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POLYNOMIAL CONTINUED FRACTIONS

D. BOWMAN AND J. MC LAUGHLIN

Abstract. Continued fractions whose elements are polynomial se-
quences have been carefully studied mostly in the cases where the degree
of the numerator polynomial is less than or equal to two and the degree
of the denominator polynomial is less than or equal to one. Here we
study cases of higher degree for both numerator and denominator poly-
nomials, with particular attention given to cases in which the degrees
are equal. We extend work of Ramanujan on continued fractions with
rational limits and also consider cases where the limits are irrational.

1. Introduction

A polynomial continued fraction is a continued fraction K∞
n=1an/bn where

an and bn are polynomials in n. Most well known continued fractions are of
this type. For example the first continued fractions giving values for π (due
to Lord Brouncker, first published in [10]) and e ([3]) are of this type:

(1.1)
4
π

= 1 +
∞
K

n=1

(2n− 1)2

2
,

(1.2) e = 2 +
1

1 +
∞
K

n=1

n

n + 1

.

Here we use the standard notations
N
K

n=1

an

bn
:=

a1

b1 +
a2

b2 +
a3

b3 + . . . +
aN

bN

=
a1

b1+
a2

b2+
a3

b3+
. . .

aN

bN
.

We write AN/BN for the above finite continued fraction written as a rational
function of the variables a1, ..., aN , b1, ..., bN . By K∞

n=1an/bn we mean the
limit of the sequence {An/Bn} as n goes to infinity, if the limit exists.

The first systematic treatment of this type of continued fraction seems to
be in Perron [7] where degrees through two for an and degree one for bn are
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2 D. BOWMAN AND J. MC LAUGHLIN

studied. Lorentzen and Waadeland [6] also study these cases in detail and
they evaluate all such continued fractions in terms of hypergeometric series.
There is presently no such systematic treatment for cases of higher degree
in the and examples in the literature are accordingly scarcer. Of particular
interest are cases where the degree of an is less than or equal to the degree
of bn. These cases are interesting from a number theoretic standpoint since
the values of the continued fraction can then be approximated exceptionally
well by rationals and irrationality measures may then be given. When the
degrees are equal, the value may be rational or irrational and certainly the
latter when the first differing coefficient is larger in bn. (Here we count the
first coefficient as the coefficient of the largest degree term.) Irrationality
follows from the criterion given by Tietze, extending the famous Theorem
of Legendre (see Perron [7], pp. 252-253) :

Tietze’s Criterion:
Let { an}∞n=1 be a sequence of integers and { bn}∞n=1 be a sequence of

positive integers, with an 6= 0 for any n. If there exists a positive integer
N0 such that

(1.3)

{
bn ≥ |an|
bn ≥ |an| + 1, for an+1 < 0,

for all n ≥ N0 then K∞
n=1an/bn converges and it’s limit is irrational.

It would seem from the literature that finding cases of equal degrees or
even close degrees is difficult. If one picks a typical continued fraction from
published tables, the degree of the numerator tends to be twice that of the
denominator. One easy way in which this can arise is when the continued
fraction is equal to a series after using the Euler transformation:

(1.4)
∑

n≥0

an = a0 +
a1

1+
−a2

a1 + a2+
−a1a3

a2 + a3+
−a2a4

a3 + a4+
−a3a5

a4 + a5 + . . .
.

If one side of this equality converges, then so does the other as the nth
approximants are equal. The Euler transformation is easily proved by in-
duction.

In this formula, if the terms of the series are rational functions of the
index of fixed degree, then in the continued fraction after simplification,
one will get the degrees of the numerators to be at least twice that of the
denominators. The continued fraction for π given by (1.1) is an example
of this phenomenon. Another example of this is the series definition of
Catalan’s constant:

C =
∞∑

k=0

(−1)k

(2k + 1)2

which, by (1.4), transforms into the continued fraction given by

C =
1

1+
14

8+
34

16+
54

24 + . . .
.
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Here the degree of the numerator is four times that of the denominator.
This continued fraction appears to be new.

Taking contractions of continued fractions (see, for example, Jones and
Thron [5], pp. 38-43) also leads to a relative increase in the degree of the
numerator over that of the denominator. For example, forming the even
part of the continued fraction will cause a continued fraction with equal
degrees to be transformed into one with twice the degree in the numerator
as the denominator.
The even part of the continued fraction K∞

n=1an/bn is equal to

a1b2

a2 + b1b2+
−a2a3b4

a3b4 + b2(a4 + b3b4)+
−a4a5b2b6

a5b6 + b4(a6 + b5a6)+
−a6a7b4b8

a7b8 + b6(a8 + b7a8) + . . .
.

Other work on polynomial continued fractions was done by Ramanu-
jan [1], chapter 12. He gave several cases of equal degree in which the
sum is rational. For example, Ramanujan gave the following: If x is not a
negative integer then

(1.5)
∞
K

n=1

x + n

x + n− 1
= 1.

Despite the simplicity of this formula, Ramanujan did not give a proof: the
first proof seems to be have been given by Berndt [1], Page 112.

In this paper we examine a large number of infinite classes of polynomial
continued fractions in which the degrees are equal, or close. Our results fol-
low from a theorem of Pincherle and a variant of the Euler transformation
discussed above. We obtain generalizations of Ramanujan’s results in which
the degrees are equal and the values rational as well as cases of equal degree
with irrational limits. Many of our theorems give infinite families of con-
tinued fractions. While we concentrate on polynomial continued fractions,
many of the results hold in more general cases. Here are some special cases
of our general results (proofs are given throughout the paper) :

(1.6)
∞
K

n=1

nα + 1
nα

= 1, for α > 0.

(1.7) 1− 1

1 +
∞
K

n=1

n2

n2 + 2n

= J0(2),

where J0(x) is the Bessel function of the first kind of order 0.

(1.8) 2 +
∞
K

n=1

2n2 + n

2n2 + 5n + 2
=

1√
2 csc (

√
2)− 1

.
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(Notice that the irrationality criterion mentioned above means that the last
two quantities on the right are irrational)

(1.9)
∞
K

n=1

n12 + 2n11 + n10 + 4n + 5
n12 + 4n− 4

= 4.

(1.10)
∞
K

n=2

6n7 + 6n6 + 2n5 + 3n + 2
6n7 − 6n6 + 2n5 + 3n− 5

=
19
7

.

(1.11)
∞
K

n=1

3n6 − 3n4 + n3 + 6n2 + 6n− 1
3n6 − 9n5 + 6n4 + n3 + 6n2 − 12n− 2

= 1.

2. Infinite Polynomial Continued Fractions with Rational
Limits

In this section we derive some general results about the convergence of
polynomial continued fractions in some infinite families and give some ex-
amples of how these results can be used to find the limit of such continued
fractions. Many of the results in this paper are consequences of the following
theorem of Pincherle [9] :

Theorem 1. (Pincherle) Let { an}∞n=1, { bn}∞n=1 and {Gn}∞n=−1 be
sequences of real or complex numbers satisfying an 6= 0 for n ≥ 1 and for all
n ≥ 1,

(2.1) Gn = anGn−2 + bnGn−1.

Let {Bn}∞n=1 denote the denominator convergents of the continued fraction
∞
K

n=1

an

bn
.

If limn→∞Gn/Bn = 0 then
∞
K

n=1

an

bn
converges and its limit is −G0/G−1.

Proof. See, for example, Lorentzen and Waadeland [6], page 202. ¤

For many sequences it may be difficult to decide whether the condition
limn→∞ Gn/Bn = 0 is satisfied. Below are some easily proven properties
governing the growth of the Bn’s which will be useful later.

(i) Let an and bn be non-constant polynomials in n such that an ≥ 1,
bn ≥ 1, for n ≥ 1 and suppose bn is a polynomial of degree k. If the leading
coefficient of bn is D, then given ε > 0, there exists a positive constant
C1 = C1(ε) such that Bn ≥ C1(|D|/(1 + ε))n(n!)k.

(ii) If an and bn are positive numbers ≥ 1, then there exists a positive
constant C3 such that Bn ≥ C3φ

n for n ≥ 1, where φ is the golden ratio
(1 +

√
5)/2.
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Corollary 1. If m is a positive integer and bn is any polynomial of degree
≥ 1 such that bn ≥ 1 for n ≥ 1, then

∞
K

n=1

mbn + m2

bn
= m.

Proof. With an = mbn + m2, for n ≥ 1, and Gn = (−1)n+1mn+1, for
n ≥ −1, { an}∞n=1, { bn}∞n=1 and {Gn}∞n=−1 satisfy equation (2.1). By (i)
above

lim
n→∞Gn/Bn = lim

n→∞ (−1)n+1mn+1/Bn = 0 =⇒ ∞
K

n=1

an

bn
= −G0/G−1 = m.

¤
A special case is where m = 1, in which case |Gn| = 1, for all n and all

that is necessary is that limn→∞Bn = ∞. The following generalization of
the result (1.5) of Ramanujan, for positive numbers greater than 1 follows
easily:

If { bn}∞n=1 is any sequence of positive numbers with bn ≥ 1 for n ≥ 1 then
∞
K

n=1

bn + 1
bn

= 1.

Letting bn = nα, α > 0, gives (1.6) in the introduction.1

Entry 12 from the chapter on continued fractions in Ramanujan’s second
notebook [1] , page 118, follows as a consequence of the above theorem:

Corollary 2. If x and a are complex numbers, where a 6= 0 and x 6= −ka,
where k is a positive integer, then

x + a

a +
∞
K

n=1

(x + na)2 − a2

a

= 1.

Proof. Note that

x + a

a +
∞
K

n=1

(x + na)2 − a2

a

=

x

a
+ 1

1 +
∞
K

n=1

(x

a
+ n

)2
− 1

1

.

Replace x/a by m to simplify notation; the result will follow if it can be
shown that

m =
∞
K

n=1

(m + n)2 − 1
1

=
∞
K

n=1

(m + n− 1)(m + n + 1)
1

.

With G−1 = 1, Gn = (−1)n+1
∏n

i=0(m + i), for n ≥ 0 and bn = 1, an =
(m+n− 1)(m+n+1) for n ≥ 1, { an}∞n=1, { bn}∞n=1 and {Gn}∞n=−1 satisfy

1Lorentzen and Waadeland give an exercise [6, page 234], question 15(d) which effec-
tively involves a similar result in the case where bn belongs to a certain family of quadratic
polynomials in n over the complex numbers.
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equation (2.1) so that the result will follow from Theorem 1 if it can be
shown that limn→∞Gn/Bn = 0, in which case the continued fraction will
converge to −G0/G−1 = m. However, an easy induction shows that for
k ≥ 1,

B2k+1 = (k + 1)
2k+1∏

i=2

(m + i), and B2k = (m + k + 1)
2k∏

i=2

(m + i).

Thus limn→∞Gn/Bn = 0, and the result follows. ¤

Corollary 3. Let m be a positive integer and let bn be any polynomial of
degree ≥ 1 such that bn ≥ 1, for n ≥ 1 and either degree bn > 1 or if degree
bn = 1 then its leading coefficient is D > m. Then

∞
K

n=1

mnbn + m2n(n + 1)
bn

= m.

Proof. Letting Gn = (−1)n+1mn+1(n + 1)! for n ≥ −1 and an = mnbn +
m2n(n+1), for n ≥ 1, one has that { an}∞n=1, { bn}∞n=1 and {Gn}∞n=−1 satisfy

equation (2.1). By (i), limn→∞Gn/Bn = 0 =⇒ ∞
K

n=1

an

bn
= −G0/G−1 =

m. ¤
Theorem 1 does not say directly how to find the value of all polynomial

continued fractions K∞
n=1an/bn as it does not say how the sequence Gn can

be found or even if such a sequence can be found. However, Algorithm
Hyper (see [8]) can be used to determine if a hypergeometric solution Gn

exists to equation (2.1) and, if such a solution exists, the algorithm will
out-put Gn, enabling the limit of the continued fraction to be found, if Gn

satisfies limn→∞Gn/Bn = 0.
Even if for the particular polynomial sequences an and bn it turns out

that the sequence Gn found does not satisfy limn→∞Gn/Bn = 0, then these
three sequences an, bn and Gn may be used to find the value of infinitely
many other continued fractions when Gn is a polynomial or rational function
in n.

The following proposition shows how, given any one solution of (2.1), one
can find the value of infinitely many other polynomial continued fractions
in an easy way.

Proposition 1. Suppose that there exists complex sequences {Gn }∞n=−1,
{ an }∞n=1 and { bn }∞n=1 satisfying

(2.2) anGn−2 + bnGn−1 −Gn = 0

Let fn be any sequence, let sn = fnGn−1 +an be such that sn 6= 0, for n ≥ 1,

and let tn = fnGn−2− bn . Let An/Bn denote the convergents to
∞
K

n=1

sn

tn
. If

limn→∞Gn/Bn = 0 then
∞
K

n=1

sn

tn
converges and its limit is G0/G−1.
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Proof. Let G′
n = (−1)n+1Gn. Then

snG′
n−2 + tnG′

n−1 −G′
n = (−1)n−1(anGn−2 + bnGn−1 −Gn) = 0.

Thus {G′
n }∞n=−1, { sn }∞n=1 and { tn }∞n=1 satisfy the conditions of theo-

rem 1 so K∞
n=1sn/tn converges and its limit is −G′

0/G′
−1 = G0/G−1.

¤
Entry 9 from the chapter on continued fractions in Ramanujan’s second

notebook [1] , pages 114-115, follows in the case a is real and positive and x
is real as a consequence of the above proposition:

Corollary 4. Let a be a real positive number and let x be a real number
such that x 6= −ka where k is a positive integer. Then

x + a + 1
x + 1

=
∞
K

n=1

x + na

x + (n− 1)a− 1
.

Proof. It is enough to prove this for x − 1 > 0 since for n sufficiently large
x + (n− 1)a− 1 > 0 and then the result will hold for a tail of the continued
fraction and then resulting finite continued fraction will collapse from the
bottom up to give the result. Let Gn = (x + (n + 1)a + 1)/(x + 1). Put
fn = x + 1, an = −1 and bn = 2 so that anGn−2 + bnGn−1 − Gn = 0,
x + na = fnGn−1 + an and x + (n − 1)a − 1 = fnGn−2 − bn. Since Gn is
a degree 1 polynomial in n, x + na, x + (n − 1)a − 1 > 0 for n ≥ 1, it
can easily be shown that limn→∞Gn/Bn = 0 and so by Proposition 1 the
continued fraction converges to G0/G−1 = (x + a + 1)/(x + 1). ¤

Remarks: (1) In Proposition 1 any polynomial Gn satisfying (2.2) can
always be assumed to have positive leading coefficient (if necessary multiply
(2.2) by −1.) If fn is then taken to be a polynomial of sufficiently high degree
with leading positive coefficient then both sn and tn will be polynomials with
positive leading coefficients so that there exists a positive integer N0 so that
for all n ≥ N0, sn, tn > 0. If it happens that for some m ≥ N0 that
both Bm and Bm+1 are of the same sign then Bn will go to +∞ or −∞
exponentially fast. In these circumstances limn→∞Gn/Bn = 0, since Gn is
only of polynomial growth.

In many of the following corollaries fn will be restricted so as to have N0

small (typically in the range 1 ≤ N0 ≤ 3), but of course there are fn for
which this is not the case but for which the results claimed in the corollaries
hold.

(2) One approach is to take the polynomial Gn as given and search for
polynomials an and bn satisfying equation (2.2). It can be assumed that
degree(an), degree(bn) < degree(Gn). This follows since if a solution exists
with degree(an) ≥ degree(Gn) then the Euclidean algorithm can be used to
write an = pnGn−1 + a′n, bn = qnGn−2 + b′n, where pn, qn, a′n and b′n are
polynomials in n. Substituting into (2.2) and comparing degrees gives that
(2.2) holds with an replaced with a′n and bn replaced with b′n.
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(3) In theory it is possible to find polynomials Gn of arbitrarily high
degree and polynomials an and bn of lesser degree (with rational coefficients)
satisfying (2.2), by using (2.2) to define equations expressing the coefficients
of an and bn in terms of those of Gn. If Gn has degree k and an and bn

both have degree k− 1, then (2.2) is a polynomial identity of degree 2k− 1,
giving 2k equations for the 2k coefficients of an and bn.2

In practice these equations and the requirement that the coefficients of
Gn be integers introduces conditions on the coefficients of Gn. For example,
if there exists Gn = an2 + bn+ c, an = dn+ e, and bn = fn+ g, polynomials
with integral coefficients, satisfying (2.2) , then

d = −f =
4a2

a2 − b2 + 4ac
,

e =
−3a2 + b2 + 2ab− 4ac

a2 − b2 + 4ac
,

g =
12a2 − 2ab− 2b2 + 8ac

a2 − b2 + 4ac
,

giving restrictions on the allowable values of a, b and c.
(Parts (ii) –(ix) of the following corollary correspond, respectively, to

the solutions {a = b = m, c = 1}, {a = 1, b = 4, c = 4}, {a = m2, b =
3m2−2m, c = 2m2−2m+1}, {a = m2, b = m2+2m, c = 2m+1}, {a = m, b =
3m, c = 2m+1}, {a = m, b = m−2, c = −1}, {a = m, b = 3m+2, c = 2m+3}
and {a = 4m, b = 16m2 + 8m + 1, c = 16m3 + 16m2 + 5m + 1} )

Proposition 1 is too general to easily calculate the limit of particular
polynomial continued fractions. The following corollary enables these limits
to be calculated explicitly in many particular cases.

Corollary 5. Let m be a positive integer, k a positive integer greater than
m and { fn}∞n=1 a non-constant polynomial sequence such that fn ≥ 1, for
n ≥ 1. For each of continued fractions below assume that fn is such that
no numerator partial quotient is equal to zero. (This holds automatically in
cases (i) –(vi)).

(i)
∞
K

n=1

(mn + k −m)fn − 1
(mn + k − 2m)fn − 2

=
k

k −m
.

(ii)
∞
K

n=1

((n2 − n)m + 1)fn + nm− 1
((n2 − 3n + 2)m + 1)fn + mn− (2m + 2)

= 1.

(iii)
∞
K

n=1

(n + 1)2fn + 4n + 5
n2fn + 4n− 4

= 4.

2Starting with an and bn, arbitrary polynomials of a certain degree, it is possible to
look for solutions Gn satisfying (2.2) with coefficients defined in terms of those of an

and bn using the the Hyper Algorithm (see [8]). However there is no certainty that the
solutions (if they exist) will be polynomials or that they will have any particular desired
degree.
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(iv)
∞
K

n=1

fn(m2n2 + n(m2 − 2m) + 1) + mn + m− 2
fn(m2n2 − n(m2 + 2m) + 2m + 1) + mn−m− 3

= 2m2 − 2m + 1.

(v)
∞
K

n=1

fn(m2n2 + n(2m−m2) + 1) + mn

fn(m2n2 − n(3m2 − 2m) + +2m2 + 2m + 1) + mn− 2m− 1
= 2m + 1.

(vi)
∞
K

n=1

fn(n(n + 1)m + 1) + mn + m− 1
fn(n(n− 1)m + 1) + mn−m− 2

= 2m + 1.

(vii) Let An/Bn denote the convergents to the continued fraction below and
suppose limn→∞ n2/Bn = 0 . Then

∞
K

n=1

fn((n− 1)2m + (m− 2)(n− 1)− 1)−m2n + m− 1
fn((n− 2)2m + (m− 2)(n− 2)− 1)−m2(n− 2) + m− 2

= −1.

(viii)
∞
K

n=1

fn(n(n + 1)m + 2n + 1)− (m2(n + 1) + m + 1)
fn(n(n− 1)m + 2n− 1)− (m2(n− 1) + m + 2)

= 2m + 3.

(ix)
∞
K

n=1

−1− 8 m− 32 m2 − 128 m3 − 64 m2 n +(
m + 16 m3 +

(
1 + 16 m2

)
n + 4 mn2

)
fn

−2− 8 m + 96 m2 − 128 m3 − 64 m2 n +
(−1 + 5 m− 16 m2 + 16 m3 +

(
1− 8 m + 16 m2

)
n + 4 mn2) fn

=
1 + 5 m + 16 m2 + 16 m3

m + 16 m3

Proof. In each case below an easy check shows that with the given choices
for {Gn }∞n=−1, { an }∞n=1 and { bn }∞n=1 that equation (2.2) holds, that the

continued fraction in question corresponds to the continued fraction
∞
K

n=1

sn

tn
of proposition (1), that if {An/Bn} are the convergents to this continued
fraction then limn→∞Gn/Bn = 0 and that (by fact or assumption) no sn =
0. Finally, the limit of the continued fraction is G0/G−1. The fact that some
early partial quotients may be negative does affect any of the results - a tail of
the continued fraction will have all terms positive so that limn→∞Gn/Bn = 0
will hold for the tail which will then converge and the continued fraction will
then collapse from the bottom up to give the result.

Remark: In some cases the result holds if fn is a constant polynomial
such that fn ≥ 1 for n ≥ 1.

(i) Let Gn = mn + k, an = −1, and bn = 2.

(ii) Let Gn = n(n + 1)m + 1, an = mn− 1 and bn = −mn + (2m + 2).

(iii) Let Gn = (n + 2)2, an = 4n + 5 and bn = −4n + 4 .

(iv) Let Gn = m2n2 + n(3m2 − 2m) + 2m2 − 2m + 1, an= mn + m − 2
and bn = −mn + m + 3.
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(v) Let Gn = n(n+1)m2+2m(n+1)+1, an = mn and bn = −mn+2m+1.

(vi) Let Gn = (n+2)(n+1)m+1, an = mn+m−1 and bn = −mn+m+2.

(vii) Let Gn = mn2 + (m − 2)n − 1, an = −m2n + m − 1 and bn =
m2n− 2m2 −m + 2.

(viii) Let Gn = (n + 2)(n + 1)m + 2n + 3, an = −(m2n + m2 + m + 1),
and bn = m2(n− 1) + m + 2.

(ix) Let Gn = 1 + 5m + 16m2 + 16 m3 +
(
1 + 8m + 16m2

)
n + 4mn2,

an = −1 − 8m − 32m2 − 128m3 − 64m2 n and bn = 2 + 8m − 96 m2 +
128m3 + 64m2 n.

¤
Examples:

1) Letting m = 5 and fn = 10n8 in (ii) above gives

∞
K

n=1

((n2 − n)5 + 1)10n8 + 5n− 1
((n2 − 3n + 2)5 + 1)10n8 + 5n− 12

= 1.

2) Also in (ii), letting fn = n8 and m be an arbitrary positive integer,
∞
K

n=1

((n2 − n)m + 1)n8 + nm− 1
((n2 − 3n + 2)m + 1)n8 + mn− (2m + 2)

= 1.

3) Letting fn = 2n5 and m = 3 in (vi) above gives (1.10) in the introduc-
tion. Similarly, letting fn = n10 gives (1.9) in the introduction.

4) In (vii) above a general class of examples may be obtained by choosing
m > 1 and fn > nm2 for n ≥ 1. With the notation of the proposition it can
easily be seen that sn, tn ≥ 1 for n ≥ 3. If fn is such that B2 and B3 are
negative, then Bn will be negative for all n ≥ 2 and by a similar argument
to the reasoning behind condition (ii), it will follow that limn→∞ n2/Bn = 0
and the conditions of the corollary will be satisfied. For example, letting
fn = 16n and m = 3 gives that

∞
K

n=1

48n3 − 80n2 + 7n + 2
48n3 − 176n2 + 135n + 19

= −1.

All the examples in the last corollary were derived from solutions to equa-
tion (2.2) where Gn had degree 2. Table 1 below gives several families of
solutions to equation (2.2), where Gn is of degree 3 in n.

Considering the third and fourth row of entries in the Table 1, for example,
there is the following corollary to Proposition 1:

Corollary 6. Let fn be a polynomial in n such that fn ≥ 1 for n ≥ 1 and
let m be a positive integer.
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Gn an bn

(n2 − 1)mn + 1 2mn(n− 1)− 1 −2m(n2 − 4n + 3) + 2
(2n2 + 3n + 1)mn + 1 −2n2m(m− 2) + m2n −n2(4m− 2m2)

+m− 1 −n(7m2 − 12m)
+6m2 − 7m + 2

(n2 + 3n + 2)mn + 1 2n(n + 1)m− 1 −2n(n− 2)m + 2
(n3 + 6n2 + 11n + 6)m 2mn2 + 6mn −2mn2 + 2m + 2

+1 +4m− 1
mn3 + 3mn2 −m2n2 − n(m2 + m) m2n2 − n(2m2 −m)

+n(2m− 3)− 2 +m− 1 −4m + 2

Table 1. Some infinite families of solutions to (2.2) for Gn

of degree 3.

(i) If f(2) > 2 then

∞
K

n=1

fn((n2 − 1)nm + 1) + 2mn(n + 1)− 1
fn((n2 − 3n + 2)mn + 1) + 2mn(n− 2)− 2

= 1.

(ii)

∞
K

n=1

fn((n2 + 3n + 2)nm + 1) + 2mn2 + 6mn + 4m− 1
fn((n2 − 1)nm + 1) + 2(n2 − 1)m− 2

= 6m + 1.

Proof. (i) In the light of the fact that Gn, an and bn satisfy (2.2) simply note
that the numerator of the continued fraction is fnGn−1 + an and that the
denominator is fnGn−2 − bn. It is easily seen that an ≥ 1, for all n ≥ 1 and
that bn ≥ 1, for all n ≥ 2. It can also be shown that B2 and B3 are positive
for all m and fn satisfying the conditions of the corollary. In the light of
what was said in an earlier remark this is sufficient to ensure the result.

(ii) The proof of this follows the same lines as that of (i) above. ¤

Taking fn to be n3 and m = 3 in part (i) gives (1.11) in the introduction.
One could continue to prove similar results by finding other solutions to

equation (2.2) for degrees 2 or 3 or by going to higher degrees, but these
corollaries should be sufficient to illustrate the principle at work.

3. Infinite Polynomial Continued Fractions with Irrational
Limits

In this section we use a continued fraction-to-series transformation equiv-
alent to Euler’s transformation to sum some polynomial continued fractions
with irrational limits.



12 D. BOWMAN AND J. MC LAUGHLIN

Theorem 2. For N ≥ 1

(3.1) b0 +
N
K

n=1

bn−1x

bn − x
=

1
N∑

n=0

(−1)nxn

∏n
i=0 bi

.

Thus, when N → ∞, the continued fraction converges if and only if the
series converges.

Proof. See, for example, Chrystal [2], page 516, equation (14). ¤
Remark: The irrationality criterion mentioned in the introduction means

that if {bn}∞i=0 is a sequence of integers, then
∑∞

n=0 (−1)nxn/b0b1 · · · bn is
not rational for x = 1/m, m being a non-zero integer, provided |mbn−1| ≥
|mbn−1|+ 1, for all n sufficiently large.

Corollary 7. For all non-zero integers m (and indeed for all non-zero real
numbers m )

(i) 6m2 − 1 +
∞
K

n=1

m2(4n2 + 2n)
m2(4n2 + 10n + 6)− 1

=
1

1
m csc( 1

m)− 1
.

Remarks: (1) Glaisher, [4] states continued fraction expansions essentially
equivalent to this one and the one in the next corollary .
(2) The irrationality criterion gives that sin( 1

m) is irrational for m either a
non-zero integers or the square-root of a positive integer.

Proof. (i) In Theorem 2 let bn = (2n + 2)(2n + 3)m2 and x = 1.
¤

Corollary 8. For all non-zero integers m (and indeed for all non-zero real
numbers m )

(i) 2m2 +
∞
K

n=1

m2(4n2 − 2n)
m2(4n2 + 6n + 2)− 1

=
1

1− cos( 1
m)

.

Note that the irrationality criterion gives that cos( 1
m) is irrational for m

either a non-zero integers or the square-root of a positive integer.

Proof. (i) In Theorem 2 let bn = (2n + 1)(2n + 2)m2 and x = 1.
¤

Corollary 9. For all positive integers ν and all non-zero integers m (and
indeed for all non-zero real numbers m )

(i) (ν + 1)4m2 +
∞
K

n=1

4m2n(n + ν)
4m2(n + 1)(n + ν + 1)− 1

=
1

1− (ν)!(2m)νJν( 1
m)

,

where Jν(x) is the bessel function of the first kind of order ν.

The Tietze irrationality criterion shows that if ν is a non-negative integer
and m is a non-zero integer or the squareroot of a positive integer then
Jν(± 1

m) is irrational.
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Proof. (1) In Theorem 2 letting bn = 4(n + 1)(ν + n + 1)m2 and x = 1
gives

4(ν + 1)m2 +
∞
K

n=1

n(ν + n)4m2

(n + 1)(n + ν + 1)4m2 − 1

=
1

∞∑

n=0

(−1)n(1/m)2n+2

∏n
i=0 4(i + 1)(ν + i + 1)

=
1

1− (ν)!(2m)νJν(1/m)
,

from the power series expansion for Jν(x). ¤
Taking ν to be 0 and m = 2 gives (1.7) in the introduction. (1.8) in the

introduction follows by letting m = 1√
2

in Corollary 7.

Corollary 10. For all non-zero integers m (and indeed for all non-zero real
numbers m)

1 +
1

6m3 − 1 +
∞
K

n=2

(3n− 5)(3n− 4)(3n− 3)m3

(3n− 2)(3n− 1)(3n)m3 − 1

=
(

1
3

exp (−1/m) +
2
3

exp (1/2m) cos
(√

3/2m
))−1

.

Proof. In Theorem 2 let b0 = 1, bn = (3n− 2)(3n− 1)(3n), for n ≥ 1 and
x = 1/m3. Then

1 +
1/m3

6− 1/m3 +
∞
K

n=2

(3n− 5)(3n− 4)(3n− 3)1/m3

(3n− 2)(3n− 1)(3n)− 1/m3

=
1

∞∑

n=0

(−1)n(1/m3n)
(3n)!

.

Simplifying the continued fraction gives the left side and finally the right
side equals

(
1
3 exp (−1/m) + 2

3 exp (1/2m) cos
(√

3/2m
))−1

. ¤
By the Tietze criterion the irrationality of this last function follows when

m is a non-zero integer or the real cube-root of a non-zero integer.
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