgewell 

 Millions of people die every year because of infectious diseases, and 

malaria is among the top five of the deadliest infectious disease. In 2018, malaria took more 

than four hundred thousand lives, and more than half of them are children under five years 

of age. Most malaria-affected parts of the world are also the home of the most 

underprivileged people. Seemingly, antimalarial drug discovery never achieved the 

attraction that it requires. Like malaria, another infectious disease that is not extensively 

explored by drug discovery campaigns is American trypanosomiasis or Chagas disease. 

More than a hundred years have passed since discovering the disease, and surprisingly only 

two drugs are clinically available; both are far from ideal. It is imperative to say that these 

disease areas require more attention from drug discovery researchers. Hence, my project 



 v 

focuses on drug discovery for these neglected diseases utilizing one of the most prolific 

sources for lead molecule generation, marine cyanobacteria.  

This thesis describes the discovery of an N-methylated peptide, naranjamide, from 

a marine cyanobacterium collected in the Portobelo National Park, Panama. The compound 

inhibited the growth of Trypanosoma cruzi and Plasmodium falciparum parasites. To 

confirm the structure and established its antiparasitic potential, I attempted to synthesize 

the molecule and found the synthetic version to inhibit both T. cruzi and P. falciparum 

parasite with IC50 values of 9.2 μM and 2.8 μM, respectively. Later, a series of non-

methylated analogs were synthesized, which are found to be malaria selective. A more 

detailed study is required to establish a complete structure-activity relationship. 
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Chapter I: Introduction 

1.1. History of natural product drug-discovery 

Bioactive natural products have been used for centuries by humans, with the first 

recorded example dating to around 2600 BC in Mesopotamia. Some of the earliest 

examples include cedar oil (Cedrus sp.), cypress oil (Cupressus sempevirens), licorice oil 

(Glycyrrhiza glabra), myrrh (Commiphora sp.) and poppy juice (Papaver somniferum), 

which are still employed for treating different illnesses today. Nearly all human 

civilizations documented their use of natural products for the remedy of illness. The 

Egyptian Ebers Papyrus, around 3500 years old, included approximately 800 prescriptions. 

Over 700 natural products are described in it, including Aloe (Aloe vera), Frankincense oil 

(Boswellia carteri), and Castor oil (Ricinus communis).1 Some other notable examples of 

texts on medicine, that registered bioactive natural products, include Corpus 

Hippocraticum by Hippocrates and other physicians, De Materia Medica by Dioscorides, 

Charaka Samhita from Indian Ayurveda, and Wu Shi Er Bing Fang (in English, 

Prescription for fifty-two diseases), the oldest book on Chinese traditional medicine.2-5  

The source of knowledge compiled in these texts came from people exploring the 

use of natural products while searching for answers to disease or sudden death.6 At that 

time, most of the researchers did not know that natural products contain bioactive 

molecules, which was the reason for their medicinal property. Few researchers 
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hypothesized that these natural products have different compounds responsible for their 

activity. In 1804, the hypothesis was proven when the German Pharmacist Friedrich 

Wilhelm Sertürner isolated the first pure natural compound, morphine from opium. In 

1827, Heinrich Merck commercialized morphine and made it the first commercialized 

medicine.7 Soon after, structure identification allowed scientists to synthesize many of 

these natural products and open a new research branch of chemistry, total synthesis. Many 

bioactive compounds of natural product origin were synthesized at that time, and the ability 

to make them synthetically has allowed their widespread use to be possible. It is worthy of 

mentioning some of these (Figure 1.1) : morphine (1.1) from Papaver somniferum (opium 

poppy), salicin (1.2) from Salix alba (white willow), strychnine (1.3) from Strychnos nux-

vomica (strychnos), quinine (1.4) from Cinchona ledgeriana (cinchona bark), colchicine 

(1.5) from Colchicum autumnale (colchicum), caffeine (1.6) from Coffea arabica, nicotine 

(1.7) from Nicotiana tabacum, atropine (1.8) from Atropa belladonna and cocaine (1.9) 

from Erythroxylum coca. Many of these molecules are still used for treating diseases or for 

other purposes.8 For example, colchicine is used for familial Mediterranean fever (FMF) 

and acute gout flares,9 and atropine is used as antidote for muscarinic agent 

(organophosphorus, carbamate, or muscarinic mushroom) poisoning and to treat 

bradycardia.10 Access to these natural products synthetically also allowed researchers to 
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modify their chemical structure in order to alter their pharmacokinetic and/or 

pharmacodynamic properties.11  

 

 

Until the 20th century, drug-discovery efforts principally explored terrestrial plants. 

Researchers started to scout microorganisms as the source for bioactive compounds in the 
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last century and intensified the exploration of bioactive molecules from nature.12 Efforts 

by researchers have led to the discovery of numerous FDA approved new molecular entities 

(NME), semisynthetic natural compounds, and natural compound inspired synthetic 

compounds. The global medicine market is about 1.1 trillion USD, natural products and 

related compounds comprise about 35% of that market.13 Approximately 60% of small 

molecule therapeutics approved by the FDA in the last 40 years have origins connected to 

natural products.14 The FDA was established in 1906 to ensure the safety and effectiveness 

of human and veterinary drugs and vaccines and other biological products and medical 

devices intended for human use.15 Many natural products currently in use, including those 

mentioned above, were introduced to the clinic long before the FDA was established, and 

they became officially approved. For example, the semisynthetic plant derivative 

guaifenesin from guaiacum resin, got its official approval as a cough suppressant in 1852, 

though people used it as early as the 16th century. Since the establishment of the FDA, 

many new or existing natural products and their derivatives have been approved for clinical 

use.  

The most recent analysis by Newman and Cragg16 on natural products as sources 

of new drugs over the last four decades identified nearly half (930) of all FDA-approved 

drugs (1881) are either natural products, natural product derivatives or inspired by natural 

products. Among these approved natural products, 71 are unmodified natural products, and 
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356 are natural products derivative. Remaining 503 drugs include natural products and 

synthetic drugs with natural product pharmacophores or mimic of natural product. An 

earlier analysis by Patridge et al.17 revealed that 44% of approved were derived from 

mammals (Bovine, porcine, equine, canine, and human). Among the non-mammalian 

natural products (NMNP), almost half (45% of NMNPs; 25% overall) of them are plant-

derived. Two other significant sources of NMNP include bacteria (29% of NMNPs; 16% 

overall) and fungi (22% of NMNPs; 12% overall). Unfortunately, rigorous procedures to 

isolate and identify natural products, complexity of the molecules making total synthesis 

difficult, advances in both high throughput screening (HTS) and combinatorial synthesis, 

contribute to the shifting of drug discovery campaigns by many pharmaceutical companies 

away from natural products to synthetic compounds.17-18 Nevertheless, natural products 

and their derivatives are still the most diverse sources for chemical entities to treat diseases 

or to elucidate disease mechanisms. A cheminformatic analysis on a representative set of 

natural products, bioactive molecules, and synthetic compounds has found that the 

chemical diversity possessed by natural products covers a large and diffuse area in the 

chemical space as compared to the synthetic compounds which are concentrated, hence 

less diverse.19  

The history of medicine is full of exciting tales glorifying the impact of natural 

products chemistry in drug discovery. In general, natural products show high selectivity 
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and affinity for their specific biological target.20 Today much of what we know about 

neurochemistry and the function of the central nervous system (CNS) has been aided by 

the use of natural products. Many of the receptors within the CNS were discovered by 

studying their interactions with natural products. For example, research on opium alkaloids 

from Papaver somniferum guided researchers to the discovery of the opioid receptors and 

has helped to elucidate the mechanism of antinociception mediated by these receptors. In 

this case, ethnopharmacological knowledge has aided the identification and study of the 

terrestrial natural product morphine.21 Another inspiring story for natural product research 

is the discovery of ivermectin and artemisinin. In 2015, the Nobel prize in Physiology and 

Medicine was awarded to William C. Campbell together with Satoshi Ōmura “for their 

discoveries concerning a novel therapy against roundworm infections” and to Tu Youyou 

"for her discoveries concerning a novel therapy against malaria".22  

Both ivermectin (1.11) and artemisinin (1.12) were discovered when researchers 

were searching nature for the arsenals to fight helminthiasis and malaria, respectively. 

Ivermectin resulted from a collaborative effort by Campbell and Omura from Merck 

Research Laboratories and Kitasato Institute, respectively, where they searched 

microorganisms for compounds with the anthelmintic property. Both Campbell and Omura 

were motivated by their philosophy about natural product chemistry. Campbell believed in 

nature’s ability to produce compounds beyond human imagination, and Omura considered 
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microorganisms and microbial compounds as “splendid gifts.”18 During the COVID-19 

pandemic, ivermectin draws significant attention from clinicians when researchers from 

Royal Melbourne Hospital and Monash University published the in vitro efficacy of 

ivermectin in the inhibition of SARS-CoV-2.23  

 

Tu Youyou was a phytochemist and the head of the malaria research group at the 

China Academy of Chinese Medical Sciences. Belief in the wisdom of traditional Chinese 

medicine inspired her to discover artemisinin. She described artemisinin as “the gift from 

Chinese medicine.” Awarding Nobel prizes to natural product researchers certainly 

reestablishes the hope among natural product chemists to thrive in this field. With the 
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advancement in other areas of sciences like genomics, synthetic biology, metabolomics, 

bioinformatics, and analytical techniques, which could aid in exploring bioactive NP, 

researchers are now anticipating an imminent golden age of NP drug discovery.18, 24-25 This 

will undoubtedly motivate young investigators who want to pursue their research career in 

natural product chemistry.   

1.2. Marine natural products 

The marine environment is the sanctuary of numerous organisms. They survive in 

diverse and hostile surroundings by producing an abundance of secondary metabolites with 

various bioactivities.26 In comparison with terrestrial sources, there are very few 

ethnopharmacological reports about marine source organisms. A few notable examples 

include red algae Chondrus crispus and Mastocarpus stellatus as the remedy for colds, 

sore throats, chest infections, kidney trouble and burns, and red algae Porphyra umbilicalis 

for relieving indigestion. The species being investigated for bioactive marine natural 

products (MNPs) include marine microorganisms (bacteria, fungi, cyanobacteria, 

dinoflagellates), algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, 

mangroves, and other intertidal plants and microorganisms.27 Despite covering two-thirds 

of the earth’s surface, extensive exploration of the marine environment as a potential source 

of medicine started only in the mid-1970s aided by the introduction of SCUBA. Thousands 

of structurally unique bioactive metabolites have been reported from the marine 



 9 

environment since then.6 More than 32,000 articles have been indexed in the 

comprehensive database dedicated to marine natural product (MNP) research, MarinLit, 

after its establishment in 1970 by Professors John Blunt and Murray Munro at the 

University of Canterbury, New Zealand.28 Natural Product Atlas, another online database 

of microbially derived natural product, lists 9764 compounds from the bacterial origin and 

the cyanobacterial genus Lyngbya is the fourth highest producer in their database of natural 

products among all bacterial genera.29 Bioactivities of MNPs cover a diverse range of 

diseases including antibacterial, antifungal, antiviral, antiparasitic, antitumor, anti-

inflammatory, antioxidant, and immunomodulatory activities.30-32  Apart from providing 

bioactive molecules, MNPs have started to find their application in therapeutics. As of 

November 2019, ten MNPs or MNP derived natural products are approved by the FDA 

(Figure 1.3). Of these, two are the original natural product as isolated, and the remaining 

compounds are synthetic agents with origin related to MNPs.33 

Cytarabine (Ara-C; 1.13), an anticancer agent, is the first FDA approved marine 

derived drug. A similar analog is the antiviral vidarabine (Ara-A; 1.14) and both are 

synthetic analogs of a marine sponge derived nucleoside spongouridine.  The NP was 

isolated from the Caribbean sponge Tethya crypta (Tethylidae).34 The compound intrigued 

researchers when they observed the free form of this nucleoside outside the nucleus, though 

their natural analogs, purines, and pyrimidines, are bound to DNA and RNA. This 
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observation led to the idea that the sponge uses this compound for chemical defense. 

Vidarabine was the first marketed antiviral agents. Though vidarabine is clinically useless 

now because of poor solubility and toxicity, and the development of safer antivirals,35 

cytarabine is still in the market. In fact, the latter is the best approach (7+3 protocol) 

currently available to treat acute myelogenous leukemia, where the patient is treated with 

cytarabine for seven days continuously via intravenous administration. The first three days 

of the treatment also use intravenous daunorubicin, hence the nickname “7+3” protocol.36    

Twenty years after the approval of those nucleosides, the FDA approved Ziconotide 

(1.15), a synthetic form of ω-conotoxin MVIIA. Ziconotide is one of the three approved 

analgesics that act on N-type calcium channels (Cav2.2). This drug is instrumental in 

managing severe chronic pain associated with cancer and neuropathies. MVIIA was 

isolated from Conus magus in 1979. It is a 25 amino acid linear peptide, containing three 

disulfide crosslinks, that inhibits Cav2.2.21 The inspiration behind this discovery was the 

findings that cone snail venoms are lethal and that they use their venom for hunting fish.  

Extensive research led to the discovery of several biologically active conotoxins, most of 

which potently target ion channels to exert their biological action.37  
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The first European Union approved marine anticancer agent is ecteinascidin 743, 

also known as trabectedin or ET-743 (1.16). It was isolated from the Caribbean tunicate 

Ecteinascidia turbinate and has been used for the treatment of ovarian cancer and soft 

tissue sarcoma.38 Ecteinascidin is a tetrahydroisoquinoline alkaloid and is currently 

produced synthetically. It is a DNA alkylating agent, and unlike traditional alkylating 

agents, it binds to the minor grove of DNA.39   

 A structurally simpler version of the polyketide halichondrin B resulted in the 

anticancer agent eribulin mesylate (1.17). Halichondrin B was isolated from the marine 

sponge Halichondria okada. The total synthesis of Halichondrin B by the Kishi 

laboratory allowed researchers to explore many of its analogs, which resulted in the 

discovery of eribulin.40 Both eribulin mesylate and halichondrin B act via tubulin 

inhibition by binding at the vinca site of b-tubulin.41  

Omega-3 fatty acids from marine fish are well known for their lipid-lowering 

property and are used in combination with diet and/or other lipid-lowering agents.42 The 

marketed drug Lovaza contains a combination of the ethyl esters of eicosapentaenoic acid 

and docosahexaenoic acid (1.18). Anchovies, herring, salmon, mackerel, smelts, and jacks 

from the South Pacific Ocean are commonly the sources of these oils used to make 

commercial products.41  
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The most recently approved anticancer drug related to MNP is brentuximab vedotin 

(1.19). It is an antibody-drug conjugate, where the drug part is the pentapeptide 

monomethyl auristatin E (MMAE) (1.21), a derivative of the MNP dolastatin 10 (1.20). 

Dolastatin 10 (1.20) has potent antitumor activity and was initially isolated from the sea 

hare Dolabella auricularia.43 Interestingly, the origin of dolastatin 10 was later identified 

as the sea hare’s cyanobacterial diet, Symploca hydnoides.44 A detailed discussion about 

compound 1.20 and 1.21 is described in section 1.2.1. 

In the first 35 years of marine drug discovery, only four products reached the 

market. However, within the next 15 years, the number of approved drugs reached ten. In 

addition to these, 27 more compounds are at different stages of clinical trials. The most 

prevalent indication for these compounds is for cancer, and others have been developed for 

cognition and schizophrenia, wound healing, and Alzheimer’s disease.33, 36 

1.2.1. Marine cyanobacteria as the source of bioactive compounds 

Cyanobacteria are a group of gram-negative prokaryotes that are capable of 

performing oxygenic photosynthesis, a unique ability among prokaryotes.45 They are 

approximately 2.6 to 3.5 billion years old, making them one of the earliest photosynthetic 

organisms.46 They can exist in various forms like unicellular, filamentous, planktonic or 

benthic, and colonial.45 Cyanobacteria are the most ubiquitous photosynthetic organisms, 
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and they can be found almost everywhere, i.e., marine, freshwater, and terrestrial 

environments.47  

Researchers considered cyanobacteria as a potential source for bioactive NP, when 

it was discovered that freshwater genera Nostoc had been used long ago to treat gout, 

fistula, and several other diseases. The field of marine cyanobacterial drug discovery 

became prominent became emerging since the 1990s after the extensive exploration 

initiated by RE Moore and WH Gerwick.48 Marine cyanobacteria have drawn the attention 

of NP chemists because of their ready availability, rapid growth and diversity, their role in 

the surrounding environment, and their ability to provide highly bioactive secondary 

metabolites.49 Marine cyanobacteria achieve this abundance of chemical diversity via 

complex approaches that utilize mainly polyketide synthases (PKS) and nonribosomal 

peptide synthases (NRPS) as their biosynthetic tools.50 Apart from potent toxins, marine 

cyanobacteria produce an abundance of exciting molecules with a wide array of activities 

like anticancer, antifungal, anti-HIV, antimicrobial, immunosuppressant, anticoagulant, 

anti-inflammatory, antiprotozoal, antimalarial, antiviral, and antitubercular activities.51-55 

Compounds exhibiting these activities are mostly isolated from the genera Oscillatoriales, 

Lyngbya, Moorea, Okeania, and Caldora.56-57  

An analysis of all MNPs and related compounds, approved by the FDA and in 

clinical trials,33 revealed that more than half of them (57%) have marine cyanobacteria as 
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their source organism (Figure 1.4A). Among the ten products already approved (Figure 

1.4B), one-third of them have links associated with marine cyanobacteria. Whereas two-

third of the MNPs and related compounds in clinical trials come from marine 

cyanobacteria. This statistic is quite encouraging as among a multitude of marine sources, 

a single class of organisms, cyanobacteria, promises a majority of products with the 

potential to reach the clinic. 

 

   

The marine cyanobacterial compound that has attracted the most attention is 

dolastatin 10 (1.20). Though this compound is not directly used in clinics, it has inspired 

the development of monomethyl auristatin E (MMAE) (1.21) and monomethyl auristatin 

F (MMAF) (1.22) which are the active warheads of several antibody-drug conjugates 

(Figure 1.5). Some of these conjugates are already clinically approved and/or in clinical 

trials. Dolastatin 10 was fist isolated in 1972 from the hare Dolabella auricularia in the 

Figure 1.4: FDA approved marine drugs: cyanobacteria vs. others (Plots are generated based on 
the data given in reference 33)
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Indian Ocean. Petit et al.58 found that extracts obtained from that marine organism were 

very effective against the National Cancer Institute’s (NCI) murine P388 lymphocytic 

leukemia cell line. Fifteen years of continuous work led to the isolation and structure 

determination of the unique linear pentapeptide Dolastatin 10. This extremely potent 

cytotoxic compound was isolated in an extremely low yield (10-6 to 10-7%) from the sea 

hare. However, Luesch et al.44 discovered dolastatin 10 from the Palauan marine 

cyanobacterium Symploca sp. VP642, thus building up the rationale that a cyanobacterium 

is the original producer of this compound. Dolastatin 10 ended up in the sea hare as a result 

of the consumption of cyanobacteria by the animal as food. Dolastatin 10 exhibits its anti-

tumor effect by disrupting the microtubule assembly.59 It also inhibits BCL-2 protein via 

phosphorylation and induces apoptosis.60  Attempts to explore the SAR of dolastatin 10 

resulted in several useful bioactive analogs, most notably monomethyl auristatin E 

(MMAE) and monomethyl auristatin F (MMAF), where the C-terminus dolaphenine 

moiety of desmethyl dolastatin 10 was replaced with phenethylamine (Figure 1.5).61  
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The first mAb-linked auristatin derivative is brentuximab vedotin (1.13) by Seattle 

Genetics where MMAE (1.21) is linked to the chimeric anti-CD30 antibody CAC10 (SGN-

30) by a valine-citrulline linker and a self-immolative spacer, p-aminobenzyloxycarbonyl 

(PABC).62 The stable dipepetide, valine-citrulline, is readily cleavable by the lysosomal 

enzyme cathepsin B. The spacer PABC facilitate the proteolysis by keeping the drug away 

from the proteolytic site.63 Once the peptide is cleaved by the cathepsin B, the PABC group 

rapidly cleaved via 1,6-elimination and released the MMAE in the tumor 

microenvironment (Figure 1.6). 

Besides anticancer molecules, marine cyanobacteria possess compounds with many 

other activities ranging from targeting mammalian ion channels and GPCRs to parasitic 

O

N

O

N
H

N S

O

O
N

OH
N

O

N

O

N

O

N
H

HO
O

O
N

OH
N

O

NH

O

N

O

N
H

O
OH

O

O
N

OH
N

O

NH

Optimization

1.20

1.21

1.22

Figure 1.5: Development of MMAE (1.21) and MMAF (1.22) from dolastatin 10 (1.20)



 18 

macromolecules. Notable antimalarial compounds from marine cyanobacteria are 

discussed in section 1.3.1.2. 

  

 

 

1.3. Tropical diseases 

According to the World Health Organization (WHO), the diseases that occur mostly 

in tropical regions are called tropical diseases, which are common infectious diseases that 

include but not limited to malaria, leishmaniasis, schistosomiasis, onchocerciasis, 
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lymphatic filariasis, Chagas disease, African trypanosomiasis, and dengue. These diseases 

generally involve a non-mammalian vector that carries the causative organism (parasite, 

bacteria, or virus) and transmits the disease to humans upon biting. These diseases affect 

more than 1 billion people, mainly the most impoverished population of the developing 

world living in places infested heavily by the infective vectors. Many of these tropical 

diseases do not draw much attention from the developed world because of the poor 

socioeconomic condition of the affected population,64 authentic data unavailability, and 

difficult to pronounce the name and hence called neglect tropical diseases.65   

 Discussion on all the tropical diseases is beyond the scope of this chapter. I will 

focus on malaria and Chagas disease (American trypanosomiasis) as our drug discovery 

effort resulted in the discovery of a marine cyanobacterial metabolite with activity against 

parasites for those diseases.  

1.3.1. Malaria 

Malaria is a life-threatening vector-borne disease caused by five species of 

Plasmodium parasites that are transmitted via the bites of infected female Anopheles 

mosquitoes. Among the five species, P. falciparum and P. vivax are the most dangerous. 

P. vivax is predominant in the Americas, whereas P. falciparum rules the rest of the world.66 

Malarial patients typically manifest fevers, sometimes associated with chills, 

headache, and other febrile symptoms. Once an infected female Anopheles mosquito bites 
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someone, the parasites pass to the human host, reproduce via sexual reproduction, and 

initiate the pre-erythrocytic phase by infecting the liver (Figure 1.7). There they develop 

into schizonts and rupture hepatic parenchymal cells to release merozoites. Then 

merozoites enter the erythrocytic phase and multiply via asexual reproduction to produce 

and release more merozoites. The clinical manifestations of malaria appear in this 

erythrocytic stage.67 It is difficult to recognize the early signs of malaria, which are often 

mild, and this makes it a difficult disease to treat. The disease usually progresses to severe 

conditions and may be fatal if not treated within 24 hours. Multiorgan failure is common 

in severe cases in adults, whereas severe anemia and respiratory distress are common in 

children. 
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Despite clear understanding of the diseases, vectors, and parasites, malaria is still 

one of the major fatal illnesses of the world. It is the 6th leading cause of death in low-

income countries.68 The burden of malaria on the US is small, about 2000 cases each year, 

according to the CDC,66, but some parts of the world are suffering heavily, especially 

Africa. According to the World Malaria Report 2019, published by WHO,69 every year of 

the last decade has seen more than 200 million patients worldwide (Figure 1.8).  

 

Though mortality due to Malaria is reducing every year, the number is still high, a 

staggering 405,000 deaths in 2018. Ninety-five percent of those patients belong to Africa 

and India. Malaria is deadlier for children under five years old, and they constituted 67% 

(272,000) of total deaths in 2018. What is not visible from the chart is, the primary 

contributor to child mortality is the premature delivery of babies with low birth weight due 

to maternal malaria. I belong to the Indian subcontinent, and that region of the world is at 
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a high risk of malaria. I have seen how poor hygiene, lack of sanitation, and inefficient 

public health policies make that region an excellent breeding ground for mosquitoes, and 

aid in spreading of malaria, and other mosquito-borne diseases like Dengue fever and 

Chikungunya. Approaches to control malaria focuses on managing the vector and also 

providing effective therapy for patients, which is particularly important because of the high 

number of deaths worldwide. It is imperative to say death by malaria has reduced with the 

discovery of artemisinins. Still, researchers are skeptical because of the chance of 

emergence of resistant strains against artemisinins and occurrences of reinfection because 

of the inability to eradicate malaria vector in poor countries. It is possible in the near future 

that the world will be helpless without new agents in hand.70 It emphasizes the urgency of 

new antimalarial drug development.   

1.3.1.1. Antimalarial agents 

Based on their structural class and mechanism of action, commercially available 

antimalarial drugs (Figure 1.9) can be broadly classified into three groups:71-72 

1. Quinoline derivatives/aryl amino alcohol compounds: quinine (1.4), 

mefloquine (1.23), halofantrine (1.24), lumefantrine (1.25), chloroquine (1.26), 

amodiaquine (1.27), cyloquine (1.28), primaquine (1.29)  

2. Antifolate compounds: proguanil (1.30), pyrimethamine (1.31), trimethoprim 

(1.32).  
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3. Artemisinin compounds: artemisinin (1.12), artesunate (1.34), artemether 

(1.35), arteether (1.36)  

In section 1.1, a discussion has been made about artemisinin derivatives, which are 

the most effective antimalarials currently used in several combination therapies. 

Interestingly, the first chemotherapeutic agent effective against malaria, quinine (1.4), was 

also isolated from a natural source, the bark of the cinchona tree in 1820. The plant 

cinchona contains other quinoline alkaloids like quinidine, cinchonine, and cinchonidine, 

which are also effective against malaria. Quinine was the first successful example of a 

chemical compound to treat an infectious disease.73 Due to the high toxicity associated with 

quinine therapy, new molecules were developed to control malaria. The first synthetic 

antimalarial drug, methylene blue (1.33), synthesized by Paul Ehrlich in 1891, was used in 

the late 19th and early 20th centuries against all types of malaria. Methylene blue was used 

widely because the then primary medicine, quinine, was in limited supply as it could only 

be obtained from the natural sources. Methylene blue was later discontinued because of the 

discovery of safer agents. However, it recently gained interest from malaria researchers 

because of its effectiveness in combination chemotherapy.74 

Due to concurrent hepatic and erythrocytic episodes in the same patient and 

unavailability of a single agent to kill both tissue schizonts and blood schizonts, 

antimalarial drugs are used in combination. These drugs target different signalling 
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pathways of the Plasmodiam paracite. For example, quinnine and most of the quinoline 

alkaloids are lethal to blood schizonts only and inhibit them by binding with the toxic heme 

(ferriprotoporphyrin IX). Heme is the digestive end product of hemoglobin which is 

sequestered by histidine rich protein and lipids to insoluble, chemically inert hemozoin. 

Drug binding to heme resulted in the prevention of sequestration. The resulting heme 

buildup causes oxidative damage to membranes, digestive proteases, or other critical 

biomolecules of paracites. Drugs like proguanil, pyrimethamine and trimethoprim 

selectively inhibit Plasmodium dihydrofolate reductase (DHFR) and thereby inhibit the 

biosynthesis of nucleic acid.  

Also, some highly potent antimalrial drugs’, like primaquine (acts against primary 

and latent hepatic stage), mechanism of action is poorly unnderstood. One hypothesis about 

primaquine is that it converts to highly reactive oxidative inntermediates to exert toxicity 

or may inhibit protozoal electronn transprot chain.75  

Several natural and synthetic molecules have been developed after the discovery 

of quinine, but the emergence of resistant parasites makes their use restricted to particular 

situations. The threat of resistant pathogen emergence will eliminate the success of the 

malaria control program achieved so far.  
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1.3.1.2. Antimalarial agents from marine cyanobacteria and other marine sources 

All antimalarials isolated from marine sources can be broadly classified into five 

categories: (i) isonitrile containing derivatives; (ii) alkaloids; (iii) endoperoxides; (iv) 

peptides, and (v) quinones and phenols.76 The first marine antimalarial drug discovered 

was aplasmomycin A (1.37). It was isolated from a strain of Streptomyces griseus found in 

shallow sea sediment in Sagami bay. Among marine antimalarial compounds, manzamines 

(complex polycyclic (7–8 rings or more) alkaloids) are the most potent antimalarials 

comparable to currently available drugs.77  

 

Since the discovery of manzamine A (1.38), the first compound from this class 

isolated from an Okinawan sponge in 1986, more than 60 manzamines have been reported. 

They were isolated from taxonomically unrelated sponges of different genera and orders. 
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This finding leads researchers to speculate that manzamines have a symbiotic origin. Later 

Micronosphora sp was identified as a manzamine producing bacteria.76 Besides 

antimalarial activity, manzamines are also known to possess anti-inflammatory, antifungal, 

antibacterial, and antitubercular activity and activity against AIDS opportunistic 

pathogens. 78-81 

An analysis of compounds82-84 isolated from marine cyanobacteria in the 21st 

century revealed that the majority of the antimalarials isolated from marine cyanobacteria 

are peptides (Figure 1.11). In the linear depsipeptide series, gallinamide A (1.39) was 

isolated from a Schizothrix species obtained from rocky reef near Piedras Gallinas near 

Portobello on the Caribbean coast of Panama.85 Moorea producens is known to produce 

the antimalarial lipopeptides, named dragonamides A (1.40), B (1.41) and E (1.42), 

carmabin A (1.43) and dragomabin (1.44).86-87 Among cyclic peptides,  lagunamides A-C 

(1.45 - 1.47) from Lyngbya majuscula and venturamides A-B (1.48 – 1.49) from 

Oscillatoria sp. were found to be active against malaria parasites.88-90 Shao et al.91 

discovered a unique polyhydroxy macrolide with a 40 membered lactone ring from 

Okeania hirsute, collected from the Caribbean coast of Panama. The compound, 

Bastimolide A (1.50), showed activity against four resistant strains of Plasmodium 

falciparum.  
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Clearly, antimalarial drug discovery is downplayed in comparison to other drug 

discovery campaigns. Drug exploration for potential antimalarial lead is extremely 

important to develop new drugs that could overcome the problem of resistance emergence, 

the high toxicity of most commonly known drugs, and to provide insights about 

discovering new mechanisms to target the pathogens. Marine natural products came out as 
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a promising source of antimalarial lead discovery and provided compounds with nanomolar 

potency (IC50) against the malaria parasite. For example, manzamine A has IC50 values of 

8.2 nM and 15 nM against chloroquine-sensitive and chloroquine-resistant P. falciparum 

strains, respectively.77 Overall, antimalarial drug discovery form marine natural products 

has potential for eliminating this deadly disease from this world.  

1.3.2. Chagas disease 

Chagas disease (CD), also known as American trypanosomiasis, is named after the 

discoverer of the illness Carlos Chagas and is caused by the parasite Trypanosoma cruzi. 

It is transmitted to animals and people by triatomine bugs (or “kissing bug”) and is endemic 

in the poverty-affected rural Latin America.92 Once an infected bug bites a human, it 

releases trypomastigotes in its feces which then enters the human host through the injury 

or mucosal membrane. After transforming into intracellular amastigotes, followed by 

multiplication by binary fission, they are released from the infected cell into the blood as 

trypomastigotes. From there, they can infect other cells or may be transferred to another 

uninfected kissing bug when it takes a blood meal (Figure 1.12). Clinical manifestations 

appear when the trypomastigotes burst out of the cells into the blood.  

The disease propagates in two phases. The acute phase may be asymptomatic in 

most cases. However, some patients may show acute symptoms like fever, headache, skin 

lesions, unilateral palpebral edema, lymphadenopathy, hepatosplenomegaly, pallor, 
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breathing difficulty, and abdominal or chest pain.93-94 The acute phase resolves 

spontaneously within 4-8 weeks, and at this point, the number of circulating parasites in 

the blood drops at a level undetectable by microscopy. If untreated, the patient enters the 

chronic phase without any sign or symptoms. Decades after the onset of acute infection, an 

average of 20% of patients suffer severely due to cardiomyopathy, or megaesophagus, or 

megacolon. The cardiac involvement is more frequent than gastrointestinal involvement. 

CD is the principal cause of infectious cardiomyopathy.95  

 

 

CD is prevalent over a wide geographical area of the Americas, covering the 

southern USA, Central America to the north of Argentina, and Chile. The CD control 

Figure 1.12: The life cycle of T. cruzi (obtained from CDC; labeled for non-commercial
reuse).92
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programs took several initiatives like vector control programs, blood bank screening, and 

in some countries, congenital CD screening programs that lower the burden effectively.96 

There was a three-fold decrease in the total number of infected people from the 1980s to 

2010. Simultaneously, the death rate decreased as well. Though the overall picture is a 

success story, there are pockets in these regions where transmission has increased.94 Drug 

discovery research for CD seriously lacks the attention of the scientific community. CD is 

one of the most neglected among NTDs. It is evident from the fact that there are only two 

drugs in the market, and people have to rely on them despite their toxicity. 

1.3.2.1. Drugs for Chagas Disease and marine natural products: 

Nifurtimox (1.51) and Benznidazole (1.52) are the currently available medicines 

used to treat CD. Nifurtimox was introduced in the late 1960s to treat CD. In the US, it is 

regulated by the CDC only under investigational protocol and is not approved by the FDA. 

Whereas benznidazole received FDA approval in 2017.  
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The mechanisms of action of these drugs are different. Nifurtimox inhibits the 

pyruvic acid synthesis and thus kills T. cruzi by inhibiting carbohydrate metabolism.  

Benznidazole is a prodrug, which becomes activated by the parasite enzymes and the active 

metabolites inhibit glutathione and trypanothione of T. cruzi.96  

 

A review on trypanocidal marine natural products published by Jones et al.97 

classified anti-CD compounds into four subclasses: (i) terpenes; (ii) polyketides and 

xanthones; (iii) alkaloids and (iv) peptides. The most potent marine natural product 

reported was pandaroside G (1.53; T. cruzi IC50=0.77 µM), which was isolated from the 

Caribbean sponge Pandaros acanthifolium.98 Unfortunately, the molecule lacks selectivity 

since it also inhibited mammalian L6 cells (IC50= 0.22 µM). The most active and selective 

marine compound reported against T. cruzi was chaetoxanthones C (1.54; IC50= 38 µM; 

selectivity index of 31), a heterocyclic-substituted xanthone analog, isolated from the 
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marine-derived fungus Chaetomium sp.97 Considering the need for new and safer 

therapeutic agents for CD, a more extensive search should be conducted exploring all 

viable sources. Marine sources are very promising in this regard, as they are known to 

produce a multitude of compounds having antiprotozoal activity.  

1.4. Conclusion 

 The most innovative and efficient synthetic chemistry laboratory is not located in 

any academic or industrial setting; it is in nature. With that inspiration, we explore oceans 

in search of the cure for diseases that do not draw much attention from the pharmaceutical 

industry. Many drug discovery stories start with the gift from nature, and then the human 

brain takes that lead to find cures for diseases. Lead discovery is the main objective of our 

natural product chemistry research. This lead molecule may help us developing a cure for 

neglected tropical diseases or may aid in elucidating information about a potential target.  
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Chapter II: Isolation, Structure Elucidation and Total Synthesis of Naranjamide 

2.1 Introduction 

The field of marine drug discovery came forth as an alternate source of bioactive 

natural products besides terrestrial compounds in the 1940s and, on an average, has 

provided more than 28,000 novel compounds each year.99 From 2007 to 2016, more than 

400 new natural products have been isolated from marine cyanobacteria, with 126 peptides 

and peptide-related structures, of which 39 are linear peptides.56 Unlike other marine 

sources, harvesting cyanobacteria does not represent a threat to the environment since 

cyanobacteria combine the ability of rapid growth, genetic tractability, and cultivability, 

which make them a sustainable source of natural products.56 Their wide range of 
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 35 

bioactivities includes, but is not limited to, anticancer, antibacterial, antifungal, 

antiprotozoal, antiviral, immunomodulation, and cytotoxic activities.48 

  Every year neglected tropical diseases (NTDs) impose billions of dollars of 

economic burden on developing countries and affect more than one billion people in 149 

countries.100 Populations living in poverty with poor hygiene as well as exposure to 

infectious vectors, domestic animals, and livestock are the most affected by NTDs.101 

Effectiveness of available medications is restrained by the emergence of resistant 

pathogens and severe side effects associated with therapy. Since these diseases do not 

possess a significant threat to the population of developed countries, and financial return 

is minimal, the pharmaceutical industry is less focused on developing new agents for these 

diseases.102 In recent years, several marine cyanobacterial metabolites with antiprotozoal 

activity have been reported. Lipopeptides like dragonamide A (2.1), dragonamide E (2.2), 

and carbamin A (2.3), isolated from Lyngbya majuscula,86-87 and the linear peptide 

gallinamide A (2.4), isolated from Schizothrix sp.,85 (Figure 2.1) are some notable 

examples with antiparasitic activity. We aimed to explore Panamanian marine 

cyanobacteria as a potential source of bioactive compounds that can produce molecules 

with activity against NTDs. 

In 2012, an orange cyanobacterial mat was collected from Portobelo, Panama. 

Bioactivity-guided fractionation of this cyanobacterial mat resulted in the discovery of an 
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N-methylated pentapeptide (2.5), which inhibited the growth of T. cruzi and P. falciparum 

parasites. Using 1D and 2D NMR (Section 4.6.3), the structure was determined to be a 

linear peptide where the N-terminus contains an N, N-dimethyl-valine moiety, followed by 

a valine, N-methyl isoleucine, N-methyl valine and N-methyl dolaphenine at the C-

terminus. MS-MS analysis confirmed the amino acid sequence of the structure. The 

compound was given the trivial name Naranjamide since the crude cyanobacterial mat was 

orange in color, and the Spanish name for the color orange is Naranja. My contribution to 

this project was to conduct a total synthesis of naranjamide, which also showed growth 

inhibition of T. cruzi and P. falciparum, and confirmed the antiparasitic potential of the 

compound. 

This chapter describes the discovery, structure elucidation, and attempts at the total 

synthesis of the molecule and studies to confirm its potential as an antiparasitic compound.  

2.2 Discovery of naranjamide 

An orange cyanobacterium collected by hand using SCUBA in Portobelo, Panama, 

was extracted using a 2:1 dichloromethane: methanol mixture to yield an extract (4.2 g) 

and given the in-house extract code A2002 (Figure 2.2). The extract was tested for its 

antiprotozoal activity and was found to inhibit P. falciparum growth (82.6%). The extract 

was then fractionated (Figure 2.2) by silica vacuum chromatography and the fraction 
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(2002H) obtained with 1:1 ethyl acetate: methanol inhibited the growth of both P. 

falciparum (97.5%) and T. cruzi (75%).  

Further fractionation of 2002H by C18 Sep-Pak yielded the fraction 2002H4, 

eluting with 80% methanol in water, which showed an increment of T. cruzi growth 

inhibition (81.5%) while retaining P. falciparum growth-inhibiting (79.6%) activity. 

Fraction 2002H4 was then purified with reverse-phase HPLC to yield 0.8 mg of pure 

compound 2.5. 

 

HPLC 
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Naranjamide (2.5) was isolated as a clear solid. Its molecular formula was 

determined as C37H60N6O4S by HRESIMS (m/z 685.44576 [M+H+], calcd. 684.9751]  

(Figure 4.1), indicating the presence of 11 degrees of unsaturation. Following the 

interpretation of 2D NMR experiments (Table 2.1), 1H and 13C NMR were assigned to the 

subunits constituting naranjamide, namely dolavaline (C-17 to C-21), valine (C-14 to N-

16), N-methyl isoleucine (C-11 to N-13), N-methyl valine (C-8 to N-10) and dolaphenine 

(N-1 to N-7). The amino acid sequence was later confirmed by tandem MS-MS analysis. 

Naranjamide (2.5) is a linear peptide with a dolaphenine residue at the N-terminus, a 

common privileged structural unit of bioactive natural peptides, where the peptide chain 

ends at a des-carboxy thiazole functionality.103 COSY spectrum clearly showed the 

correlation between the alpha proton (C-6; δH = 6.60) and two benzylic protons (C-6a; δH 

= 3.30 and 3.69) of the dolaphenine moiety. Corresponding HSQC correlations identified 

the alpha carbon (C-6, δC = 54.34) and the benzylic carbon (C-6a, δC = 36.05). Proton 

signals between 7.25 to 7.77 represent the phenyl and thiazole moiety of dolaphenine. Both 

HMBC and NOESY data correlate H3-7a (δH = 2.88) with C-6 and C-8 (δC = 169.91) and 

with H-6 and H-6a, respectively. These correlations indicate an N-methyl amide adjacent 

to C-6. Multiple other N-methyl amide functionalities have also been observed and 

identified naranjamide (2.5) as an N-methylated peptide. There is only one non-methylated 

amide where NH-16 (δH = 6.95) belongs to a valine moiety. 
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COSY and NOESY correlations (Figure 2.3) with NH-16 identified the alpha 

proton H-15 (δH = 4.85, δC = 53.32) and the beta proton H-15a (δH = 1.94, δC = 30.71), and 

the HMBC spectra linked H-15 and C-14 (δC = 172.60). This valine was identified as the 

penultimate residue as it was adjacent to the N, N-dimethyl valine residue on its N-terminal. 

Proton peaks of N, N-dimethyl (C-18bc) were not distinguishable as a singlet 

because of overlapping with beta proton (9a) signals. The HSQC (C-18bc, δH = 2.30, δC = 

42.79) suggested the presence of N-alkyl amine. From NOE data, it was seen that these 

alkyl protons are correlated with an alpha proton (C-18, δH = 2.49, δC = 76.50) and NH-16, 

thus suggesting the connection between an N- alkyl valine and valine moieties. The 

presence of N, N-dimethyl valine was later confirmed from fragment mass analysis (Figure 

2.4). HMBC correlation of H-13a (δH = 3.04) with C-14 (δC = 172.60) and C-12 (δC = 

56.34), and NOESY correlation of H3-13a (δH = 3.04) with H-12a (δH = 2.07) and H-15a 
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(δH = 1.94) connects the penultimate valine with an N-methylisoleucine on the other side. 

The later residue was followed by N-methylvaline, as HMBC correlations were seen 

between H3-10a (δH = 2.46) and C-9 (δC = 58.29) and C-11 (δC = 169.74), and NOE showed 

correlations of H3-10a with H-9 (δH = 5.06). The HMBC correlation between H-9 and C-8 

connects this N-methylvaline with the terminal N-methyldolaphenine moiety and thus 

completes the sequence. The alkyl side chains of amino acid residues were not 

distinguishable as they resonate inn close proximity. Thus MS-MS analysis (Figure 2.4) 

aided in the confirmation of the individual residues and their sequences. 

In general, linear peptides with 2-10 amino acid residues are flexible.104 N-

methylation on peptide backbones confers restriction on their structure.105 Thus, depending 

on the methylation pattern, part of a liner peptide can be partially flexible. The 1H NMR 

showed a set of minor peaks along the larger peaks, especially the N-methyl and benzylic 

proton peaks were split to generate minor peaks (δH = 2.85, 2.92, 2.95, 3.10, 3.87). This 

observation made us believe in the presence of another conformer of naranjamide. Presence 

of a major and a minor conformer is possible since naranjamide has a flexible and a rigid 

portion. The flexible part, the freely rotating benzyl moiety at the C-terminal, may spatially 

interact with the other part of the molecule and result in a major and minor conformer. 

Overlapping peaks and intricate splitting patterns made it difficult to determine the 

multiplicity, calculate coupling constants for correlated protons, and integrate peaks to 
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identify the actual number of protons. However, COSY, HSQC, HMBC, and NOESY 

spectra helped to build correlations in each spin system, and connections were made from 

each spin system. To confirm the configuration of each stereocenter, a total synthesis of 

naranjamide (2.5) was attempted to compare the NMRs of both natural and synthetic 

naranjamide and validate its bioactivity.  

Table 2.1: NMR data of Naranjamide (2.5). 

C/H No. δCa δH (multiplicity, J in Hz) COSY HMBC NOE 

2  169.18   
 

 

4 143.02 7.77 (d, 3.3) 5   

5 119.73 7.36 (d, 3.3) 4   

6 54.34 6.60 (dd, 11.5, 5) 
 

6a 2, 6a, 7a 6a, 6b2’, 7a 

6a 36.05 3.69 (dd, 15, 5) 3.30 (dd, 

15, 11.5) 

6 6, 6b1¢, 6b2¢  

6b1¢ 136.92     

6b2¢,6b

6¢ 

128.89 7.27 

 

6b3¢, 

6b5¢ 

  

6b3¢, 

6b5¢ 

129.24 7.39 6b2¢, 

6b6¢ 

  

6b4¢      

7a 29.75 2.88  6, 8 6, 6a, 9, 0.69 

8 169.91   
 

 

9 58.29 5.06 (d, 2.7)  9a 8, 10a  

9a 27.10 2.32 (m) 9, 9b, 

9c 

  

9b, 9c 15.41, 

17.47, 

0.69, 0.93 (m) 9a   
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10a 29.56 2.46 (s)  9, 11 9 

11 169.74   
 

 

12 56.34 5.08 (d, 10.5) 12a 13a  

12a 32.44 2.07 (m) 12, 0.68  13 

12b      

12c      

12d      

13a 30.16 3.04 (s) 12 12, 14 0.68, 0.84, 

12, 15, 15a, 

2.07 

14 172.60     

15 53.32 4.85 (dd, 5.4) 16, 15a 14 15a, 13a, 

15a, 16,  

15a 30.71 1.94 (m) 15, 

15bc 

 15 

15bc 13.98, 

20.05 

0.92, 1.01 (m) 15a   

16 NH 
 

6.95  15  18, 20  

17 169.77 
 

   

18 76.50 2.49  18  

18bc 42.79 2.30 s, 6H  
 

16, 18, 19 

19 27.68 2.12 20, 21 18 20, 21 

20 17.45 0.95  19, 20 19, 21 

21 20.05 1.03  20, 19 19, 20  
aC-13 data are extracted from HSQC spectra. 
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2.3. Peptide synthesis 

Re-creating the work of nature has always been a well-perceived challenge among 

organic chemists. The challenge of imitating nature inspired the first simple peptide bond 

formation by Theodor Curtius in 1881 and later by Emil Fischer in 1902, when they 

synthesized benzoylglycyl-glycine and ethoxycarbonylglycyl-glycine ethyl ester 

respectively.106-108 Since then, peptide synthesis became one of the most sought synthetic 

targets, but difficulties emerged in the synthesis of even simple and well-defined peptides. 

On the bright side, obstacles brought a surge in efforts to methodology development for 

peptide synthesis.108 The isolation of oxytocic pituitary peptide hormone, oxytocin, its 

structure determination and, its total synthesis was inspirational in the collective approach 

towards the development of peptide synthetic procedures.109-112 Though the early scientists 

were motivated by the philosophy of recreating what nature makes, methodology and 

strategic development in peptide synthesis have enabled researchers to tweak natures 

design synthesize modified peptides with various biological activity.  
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Peptide synthesis is principally the formation of an amide bond between a carboxyl 

group and an amine group of two amino acids. The bond formation requires activation of 

the carboxylic acid group of an amino acid (Scheme 2.1), where an electron-withdrawing 

atom or group (X) will be attached to the acid (AA1). Without the activation, this bond 

formation is not possible spontaneously at room temperature. Because elevated 

temperature is required to facilitate the dehydration during the amide bond formation at 

which the stability of the synthesized compound might be compromised.113 The activating 

group improves the electrophilicity of the AA1 carbonyl group and enables the incoming 

nucleophile, which is the amine of a second amino acid (AA2), to attack efficiently. Good 

leaving group ability of the X facilitates the collapse of the tetrahedral intermediate (THI) 

and thus forms the peptide bond.  

Peptide coupling reagents serve the role of the activating group. A large number of 

various coupling reagents have been developed for this purpose.114 However, peptide 

coupling reaction to synthesize a simple dipeptide (AA1- AA2) following Scheme 2.1 will 

end up in a reaction mixture with multiple products with a different number of amino acids 

arranged randomly. The reaction mixture may or may not have the dipeptide AA1- AA2 in 

the mix. This random coupling happens because of a lack of any control over the reaction, 

and there are numerous combinations of the activated electrophile and incoming 

nucleophile possible.  
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For example, the first amino acid AA1 may self-condensed and gives the dipeptide 

AA1-AA1. Besides, they may be further activated on their free C-terminus, or they may act 

as the nucleophile on their free N-terminus and form another peptide bond with either AA1, 

AA2, or AA1-AA1 again. Such a polymerization reaction may go on and on. Researchers 

developed the strategic use of easily cleavable protecting groups to eliminate this problem 

of uncontrolled polymerization. So, the reaction is designed in a way that, N-terminus of 

AA1,  C-terminus of AA2, and any other reactive group in the side chain will be masked 

with protecting groups. Once the desired bond is formed, the protecting groups will be 

cleaved to get the target molecule (Scheme 2.2).  

2.3.1. Amide bond in Medicinal Chemistry 

Amide bond formation is not only crucial for protein, and peptide synthesis, but 

also various compounds of therapeutic importance like peptoids, oligocarbamates, 

oligoamides, polyenamides, benzodiazepines, diketopiperazines, and hydantoins possess 

amide functionality.115 Amide bonds have both hydrogen bond accepting and hydrogen 
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bond donating properties. Also, the reactivity of an amide can be modified by several 

factors like steric and electronic effect by neighboring groups, and strain on the bond. 

Overall, the amide is an attractive functional group in drug design. Perhaps, one of the 

well-known example (Figure 2.4) is the inhibition of cell wall transpeptidase enzyme of 

gram-positive bacteria by penicillins.116-117  

Transpeptidase enzyme is a serine protease that catalyzes the last step of bacterial 

cell wall peptidoglycan synthesis, where two polysaccharide chains are crosslinked by a 

short peptide composed of unnatural (R)- (or D-) amino acids. The crosslinking happens 

when N-terminus glycine of a pentaglycyl moiety forms a peptide bond with the D-Ala-D-

Ala sequence of other chain and replace the C-terminal D-Ala to form the peptide.  
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Penicillin acts in this step by mimicking the structure of D-Ala-D-Ala. So, the 

transpeptidase enzyme mistakenly takes penicillin as a substrate. Penicillin irreversibly 

inhibits the enzyme when the Serine OH group of the active site covalently attacks the 

highly reactive ß-lactam ring. ß-lactams are highly strained cyclic amide that acts as a good 

electrophile, where nucleophilic attack opens the lactam ring to relieve the strain. Since 

penicillin possesses the cyclic structure, it does not split into two parts and leaves the active 

site. Instead, it masks the newly formed ester bond between serine and penicillin at the 

active site so that water or any other nucleophile cannot cause hydrolysis. Once the enzyme 

is covalently linked with penicillin, i.e., acylated, it cannot catalyze the crosslinking 

further, resulted in leaky cell wall.118-119 

One recent example (Figure 2.5) of incorporating amide in chemical structure to 

play a role in target binding is the dual orexin receptor antagonist Lemborexant (2.6), 

approved to treat insomnia.120-121 Two aromatic portions (amidopyridine and pyrimidine) 

of the molecule are in cis-configuration from the central cyclopropyl ring and occupy a 

hydrophobic pocket in the receptor. The role of the amide here is to form the H-bond with 

Q1263.32 .122  
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The ubiquity of the amide bond is apparent in clinically approved drugs. In 2019, 

the FDA approved 48 drugs in various therapeutic categories.120 After studying the 

structures of these approved drugs, 37 are small molecules (including six small molecules 

for two combination drugs Trikafta and Recarbrio). One-third of them contain at least one 

N

N

O
O

NH
N

F

F

2.6

Figure 2.5: Lemborexant (2.6) and H-bonding with Glutamine (Use of this image is permitted by 
the American Chemical Society; Incident no: 3754512).122
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amide bond, and are approved for treating various types of cancer, cystic fibrosis, 

migraines, insomnia, and urinary tract infection  

A review of chemical transformations used by three major pharmaceutical 

companies (GSK, Pfizer, and AstraZeneca) identified amide bond formation is the most 

ubiquitous reaction used by medicinal chemists.123 The reviewers found that amide bond 

formation accounted for 16% of all reactions pursued in the pharmaceutical industry. And 

they recognized the availability of a plethora of amide formation methodologies, which 

resulted from the development in the field of peptide synthesis, as one of the main reasons 

for amide formation being at the top among all reaction categories.  

2.3.2. Peptide coupling reagents 

Peptide coupling can be carried out in the solution or the solid-phase (SPPS).  In 

both processes, peptide coupling reagents facilitate the peptide formation by activating the 

carboxylic acid. Based on the activation method, two strategies are applied: (i) in situ 

activation and (ii) an activated species can be prepared and isolated before the coupling 

step. However, activation comes with the limitations of chirality loss of the activated amino 

acid and generation of unwanted side products. Two significant pathways (Scheme 2.3) 

have been identified for the loss of chirality: (i) direct enolization (path A) and (ii) 

oxazolone formation (path B).124  
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Major side products generated in peptide coupling reactions are N-carboxy 

anhydride, diketopiperazine, and guanidine. The latter is particularly generated with 

uronium coupling reagents.125 Thus, strategies like using additives, careful selection of 

base, and using appropriate protecting groups are employed to eliminate or minimize these 

obstacles while designing a peptide coupling reaction. A comprehensive chemical review 

El-Faham and Albericio124 has described various collection coupling reagents, including 

carbodiimides, phosphonium salts, aminium/uronium salts, anhydrides, active esters, 

acylazoles, acyl azides, acyl halides, organophosphorus reagents, organosulfur reagents, 

triazines, pyridinium coupling reagents, and polymer-supported reagents. Discussing all of 

them is beyond the scope of this dissertation. Thus, the following section will discuss the 

most commonly used peptide coupling reagents, i.e., carbodiimides (2.7), phosphonium 

(2.8), and ammonium salts (2.9), which I also used practically in my synthetic approaches.  

3.2.1. Carbodiimides 

 

Dicyclohexylcarbodiimde (DCC) (2.25; Figure 2.9) is the most commonly used 

carbodiimide, which was first introduced by Sheehan in 1955.126 The carbodiimide (2.7) 
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activates (Scheme 2.4) the corresponding carboxylic acid (2.10) by forming O-acylisourea 

(2.11), which is highly reactive to execute the coupling reaction with the corresponding 

amine (2.12) to create the peptide (2.13) (Pathway A). There two other pathways that the 

O-acylisourea can follow to form the peptide: (i) forming a symmetrical anhydride (2.14) 

by reacting with a second molecule of carboxylic acid when excess carboxylic acid is used 

(Pathway B); (ii) forming an oxazolone (2.15), which is less reactive and can undergo 

racemization (Pathway C).124  
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The high reactivity of O-acylisourea (2.11) also leads to an undesirable side 

reaction by forming N-acylurea (2.16) via rearrangement (Pathway A; Scheme 2.5). The 

formed urea is stable and thus lower the reaction yield by depleting more carboxylic acid.  

 

 

 

Cleverly, Kong, and Geiger have solved this problem by introducing N-

hydroxyderivatives (HOXt) as additives.127 They used hydroxy benzotriazole (HOBt, 2.12) 
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nucleophile and forms (Path B; Scheme 2.5) the corresponding active Bt ester (2.18) with 

the highly reactive O-acylisourea (2.11) by a reaction faster than the rearrangement 

reaction to form N-acylurea (2.16). The formed ester (2.18) is reactive enough to undergo 

the aminolysis and formed the peptide (2.13, Pathway B, Scheme 2.5). Also, the use of 

HOXt additives prevent the formation of oxazolone mediated peptide coupling as well and 

thus retain the stereo configuration of the alpha carbon as well.128  

 

Introduction of DCC/HOBt combination enhances the scope of carbodiimide 

reagents and various other HOXt additives (Figure 2.7) like 1-hydroxy-7-azabenzotriazole 

(HOAT; 2.19),129 3,4-dihydro-3-hydroxy-4-oxo-1,2,3,-benzotriazole (HODhbt; 2.20),127 

3-hydroxy-4-oxo-3,4-dihydro-5-azabenzo-1,2,3,-triazine (HODhat; 2.21),130 ethyl-1-
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hydroxy-1H1,2,3 triazole-4-carboxylate (HOCt; 2.22),131 and ethyl-2-cyano-2-

(hydroxyimi-no)acetate (Oxyma; 2.23).132 Similar nucleophilic additive role can also be 

performed by DMAP (2.24).133 

 

Among the carbodiimides, DCC (2.25) is the most commonly used reagent for 

SPPS using tert-butyloxycarbonyl (Boc) chemistry. The urea byproduct, N, N-

dicyclohexylurea (DCU), is only soluble in trifluoroacetic acid and thus makes the removal 

of DCU easy while removing the Boc protection using TFA. However, the same reason 

makes DCC useless in SPPS using fluorenylmethyloxycarbonyl (Fmoc) since it cannot be 

filtered off from the reaction medium or washed off with common organic solvents. In 

solution-phase synthesis, traces of DCU retains in the system even after extensive 

chromatographic separation. Depending on the synthetic strategy, better coupling reagents 

have substituted DCC.114, 114 N, N’-diisopropylcarbodiimide (DIC; 2.26),134 N-ethyl-N’-(3-

N C
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Figure 2.8: Commonly used carbodiimides.
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dimethyl aminopropyl)carbodiimide (EDC; 2.27),135 and N-cyclohexyl-N’ -

isopropylcarbodiimide (CIC; 2.28)136 are among the most popular. EDC is preferred for 

solution-phase synthesis since both the reagent and the urea byproduct are water-soluble 

and thus can be easily removed by an aqueous workup.   

Carbodiimide/HOXt mediated and many other coupling reagents often require the 

use of nonnucleophilic base like triethylamine (TEA), diisopropylethylamine (DIPEA), 

and N-methylmorpholine (NMM) which could enhance the preactivation step.124 In my 

synthetic approach to naranjamide, most of the peptide coupling reactions utilized the 

EDC/HOBt system because of its superiority in solution phase synthesis.  

2.3.2.2. Phosphonium salt 

The application of alkyl phosphonium salts as a coupling reagent was first 

introduced by Gawne et al. in 1969.137 But their widespread application started with the 

introduction of CloP and BroP by Castro.135 These reagents suffered the obstacle of 

racemization. When HOBt (2.17) found its application in peptide chemistry, Clop-HOBt 

fused coupling reagent, (benzotriazole-1-acyloxy)tris(dimethylamino)phosphonium 

hexafluorophosphate (BOP; 2.29), also known as Castro’s reagent,  was developed in 

1975.138 The coupling reaction (Scheme 2.6) proceed via the deprotonation of the desired 

acid first by a hindered base like TEA or DIPEA. The deprotonated acid then reacts with 

the 2.29 to generate an activated acyl phosphonium intermediate (2.30) and HOBt. 
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Activated 2.30 is highly reactive, like O-acylisourea (2.11) generated in carbodiimides 

mediated reaction (Scheme 2.4 or 2.5). So, the in situ generated HOBt readily reacts with 

the intermediate 2.30 to form the activated Bt ester (2.18; Scheme 2.6), which then coupled 

with the corresponding amine. Generation of the corresponding phosphine oxide (2.31; 

hexamethylphosphoric triamide, HMPA) facilitate the reaction to move forward.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

 

However, 2.31 is exceptionally toxic. The substitution of all three dimethyl 

substituents of 2.29 was replaced with pyrrolidine to get PyBop (2.32), which is equally 

effective but produce a less toxic byproduct. Both 2.29 and 2.32 are not useful for coupling 

to N-methyl amino acid. Replacing the HOBt part of 2.32 with chloride or bromide 

generates PyClop (2.33) and PyBrop (2.34), respectively. These reagents produce the 

corresponding acyl halide instead of Bt ester and allow the incoming secondary amino 

group to attack the highly electrophilic acyl halide.139 
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2.3.2.3. Aminium/Uronium salts 

The first aminium reagent, O-(1H-benzotriazole-1-yl)-N,N,N’,N’-

tetramethyluronium hexafluorophosphate (HBTU; 2.35), was introduced in 1978.140  
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Like the phosphonium salts, aminium salts were considered initially as uranium 

type structure where aminium salts possess a positively charged carbon atom instead of the 

charged phosphorus atom. However, X-ray crystallography found these salts to exist as an 

aminium type (guadinium N-oxides) structures. In solution, both uranium and aminium 

form exist in equilibrium (Figure 2.10).  

Their mechanism of activation (Scheme 2.7) is similar to that of phosphonium 

reagents as well, and proceeds via generation of carboxyl uranium salts (2.37), followed 

by active Bt/At ester generation (2.18). The driving force for this type of reaction is the 

generation of urea byproduct (2.38).  
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The azabenzotriazol derivative, 1-[Bis(dimethylamino)methylene]-1H-1,2,3-

triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU; 2.36), was developed later 

which is very efficient in sterically hindered coupling and minimize racemization.139 When 

the nonnucleophilic counterion is tetrafluoroborate, 2.35 and 2.36 are called TBTU and 

TATU, respectively. But the counterion does not influence the rate of reaction or 

racemization.125 

2.3.3. Synthetic approaches to naranjamide 

The total synthesis of naranjamide (2.5) was envisioned through a convergent route 

utilizing solution-phase peptide synthesis, where two peptide segments (left/red and 

right/blue in Figure 2.4) were coupled at the final step to generate the pentapeptide. The 

convergent route was selected because of partial methylation of peptide bonds in 

naranjamide, sparing one of the non-methylated amides. So, I aimed to synthesize the right 

peptide segment, execute the methylation of it, and then complete the final coupling 

through the non-methylated amide bond. 
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Synthesis of the left segment (Scheme 2.8) started with the coupling of (S)-

dolavaline 2.39 and the methyl ester of l-valine 2.40 using EDC/HOBt. I choose 

EDC/HOBt method because of its advantages, like better solubility and easy workup, over 

other coupling reagents in solution phase synthesis.  The synthesized dipeptide 2.41 was 

then hydrolyzed under basic conditions to cleave the ester and reveal the carboxylic acid 

58. Proton NMR of 2.42 showed a singlet at 3.3 ppm, which integrated for a value of 0.25. 

Since this is the resonance region for methoxy (-OCH3) protons, we can rationalize that the 

3.3 ppm peak was originated from the methoxy protons of remaining starting material. 

However, this starting material has no way to undergo the subsequent reaction, i.e., 

coupling with the right segment. So, compound 2.42 was taken to the next step. 

.  

 

 

Scheme 2.8 
 
Conditions: (a) 1.1 equiv EDC.HCl, 1.1 equiv HOBt, 3 equiv DIPEA,  CH2Cl2, 0°C to rt, 
Overnight; (b) 3 equiv NaOH, MeOH, 3h, reflux. 
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Synthesis of the right segment (Scheme 2.9) started with the coupling of t-Boc 

protected l-isoleucine 2.43 with methyl ester l-valine 2.40 using EDC/ HOBt. The 

synthesized dipeptide 2.44 was then hydrolyzed under basic conditions to cleave the ester 

protection. The generated carboxylic acid 2.45 was next coupled with the hydrochloride 

salt of (S)-dolaphenine 2.46 using EDC/HOBt. The tripeptide 2.47 was then permethylated 

Scheme 2.9 
 

Conditions: (a) 1.1 equiv EDC.HCl, 1.1 equiv HOBt, 3 equiv DIPEA, CH2Cl2, 0°C to rt, 
Overnight; (b) 3 equiv NaOH, MeOH, 3h, reflux; (c) (S)-dolaphenine (2.46), 1.1 equiv 
EDC.HCl, 1.1 equiv HOBt, 3 equiv DIPEA, CH2Cl2, 0°C to rt, 16 h; (d) (i) 25 equiv NaH, 
N2, THF, 0°C, 2h; (ii) excess MeI, N2, 0°C to rt, 22 h; (e) Trifluoro acetic acid: CH2Cl2 
(1:1); (f) 2.42, 1.5 equiv HATU, 5 equiv DIPEA, DMF, rt, N2, 2h.   
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according to the method described by Snchez et al.48 in the synthesis of almiramide 

derivatives. Using methyl iodide and sodium hydride as the base, 2.48 was synthesized. 

The proton NMR of 2.48 became complex and revealed a similar pattern that exhibited in 

the proton NMR of 2.5. Characteristic N-methyl peaks appeared in between 2.4-3 ppm. 

Also, the presence of more than one conformer was evident from the COSY of 2.48, where 

we can see the correlation of an alpha proton at 6.6 ppm with two sets of benzylic protons 

located in between 3-4 ppm.  MS data confirmed the structure of 2.48 (Figure 4.2), where 

I found the [M+Na+] peak at 581.8 (Target mass: 558.32).  At the final step in a one-pot 

reaction, the t-Boc protecting group of permethylated peptide 2.48 was removed with TFA 

to reveal the secondary amine followed by coupling with 2.42.   

In the final coupling step, several attempts (Table 2.2) were made to couple 

deprotected 2.48 and 2.42. Coupling reactions using EDC/HOBt at varying conditions were 

found unsuccessful. Peptide coupling reactions with a hindered secondary amine are less 

favorable compared to a primary amine, and both PyBrop and HATU have been found to 

act efficiently in sterically hindered coupling.139 I tried both of them, but a successful 

coupling reaction proceeded with HATU (24% yield).  
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Table 2.2: Conditions for the final coupling step (Scheme 2.9) 

Coupling reagent (eq) Base (eq) Solvent Time Result 

EDC+HOBt (1:1) DIPEA (1) DCM 20 hrs NPF 

EDC+HOBt (1.1:1.1) DIPEA (1.1) DCM 20 hrs NPF 

EDC+HOBt (3:3) DIPEA (1.1) DCM 20 hrs NPF 

PyBrop (1) DIPEA (4) DMF+DCM 1.5 hrs NPF 

PyBrop (1.1) DIPEA (3) DCM 48 hrs NPF 

PyBrop (1.5)* DIPEA (1.8) DCM 48 hrs NPF 

HATU (1.2)** DIPEA (4.8) DMF 2 hrs 24% yield 

*NPF = No product found 

The 1H NMR data of synthetic and natural naranjamide was compared (Figure 4.9, 

Table 4.1), and the mass spectrum showed the [M+H+] at 684.44 (Figure 4.10). Though, 

proton NMR and MS data matched with that of naranjamide, the chiral purity of the 

synthetic compound was not determined. Loss of chirality of any of the alpha carbon can 

be traced back to the N-methylation reaction, where 25 equivalents of strong base was used. 

A strong base can destroy the chiral integrity of any of the alpha carbon and generate more 

than one stereoisomer. The yield of the final coupling step was 24%, which is very low as 

compared to the common HATU mediated coupling.  
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2.4. Testing for antiparasitic activity  

Synthetic 2.5 was tested against T. cruzi and P. falciparum and was found to inhibit 

the growth of both parasites with an IC50 of 9.2 μM and 2.8 μM, respectively (table 2.3). 

In contrast, the positive controls chloroquine and nifurtimox have IC50 of 19 µM and 3.1 

µM, respectively. Also, naranjamide (6) was found inactive against Leishmania donovani, 

the causative agent for leishmaniasis, but showed growth inhibition of 90.3% of the MCF-

7 cell line.  

 

2.5. Discussion 

In our biological system, N-methylation plays a crucial role in controlling 

biological function, particularly in epigenetic modification. Because of N-methylation, 

identical genotype can result in many different phenotypes.142 Similarly, the N-methylation 

Table 2.3: Bioactivity of cyanobacterial fractions and naranjamide 

Fraction 
L. donovani P. falciparum T. cruzi MCF-7 

%GI IC50 %GI IC50 %GI IC50 %GI IC50 

Crude (2002) 24.7 - 82.6 - 16.7 - 28.2 - 

2002H 13.7 - 97.5 - 75.0 - 13.6 - 

2002H4 - - 79.6 - 81.5 - - - 

Synthetic 

Naranjamide (2.5) 
- - - 2.80 - 9.20 90.3 - 
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of the peptide is also found in nature to promote various physical and biological functions. 

In general, peptide drugs suffer poor pharmacokinetic profiles, i.e., short in vivo half-life 

and oral bioavailability. But N-methylation is known to improve peptide’s pharmacokinetic 

profile (resistance against protease, enhanced lipophilicity, and bioavailability).143 

Multiple N-methylation will possibly allow naranjamide to have a better pharmacokinetic 

profile. One such example is cyclosporin, which is a natural, multiply N-methylated cyclic 

peptide, and can be given orally.144 Figure 2.1 listed some marine cyanobacterial 

compounds with antiparasitic activity, and all of them are either backbone amide 

methylated (2.1- 2.3) or terminal N-alpha methylated (2.4). Naranjamide is both backbone 

amide, and N-alpha methylated. Thus N-methylation possibly helps in naranjamide’s 

antiparasitic property. It will be beneficial to see if non-methylated analogs still retain the 

antiparasitic property.  

Interestingly, naranjamide also inhibits the growth of MCF-7 cells. The dolaphenine 

moiety of 2.5 possess a thiazole ring, which is considered as the pharmacologically 

privileged structure with activities like antimicrobial, antiviral, anticancer, antifungal, 

antihistaminic and antithyroid.145-146 Thiazole containing dolaphenine has also been found 

in many bioactive marine compounds. Naranjamide’s structure closely resembles the 

structure of Dolastatin 10 (1.20), mentioned in Chapter 1, which also possesses the 

dolaphenine moiety and a peptide framework. Dolastatin 10’s cytotoxicity is mediated by 
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the inhibition of microtubule assembly.103 Thus, naranjamide’s cytotoxicity can be possibly 

correlated with microtubule assembly inhibition and demands further study. This 

hypothesis also broadens naranjamide’s scope as a potential anticancer compound. 

We can hypothesize naranjamide’s possible biosynthetic origin as well considering the 

common metabolic pathways used by cyaonobacteria. They produce peptides or 

metabolites with peptidic substructure by using their non-ribosomal peptide synthetase 

(NRPS) or hybrid NRPS-polyketide synthase (PKS) machinery. Also, the N-methylation 

are executed by the N-methyl transferase (NMT).147 We can anticipate that cyanobacteria 

utilized both NRPS and NMT biosynthetic pathways to synthesize naranjamide.  

2.6. Conclusion 

In summary, a potent antiparasitic N-methylated peptide was discovered from a 

marine cyanobacterium, and a total synthesis was conducted. Naranjamide has activity 

against both T. cruzi and P. falciparum. Treatment options against T. cruzi are limited. 

Benznidazole and nifurtimox are the only drugs available on the market that treat only the 

early stage of Chagas disease, with the penalty of severe side effects and resistance 

development.148 Considering the necessity to develop anti-trypanosomal compounds, 

naranjamide can be used as the lead compound to develop well-tolerated agents for Chagas 

disease treatment. Naranjamide is more potent than nifurtimox in vitro, and future research 

will examine its in vivo efficacy, as well as its mechanism of action. The rational approach 
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to design more potent analogs against resistant strains will be the next goal to achieve. 

Also, naranjamide showed cytotoxicity and thus required to be evaluated for its anticancer 

potential.  
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Chapter III: Analog synthesis 
 

3.1. Introduction 

The twentieth century has seen many significant successes in drug discovery for 

treating a wide range of diseases. These discovery campaigns approached via screening or 

rational design, including ligand-based, mechanism-based, or target-based design. 

Analysis of these compounds helped in developing design principals for small molecular 

weight compounds. Previously, most pharmaceutical companies had strictly followed these 

guidelines as a rule of thumb and triaged drug candidates.149 For example, the very well-

known design principle, “Lipinsky’s rule of five,” considers small molecules with a 

molecular weight of <500 Da as most likely to be orally active.150 There was an emphasis 

on developing orally bioavailable drugs because of patient compliance, and it was logical 

for pharmaceutical companies to exclude compounds with molecular weight >500 Da 

while screening a library of millions of molecules. Peptides easily exceed this molecular 

weight cut-off with just five amino acids. And, were generally considered as less drug-like. 

However, there are drugs in the market that violate the rule-of-five and are still orally 

active. One such molecule is cyclosporin, which is orally active despite violating all criteria 

of “rule-of-five”.144 Excluding oral bioavailability in the selection criteria resulted in the 

exploration of chemical spaces by researchers that were previously less searched for drug 
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discovery. Many peptide-based drugs like captopril (3.1), enalapril (3.2), tirofiban (3.3) 

and Epifibatide have reached the market (Figure 3.1) and a resurgence of interest in peptide 

drug discovery has been observed among pharmaceutical industries.151 

  

The activity of naranjamide against neglected tropical diseases has brought the 

necessity to explore its structure-activity relationship. Using the medicinal chemistry 

approach for peptide drug design, analogs were synthesized to elucidate more information 

about the molecule and its prospective target. 
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3.2. Analog design for naranjamide 

Researchers have discovered many antiprotozoal peptides from Panamanian marine 

cyanobacteria. Viridamide A (3.5), isolated from Oscillatoria nigro-viridi, is an N-

methylated peptide with a methyl ester at the C-terminus and a methoxylated fatty acid 

with a terminal acetylene functionality at the N-terminus. Compound 3.5 exhibited an IC50 

of 5.8 μM to chloroquine-resistant P. falciparum, an IC50 of 1.37 μM to L. donovani, and 

an IC50 of 1.0 μM to T. cruzi.56, 152 Another peptide, Gallinamide A (3.6) sowed an IC50 of 

8.4 μM to chloroquine-resistant P. falciparum. It was isolated from a Schizothrix sp.85 

Compound 3.6 does not have methylation on the amide nitrogen. But, its N-terminus 

possesses the N, N – dimethyl isoleucine moiety, and the C-terminus amide nitrogen is part 

of the modified proline residue. Naranjamide is a pentapeptide with a molecular weight of 
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684 Da. A review on peptide drugs by Craik et al.149 highlighted that majority of the 

approved peptide-based drugs are smaller in size (less than ten amino acid).  

This observation, together with the importance of antimalarial and antichagasic 

drug discovery and potential of Panamanian cyanobacterial peptides as antiparasitic agents, 

makes our lead molecule an attractive candidate for medicinal chemistry study.  

At this stage of the project, naranjamide’s mechanism of action or any information 

about its target is unknown. So, while synthesizing naranjamide analogs, the ligand-based 

approach was pursued, and a few considerations were made: (1) search for minimum active 

sequence of amino acids; (2) role of N-methylation; (3) role of the two terminal residues 

and (4) identify structural features that determine the selectivity between the malaria and 

Chagas parasites. Within the capacity of synthesis, the first analog synthesized was a non-

methylated version (3.5) of naranjamide, where all the amide nitrogens were non-

methylated. The importance of N-methylation in controlling drugs pharmacokinetic 

property is mentioned in chapter 2. So, my aim for this non-methylated version was to see 

the role of these N-methyl groups in altering bioactivity. Removing the N-methyls exposes 

the amide protons to form hydrogen bonds. However, these protons may or may not be 

accessible depending on the conformation of the peptide and propensity to form 

intramolecular hydrogen bonds. Early-stage peptide drug development generally starts 

with the simplification of the structure (e.g., size reduction).153 So, subsequent analogs (3.7 
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- 3.12) were synthesized with reduced chain length by decreasing one subunit at a time. 

Also, within the same chain length, valine and isoleucine substitution impact on the activity 

was explored. The simplest analog synthesized was a dipeptide containing the N,N-

dimethyl valine coupled to the dolaphenine moiety. Thiazole containing dolaphenine is a 

pharmacologically privileged structure, and many cyanobacterial antiprotozoal compounds 

are known to carry the N,N-dimethyl moiety at the N-terminus.85, 87, 141  152, 154- 155 Thus, the 

main focus was to combine the role of  N,N-dimethyl in antiprotozoal inhibition together 

with the inherent efficacy of dolaphenine. This design will be effective only if both N,N-

dimethyl, and dolaphenine binding sites are in close proximity.  

The scope of peptide lead modification is broad. Apart from N-methylation and 

chain length reduction, one common approach is alanine scanning, where each subunit is 

replaced with an alanine residue. Alanine replacement eliminates the side chain past the β-

carbon but does not change the peptide conformation. Alanine scan is a widely used 

technique in identifying the catalytic site of enzymes or functional roles of 

proteins/peptide.156 Another meaningful change that can be brought in naranjamide’s 

structure is changing its conformation. Naranjamide is a partial rigid structure because of 

N-methylation. Thus altering the N-methylation pattern will result in analogs with different 

conformation. Another effective way to rigidify linear peptide conformation is cyclization 
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by joining side chains or head to tail. Also, short-range cyclization (or a kink in the 

structure) can be achieved by substitution of a subunit with a proline residue.157  

 

 

Cyclic peptides offer several other advantages over linear structures. One key 

benefit is the avoidance of proteolysis by protease in the blood, thereby increasing their 

bioavailability. Cyclization also improves permeability through the cell membrane and 

H
N

O

N
H

H
N

O
S

N

O
N
H

O
N

N
H

H
N

O
S

NOH
N

O
N

N
H

H
N

O
S

NO
N

N
H

H
N

O
S

NO
N

N
H

H
N

O
S

NOH
N

O
N

N
H
N

O
S

N

3.7

3.8 3.9

3.10 3.11

3.12

Figure 3.3: Synthesized naranjamide analogs



 74 

thus make peptide drug able to target both cell surface and intracellular targets.158-159 The 

smallest cyclic peptides known to exist are 2,5-diketopiperazine derivatives, which are 

obtained by condensation of two amino acids.160 Naranjamide’s pentapeptide size is ideal 

for synthesizing cyclic analogs. So, naranjamide carries a considerable potential to develop 

a wide range of analogs using ligand-based drug design, which may result in compounds 

with higher activity against malaria and/or Chagas parasite. 

3.3. Synthesis of naranjamide analogs 

 

Synthesis of the proposed analogs utilized the similar peptide synthesis schemes 

described in chapter two for naranjamide. Also, intermediate 2.47 used in naranjamide 

synthesis was used as the starting point for compound 3.7 (Scheme 3.1). Synthesis of 

compound 3.7 started with the deprotection of the t-Boc protecting group of 2.47 using 

TFA, followed by coupling with the dipeptide 2.42 using EDC/HOBt.  

 

 

Scheme 3.1 
 

Conditions: (a) Trifluoro acetic acid: CH2Cl2 (1:1); (b) 2.42, 1.5 equiv HATU, 5 equiv 
DIPEA, DMF, rt, N2, 2h.   
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Synthesis of the two tetrapeptides (3.8 and 3.9; Scheme 3.2) started from the same 

starting material, (S)-dolaphenine hydrochloride (2.46). Compound 2.46 was first coupled 

with t-Boc protected l-valine (3.13) to synthesize the t-Boc protected dipeptide 3.14. t-Boc 

group of 3.14 was then deprotected using TFA, followed by the final coupling with the 

dipeptide 2.42 using EDC/HOBt to get 3.8. Compound 3.9 followed the same scheme, 

except the first coupling was performed using t-Boc protected l-isoleucine (2.43). 

Scheme 3.2 
 

Conditions: (a) 3.13, 1.1 equiv EDC.HCl, 1.1 equiv HOBt, 3 equiv DIPEA, CH2Cl2, 0°C to 
rt, 16 h; (b) Trifluoro acetic acid: CH2Cl2 (1:1); (c) 2.42, 1.5 equiv HATU, 5 equiv DIPEA, 
DMF, rt, N2, 2h. (d) 2.43, 1.1 equiv EDC.HCl, 1.1 equiv HOBt, 3 equiv DIPEA, CH2Cl2, 
0°C to rt, 16 h;   
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Tripeptides 3.10 and 3.12 were synthesized from the t-Boc protected dipeptides 

3.14 and 3.15 (Scheme 3.3). In both routes, the t-Boc group was first removed by using 

TFA, and then subsequent coupling with N, N-dimethyl l-valine (2.39) yielded 3.10 and 

3.12, respectively 

Scheme 3.4 
Conditions: (a) 3.13, 1.1 equiv EDC.HCl, 1.1 equiv HOBt, 3 equiv DIPEA, CH2Cl2, 
0°C to rt, 16 h; 
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Conditions: (a) Trifluoro acetic acid: CH2Cl2 (1:1); (b) 2.39, 1.5 equiv HATU, 5 equiv 
DIPEA, DMF, rt, N2, 2h. 
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The dipeptide 3.12 was synthesized by coupling N, N-dimethyl l-valine (2.39) with 

(S)-dolaphenine hydrochloride (2.46) using EDC/HOBt peptide coupling reagent (Scheme 

3.4). 

3.4. Bioactivity of naranjamide analogs: 

 Synthesized analogs (3.7 to 3.12) were tested against T. cruzi, P. falciparum, and 

MCF-7 cell line, and their activities are compared in Table 3.1. We found that all analogs 

lack activity against the Chagas parasite and MCF-7 cell line. Also, their potency against 

the malaria parasite was lower in comparison to synthetic naranjamide and the positive 

standard chloroquine.  

Table 3.1: Bioactivity of naranjamide analogs 

Compound 
P. falciparum T. cruzi MCF-7 

IC50 (μM) %GI IC50 (μM) %GI 

Synthetic 

naranjamide (2.5) 
2.80 - 9.20 90.3 

3.7 14.46 12.23 - 0 

3.8 217.03 9.7 - 0 

3.9 49.44 3.68 - 26.9 

3.10 43.99 6.16 - 2.8 

3.11 23.99 10.53  0 

3.12     

Chloroquine 0.063 - - - 

Benznidazole - - 3.8  
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3.5 Discussion 

 The result obtained from the bioassay of compound 3.7 to 3.12 revealed that despite 

losing potency (IC50: 14.46 to 217.03 μM), all compounds become selective for the malaria 

parasite. Thus N-methylation of the amide is an essential feature for T. cruzi inhibition. 

Also, there is a possibility that the N-methylated version will be MCF-7 inhibitor as well. 

To thoroughly explore the role of N-methyl groups, it is required to test the N-methylated 

version.  

The highest antimalarial potency among the analogs was obtained for the 

pentapeptide 3.7 (IC50 = 217.03 μM). Antimalarial potency decreased when the peptide 

length is shortened in general. This lowering was maximum (15x) for the tetrapeptide 3.8 

(IC50 = 217.03), penultimate moiety at the C-terminus is a valine. Replacement of the 

penultimate valine with an isoleucine (3.9) increased the potency (4x; IC50 = 49.44 μM) in 

comparison to 3.8. A similar trend was observed in the tripeptide series as well. Compound 

3.10 and 3.11 contain valine and isoleucine, respectively, as the penultimate residue at the 

C-terminus. And, the potency increased by 2-fold in 3.11 (IC50 = 23.99 μM). Though all 

synthesized compounds were less potent in comparison to naranjamide, we saw a trend of 

comparative potency improvement when the penultimate residue is isoleucine instead of 

valine at the C-terminus. It can be hypothesized that, if dolaphenine binds at a specific 

region at the binding pocket, then there is a hydrophobic region in close proximity to the 
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dolaphenine binding site that can be accessed with isoleucine. Replacing this penultimate 

residue with alanine, a polar side chain, and isoleucine homolog will provide more 

information about this binding site. Besides, if such a hydrophobic site exists, a 

naranjamide analog with isoleucine at the second last position will increase the antimalarial 

potency.  

3.6 Conclusion 

The information obtained from naranjamide analogs can act as the starting point for 

further structure-activity relationship study. Non-methylated analogs seem to be malaria 

selective compounds; however, the Chagas selective features are yet to be determined. 

Also, other medicinal chemistry approaches like alanine scanning and cyclization could 

elucidate more information about the lead compounds pharmacophore and required 

features for selectivity and potency. 
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Chapter IV: Experimental 

4.1. General 

All evaporations were carried out in vacuum with Heidolph Hei-Vap Advantage 

Rotary Evaporator. All compounds and reaction intermediates, but molecules with N, N-

dimethyl moiety, were dehydrated using MgSO4. For reaction intermediates or compounds 

with N, N-dimethyl moiety was dehydrated using Na2SO4. Labconco FreeZone benchtop 

freeze dryer was used for concentrating samples. All NMR spectra were recorded at 

400/500/600 MHz (Bruker Ultrashield™ 400, 500, and Ascend™ 600), respectively. The 

spectra were recorded in either deuterochloroform (CDCl3) or deuteromethanol (CD3OD) 

as solvent at room temperature. The following abbreviations are used to describe the peak 

patterns where appropriate: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, 

dd = doublet of doublet, and b = broad signal. All coupling constants (J) are given in Hz. 

Mass spectra: HRMS: Thermo Scientific LTQ-XL linear ion-trap MS in ESI mode and 

Advion Expression compact MS. Accelerated chromatographic isolation was carried out 

on a Biotage Isolera One system with UV detection using HPLC grade solvent. Column 

chromatography was performed using Sorbent Technologies silica gel (230-400 mesh). 

Analytical TLC was performed using Merck silica gel 60 F254s foil plates. Analytical HPLC 

was performed on a Dionex Ultimate 3000 system using Phenomenox Kinetex C-18 HPLC 

column.  HPLC grade solvents were used for column chromatography and all reactions. 
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All starting materials and HPLC grade solvents were purchased from Fisher Scientific or 

Sigma and used without further treatment. 

4.2. Field sampling, extraction, and isolation  

An orange cyanobacterial mat was collected in July 2010 (collection code PAP-

17Jul10-1A) by hand using SCUBA at Dos Hermanas in the Portobelo National Park (on 

the Caribbean side), Panama (GPS coordinates: N 9 35.860 W 79 40.106). A voucher 

sample was taken for storage at the Smithsonian Tropical Research Institute in Panama. It 

was given a field identification of Lyngbia penificiliformis. Unfortunately, phylogenetic 

analysis was not possible because of the degradation of the sample preserved for 16s-rRNA 

extraction. A total of 800 mL of cyanobacterial samples was collected. The collected 

biomass was then stored in the sea-water/ethanol mixture at -20°C until extraction. 

The cyanobacterial mat was extracted repeatedly with a 2:1 mixture of 

dichloromethane: methanol (5 x 500 mL for each extraction) and filtered through 

cheesecloth. Organic layers obtained from each extraction were combined and 

concentrated by rotary evaporation at 25°C to obtain 4.2 g of the crude extract (2002). This 

crude extract was then subjected to flash silica gel column chromatography and separated 

into nine fractions with hexane:ethyl acetate (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100) 

and ethyl acetate:methanol (75:25, 50:50, and 0:100). Fraction 2002H was further 
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fractionated into four fractions by using a Sep-Pak. Fraction 2002H4, obtained from the 

Sep-Pak separation, yielded the pure compound naranjamide (6) upon further purification 

in HPLC as fraction 2002H4D. 

4.3. Synthetic procedures  

4.3.1. Procedure for peptide coupling using EDC·HCl/HOBt  

To a round bottom flask/glass vial the amine protected carboxylic acid (1 eq), the 

carboxy protected amine (1 eq), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

hydrogen chloride (EDC·HCl, 1.1 eq), hydroxybenzotriazole hydrate (HOBt·xH2O, 1.1 eq) 

was added in dichloromethane (0.1 to 0.2 M) at 0°C, which resulted in a heterogeneous 

suspension. After 5 min, 3 eq of N, N-diisopropylethylamine (DIPEA), or triethylamine 

(TEA) was added to the reaction mixture, which turned it into a homogeneous solution. 

The reaction was run for 14-48 hours at room temperature, after which the reaction mixture 

was diluted with dichloromethane. Except for compound 2.41 and naranjamide analogs, 

the reaction mixture was then successively washed with 10% hydrochloric acid (3x), 

saturated sodium bicarbonate (3x), and brine (1x). The organic part was dried over 

anhydrous magnesium sulfate, filtered, concentrated under reduced pressure, and purified 

by flash silica column chromatography.  For compound 2.41, the reaction mixture was 

washed 10% hydrochloric acid. Aqueous parts were then combined, basified with 10% 
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NaOH and extracted with dichloromethane. The pure compound was isolated using flash 

column chromatography. All the analogs (3.7 to 3.12) were purified by using flash 

chromatography described in section 4.4. 

4.3.2. Procedure for ester hydrolysis 

To a 100 mL round bottom flask, the carboxy protected peptide (1 eq) was dissolved 

in methanol (0.2 M). Sodium hydroxide (3-5 eq) was added, and the reaction was run for 

3 hours under reflux condition at 90-95° C. After that, the reaction mixture was 

concentrated under reduced pressure to evaporate all methanol, dissolved in water and 

acidified with hydrochloric acid. For compound 2.45, the hydrolyzed product was then 

extracted with ethyl acetate (3x15 mL). The organic part was dried over anhydrous 

magnesium sulfate, was filtered, and was concentrated under reduced pressure. Due to the 

zwitterionic nature of compound 2.42, the acidified solution was dried completely. The 

solid residue was then suspended in acetone and filtered to remove undissolved NaCl, 

which was generated due to acidic workup. The acetone soluble fraction was then dried 

and purified by column chromatography.  

 

 

 



 84 

4.3.3. Procedure for t-Boc deprotection 

The t-Boc-protected amine (1 eq) was treated with a mixture of trifluoracetic acid 

and dichloromethane (1:1; 0.01 M) for 2 hours. The solvent was removed in vacuo, and the 

crude compound was then directly transferred for the next step. 

4.3.4. Procedure for methylation 

To a solution of the t-Boc -protected peptide (1 equiv) in dry THF (0.15 M) was 

added NaH (60% dispersion in mineral oil, 25 eq), and the solution was stirred under 

nitrogen at 0° C for 2 h. Methyl iodide (50 eq) was added dropwise, and the resulting 

solution was stirred to room temperature for a further 22 h. The reaction mixture was 

quenched with dropwise addition of water and extracted with ethyl acetate, dried over 

anhydrous magnesium sulfate, and concentrated under reduced pressure. The resulting 

yellow or colorless oil was purified by flash silica column chromatography (1:99 methanol: 

dichloromethane) to yield methylated peptide. 

4.3.5. Procedure for coupling using HATU 

In a reaction vial, containing the dried t-Boc removed 2.48 (22 mg, 0.05 mmol, 1 

eq),  was added the acid (2.42, 12 mg, 0.05 mmol, 1 eq), DIPEA (26 μl, 0.15 mmol, 3 eq) 

and HATU (38 mg, 0.1 mmol, 2 eq) and dimethyl formamide (DMF). The reaction mixture 

was stirred at room temperature overnight. The reaction mixture was then dried using high 



 85 

vacuum and purified by automated flash chromatography using Biotage KP-Sil SNAP 

Cartridge and methanol: dichloromethane mobile phase (1:99 to 6:94) to yield 2.5. 

4.4. Synthesis and characterization 

4.4.1. Methyl dimethyl-L-valyl-L-valinate (2.41)  

Following the procedure of peptide coupling described in section 4.3.1, compound 

2.41 was isolated by flash silica column chromatography using 3% methanol in 

dichloromethane as a white solid. Yield: 436.93 mg, 88%. 1H NMR (500 MHz, CDCl3): 

0.92-1.02 (12 H, m, 4xCH3), 2.11 (1H, m, CH), 2.21 (1H, m, CH), 2.29 (6H, s, 2xCH3), 

2.50 (1H, d, CH), 3.74 (3H, s, CH3), 4.57 (1H, q, CH), 6.88 (1H, d, NH); 13C NMR (126 

MHz, MeOD):15.7, 17.1, 18.4, 18.5, 27.2, 30.1, 41.1, 72.5, 165.9. 4.6.7.  

4.4.2. Dimethyl-L-valyl-L-valine (2.42) 

Following the procedure of ester hydrolysis described in section 4.3.2, compound 

2.42 was isolated by flash silica column chromatography using 3% methanol in 

dichloromethane as a colorless solid. Yield: 280.3 mg, 65%. 1H NMR (500 MHz, MeOD): 

1.01 (9H, d, 3xCH3), 1.17 (3H, d, CH3), 2.24 (1H, m, CH), 2.42 (1H, bs, CH), 2.92 (6H, 

s, 2xCH3), 3.92 (1H, s, CH), 4.38 (1H, d, CH), 8.67 (1H, d, NH); 13C NMR (126 MHz, 

MeOD): δ 15.5, 17.1, 18.4, 18.5, 27.2, 30.0, 41.1, 72.5, 72.5, 165.9. 
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4.4.3. Methyl (tert-butoxycarbonyl)-L-isoleucyl-L-valinate (2.44) 

Following the general procedure of peptide coupling described in 4.3.1, compound 

2.44 was synthesized and isolated by flash silica column chromatography using 15% ethyl 

acetate in hexane as a white solid. Yield: 430 mg, 83%; 1H NMR (400 MHz, CDCl3): 0.92 

– 0.97 (12H, m, 4xCH3), 1.17 (1H, m, CH), 1.46 (9H, s, 3xCH3), 1.53 (1H, m, CH2), 1.89 

(1H, m, CH2), 2.19 (1H, qd, CH), 3.76 (3H, s, CH3), 3.96 (1H, m, CH), 4.57 (1H, dd, CH), 

5.05 (1H, dd, NH), 6.36 (1H, dd, NH); 13C NMR (126 MHz, CDCl3) : 11.3, 15.4, 17.7, 

18.9, 24.8, 28.3, 31.1, 36.9, 52.0, 57.0, 59.3, 79.7, 155.8, 171.8, 172.1 

4.4.4. (Tert-butoxycarbonyl)-L-isoleucyl-L-valine (2.45) 

Following the general procedure of ester hydrolysis described in 4.3.2, compound 

10 was obtained after drying as a white solid. Yield: 390 mg, 96%; 1H NMR (400 MHz, 

CDCl3): 0.88-0.99 (12 H, m, 4xCH3), 1.16 (1H, m, CH), 1.45 (9H, s, CH), 1.56 (1H, m, 

CH2), 1.83 (1H, m, CH2), 4.05 (1H, t, CH), 4.62 (1H, dd, CH), 5.38 (1H, m, NH), 6.91 (1H, 

m, NH). 13C NMR (126 MHz, MeOD) δ 10.7, 15.2, 17.3, 18.9, 24.9, 28.2, 28.3, 31.0, 36.3, 

56.8, 59.2, 80.2, 156.4, 173.0, 174.3. 
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4.4.5. Tert-butyl ((2S,3S)-3-methyl-1-(((S)-3-methyl-1-oxo-1-(((S)-2-phenyl-1-(thiazol-

2-yl)ethyl)amino)butan-2-yl)amino)-1-oxopentan-2-yl)carbamate (2.47) 

Following the general procedure of peptide coupling described in 4.3.1, compound 

2.47 was synthesized and isolated by flash silica column chromatography using 25% ethyl 

acetate in hexane as a white solid. Yield: 356.6 mg, 50%; [α]D27 -35.50 (c 0.9, DCM); 1H 

NMR (400 MHz, CDCl3): 0.79-0.96 (12H, m, 4xCH3), 1.15 (1H, m, CHH), 1.47 (9H, s, 

3xCH3), 1.54 (1H, m, CHH), 1.90 (1H, m, CH), 2.13 (1H, m, CH), 3.31 (2H, dd, CH2), 

3.95 (1H, t, CH), 4.40 (1H, dd, CH), 5.43 (1H, d, NH), 5.65 (1H, dd, CH), 6.64 (1H, d, 

NH), 7.10 (1H, m, CH, aromatic ring), 7.22 (4H, m, 4xCH, aromatic ring), 7.45 (1H, dd, 

NH), 7.78 (1H, d,  CH, aromatic ring)   ; 13C NMR (126 MHz, CDCl3): 10.7, 15.2, 17.3, 

18.9, 24.9, 28.2, 31.0, 36.3, 56.8, 59.2, 80.2, 156.4, 173.0, 174.3. MS: m/z calcd for [M+, 

C27H40N4O4S+]: 516.28; found: 516.7.  

4.4.6. Tert-butyl methyl((2S,3S)-3-methyl-1-(methyl((S)-3-methyl-1-(methyl((S)-2-phenyl-

1-(thiazol-2-yl)ethyl)amino)-1-oxobutan-2-yl)amino)-1-oxopentan-2-yl)carbamate (2.48) 

Following the procedure described for methylation in 4.3.4., compound 2.48 

obtained as a colorless oil. Yield: 73.5 mg, 82%. [α]D27 -264.0 (c 0.3, DCM) NMR data are 

assigned on the basis of 2D correlations. 13C data are extracted from HSQC and HMBC 

spectra; %  1H NMR (500 MHz, CDCl3): Mixture of rotamers; major rotamers: 0.70 (6H, 

m, 2xCH3), 0.72 (6H, m, 2xCH3), 1.45 (9H, s, 3xCH3), 2.01 (1H, m, CH), 2.30 (1H, m, 
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CH), 2.46 (3H, s, CH3), 2.70 (3H, s, CH3), 2.87 (3H, s, CH3), 3.30 (1H, m, CHH), 3.69 

(1H, d, CHH), 4.58 (1H, d, CH), 5.05 (1H, d, CH), 6.62 (1H, d, CH), 7.27 (2H, d, CH, 

aromatic ring), 7.37 (4H, m, aromatic ring), 7.77 (1H, d, aromatic ring). 13C NMR: 10.9, 

14.8, 16.8, 18.9, 20.0, 28.3, 29.7, 29.4, 29.9, 35.9, 54.3, 58.1, 58.5, 77.3, 120.1, 128.6, 

129.4, 142.6, 169.5, 170.2, 170.6;  [M+Na+, C30H46N4O4NaS+]: 581.76; found: 580.7. 

4.4.7. (2S,3S)-2-(2-((S)-2-(dimethylamino)-3-methylbutanamido)-N,3-

dimethylbutanamido)-N,3-dimethyl-N-((S)-3-methyl-1-(methyl((S)-2-phenyl-1-(thiazol-2-

yl)ethyl)amino)-1-oxobutan-2-yl)pentanamide (naranjamide, 2.5). 

Following the procedure described for HATU coupling, compound 5 was obtained 

as a white solid with an overall yield of 5%. [α]D27 -506.7 (c 0.12, DCM) MS data and 

comparison of proton NMR with that of natural naranjamide are given in figure 4.9 and 

table 4.1. 

4.4.8. ((S)-3-methyl-1-oxo-1-(((S)-2-phenyl-1-(thiazol-2-yl)ethyl)amino)butan-2-

yl)carbamate (3.14). 

Following the general procedure of peptide coupling described in section 4.3.1, 

compound 3.14 was synthesized. The impure mixture was a yellow oil. Successive column 

purification using Biotage KP-Sil SNAP Cartridge and methanol: dichloromethane (1:10) 

yield fractions with the target molecule and some impurities. All fractions were recombined 

and then purified as a white solid by manual flash silica column using 2 % methanol in 
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dichloromethane. Yield: 179.8 mg, 89%. 1H NMR (500 MHz, CDCl3): 0.83-0.92 (6H, m, 

2xCH3), 1.46 (9H, s, 3xCH3), 2.12-2.21 (1H, m, CH), 3.32 (2H, t, CH2), 3.94 (1H, t, CH), 

4.95 (1H, bs, NH), 5.65 (1H, dd, CH), 6.75 (1H, bs, NH), 7.10 (2H, d, 2xCH, aromatic 

ring), 7.22-7.26 (4H, m, 4xCH, aromatic ring), 7.76 (1H, d,  CH, aromatic ring) 

4.4.9. Tert-butyl ((2R,3S)-3-methyl-1-oxo-1-(((S)-2-phenyl-1-(thiazol-2-

yl)ethyl)amino)pentan-2-yl)carbamate (3.15) 

Following the general procedure of peptide coupling described in section 4.3.1, 

compound 3.14 was synthesized and isolated by flash silica column chromatography using 

3% methanol in dichloromethane. Yield: 116.7 mg, 56%. 

4.4.10. (S)-2-(dimethylamino)-3-methyl-N-((S)-3-methyl-1-(((S)-3-methyl-1-oxo-1-(((S)-2-

phenyl-1-(thiazol-2-yl)ethyl)amino)butan-2-yl)amino)-1-oxobutan-2-yl)butanamide (3.8) 

Following the general procedure of peptide coupling described in section 4.3.1, 

compound 3.8 was synthesized and isolated by flash silica column chromatography using 

0.5% to 2% methanol in dichloromethane. Yield: 41.1 mg, 65%. 

4.4.11 (2S,3S)-2-((S)-2-((S)-2-(dimethylamino)-3-methylbutanamido)-3-methyl 

butanamido)-3-methyl-N-((S)-2-phenyl-1-(thiazol-2-yl)ethyl)pentanamide (3.9) 

Following the general procedure of peptide coupling, compound 3.9 was 

synthesized and purified as a white solid by flash column chromatography using 5% 

methanol in dichloromethane. Yield: 15.9 mg; 25%. 1H NMR (500 MHz, CDCl3): 0.80-
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085 (6H, m, 2xCH3). 0.90-0.98 (9H, m, 3xCH3), 1.04 (3H, d, Ch3), 1.28 (2H, m, obscured, 

CH2), 1.92 (1H, m, CH), 2.13 (1H, m, CH), 2,29 (6H, s, 2xCH3), 2.54 (1H, d, CH), 3.32 

(2H, d, CH2), 4.21 (1H, t, CH), 4.35 (1H, dd, CH), 5.65 (1H, dd, CH), 6.39 (1H, d, NH), 

6.97 (2H, m, b, 2xNH), 7.12 (2H, d, 2CH, aromatic ring), 7.21-7.27 (4H, m, 4xCH, 

aromatic ring), 7.74 (1H, d,  CH, aromatic ring)   

4.4.12. Synthesis of (S)-2-(dimethylamino)-3-methyl-N-((S)-3-methyl-1-oxo-1-(((S)-2-

phenyl-1-(thiazol-2-yl)ethyl)amino)butan-2-yl)butanamide (3.10) 

Following the general procedure of peptide coupling described in 4.3.1, compound 

3.10 was synthesized and purified as a white solid by flash column chromatography using 

5% methanol in dichloromethane. The total amount of the synthesized compound was not 

recorded.  

4.4.13. (2S,3S)-2-((S)-2-(dimethylamino)-3-methylbutanamido)-3-methyl-N-((S)-2-

phenyl-1-(thiazol-2-yl)ethyl)pentanamide (3.11) 

Following the general procedure of peptide coupling described in 4.3.1, compound 

3.11 was synthesized and purified as a white solid by flash column chromatography using 

5% methanol in dichloromethane. Yield: 20.7 mg; 39%. 1H NMR (500 MHz, CDCl3): 0.85-

0.92 (9H, m, 3xCH3), 1.02 (3H, d, CH3), 1.09-1.16 (1H, m, CHH), 1.44-1.54 (1H, m, 

CHH), 1.86-1.93 (1H, m, CH), 2.11 (1H, dt, CH),  2.23 (6H, s, 2xCH3), 2.48 (1H, d, CH), 

3.30 (2H, d, CH2), 4.34 (1H, dd, CH), 5.62 (1H, dd, CH), 6.87 (1H, d, NH), 6.90 (1H, d, 
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NH), 7.10 (2H, dd, 2CH, aromatic ring), 7.18-7.24 (4H, m, 4xCH, aromatic ring), 7.75 (1H, 

d,  CH, aromatic ring) 

4.4.14. Synthesis of (S)-2-(dimethylamino)-3-methyl-N-((S)-2-phenyl-1-(thiazol-2-

yl)ethyl)butanamide (3.12) 

Following the general procedure of peptide coupling described in 4.3.1, compound 

3.12 was synthesized and purified as a white solid by preparative HPLC. Yield: 17.3 mg; 

54%. 1H NMR (500 MHz, CDCl3): 0.68 (3H, d, CH3), 0.92 (3H, d, CH3), 2.19- 2.05 (1H, 

m, CH),  2.16 (6H, s, 2xCH3), 2.43 (1H, d, CH), 3.30 (1H, dd, CHH), 3.39 (1H, dd, CHH), 

5.73 (1H, dd, CH), 6.97 (1H, d, NH), 7.18-7.28 (4H, m, 6xCH, aromatic ring), 7.77 (1H, 

d,  CH, aromatic ring). 

 Due to loss of data, spectroscopic information for 3.8, 3.10, and 3.15 are not 

presented here. 

4.5. Bioassays 

4.5.1. Chagas disease bioassay 

Trypanosoma cruzi bioassays were performed using a colorimetric method, and the 

inhibition of parasite growth was assessed by the expression of the reporter gene for b-

galactosidase (b-Gal) in the recombinant Tulahuen clone C4 of T. cruzi from The American 

Type Cell Collection (ATCC). Assays were performed in duplicates on the amastigote 

stage, which is the intracellular form of the parasite infecting African green monkey kidney 
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(Vero) cells, exposed during 120 h to different concentrations (10, 2, and 0.4 µg/mL) of 

the test compounds at 37°C under an atmosphere of 5% CO2 in air. The resulting color 

from the cleavage of chlorophenol red-b-D-galactoside (CPRG) by b-Gal expressed by the 

parasite was measured at 570 nm. The concentration that inhibited 50% expression of b-

Gal (IC50) was calculated by log regression of the obtained optical density values and 

compared with the untreated controls. Nifurtimox was used as a positive control (IC50 2-5 

µg/ml). 

4.5.2. Malaria bioassay 

The antiplasmodial activity was evaluated using a fluorometric method based on 

the detection of parasite DNA with the fluorochrome PicoGreen. The chloroquine-resistant 

strain Indochina W2 (a generous gift of The Walter Reed Army Institute of Research, Silver 

Spring, MD) of Plasmodium falciparum was used for the crude extract and subsequent 

fractions. For the synthetic product,  the chloroquine-sensitive HB3 strain obtained from 

the (Malaria Research and Reference Reagent Resource Center (MR4, Manassas, VA, 

USA) was used. All initial screenings were performed at 10 µg/mL. The IC50 value was 

calculated by normal regression of the resulting inhibition percentages at 0.08, 0.4, 2, and 

10 µg/mL. Parasites were maintained in vitro by a modification of the method of Trager 

and Jensen,17 synchronizing the parasites with alanine, as described in Almanza et al.18 
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Chloroquine was used as a positive control (IC50 80-100 nM for W2 and 15-26 nM for 

HB3).  

4.5.3.  Leishmania bioassay 

Axenically grown (cell-free) amastigotes of Leishmania donovani WR2801, a kind 

gift from Max Grogl (Experimental Therapeutics Division, Walter Reed Army Institute of 

Research, Silver Spring, MD, USA), were used to assess parasite growth and survival. 

Samples were tested in duplicates at 10 µg/mL. The results were expressed as a percentage 

of growth inhibition (GI) compared to controls. Samples that showed over 70% GI were 

considered active and were then assayed at four different concentrations (0.08, 0.4, 2, and 

10 µg/mL) to determine IC50 values. Amphotericin B was used as a positive control with 

an IC50 value response of 80-120 ng/ml.  

4.5.4. MCF-7 cell line assay 

The MCF-7 mammalian breast cancer cell line was obtained from ATCC. On the 

day before the bioassay, 5×103 cells were seeded in a final volume of 100 µl/well in 96-

well plates and incubated with RPMI-1640 supplemented with gentamicin (0.05 mg/ml), 

L-glutamine (GIBCO; 2 mM), NaHCO3 (4.6 mM), HEPES buffer (25 mM), and FBS 

(10%) at 37°C. For each bioassay, 100 µl of the extract was diluted in culture media, added 

to the cells, and incubated for 48 h at 37°C. Cells were fixed with tricholoroacetic acid 
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(50%), and treated with sulphorhodamine B (0.4%), which was allowed to react for 15-30 

min at 22°C. The cells were then rinsed with acetic acid (1%), dried, and treated with Tris-

HCl (10 mM; pH 7) for 15 min. Color intensity was read at 570 nm. The positive control 

used was adriamycin (normal IC50 value is approximately 20-50 nM). 
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4.6 Spectroscopic data for isolated and synthetic naranjamide 

 4.6.1 High-resolution ESI-MS spectrum of natural compound 2.5 

  

Figure 4.1: High resolution ESI-MS spectrum of natural compound 2.5 HPLC 

separation 
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4.6.2 MS-MS fragmentation of natural compound 2.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: MS-MS fragmentation of natural compound 2.5  via ion trap 
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 4.6.3 NMR data of natural compound 2.5 

 

Figure 4.3: 1H NMR spectrum (CDCl3, 500 MHz) of natural compound 2.5 
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Figure 4.4: COSY spectrum (CDCl3, 500 MHz) of natural compound 2.5  
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Figure 4.5: HSQC spectrum (CDCl3, 500 MHz) of natural compound 2.5 
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Figure 4.6: HMBC spectrum (CDCl3, 500 MHz) of natural compound 2.5 

 

 

Figure 4.7: NOESY spectrum (CDCl3, 500 MHz) of natural compound 2.5. 
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Figure 4.8: 1H spectrum (CDCl3, 500 MHz) of synthetic compound 2.5 
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Figure 4.9: Stacked 1H NMR spectra of natural and synthetic 2.5 
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Figure 4.10: MS spectrum of synthetic compound 2.5. 
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Table 4.1: Comparison of 1H NMR data of natural and synthetic naranjamide 

C/H No. 
δH of natural naranjamide 

(multiplicity, J in Hz) 

δH of synthetic 

naranjamide 

2   

4 7.77 (d, 3.3) 7.77 (d, 3.3) 

5 7.36 (d, 3.3) 3.36 (d, 3.3) 

6 6.60 (dd, 11.8, 4.8) 
 

6.60 (dd, 11.6, 4.9) 

 

6a 
3.69 (dd, 15, 4.9) 3.30 (dd, 

15, 11.8) 

3.69 (dd, 15.1, 4.9) 

3.29 (dd, 15.0, 11.6) 

1¢   

2¢, 6¢ 
7.27 

 

7.26 

 

3¢, 5¢ 7.39 7.38 

4¢ Obscured 

7a 2.87 2.87 

8   

9 5.06 (d, 2.7) 5.06 (dd, 10.8, 1.9) 

9a 2.32 (m) 2.31 (m) 

9b, 9c 0.69, 0.93 (m) 0.68, 0.96 (m) 

10a 2.46 (s) 2.43 (s) 

11   

12 5.07 (dd, 10.8, 2.7) 5.06 (dd, 10.8, 1.9) 
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12a 2.07 (m) 2.07 (m) 

12b 

Obscured 12c 

12d 

13a 3.04 (s) 3.03 (s) 

14   

15 4.84 (m) 4.82 (m) 

15a 1.94 (m) 1.95 (m) 

15bc 0.92, 1.01 (m)  

16 NH 6.95 obscured 

17   

18 2.49  

18bc 2.30 (s) 2.39 (s) 

19 2.12  

20 0.95  

21 1.03  
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Chapter V:  Conclusion 

Nature directly or indirectly inspires and reveals the solution of all problems, and 

science provides the way to make these insights tangible, practical, useful, and meaningful. 

If we take away nature’s contribution from the history of drug discovery and development, 

it would have been still in its primitive stage. Nature is, by far, the richest contributor to 

drug discovery research. From ancient times to the present day, search for disease remedies 

in nature has been continued. Unfortunately, not all severe diseases get the required 

emphasis. Neglected tropical diseases (NTDs) have been known for centuries, and some of 

these lethal diseases are severely limited in terms of therapeutic options. The most 

vulnerable population to NTDs are the impoverished community of Africa and Asia, which 

do not promise a significant financial return for a successful NTD drug discovery 

campaign. Thus, most pharmaceutical companies are less interested in developing drugs 

for NTDs. No wonder that diseases like Chagas has only two drugs in the market, which 

are far from patient compliant, effective therapeutic options.  Our effort led to the discovery 

of a compound that inhibited the growth of both malaria and the Chagas parasite. Various 

potent antimalarial drugs are available in the market, and yet malaria is one of the deadliest 

diseases on this planet. Though the total number of infected population has declined in 

recent years due to vector control and other preventive measures, malaria’s severity is still 

monumental. The emergence of resistant pathogens has necessitated the discovery of new 
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antimalarials. Unlike malaria, Chagas disease is not widespread but still require new drugs 

with improved safety and efficacy since it lacks a favorable treatment option. Both malaria 

and Chagas disease are NTDs that require extensive drug discovery research in both 

academia and industry.  

The discovery of marine natural products as a source of bioactive compounds 

introduced researchers to a new stockpile of structurally intriguing molecules. Successful 

efforts have been made to take these molecules from the ocean to the shelves of the clinic. 

And, efforts should be continued to yield the maximum output from this drug source. 

Billion-year-old marine cyanobacteria are among the most attractive sources among marine 

species that produce a plethora of bioactive molecules.  Inherently, compounds from 

marine organisms are extremely potent since when released in their neighboring aquatic 

environment, despite dilution to a considerable extent, they have to function properly. 

Thus, marine cyanobacteria promise the discovery of highly potent bioactive molecules. 

The importance of NTD drug development and the potential of marine cyanobacteria as 

the drug source led to approaches that resulted in the discovery of a cyanobacterial 

secondary metabolite. 

The compound was given the name naranjamide. It is a pentapeptide with multiple 

N- methylation of the amide nitrogen and contains two unnatural amino acids at the C-

terminus and the N- terminus. From the knowledge of cyanobacterial biosynthetic 
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machinery, we can assume that naranjamide is biosynthesized via non-ribosomal peptide 

synthase and N- methyltransferase pathway.  

 The discovery of naranjamide and its bioactivity, led us to attempt the total 

synthesis of the natural product. In our attempt, we synthesized synthetic naranjamide, but 

the chiral integrity of the molecule was lost. One possible reason for this could be using a 

strong base in one of the reactions to synthesize a reaction intermediate. Interestingly, this 

synthetic version was also active against malaria and the Chagas parasite. Thus, our next 

logical approach was to explore the structure-activity relationship of naranjamide. In doing 

so, we synthesized a series of non-methylated analogs, where the peptide length was 

gradually reduced, one amino acid at a time. We found that removing all N- methyl groups 

of amide nitrogen made the analogs malaria selective, though we significantly lost the 

potency. The analogs also elucidated critical information about the neighboring adjacent 

amino acid of dolaphenine. We saw an improvement of activity when this amino acid is 

isoleucine instead of valine. This observation leads to the hypothesis that the target may 

have a hydrophobic binding pocket adjacent to the dolaphenine binding pocket and can be 

accessed by the isoleucine side chain.  

In this attempt of naranjamide synthesis, the stereo-configuration was 

compromised. It will be compelling to see how a stereochemically pure synthetic 

naranjamide behaves in bioassays. Other structural modifications are required to build up 
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a complete story of naranjamide and its requirements for activity and selectivity. Synthesis 

of more naranjamide, will also allow researchers to elucidate its mechanism of action. Once 

a target is known, an in silico process may lead to more potent analogs through the use of 

molecular modeling for design. Also, target identification will allow us to explore the key 

features that determine the selectivity between the Chagas and malaria parasites.  This 

project utilized both natural product chemistry and medicinal chemistry approaches to 

discover a potential lead for maria and Chagas disease, and obtained results can act as a 

good starting point for further research to complete the story of naranjamide.  
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