
A Comparative Study between HLS and HDL on
SoC for Image Processing Applications

Un Estudio Comparativo entre HLS y HDL en SoC para Aplicaciones de Procesamiento de Imágenes

Roberto Millón∗1, Emmanuel Frati∗2 and Enzo Rucci†3

∗Departamento de Ciencias Básicas y Tecnológicas, UNdeC
Chilecito (5360), La Rioja, Argentina

1rmillon@undec.edu.ar
2fefrati@undec.edu.ar

†III-LIDI, Facultad de Informática, UNLP - CIC.
50 y 120 s/n, La Plata (1900), Argentina
3erucci@lidi.info.unlp.edu.ar

Abstract—The increasing complexity in today’s systems
and the limited market times demand new development tools
for FPGA. Currently, in addition to traditional hardware
description languages (HDLs), there are high-level synthesis
(HLS) tools that increase the abstraction level in system
development. Despite the greater simplicity of design and
testing, HLS has some drawbacks in describing hardware.
This paper presents a comparative study between HLS
and HDL for FPGA, using a Sobel filter as a case study
in the image processing field. The results show that the
HDL implementation is slightly better than the HLS version
considering resource usage and response time. However,
the programming effort required in the HDL solution is
significantly larger than in the HLS counterpart.
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Resumen— La creciente complejidad de los sistemas
actuales y los tiempos limitados del mercado exigen nuevas
herramientas de desarrollo para las FPGAs. Hoy en día,
además de los tradicionales lenguajes de descripción de
hardware (HDL), existen herramientas de síntesis de alto nivel
(HLS) que aumentan el nivel de abstracción en el desarrollo
de sistemas. A pesar de la mayor simplicidad de diseño y
pruebas, HLS tiene algunos inconvenientes para describir
hardware. Este documento presenta un estudio comparativo
entre HLS y HDL para FPGA, utilizando un filtro Sobel
como caso de estudio en el ámbito del procesamiento de
imágenes. Los resultados muestran que la implementación
HDL es levemente mejor que la versión HLS considerando
uso de recursos y tiempo de respuesta. Sin embargo, el
esfuerzo de programación en la implementación de HDL es
significativamente mayor.
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I. INTRODUCTION

FPGAs are in an intermediate position between ASICs
and CPUs, given their ability to reconfigure their archi-
tecture according to the application and their good energy
efficiency [1]. In the last decade, multiple efforts have
been made to reduce the energy consumption of large
computing systems [2] and FPGAs are consolidating as a
viable alternative to achieve this goal. That is why several
companies and organizations have incorporated this kind
of hardware devices to their systems, like Microsoft [3],
Baidu [4], CERN [5] or Amazon [6].

However, FPGAs have not been massively adopted as it
was originally expected by their vendors [7]. At the begin-
ning and for more than one decade, FPGA applications were
exclusively developed using hardware description languages
(HDLs). Unfortunately, HDLs have many drawbacks: they
are verbose and error-prone, require in-depth knowledge of
digital electronics, and demand long development times [8].
As a result, the FPGA community explored alternative
tools to increase the abstraction level as a way to reduce
programming costs and accelerate time to market [9].

Since the early 2000s, several FPGA vendors started to
offer high-level synthesis (HLS) tools for systems devel-
opment. In the HLS approach, programmers code FPGA
applications using high-level languages (HLLs), like C, C++,
or SystemC. Then, the tool is responsible for generating the
corresponding HDL code [10]. Thus, engineers work at a
higher abstraction level and produce reusable hardware de-
signs without requiring hardware expertise. This alternative
approach allowed the industry to shorten time to market
since productivity gets increased while development cost
gets reduced [11].

Even though HLS tools present several advantages to
develop hardware descriptions, they also have a weak spot.
As HLLs were designed for software applications, they
present some shortcomings when describing hardware that
can negatively impact the resources usage and response time
of the final hardware designs [12].

In this context, it is important to know the advantages and
disadvantages of different languages and approaches to syn-
thesize optimal hardware descriptions. This paper presents
a comparative study between two Sobel filter solutions for a
System-on-Chip (SoC) platform using both HDL and HLS
approaches. Overall, the main contributions of the paper are
the following:

• The creation of a public git repository containing opti-
mized SoC solutions of Sobel filter for edge detection
using both HDL and HLS approaches 1. As Sobel is
a convolutional operator, these implementations can
be easily adapted to perform other image processing

1https://github.com/robertoamt/HDL-HLS-Sobel-filters-
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filters.
• A thorough comparison between both solutions in

terms of resource usage, execution time, and program-
ming effort. In this way, we can identify the strengths
and weaknesses of each programming approach in the
image processing field.

The rest of the paper is organized as follows. Section II
presents the background and the state of the art of this work.
The optimized implementations are described in Section III.
In Section IV, experimental results are analyzed and finally,
in Section V, conclusions and some ideas for future research
are summarized.

II. BACKGROUND AND STATE OF THE ART

A. FPGA Programming Languages

Verilog and VHDL are the two leading HDLs to describe,
simulate, and synthesize hardware systems. Both were devel-
oped in the 80’s and have been updated several times since
then [13]. Using HDL to describe hardware requires digital
design expertise, which limits the use of FPGA to hardware
engineers. The results are low-level, complex designs, and
slow development and debugging processes.

The HDL drawbacks lead to the development of new tools
to describe hardware in the early 2000s, such as Vivado HLS
(Xilinx), Catapult C (Mentor Graphics), and Intel OpenCL
SDK (Intel). These HLL-based tools raise the abstraction
level and increase FPGA opportunities to engineers that
specialize in embedded software programming [14].

Unfortunately, C-based languages have some shortcom-
ings when describing hardware. First, either the designer or
the HLS tool must specify the concurrency model because
of HLLs lack a definition of hardware timing. Second,
HLLs lack of the definition of exact bit width for a signal,
since they only provide limited data types such as bool,
int, and/or long. Third, HLLs do not have abstractions of
hardware interfaces and, contrary to the distributed memory
model of FPGAs, they assume a flat memory model that
can be accessed through pointers. Therefore, HLS tools must
provide extensions to the HLL through libraries and directive
sets to overcome those deficiencies. In other cases, HLS
tools impose restrictions on HLLs, such as not supporting
dynamic memory allocations [12].

B. Sobel Filter

The Sobel algorithm is a gradient-based edge detection
method to extract the edges of a grayscale image using
the first derivative. By computing horizontal h and vertical
v direction derivatives of a pixel against the surrounding
pixels, the algorithm segments the image into areas or
objects. This process reduces the amount of data while
preserving the image’s structural properties. The Gh and
Gv derivatives represent the components of the gradient
vector [15], [16], given by Equation 1.

∇f = (Gh, Gv ) (1)

The gradient magnitude expresses the rate of change of
intensity in neighboring pixels and defines the edge strength.
A sudden change in contiguous pixels increases the gradient
magnitude resulting in the border of an object, given by
Equation 2:

|∇f | =
√
Gh

2 +Gv
2 (2)

Equation 2 can be approximated as Equation 3. This last
formula delivers a faster computation but still preserving
relative changes in intensity.

|∇f | ≈ |Gh|+ |Gv| (3)

Fig. 1 shows the two 3×3 convolution masks (namely, Mh

and Mv) used by the Sobel filter to calculate the components
of the gradient vector.

Fig. 1. Sobel convolution masks

From mathematical point of view, the image must be
multiplicated by the Sobel masks to get the components of
the gradient vector. The image is scanned from left to right
and top to bottom, applying convolution to each individual
pixel using the Mh and Mv masks [17]. Fig. 2 shows the
convolution process of the Sobel filter.

Fig. 2. Sobel convolution process

C. State of the Art

In the literature, numerous works propose HLS or HDL
solutions to different problems. However, just a few im-
plement the same algorithm with both HLS and HDL de-
scriptions. Some studies conclude that both implementations
have similar performance results with a larger resource con-
sumption on the HLS approach [8], [18]–[22]. Conversely,
other studies observed better performances in one of the
two implementations, either HLS [23]–[27] or HDL [28],
[29]. From the programming effort perspective, comparative
works between HLS and HDL designs for FPGA show
similar trends (except for [30]). In general, HLS descriptions
require less development time due to their higher abstraction
level and the programmer’s familiarity with those languages.
However, there is no single conclusion about performance
and resource usage between the two approaches. In these as-
pects, the results are affected by the problem characteristics,
the tools used, and the design features.

This research presents and compares two optimized Sobel
filter solutions for a SoC platform designed with both HLS
and HDL approaches. Compared to previous works, the
novelty of this study lies in the hardware and software
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technologies used, the chance to reuse/modify the solutions
implemented, and the careful comparative analysis carried
out. In this way, we can contribute to the identification of the
strengths and weaknesses of each programming approach in
the image processing field.

III. IMPLEMENTATION

To compare both HDL and HLS approaches, we have
implemented a complete Sobel system to detect edges on
RGB images (BMP format). Firstly, a DMA block accesses
the microSD memory for image reading and sends the
pixel stream to the processing core. After Sobel operation,
the processing block returns the pixel stream to the DMA
block for further storage in the microSD memory. The
ARM processor is responsible for configuring and managing
the system. Finally, all modules were integrated using the
Vivado 2019.1 tool. Fig. 3 shows a block diagram of the
whole system.

ARM Processor

DDR memory 
controller

AXI DMA
RGB2GRAY

AXI-LITE

AXI
AXI

STREAM

SOBEL 
FILTER

U8toU32

FPGA

Fig. 3. Complete Sobel system

The processing core consists of 3 blocks that were synthe-
sized and validated using both HDL and HLS approaches.
The first block (RGB2GRAY) converts RGB images to
grayscale using the method based on the arithmetic mean
of the three components; the second block (SOBEL FIL-
TER) detects the edges in the image; and the third block
(U8toU32) combines four 8-bit integer variables to form a
32-bit word.

A. HLS Version

To implement the Sobel filter on HLS, we use two
memory structures called line buffer and sliding window
[31]. Each line buffer correspond to an entire row of the
image and we used them to keep the Sobel working set. On
its behalf, the sliding window contains the image pixels that
will be convoluted.

The filter requires three line buffers that are arranged one
above the other. When a new pixel is received, the line
buffers perform a vertical rotation before storing the new
pixel. When the two upper line buffers are full and three
pixels are in the lowest line buffer, the convolution process
is performed using the sliding window pixels and the Sobel
masks. Fig 4 illustrates the described process.

Several compiler directives were used to optimize synthe-
sis and reduce programming costs. To communicate the im-
age and its parameters, the system uses AXI4 interfaces that
were synthesized using the HLS INTERFACE pragma. The
design also incorporates two compiler directives to achieve
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Fig. 4. Sobel filter operation in the HLS implementation

better performance: HLS ARRAY PARTITION pragma al-
lows parallel memory accesses to line buffers, sliding
window and masks; and the HLS PIPELINE pragma to
increase throughput by enabling parallel execution of con-
volution tasks.

B. HDL Version

As the HLS version, the HDL implementation also uses
line buffers and sliding window data structures. However, it
just requires two line buffers and not three of them. Previous
HDL solutions [32]–[34] use shift registers to describe the
line buffers, which results in a larger use of FPGA registers.
To decrease the use of registers, our design uses two blocks
of RAM RAMB18 (one physical RAMB36) as line buffers
(namely line_buffer_1 and line_buffer_2). We synthesized
the sliding window as three shift registers composed of three
flip-flops each (9 registers in all). Fig 5 represents the HDL
implementation of Sobel filter.

D (data_in)

W_Addr 

W_en 

LB_1

R_en 

R_Addr 

W_Addr 

W_en 

D (data_in)

Q (data_out)

R_en 

R_Addr 

Q (data_out)

NEW PIXEL

SLIDING
WINDOW

LB_2

BRAM

BRAM

Fig. 5. Synthesis of Sobel filter in HDL implementation

Sobel filter performs four tasks, each requiring one clock
cycle. The first task is comprised of two actions: the recep-
tion of a new pixel and the reading of the line buffers. The
second task is composed of two actions too: the filling of the
sliding windows and the writing in the line buffers. In the
next clock cycle, the filter performs the convolution. Finally,
the filter sends the processed data in the fourth cycle. This
process is shown in Fig. 6.

Unlike the HLS design, the HDL system must describe the
AXI4 connection interfaces at a lower level (AXI-STREAM
and AXI-LITE). As it was mentioned before, the complete
process was divided into four stages, incorporating registers
between them. Although these additional registers increase
the latency, they allow this design to overlap the different
tasks in the same clock cycle. In this way, a pipelining
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Fig. 6. Sobel filter process in HDL implementation

scheme is manually achieved (no compiler directives), which
increases system throughput and shortens response time. The
pipelined tasks are shown in Fig. 7.

New pixel input 
and 

line buffers reading

Line buffers writing 
and 

sliding window filling

Convolution 
process

Data sending

Task
Clock cycle

Pixel 1 Pixel 2 Pixel 3

Pixel 1 Pixel 2 Pixel 3

Pixel 1 Pixel 2 Pixel 3

Pixel 1 Pixel 2

0 1 2 3 4

Pixel 4

Pixel 4 Pixel 5

Fig. 7. Pipelined scheme in HDL implementation

IV. EXPERIMENTAL RESULTS

The SoC used for testing is a ZYBO platform (SoC
ZYNQ-7000), which consists of an ARM Cortex-A9 dual-
core processor and an XC7Z010-1-CLG400C FPGA. To
system design, we have used the graphical environment
within the Vivado Design Suite software. We developed
a test application using the XSDK tool and also selected
four images from public repositories: Mandrill of 512×5122,
Kodim23 of 768×5123, Owl of 1920×5664, and Lightbulbs
of 1920×10805. Each particular test was run ten times;
performance was calculated by the average of ten executions
to avoid variability. All time measures were performed with
the xtime_l.h library.

A. Edge Detection

Fig. 8 shows the testing images with their corresponding
resulting image after applying the Sobel filter. The approxi-
mated formula from Equation 3 was used to compute the
gradient magnitude. Last, we have compared the result-
ing images of both approaches (HDL & HLS) using an
automated procedure based on the Hamming distance. No
difference between images were found in all cases.

2http://sipi.usc.edu/database/database.php
3http://www.cs.albany.edu/~xypan/research/img/Kodak/kodim23.png
4https://pixabay.com/es/photos/lechuza-granero-ave-animales-1710659/
5https://pixabay.com/es/illustrations/bombillas-de-luz-para-vidrio-5488573/

(a)

(b)

(c)

(d)

Fig. 8. Test images. (a) Mandrill. (b) Kodim23. (c) Owl. (d) Lightbulbs.
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B. Resource Usage and Performance

Table I presents the resource usage for the two So-
bel implementations. The values in the columns S.LUTs,
S.Registers, F7 Muxes, BRAM, and DSPs refer to the
percentages of lookup tables, registers, multiplexers, RAM
blocks, and DSP blocks used, respectively. In particular, the
HLS version requires 5.5× more LUTs and 4.6× more reg-
isters than the HDL counterpart. Still, it does not represent
a design restriction in either case.

TABLE I
RESOURCE USAGE

Version Resource usage (%)

S.LUTs S.Reg F7 Muxes BRAM DSPs

HDL 0.8% 0.5% 0% 1.6% 0%

HLS 4.4% 2.3% < 0.1% 1.6% 0%

Table II presents the runtime of each Sobel version. For
each testing image, we present two times: (1) the opera-
tion time of the processing blocks (RGB2GRAY, SOBEL
FILTER, and U8toU32) labeled as Sobel, and (2) the I/O
time of the system labeled as I/O. Also, the last column
shows the speedup ratio between the HLS runtime and
the HDL runtime 6. As it can be seen in the results, the
HDL filter is faster than the HLS version in all cases. The
largest performance difference is achieved when processing
the smallest image (Mandrill), reaching a speedup of 6.6×.
The difference decreases as the size of the image increases,
but the HDL version still shows superior to the HLS coun-
terpart obtaining a speedup of 1.4× for the largest image
(Lightbulbs).

TABLE II
PERFORMANCE

Image Task Runtime (ms)

HDL HLS Speedup

Mandrill Sobel 5.9 39.3 6.6×

(512×512) I/O 816 837 -

Kodim23 Sobel 8.8 39.3 4.4×

(768×512) I/O 1078 1026 -

Owl Sobel 24.4 43.4 1.7×

(1920×566) I/O 2280.4 2329.5 -

Lightbulbs Sobel 58 82.9 1.4×

(1920×1080) I/O 3985.9 3954.5 -

The HDL implementation outperformed the HLS version
for both resource usage and performance. Both issues are
related to the automated process that Vivado HLS follows
to translate the HLL code to the corresponding hardware
description. The resulting RTL requires a larger number

6This value is only computed for the Sobel column of each image. The
I/O time is approximately the same for both versions since they share the
I/O operation

of finite state machines and signals to ensure its correct
operation, increasing resource consumption and response
time.

C. Programming Cost

There are several proposals for measuring the program-
ming cost of an application. Some of them propose counting
the number of lines of code (SLOC) or the number of
characters (including blank lines and comments). Despite
their simplicity, the main drawback is that these parameters
do not reflect the complexity of the algorithms [35]. Other
alternatives measure the development time, even though it is
dependent on the programmer experience. In this work, we
have decided to measure the programming cost through the
SLOC indicator and the development time invested to reach
a complete and functional implementation. These metrics
are combined with a qualitative comparison of the required
effort in each solution. As both parts are complementary,
they allow the reader a comprehensive understanding of the
programming cost.

Table III shows the number of files, SLOC 7, and de-
velopment time (in hours) for each approach. The project
involved a single programmer having minimal knowledge
about FPGA programming 8. The HLS version was de-
veloped first, taking him 121 hours and 90 SLOC to get
a correct implementation of the entire system. Next, the
programmer continued with the HDL implementation. It is
important to remark that, implementing the HLS version
first gave some advantage to the HDL implementation due
to the knowledge gained in that process. Despite that, the
development time increased to 384 hours and 493 SLOC.
This represents an increase of 5.5× SLOC and 3.2× hours
compared to the HLS version.

TABLE III
PROGRAMMING COST

Version
Programming cost

# Files SLOC Development
time (hours)

HDL 4 493 384

HLS 2 90 121

The HDL implementation required more time and SLOC
than its HLS counterpart. This is due to the HLS approach
allowed the programmer to focus on the system functionality
without requiring him to define hardware resources and/or
other low-level mechanisms. For example, communication
ports and pipelining scheme were implemented using com-
piler directives in the HLS approach. In the opposite direc-
tion, the programmer had to manually describe them at RTL
level in the HDL approach.

V. CONCLUSIONS AND FUTURE WORK

In this work, we present a comparative study beween
HLS and HDL approaches for FPGA programming. Taking

7To measure the SLOC indicator, we have used the cloc tool https:
//github.com/AlDanial/cloc

8The programmer took two undergraduate semester courses in the field.
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the Sobel filter as a study case, we implemented optimized
SoC solutions for detecting edges in images and made them
available through a public git repository. Next, we performed
a thorough comparison between HDL and HLS in terms
of resource usage, execution time, and programming effort.
As Sobel is a convolutional operator like many others, we
can identify strengths and weaknesses of each programming
approach in the image processing field.

The results show that the HDL implementation is slightly
better than the HLS version considering resource usage and
response time. However, the programming effort required
in the HDL solution is significantly larger than in the HLS
counterpart. According to these results, the HDL approach
would only be convenient when the resource usage and/or
the response times are critical. Otherwise, the HLS approach
can lead to important reductions in both programming cost
and development time, at the cost of a small increase in
resource usage and execution time.

Future work focuses on extending the experimental work
carried out to other boards. This would allow us to enlarge
the representativity of the analysis performed.
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