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SOME OBSERVATIONS ON KHOVANSKII’S MATRIX
METHODS FOR EXTRACTING ROOTS OF

POLYNOMIALS

J. MC LAUGHLIN AND B. SURY

Abstract. In this article we apply a formula for the n-th power of a
3×3 matrix (found previously by the authors) to investigate a procedure
of Khovanskii’s for finding the cube root of a positive integer.

We show, for each positive integer α, how to construct certain families
of integer sequences such that a certain rational expression, involving the
ratio of successive terms in each family, tends to α1/3. We also show
how to choose the optimal value of a free parameter to get maximum
speed of convergence.

We apply a similar method, also due to Khovanskii, to a more general
class of cubic equations, and, for each such cubic, obtain a sequence of
rationals that converge to the real root of the cubic.

We prove that Khovanskii’s method for finding the m-th (m ≥ 4)
root of a positive integer works, provided a free parameter is chosen to
satisfy a very simple condition.

Finally, we briefly consider another procedure of Khovanskii’s, which
also involves m×m matrices, for approximating the root of an arbitrary
polynomial of degree m.

1. Introduction

In [1] Khovanskii described a method which uses powers of 3×3 matrices
to approximate cube roots of integers. More precisely, let α be a positive
integer whose cube root is desired and let a be an arbitrary integer. Define
the matrix A by

(1.1) A =

a α α
1 a α
1 1 a

 .

and let An,i,j denote the (i, j)-th entry of An. Suppose

lim
n→∞

An,1,1

An,3,1
= x, lim

n→∞

An,2,1

An,3,1
= y,(1.2)

where x and y are finite and x + y + 1 6= 0. Then x = 3
√

α2 and y = 3
√

α.
Khovanskii did not give conditions which insure the convergence of the

sequences above. Also, he did not investigate the speed of convergence or
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2 J. MC LAUGHLIN AND B. SURY

the question of the optimal choice of the integer a to ensure the most rapid
convergence. Further, there is the difficulty that is necessary to compute
the powers of the matrix A.

In this present paper we show that the sequences {An,1,1/An,3,1}∞n=1,
{An,2,1/An,3,1}∞n=1 converge for all integers a greater than a certain explicit
lower bound. We also determine, for a given α, the choice of a which
insures the most rapid convergence. We also give precise estimates for
|An,2,1/An,3,1 − α1/3|, for this optimal choice of a. Finally, we employ a
closed formula for the n-th power of a 3 × 3 matrix from our paper [2],
which actually makes it unnecessary to perform the matrix multiplications.
We have the following theorems.

Theorem 2. Let α > 1 be an integer and a be any integer such that

a > − α2/3

1 + α1/3
.

Set

an =∑
i,j

(−1)i

(
i + j

j

)(
n− i− 2j

i + j

)
(3a)n−2i−3j(3a2−3α)i(a3 +α−3aα+α2)j .

Then

lim
n→∞

1 +
α− 1

an

an−1
− a + 1

= α1/3.

Note that the limit is independent of the choice of the parameter a.
Theorem 3. Let α and a be as described in Theorem 2. Let the matrix

A be as described at (1.1). Then the choice of a which gives the most rapid
convergence is one of the two integers closest to

ā =
α1/3 + α

1 + α1/3
.

For this choice of a and n ≥ 3,

An, 2, 1

An, 3, 1
−α1/3 =

(
(ω − 1) ω

((
−ω

2

)n

−
(
−ω2

2

)n)
+

nδ3

2nα1/3
+

δ4

22n

)
α1/3,

where ω = exp(2πı/3), |δ3| ≤ 8 and |δ4| ≤ 48.
We also investigate two other procedures due to Khovanskii. One is a

method for finding a root of x3−p x−q and the other is a method for finding
α1/m, where α and m are arbitrary positive integers. Again, Khovanskii’s
methods rely on certain ratios converging, and he did not give any conditions
which guarantee convergence. We give criteria which insure convergence. In
the case of x3 − p x − q, we again prove a result which makes the actual
matrix multiplications unnecessary. We have the following theorems.
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Theorem 4. Let p > 0, q > 0 be integers such that 27q2 − 4p3 > 0.
Define

an =
∑

2i+3j≤n

(
i + j

j

)(
n− i− 2j

i + j

)
3n−2i−3j(3− p)i(q − p + 1)j .

Then
(1.3)

−1 + lim
n→∞

an

an−1
=

(2/3)1/3 p(
9 q +

√
81 q2 − 12 p3

)1/3
+

(
9 q +

√
81 q2 − 12 p3

)1/3

21/3 32/3
,

the real root of f(x) = x3 − px− q.

Let a, α and m ≥ 4 be integers and consider the m×m matrix

(1.4) A =



a α α α . . . α
1 a α α . . . α
1 1 a α . . . α
...

...
...

. . .
...

...
1 1 1 . . . a α
1 1 1 . . . 1 a


.

We also prove the following.
Theorem 5 Let A be the m×m matrix defined above at (1.4). Let An, i, j

denote the (i, j) entry of An and suppose a > 0. Then

lim
n→∞

An, i, j

An, u, v
= α(j+u−i−v)/m.

Some of the work in this paper relies heavily on results proved in our
paper [2]:

Theorem 1. Suppose A ∈ Mk(K) and let

T k − s1T
k−1 + s2T

k−2 + · · ·+ (−1)ksk I

denote its characteristic polynomial. Then, for all n ≥ k, one has

An = bk−1A
k−1 + bk−2A

k−2 + · · ·+ b0 I,

where

bk−1 = a(n− k + 1),

bk−2 = a(n− k + 2)− s1a(n− k + 1),
...

b1 = a(n− 1)− s1a(n− 2) + · · ·+ (−1)k−2sk−2a(n− k + 1),

b0 = a(n)− s1a(n− 1) + · · ·+ (−1)k−1sk−1a(n− k + 1)

= (−1)k−1ska(n− k).
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and

a(n) = c(i2, · · · , ik, n)sn−i2−2i3−···−(k−1)ik
1 (−s2)i2si3

3 · · · ((−1)k−1sk)ik ,

with

c(i2, · · · , ik, n) =
(n− i2 − 2i3 − · · · − (k − 1)ik)!

i2! · · · ik!(n− 2i2 − 3i3 − · · · − (kik)!
.

For the case k = 3 we get the following corollary.

Corollary 1. (i) Let A ∈ M3(K) and let X3 = tX2 − sX + d denote the
characteristic polynomial of A. Then, for all n ≥ 3,

(1.5) An = an−1A + an−2Adj(A) + (an − tan−1) I,

where

an =
∑

2i+3j≤n

(−1)i

(
i + j

j

)(
n− i− 2j

i + j

)
tn−2i−3jsidj

for n > 0 and a0 = 1.

We use this corollary in conjunction with Khovanskii’s ideas to determine
sequences of rational approximations to the real root of certain types of
polynomials.

2. Approximating Cube roots of Positive Integers

We next prove Theorem 2.

Theorem 2. Let α > 1 be an integer and a be any integer such that

(2.1) a > − α2/3

1 + α1/3
.

Set

an =∑
i,j

(−1)i

(
i + j

j

)(
n− i− 2j

i + j

)
(3a)n−2i−3j(3a2−3α)i(a3 +α−3aα+α2)j .

Then

(2.2) lim
n→∞

1 +
α− 1

an

an−1
− a + 1

= α1/3.

Proof. Let ω := exp(2πı/3) and set

A =

a α α
1 a α
1 1 a

 .
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The eigenvalues of A are

β1 = a + α1/3 + α2/3,(2.3)

β2 = a + α1/3 ω + α2/3 ω2,

β3 = a + α2/3 ω + α1/3 ω2.

Note that β1 is positive for any a satisfying (2.1). Further, for such a,∣∣∣∣β2

β1

∣∣∣∣2 =
∣∣∣∣β3

β1

∣∣∣∣2 =
β2β3

β2
1

=
a2 − aα1/3 + α2/3 − aα2/3 − α + α4/3(

a + α1/3 + α2/3
)2 < 1,

so that β1 > |β2| = |β3|. Let

M =

α2/3 α2/3 ω2 α2/3 ω

α1/3 α1/3 ω α1/3 ω2

1 1 1

 , D =

β1 0 0
0 β2 0
0 0 β3

 .

Then A = M D M−1 and so

An = M Dn M−1 =
β1

n+β2
n+β3

n

3

α1/3 (β1
n+ω β2

n+ω2 β3
n)

3

α2/3 (β1
n+ω2 β2

n+ω β3
n)

3

β1
n+ω2 β2

n+ω β3
n

3 α1/3
β1

n+β2
n+β3

n

3

α1/3 (β1
n+ω β2

n+ω2 β3
n)

3

β1
n+ω β2

n+ω2 β3
n

3 α2/3
β1

n+ω2 β2
n+ω β3

n

3 α1/3
β1

n+β2
n+β3

n

3

 .

Let An, i, j denote the (i, j)-th entry of An. It is now easy to see (since
β1 > |β2| = |β3|) that

(2.4) lim
n→∞

An, 2, 1

An, 3, 1
= α1/3 lim

n→∞

β1
n + ω2 β2

n + ω β3
n

β1
n + ω β2

n + ω2 β3
n = α1/3.

On the other hand, the characteristic polynomial of A is

X3 = 3 aX2 − (3a2 − 3α)X + a3 + α− 3aα + α2.

It follows from Corollary 1, that if t = 3a, s = 3a2−3α, d = a3+α−3aα+α2

and

an =
∑

2i+3j≤n

(−1)i

(
i + j

j

)(
n− i− 2j

i + j

)
tn−2i−3jsidj ,

γn :=
(
a3 + α− 3 aα + α2

)
a−3+n − 2

(
a2 − α

)
a−2+n + a a−1+n,

δn := (−a + α) a−2+n + a−1+n,

ρn := (1− a) a−2+n + a−1+n,
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then

An =

γn αρn αδn

δn γn αρn

ρn δn γn

 .

Thus (2.2) now follows by comparing limn→∞ δn/ρn with the limit found
above. �

Remarks: (a) Note that the limit in (2.2) is independent of the choice of
a, so that various corollaries can be obtained from particular choices of a.
(b) A similar method can be used to approximate square roots and roots of
higher order (see Section 4).
(c) The pairs (1, 2) and (1, 3) in (2.4) can be replaced by other pairs to give
limits of the form αj/3, −4 ≤ j ≤ 4.

Corollary 2. Let α be a positive integer. Set

an =
∑

2i+3j≤n

(
i + j

j

)(
n− i− 2j

i + j

)
3n−i−3j(α− 1)i+2j .

Then
lim

n→∞
1 + (α− 1)

an−1

an
= α1/3.

Proof. Let a = 1 in Theorem 2. �

Corollary 3. Let α be a positive integer. Set

an =
n∑

i=0

(
2n + i

2n− 2i

)
33iα2n+i(α + 1)2n−2i,

bn =
n−1∑
i=0

(
2n + i

2n− 2i− 1

)
33i+1α2n+i(α + 1)2n−2i−1.

Then

lim
n→∞

1 +
α− 1
an

bn
+ 1

= α1/3.

Proof. Let a = 0 and replace n by 6n in Theorem 2. �

Corollary 4. Let α be a positive integer. Set

an =
bn/3c∑
i=0

(
n− 2i

i

)
3n−3iαn−i(α− 1)2i.

Then

lim
n→∞

1 +
α2 − 1

an

an−1
− α + 1

= α2/3.

Proof. Replace α by α2 and then let a = α in Theorem 2. �
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It is clear from (2.4) that the smaller the ratios |β2/β1| = |β3/β1|, the
faster will be the rate of convergence in (2.2). It is also clear from (2.3)
that these ratios can be made arbitrarily close to 1 by choosing a arbitrarily
large. We are interested in how small this ratio can be made (to get fastest
convergence) and what is the optimal choice of a for a given α to produce
this smallest ratio.

Theorem 3. Let α and a be as described in Theorem 2. Let the matrix A
be as described at (1.1). Then the choice of a which gives the most rapid
convergence is one of the two integers closest to

(2.5) ā =
α1/3 + α

1 + α1/3
.

For this choice of a and n ≥ 3,
(2.6)
An, 2, 1

An, 3, 1
−α1/3 =

(
(ω − 1) ω

((
−ω

2

)n

−
(
−ω2

2

)n)
+

nδ3

2nα1/3
+

δ4

22n

)
α1/3,

where ω = exp(2πı/3), |δ3| ≤ 8 and |δ4| ≤ 48.

Proof. For the moment we consider a to be a real variable and define

h(a) =
∣∣∣∣β2

β1

∣∣∣∣2 =
∣∣∣∣β3

β1

∣∣∣∣2 =
β2β3

β2
1

=
a2 − aα1/3 + α2/3 − aα2/3 − α + α4/3(

a + α1/3 + α2/3
)2 .

The function h(a) achieves its minimum at

a = ā :=
α1/3 + α

1 + α1/3
and h(ā) =

(
−1 + α1/3

)2

4
(
1 + α1/3 + α2/3

) .

Hence for large α the best possible choice of a is one of the two integers
closest to ā, say

a′ =
α1/3 + α

1 + α1/3
+ η,

with |η| < 1. With this choice,

β2β3

β2
1

=
1
4
− 3

4

(
1 + α1/3 + α2/3

)
4 α +

(
1 + α1/3

)
η

(
4 α2/3 − η − α1/3 η

)(
2

(
1 + α1/3 + α2/3

)
α1/3 +

(
1 + α1/3

)
η
)2

=:
1
4

+
3
4
g(η).

Next, considering g(η) as a function of η,

g′(η) =
4

(
1 + α1/3

)4
α1/3 η(

2 α1/3 + 2 α2/3 + 2 α + η + α1/3 η
)3

Thus, since g′(0) = 0 and g(1) < g(−1),
1
4

+
3
4
g(0) ≤ β2β3

β2
1

≤ 1
4

+
3
4
g(−1),
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or

1
4
− 3

4
α1/3(

1 + α1/3 + α2/3
) ≤ β2β3

β2
1

≤

1
4
− 3

4

(
−1 + α1/3

) (
1 + 3 α1/3 + 8 α2/3 + 8 α + 4 α4/3

)(
−1 + α1/3 + 2 α2/3 + 2 α

)2 .

Thus β2β3/β2
1 < 1/4 or |β2/β1| = |β3/β1| < 1/2, for α > 1.

β2

β1
=

α1/3 − α2/3 + η + α1/3 η + α1/3 ω − α ω

2 α1/3 + 2 α2/3 + 2 α + η + α1/3 η

= −ω

2
+

δ1

α1/3
,

β3

β1
=
−α2/3 + α + η + α1/3 η − α1/3 ω + α ω

2 α1/3 + 2 α2/3 + 2 α + η + α1/3 η

= −ω2

2
+

δ2

α1/3
,

where |δ1|, |δ2| < 1. (We omit the details of these calculations. The first
equation is simply solved for δ1, the solution is multiplied by its conjugate
δ1 = δ2, the resulting real number is shown to be monotone decreasing as
a function of η by differentiating with respect to η, and finally it is shown
that δ1δ1 < 1 at η = −1.)

Note that these ratios |β2/β1| = |β3/β1| increase quite slowly with α:
|β2/β1| < 0.45, for α < 3000, for example. Returning to large α,

An, 2, 1

An, 3, 1
− α1/3 =

(
β1

n + ω2 β2
n + ω β3

n

β1
n + ω β2

n + ω2 β3
n − 1

)
α1/3

(2.7)

=
(1− ω) ω (−β2

n + β3
n)

β1
n + ω β2

n + ω2 β3
n α1/3

=
(

(ω − 1) ω

((
−ω

2

)n

−
(
−ω2

2

)n)
+

nδ3

2nα1/3
+

δ4

22n

)
α1/3,

where |δ3| ≤ 8 and |δ4| ≤ 48. �

Remark: Note that for n ≥ 3 and α > 24n, we have the following:

(2.8) 2n

(
An, 2, 1

An, 3, 1 α1/3
− 1

)
=


−3 + Kn

2n , n ≡ 1, 2 ( mod 6),
0 + Kn

2n , n ≡ 3, 6 ( mod 6),
3 + Kn

2n , n ≡ 4, 5 ( mod 6),

where |Kn| < 61.
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3. Approximating the Real Root of an Arbitrary Cubic

If the zeros of a x3 + bx2 + cx + d are β1, β2 and β3, then the zeros of
x3 + (9ac− 3b2)x + 2b3 − 9abc + 27a2d are 3aβ1 + b, 3aβ2 + b and 3aβ3 + b.
Thus, in finding the roots of a general cubic equation, it is sufficient to study
cubics of the form f(x) = x3 − px − q. For simplicity, here we restrict to
the case p > 0, q > 0 and 27q2 − 4p3 > 0, so that f(x) has exactly one real
root, which is largest in absolute value. We have the following theorem.

Theorem 4. Let p > 0, q > 0 be integers such that 27q2 − 4p3 > 0. Define

an =
∑

2i+3j≤n

(
i + j

j

)(
n− i− 2j

i + j

)
3n−2i−3j(3− p)i(q − p + 1)j .

Then
(3.1)

−1 + lim
n→∞

an

an−1
=

(2/3)1/3 p(
9 q +

√
81 q2 − 12 p3

)1/3
+

(
9 q +

√
81 q2 − 12 p3

)1/3

21/3 32/3
,

the real root of f(x) = x3 − px− q.

Proof. As before, let ω = exp(2πı/3) and set

A =

1 p q
1 1 0
0 1 1

 .

Define

α =
(2/3)1/3 p(

9 q −
√

81 q2 − 12 p3
)1/3

, β =

(
9 q −

√
81 q2 − 12 p3

)1/3

21/3 32/3
.

The eigenvalues of A are

γ1 = 1 + α + β,(3.2)

γ2 = 1 + α ω2 + β ω,

γ3 = 1 + α ω + β ω2.

Set

M =

(α + β)2 (β ω + α ω2)2 (α ω + β ω2)2

α + β β ω + α ω2 α ω + β ω2

1 1 1


and then

M−1A M =

γ1 0 0
0 γ2 0
0 0 γ3

 .
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Here we use the facts that q = α3 + β3 and p = 3αβ. Clearly

An = M

γn
1 0 0
0 γn

2 0
0 0 γn

3

 M−1.

As before, let An, i j denote the (i, j) entry of An. It is straightforward
to show (preferably after using a computer algebra system like Mathematica
to perform the matrix multiplications) that

An,2,1 =
(−1 + γ1) γ1

n

(γ1 − γ2) (γ1 − γ3)
+

(−1 + γ3) γ3
n

(γ1 − γ3) (γ2 − γ3)
+

(−1 + γ2) γ2
n

(γ1 − γ2) (−γ2 + γ3)
,

An,3,1 =
− (γ2

n γ3) + γ2 γ3
n + γ1

n (−γ2 + γ3) + γ1 (γ2
n − γ3

n)
(γ1 − γ2) (γ1 − γ3) (−γ2 + γ3)

.

Since γ1 > |γ2|, |γ3|, it follows that

(3.3) lim
n→∞

An, 2, 1

An, 3, 1
= γ1 − 1 = α + β.

Next, the real zero of x3 − p x− q = 0 is

(2/3)1/3 p(
9 q +

√
81 q2 − 12 p3

)1/3
+

(
9 q +

√
81 q2 − 12 p3

)1/3

21/3 32/3
,

and some simple algebraic manipulation shows that this is equal to α + β,
so that the limit at (3.3) is indeed equal to this real zero.

Finally, the characteristic polynomial of A is

X3 = 3X2 − (3− p)X + q + 1− p,

so that Corollary 1 gives, after setting t = 3, d = q + 1− p and s = 3− p,

an =
∑

2i+3j≤n

(
i + j

j

)(
n− i− 2j

i + j

)
3n−2i−3j(3− p)i(q − p + 1)j ,

and

εn = (1− p + q) a−3+n + (−2 + p) a−2+n + a−1+n,

that

An =

 εn (q − p) an−2 + p an−1 q (an−1 − an−2)
an−1 − an−2 εn q an−2

an−2 an−1 − an−2 εn − p an−2

 .

The result now follows, after comparing lim→∞ An, 2, 1/An, 3, 1 in the matrix
above with the limit found at (3.3). �
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4. Approximating roots of Arbitrary order of a positive
integer

Khovanskii shows that the method of section 2 extends to roots of arbi-
trary order m, by considering the m×m matrix

(4.1) A =



a α α α . . . α
1 a α α . . . α
1 1 a α . . . α
...

...
...

. . .
...

...
1 1 1 . . . a α
1 1 1 . . . 1 a


.

Again his result is dependent on the existence of limn→∞ An, i, j/An, u, v, for
various pairs (i, j) and (u, v), but he does not suggest any criteria which
guarantee these limits exist. We make his statement more precise in the
following theorem.

Theorem 5. Let A be the matrix defined above at (4.1). Let An, i, j denote
the (i, j) entry of An and suppose a > 0. Then

(4.2) lim
n→∞

An, i, j

An, u, v
= α(j+u−i−v)/m.

Proof. Let ωm be a primitive m-th root of unity. Define the matrix M by

(M)i, j = α(m−i)/mω(m−j+1)i
m .

Then

(M−1)i,j =
1

m (M)j, i
.

(We omit the proof of this statement. It can easily be checked by showing
that multiplying M and the claimed inverse together gives the m×m identity
matrix.)

It is now not difficult to show that

M−1A M = diag (β1, β2, . . . βm),

where diag (β1, β2, . . . βm) is the matrix with β1, β2, . . . βm along the main
diagonal and zeroes elsewhere. Here

βi = a +
m−1∑
j=1

(ωi−1
m α1/m)j , i = 1, 2, . . . m,

are the eigenvalues of A. For a > 0 , there is clearly a dominant eigenvalue,
namely β1.

(This condition could be relaxed to allow a to take some negative values,
but the precise lower bound which makes β1 > |βj |, j 6= 1, is not so easy to
determine in the case of arbitrary m.)
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Next, it is clear that An = Mdiag (βn
1 , βn

2 , . . . βn
m)M−1, and it is simple

algebra to show that

An, i j =
α(j−i)/m

m

m∑
k=1

ω(m−k+1)(i−j)
m βn

k .

The result now follows, upon using the fact that β1 is the dominant eigen-
value. �

Note, as in Theorem 2, that the limit is independent of the choice of a.
Theorem 1 could be used to produce results similar to those in Theorem 2

and its various corollaries, but the statements of these results become much
more complicated with increasing m.

Also, we have not been able to determine the optimum choice of a that
gives the most rapid convergence in (4.2). One difference between the m = 3
case and the general case is that the sub-dominant eigenvalues in the general
case need not necessarily all have the same absolute value.

5. Concluding Remarks

For completeness we include the following neat construction by Khovan-
skii, one that enables good approximations to a root of an arbitrary poly-
nomial to be found in many cases. Let

f(x) = amxm + am−1x
m−1 + am−2x

m−2 + · · ·+ a1x + a0

be a polynomial of degree m and consider the m×m matrix

A =

k l am 0 . . . 0 0 0 0
0 k l am . . . 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 . . . l am 0 0 0
0 0 0 . . . k l am 0 0
0 0 0 . . . 0 k 0 l am

−l a0 −l a1 −l a2 . . . −l am−4 −l am−3 k − l am−1 −l am−2

0 0 0 . . . 0 0 l am k


.

Here k and l are non-zero. Khovanskii shows that if limn→∞ An, i, 1/An, m, 1

exists and equals, say, βi, for 1 ≤ i ≤ m, then βm−1 is a root of

f(x) = amxm + am−1x
m−1 + am−2x

m−2 + · · ·+ a1x + a0.

This can be seen as follows. Since the limits exist and βm = 1, we get the
system of equations

βi =
k βi + l amβi+1

l amβm−1 + k
, 1 ≤ i ≤ m− 3,

βm−2 =
k βm−2 + l am

l amβm−1 + k
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βm−1 =
−l a0β1 − l a1β2 − · · · − l am−3βm−2 + (k − l am−1)βm−1 − l am−2

l amβm−1 + k
.

This system of equations leads to the system βm−1βm−2 = 1, βi+1 =
βm−1βi, 1 ≤ i ≤ m− 3, and

amβ2
m−1 + am−1βm−1 + am−2 + am−3βm−2 + · · ·+ a1β2 + a0β1 = 0.

The result now follows, after multiplying the last equation by βm−2
m−1 and

using the equations preceding it to eliminate βi, i 6= m− 1.
This situation is of course even more difficult to analyze: f(x) may not

even have real zeroes, or it may have multiple real zeroes, or even if it
has a single real zero, this may not be enough to guarantee that the limits
limn→∞ An, i, 1/An, m, 1, 1 ≤ i ≤ m, exist,.

It would be interesting to find and prove general criteria, based on the
entries of the matrix A, which guarantee that this method of Khovanskii’s
does lead to convergence to one of the roots.
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