The Convergence and Divergence of q-Continued Fractions outside the Unit Circle

Douglas Bowman
Northern Illinois University
James McLaughlin
West Chester University of Pennsy/vania, jmclaughlin2@wcupa.edu

Follow this and additional works at: https://digitalcommons.wcupa.edu/math_facpub
Part of the Number Theory Commons

Recommended Citation

Bowman, D., \& McLaughlin, J. (2006). The Convergence and Divergence of q-Continued Fractions outside the Unit Circle. Rocky Mountain Journal of Mathematics, 36(3), 799-809. Retrieved from https://digitalcommons.wcupa.edu/math_facpub/65

This Article is brought to you for free and open access by the Mathematics at Digital Commons @ West Chester University. It has been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of Digital Commons @ West Chester University. For more information, please contact wcressler@wcupa.edu.

THE CONVERGENCE AND DIVERGENCE OF q-CONTINUED FRACTIONS OUTSIDE THE UNIT CIRCLE

DOUGLAS BOWMAN AND JAMES MC LAUGHLIN

Abstract

We consider two classes of q-continued fraction whose odd and even parts are limit 1-periodic for $|q|>1$, and give theorems which guarantee the convergence of the continued fraction, or of its odd- and even parts, at points outside the unit circle.

1. Introduction

Studying the convergence behaviour of the odd and even parts of continued fractions is interesting for a number of different reasons (see, for example, Section 9.4 of [6]). In this present paper, we examine the convergence behaviour of q-continued fractions outside the unit circle.

Many well-known q-continued fractions have the property that their odd and even parts converge everywhere outside the unit circle. These include the Rogers-Ramanujan continued fraction,

$$
K(q):=1+\frac{q}{1}+\frac{q^{2}}{1}+\frac{q^{3}}{1}+\frac{q^{4}}{1}+\cdots
$$

and the three Ramanujan-Selberg continued fractions studied by Zhang in [8], namely,

$$
\begin{aligned}
& S_{1}(q):=1+\frac{q}{1}+\frac{q+q^{2}}{1}+\frac{q^{3}}{1}+\frac{q^{2}+q^{4}}{1}+\cdots \\
& S_{2}(q):=1+\frac{q+q^{2}}{1}+\frac{q^{4}}{1}+\frac{q^{3}+q^{6}}{1}+\frac{q^{8}}{1}+\cdots
\end{aligned}
$$

and

$$
S_{3}(q):=1+\frac{q+q^{2}}{1}+\frac{q^{2}+q^{4}}{1}+\frac{q^{3}+q^{6}}{1}+\frac{q^{4}+q^{8}}{1}+\cdots
$$

It was proved in [1] that if $0<|x|<1$ then the odd approximants of $1 / K(1 / x)$ tend to

$$
1-\frac{x}{1}+\frac{x^{2}}{1}-\frac{x^{3}}{1}+\cdots
$$

Date: May, 11, 2002.
1991 Mathematics Subject Classification. Primary:11A55,Secondary:40A15.
Key words and phrases. Continued Fractions, Rogers-Ramanujan.
The second author's research supported in part by a Trjitzinsky Fellowship.
while the even approximants tend to

$$
\frac{x}{1}+\frac{x^{4}}{1}+\frac{x^{8}}{1}+\frac{x^{12}}{1}+\cdots
$$

This result was first stated, without proof, by Ramanujan. In [8], Zhang expressed the odd and even parts of each of $S_{1}(q), S_{2}(q)$ and $S_{3}(q)$ as infinite products, for q outside the unit circle.

Other q-continued fractions have the property that they converge everywhere outside the unit circle. The most famous example of this latter type is Göllnitz-Gordon continued fraction,

$$
G G(q):=1+q+\frac{q^{2}}{1+q^{3}}+\frac{q^{4}}{1+q^{5}}+\frac{q^{6}}{1+q^{7}}+\cdots
$$

In this present paper we study the convergence behaviour outside the unit circle of two families of q-continued fractions, families which include all of the above continued fractions.

2. Convergence of the odd and even parts of q-CONTINUED FRACTIONS OUTSIDE THE UNIT CIRCLE

Before coming to our theorems, we need some notation and some results on limit 1-periodic continued fractions.

Let the n-th approximant of the continued fraction $b_{0}+K_{n=1}^{\infty} a_{n} / b_{n}$ be P_{n} / Q_{n}. The even part of $b_{0}+K_{n=1}^{\infty} a_{n} / b_{n}$ is the continued fraction whose n-th numerator (denominator) convergent equals $P_{2 n}\left(Q_{2 n}\right)$, for $n \geq 0$. The odd part of $b_{0}+K_{n=1}^{\infty} a_{n} / b_{n}$ is the continued fraction whose zero-th numerator convergent is P_{1} / Q_{1}, whose zero-th denominator convergent is 1 , and whose n-th numerator (respectively denominator) convergent equals $P_{2 n+1}$ (respectively $Q_{2 n+1}$), for $n \geq 1$.

For later use we give explicit expressions for the odd- and even parts of a continued fraction. From [7], page 83, the even part of $b_{0}+K_{n=1}^{\infty} a_{n} / b_{n}$ is given by

$$
\begin{equation*}
b_{0}+\frac{b_{2} a_{1}}{b_{2} b_{1}+a_{2}}-\frac{a_{2} a_{3} b_{4} / b_{2}}{a_{4}+b_{3} b_{4}+a_{3} b_{4} / b_{2}}-\frac{a_{4} a_{5} b_{6} / b_{4}}{a_{6}+b_{5} b_{6}+a_{5} b_{6} / b_{4}}-\ldots \tag{2.1}
\end{equation*}
$$

From [7], page 85 , the odd part of $b_{0}+K_{n=1}^{\infty} a_{n} / b_{n}$ is given by

$$
\begin{align*}
& \frac{b_{0} b_{1}+a_{1}}{b_{1}}-\frac{a_{1} a_{2} b_{3} / b_{1}}{b_{1}\left(a_{3}+b_{2} b_{3}\right)+a_{2} b_{3}}-\frac{a_{3} a_{4} b_{5} b_{1} b_{3}}{a_{5}+b_{4} b_{5}+a_{4} b_{5} / b_{3}} \tag{2.2}\\
& \quad-\frac{a_{5} a_{6} b_{7} / b_{5}}{a_{7}+b_{6} b_{7}+a_{6} b_{7} / b_{5}}-\frac{a_{7} a_{8} b_{9} / b_{7}}{a_{9}+b_{8} b_{9}+a_{8} b_{9} / b_{7}}-\cdots
\end{align*}
$$

Definition:. Let $t(w)=c /(1+w)$, where $c \neq 0$. Let x and y denote the fixed points of the linear fractional transformation $t(w)$. Then $t(w)$ is called
(i) parabolic,
if $x=y$,
(ii) elliptic,
if $x \neq y$ and $|1+x|=|1+y|$,
(iii) loxodromic,
if $x \neq y$ and $|1+x| \neq|1+y|$.

In case (iii), if $|1+x|>|1+y|$, then $\lim _{n \rightarrow \infty} t^{n}(w)=x$ for all $w \neq y, x$ is called the attractive fixed point of $t(w)$ and y is called the repulsive fixed point of $t(w)$.

Remark: The above definitions are usually given for more general linear fractional transformations but we do not need this full generality here.

The fixed points of $t(w)=c /(1+w)$ are $x=(-1+\sqrt{1+4 c}) / 2$ and $y=(-1+\sqrt{1+4 c}) / 2$. It is easy to see that $t(w)$ is parabolic only in the case $c=-1 / 4$, that it is elliptic only when c is a real number in the interval $(-\infty,-1 / 4)$ and that it is loxodromic for all other values of c.

Let $\hat{\mathbb{C}}$ denote the extended complex plane. From [7], pp. 150-151, one has the following theorem.

Theorem 1. Suppose $1+K_{n=1}^{\infty} a_{n} / 1$ is limit 1-periodic, with $\lim _{n \rightarrow \infty} a_{n}=$ $c \neq 0$. If $t(w)=c /(1+w)$ is loxodromic, then $1+K_{n=1}^{\infty} a_{n} / 1$ converges to a value $f \in \widehat{\mathbb{C}}$.

Remark: In the cases where $t(w)$ is parabolic or elliptic, whether $1+$ $K_{n=1}^{\infty} a_{n} / 1$ converges or diverges depends on how the a_{n} converge to c.

We also make use of Worpitzky's Theorem (see [7], pp. 35-36).
Theorem 2. (Worpitzky) Let the continued fraction $K_{n=1}^{\infty} a_{n} / 1$ be such that $\left|a_{n}\right| \leq 1 / 4$ for $n \geq 1$. Then $K_{n=1}^{\infty} a_{n} / 1$ converges. All approximants of the continued fraction lie in the disc $|w|<1 / 2$ and the value of the continued fraction is in the disk $|w| \leq 1 / 2$.

We first consider continued fractions of the form

$$
\begin{aligned}
G(q): & =1+K_{n=1}^{\infty} \frac{a_{n}(q)}{1}:=1+\frac{f_{1}\left(q^{0}\right)}{1}+\cdots+\frac{f_{k}\left(q^{0}\right)}{1} \\
& +\frac{f_{1}\left(q^{1}\right)}{1}+\cdots+\frac{f_{k}\left(q^{1}\right)}{1}+\cdots+\frac{f_{1}\left(q^{n}\right)}{1}+\cdots+\frac{f_{k}\left(q^{n}\right)}{1}+\cdots
\end{aligned}
$$

where $f_{s}(x) \in \mathbb{Z}[q][x]$, for $1 \leq s \leq k$. Thus, for $n \geq 0$ and $1 \leq s \leq k$,

$$
\begin{equation*}
a_{n k+s}(q)=f_{s}\left(q^{n}\right) \tag{2.4}
\end{equation*}
$$

Many well-known q-continued fractions, including the Rogers-Ramanujan continued fraction and the three Ramanujan-Selberg continued fractions are of this form, with k at most 2 . Following the example of these four continued fractions, we make the additional assumptions that, for $i \geq 1$,

$$
\begin{equation*}
\operatorname{degree}\left(a_{i+1}(q)\right)=\operatorname{degree}\left(a_{i}(q)\right)+m \tag{2.5}
\end{equation*}
$$

where m is a fixed positive integer, and that all of the polynomials $a_{n}(q)$ have the same leading coefficient. We prove the following theorem.

Theorem 3. Suppose $G(q)=1+K_{n=1}^{\infty} a_{n}(q) / 1$ is such that the $a_{n}:=a_{n}(q)$ satisfy (2.4) and (2.5). Suppose further that each $a_{n}(q)$ has the same leading coefficient. If $|q|>1$ then the odd and even parts of $G(q)$ both converge.

Remark: Worpitzky's Theorem gives only that odd- and even parts of $G(q)$ converge for those q satisfying $\left|\left(1+q^{m}\right)\left(1+q^{-m}\right)\right|>4$, a clearly weaker result.

Proof. Let $|q|>1$. For ease of notation we write a_{n} for $a_{n}(q)$. By (2.1), the even part of $G(q)$ is given by

$$
\begin{aligned}
& G_{e}(q):=1+\frac{a_{1}}{1+a_{2}}-\frac{a_{2} a_{3}}{a_{4}+a_{3}+1}-\frac{a_{4} a_{5}}{a_{6}+a_{5}+1}-\cdots \\
& \approx 1+\frac{a_{2} a_{3}}{1+a_{2}} \\
& \approx \frac{a_{1}}{1}-\frac{a_{4} a_{5}}{\left(1+a_{2}\right)\left(a_{4}+a_{3}+1\right)} \\
& =1+K_{n=1}^{\infty} \frac{c_{n}}{1}
\end{aligned}
$$

where, for $n \geq 3$,

$$
c_{n}=\frac{a_{2 n-2} a_{2 n-1}}{\left(a_{2 n-2}+a_{2 n-3}+1\right)\left(a_{2 n}+a_{2 n-1}+1\right)}
$$

By (2.5), the fact that each of the $a_{i}(q)$'s has the same leading coefficient and the fact that if $|q|>1$ then $\lim _{i \rightarrow \infty} 1 / a_{i}=0$, it follows that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} c_{n} & =\lim _{n \rightarrow \infty} \frac{1}{\left(1+a_{2 n-3} / a_{2 n-2}+1 / a_{2 n-2}\right)\left(a_{2 n} / a_{2 n-1}+1+1 / a_{2 n-1}\right)} \\
& =\frac{1}{\left(1+q^{m}\right)\left(1+q^{-m}\right)}:=c .
\end{aligned}
$$

Hence $G_{e}(q)$ is limit 1-periodic. Note that the value of c depends on q.
Let the fixed points of $t(w)=c /(1+w)$ be denoted x and y. From the remarks following (2.3), it is clear that $t(w)$ is parabolic only in the case $-1 /\left(\left(1+q^{m}\right)\left(1+q^{-m}\right)\right)=-1 / 4$. The only solution to this equation is $q^{m}=1$, so that $t(w)$ is not parabolic for any point outside the unit circle.

Similarly, $t(w)$ is elliptic only when $-1 /\left(\left(1+q^{m}\right)\left(1+q^{-m}\right)=-1 / 4-v\right.$, for some real positive number v. The solutions to this equation satisfy $q^{m}=(i+\sqrt{v}) /(i-\sqrt{v})$ or $q^{m}=(i-\sqrt{v}) /(i+\sqrt{v})$. However, it is easily seen that these are points on the unit circle.

In all other cases $t(w)$ is loxodromic and $G_{e}(q)$ converges in $\hat{\mathbb{C}}$. This proves the result for $G_{e}(q)$.

Similarly, by (2.2), the odd part of $G(q)$ is given by

$$
G_{o}(q):=\frac{1+a_{1}}{1}-\frac{a_{1} a_{2}}{a_{3}+a_{2}+1}-\frac{a_{3} a_{4}}{a_{5}+a_{4}+1}-\frac{a_{5} a_{6}}{a_{7}+a_{6}+1}-\ldots
$$

The proof in this case is virtually identical.
As an application of the above theorem, we have the following example.
Example 1. If $|q|>1$, then the odd and even parts of

$$
\begin{aligned}
& G(q)=1+\frac{6 q}{1}+\frac{3 q^{2}+7 q}{1}+\frac{3 q^{3}+5 q^{2}}{1}+\frac{q^{4}+7 q^{3}+3 q+2}{1}+ \\
& \frac{q^{5}+3 q^{4}+2 q^{3}}{1}+\frac{q^{6}+2 q^{5}+7 q^{3}}{1}+\frac{q^{7}+7 q^{5}}{1}+\frac{q^{8}+7 q^{6}+3 q^{3}+2 q}{1}+\cdots \\
& \cdots+\frac{q^{4 n+1}+3 q^{3 n+1}+2 q^{2 n+1}}{1}+\frac{q^{4 n+2}+2 q^{3 n+2}+7 q^{2 n+1}}{1}+\cdots \\
& +\frac{q^{4 n+3}+5 q^{3 n+2}+2 q^{2 n+3}}{1}+\frac{q^{4 n+4}+7 q^{3 n+3}+3 q^{2 n+1}+2 q^{n}}{1}+\cdots
\end{aligned}
$$

Proof. Let $k=4$ and

$$
\begin{aligned}
& f_{1}(x)=q x^{4}+3 q x^{3}+2 q x^{2}, \\
& f_{2}(x)=q^{2} x^{4}+2 q^{2} x^{3}+7 q x^{2}, \\
& f_{3}(x)=q^{3} x^{4}+5 q^{2} x^{3}+2 q^{3} x^{2}, \\
& f_{4}(x)=q^{4} x^{4}+7 q^{3} x^{3}+3 q x^{2}+2 x .
\end{aligned}
$$

Then, for $n \geq 0$ and $1 \leq j \leq 4$,

$$
a_{4 n+j}(q)=f_{j}\left(q^{n}\right)
$$

Thus (2.4) is satisfied. It is clear that (2.5) is satisfied with $M=1$ and each $a_{n}(q)$ has the same leading coefficient, namely, 1.

Remark: It is clear form Theorem 3 that if $k=1$ and $f_{i}(x)$ is any polynomial with coefficients in $\mathbb{Z}[q]$, then the odd and even parts of $1+$ $K_{n=0}^{\infty} f_{1}\left(q^{n}\right) / 1$ converge everywhere outside the unit circle to values in $\hat{\mathbb{C}}$, since all the conditions of the theorem are satisfied automatically, at least for a tail of the continued fraction.

We also consider continued fractions of the form

$$
\begin{aligned}
& G(q):=b_{0}(q)+K_{n=1}^{\infty} \frac{a_{n}(q)}{b_{n}(q)} \\
&:=g_{0}\left(q^{0}\right)+\frac{f_{1}\left(q^{0}\right)}{g_{1}\left(q^{0}\right)}+\cdots+\frac{f_{k-1}\left(q^{0}\right)}{g_{k-1}\left(q^{0}\right)}+\frac{f_{k}\left(q^{0}\right)}{g_{0}\left(q^{1}\right)} \\
&+\frac{f_{1}\left(q^{1}\right)}{g_{1}\left(q^{1}\right)}+\cdots+\frac{f_{k-1}\left(q^{1}\right)}{g_{k-1}\left(q^{1}\right)}+\frac{f_{k}\left(q^{1}\right)}{g_{0}\left(q^{2}\right)}+ \\
& \cdots+\frac{f_{k}\left(q^{n-1}\right)}{g_{0}\left(q^{n}\right)}+\frac{f_{1}\left(q^{n}\right)}{g_{1}\left(q^{n}\right)}+\cdots+\frac{f_{k-1}\left(q^{n}\right)}{g_{k-1}\left(q^{n}\right)}+\frac{f_{k}\left(q^{n}\right)}{g_{0}\left(q^{n+1}\right)}+\cdots
\end{aligned}
$$

where $f_{s}(x), g_{s-1}(x) \in \mathbb{Z}[q][x]$, for $1 \leq s \leq k$. Thus, for $n \geq 0$ and $1 \leq s \leq k$,

$$
\begin{equation*}
a_{n k+s}(q)=f_{s}\left(q^{n}\right), \quad b_{n k+s-1}(q)=g_{s-1}\left(q^{n}\right) \tag{2.6}
\end{equation*}
$$

An example of a continued fraction of this type is the Göllnitz-Gordon continued fraction (with $k=1$).

We suppose that degree $\left(a_{1}(q)\right)=r_{1}$, degree $\left(b_{0}(q)\right)=r_{2}$, and that, for $i \geq 1$,

$$
\begin{align*}
\operatorname{degree}\left(a_{i+1}(q)\right) & =\operatorname{degree}\left(a_{i}(q)\right)+a \tag{2.7}\\
\operatorname{degree}\left(b_{i}(q)\right) & =\operatorname{degree}\left(b_{i-1}(q)\right)+b
\end{align*}
$$

where a and b are fixed positive integers and r_{1} and r_{2} are non-negative integers. Condition 2.7 means that, for $n \geq 1$,

$$
\begin{equation*}
\operatorname{degree}\left(a_{n}(q)\right)=(n-1) a+r_{1}, \quad \operatorname{degree}\left(b_{n}(q)\right)=n b+r_{2} \tag{2.8}
\end{equation*}
$$

We also supposed that each $a_{n}(q)$ has the same leading coefficient L_{a} and that each $b_{n}(q)$ has the same leading coefficient L_{b}.

For such continued fractions we have the following theorem.
Theorem 4. Suppose $G(q)=b_{o}+K_{n=1}^{\infty} a_{n}(q) / b_{n}(q)$ is such that the $a_{n}:=$ $a_{n}(q)$ and the $b_{n}:=b_{n}(q)$ satisfy (2.6) and (2.7). Suppose further that each $a_{n}(q)$ has the same leading coefficient L_{a} and that each $b_{n}(q)$ has the same leading coefficient L_{b}. If $2 b>a$ then $G(q)$ converges everywhere outside the unit circle. If $2 b=a$, then $G(q)$ converges outside the unit circle to values in $\hat{\mathbb{C}}$, except possibly at points q satisfying $L_{b}^{2} / L_{a} q^{b-r_{1}+2 r_{2}} \in[-4,0)$. If $2 b<a$, then the odd and even parts of $G(q)$ converge everywhere outside the unit circle.

Proof. . Let $|q|>1$. We first consider the case $2 b>a$. By a simple transformation, we have that

$$
b_{0}+K_{n=1}^{\infty} \frac{a_{n}}{b_{n}} \approx b_{0}+\frac{a_{1} / b_{1}}{1}+K_{n=2}^{\infty} \frac{a_{n} /\left(b_{n} b_{n-1}\right)}{1}
$$

Since $2 b>a, a_{n} /\left(b_{n} b_{n-1}\right) \rightarrow 0$ as $n \rightarrow \infty$, and $G(q)$ converges to a value in $\hat{\mathbb{C}}$, by Worpitzky's theorem.

Suppose $2 b=a$. Then, by $(2.7),(2.8)$ and the fact that each $a_{n}(q)$ has the same leading coefficient L_{a} and that each $b_{n}(q)$ has the same leading coefficient L_{b},

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n} b_{n-1}}=\frac{L_{a}}{L_{b}^{2} q^{b-r_{1}+2 r_{2}}}:=c
$$

Note once again that the value of c depends on q. Once again, by the remarks following (2.3), the linear fractional transformation $t(w)=c /(1+$ $w)$ is parabolic only in the case $L_{a} /\left(L_{b}^{2} q^{b-r_{1}+2 r_{2}}\right)=-1 / 4$ or $q^{b-r_{1}+2 r_{2}}=$ $-4 L_{a} / L_{b}^{2}$.

Similarly, $t(w)$ is elliptic only when $q^{-b+r_{1}-2 r_{2}} L_{a} / L_{b}{ }^{2} \in(-\infty,-1 / 4)$, or

$$
q^{b-r_{1}+2 r_{2}}=\frac{-4 L_{a}}{(1+4 v) L_{b}^{2}}
$$

for some real positive number v. In other words, $t(w)$ is elliptic (for $|q|>$ 1) only when $q^{b-r_{1}+2 r_{2}}$ lies either in the open interval $\left(-4 L_{a} / L_{b}^{2}, 0\right)$ or $\left(0,-4 L_{a} / L_{b}^{2}\right)$, depending on the sign of L_{a}. In all other cases, $t(w)$ is loxodromic, and $G(q)$ converges.

Suppose $2 b<a$. From (2.1) it is clear that the even part of $G(q)=$ $b_{0}+K_{n=1}^{\infty} a_{n} / b_{n}$ can be transformed into the form $b_{0}+K_{n=1}^{\infty} c_{n} / 1$, where, for $n \geq 3$,

$$
\begin{aligned}
& c_{n}=\frac{-a_{2 n-2} a_{2 n-1} \frac{b_{2 n}}{b_{2 n-2}}}{\left(a_{2 n-2}+b_{2 n-3} b_{2 n-2}+a_{2 n-3} \frac{b_{2 n-2}}{b_{2 n-4}}\right)\left(a_{2 n}+b_{2 n-1} b_{2 n}+a_{2 n-1} \frac{b_{2 n}}{b_{2 n-2}}\right)} \\
&=\frac{-a_{2 n-1} b_{2 n}}{a_{2 n} b_{2 n-2}} \\
&\left(1+\frac{b_{2 n-3} b_{2 n-2}}{a_{2 n-2}}+\frac{a_{2 n-3} b_{2 n-2}}{a_{2 n-2} b_{2 n-4}}\right)\left(1+\frac{b_{2 n-1} b_{2 n}}{a_{2 n}}+\frac{a_{2 n-1} b_{2 n}}{a_{2 n} b_{2 n-2}}\right)
\end{aligned}
$$

Once again using (2.7), (2.8) and the fact that each $a_{n}(q)$ has the same leading coefficient L_{a} and that each $b_{n}(q)$ has the same leading coefficient L_{b}, we have that

$$
\lim _{n \rightarrow \infty} c_{n}=-\frac{q^{2 b-a}}{\left(1+q^{2 b-a}\right)^{2}}:=c
$$

The linear fractional transformation $t(w)=c /(1+w)$ is parabolic only in the case $-q^{2 b-a} /\left(1+q^{2 b-a}\right)^{2}=-1 / 4$ or $q^{2 b-a}=1$, and thus $|q|=1$. It is elliptic only when $-q^{2 b-a} /\left(1+q^{2 b-a}\right)^{2} \in(-\infty,-1 / 4)$, and a simple argument shows that this implies that $\left|q^{2 b-a}\right|=1$, and again $|q|=1$.

In all other cases $t(w)$ is loxodromic, and the even part of $G(q)$ converges by Theorem 1.

The proof for the odd part of $G(q)$ is very similar and is omitted.
Remarks: (1) Worpitzky's Theorem once again gives weaker results. In the example below, for example, Worpitzky's Theorem gives that $G(q)$ converges for $|q|>4$, in contrast to the result from our theorem, which says that $G(q)$ converges everywhere outside the unit circle, except possibly for $q \in[-4,-1)$.
(2) In some cases the result is the best possible. Numerical evidence suggests that the continued fraction below converges nowhere in the interval $(-4,-1)$.

As an application of Theorem 4, we have the following example.
Example 2. If $|q|>1$, then

$$
\begin{gathered}
G(q)=q+2+\frac{6 q^{2}}{q^{2}+2}+\frac{3 q^{4}+7 q^{2}}{q^{3}+2}+\frac{3 q^{6}+5 q^{4}}{q^{4}+2}+\frac{q^{8}+7 q^{6}+3 q^{2}+2}{q^{5}+q+1}+ \\
\frac{q^{10}+3 q^{8}+2 q^{6}}{q^{6}+q^{2}+1}+\frac{q^{12}+2 q^{10}+7 q^{6}}{q^{7}+q^{2}+1}+\frac{q^{14}+7 q^{10}}{q^{8}+q^{3}}+\frac{q^{16}+7 q^{12}+3 q^{6}+2 q^{2}}{q^{9}+q^{2}+1} \\
\quad+\cdots+\frac{q^{8 n+2}+3 q^{6 n+2}+2 q^{4 n+2}}{q^{4 n+2}+q^{2 n}+1}+\frac{q^{8 n+4}+2 q^{6 n+4}+7 q^{4 n+2}}{q^{4 n+3}+q^{2 n}+1} \\
\quad+\frac{q^{8 n+6}+5 q^{6 n+4}+2 q^{4 n+6}}{q^{4 n+4}+q^{3 n}+1}+\frac{q^{8 n+8}+7 q^{6 n+6}+3 q^{4 n+2}+2 q^{2 n}}{q^{4(n+1)+1}+q^{n+1}+1}+\cdots
\end{gathered}
$$

converges, except possibly for $q \in[-4,-1)$.
Proof. Let $k=4$ and

$$
\begin{aligned}
& f_{1}(x)=q^{2} x^{8}+3 q^{2} x^{6}+2 q^{2} x^{4} \\
& f_{2}(x)=q^{4} x^{8}+2 q^{4} x^{6}+7 q^{2} x^{4} \\
& f_{3}(x)=q^{6} x^{8}+5 q^{4} x^{6}+2 q^{6} x^{4} \\
& f_{4}(x)=q^{8} x^{8}+7 q^{6} x^{6}+3 q^{2} x^{4}+x^{2} \\
& g_{0}(x)=q x^{4}+x+1 \\
& g_{1}(x)=q^{2} x^{4}+x^{2}+1 \\
& g_{2}(x)=q^{3} x^{4}+x^{2}+1 \\
& g_{3}(x)=q^{4} x^{4}+x^{3}+1
\end{aligned}
$$

Then, for $n \geq 0$ and $1 \leq j \leq 4$,

$$
\begin{aligned}
a_{4 n+j}(q) & =f_{j}\left(q^{n}\right) \\
b_{4 n+j-1}(q) & =g_{j-1}\left(q^{n}\right)
\end{aligned}
$$

The other requirements of the theorem are satisfied, with $L_{a}=L_{b}=1$, $a=2, b=1, r_{1}=2$ and $r_{2}=1$. Therefore $b-r_{1}+2 r_{2}=1, L_{a} / L_{b}^{2}=1$ and $G(q)$ converges outside the unit circle, except possibly for $q \in[-4,-1)$.

References

[1] Andrews, G. E.; Berndt, Bruce C.; Jacobsen, Lisa; Lamphere, Robert L. The continued fractions found in the unorganized portions of Ramanujan's notebooks. Mem. Amer. Math. Soc. 99 (1992), no. 477, vi+71pp
[2] Bowman, D; Mc Laughlin, J On the Divergence of the Rogers-Ramanujan Continued Fraction on the Unit Circle. To appear in the Transactions of the American Mathematical Society.
[3] Bowman, D; Mc Laughlin, J On the Divergence of q-Continued Fraction on the Unit Circle. Submitted for publication.
[4] Bowman, D; Mc Laughlin, J On the Divergence in the General Sense of q-Continued Fraction on the Unit Circle. Submitted for publication.
[5] Jacobsen, Lisa General convergence of continued fractions. Trans. Amer. Math. Soc. 294 (1986), no. 2, 477-485.
[6] William B. Jones and W.J. Thron, Continued Fractions Analytic Theory and Applications, Addison-Wesley, London-Amsterdam-Ontario-Sydney-Tokyo,1980.
[7] Lorentzen, Lisa; Waadeland, Haakon Continued fractions with applications. Studies in Computational Mathematics, 3. North-Holland Publishing Co., Amsterdam, 1992, pp 35-36.
[8] Zhang, Liang Cheng q-difference equations and Ramanujan-Selberg continued fractions. Acta Arith. 57 (1991), no. 4, 307-355.

Department Of Mathematical Sciences, Northern Illinois University, De KALB, IL 60115

E-mail address: bowman@math.niu.edu
Mathematics Department, Trinity College, 300 Summit Street, Hartford, CT 06106-3100

E-mail address: james.mclaughlin@trincoll.edu

