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Abstract: Rating of perceived exertion (RPE) and session RPE (sRPE) are reliable tools for predicting 

exercise intensity and are alternatives to more technological and physiological measurements, such 

as blood lactate (HLa) concentration, oxygen consumption and heart rate (HR). As sRPE may also 

convey some insights into accumulated fatigue, the purpose of this study was to examine the effects 

of progressive fatigue in response to heavier-than-normal training on sRPE, with absolute training 

intensity held constant, and determine its validity as marker of fatigue. Twelve young adults 

performed eight interval workouts over a two-week period. The percentage of maximal HR 

(%HRmax), HLa, RPE and sRPE were measured for each session. The HLa/RPE ratio was calculated 

as an index of fatigue. Multilevel regression analysis showed significant differences for %HRmax (p 

= 0.004), HLa concentration (p = 0.0001), RPE (p < 0.0001), HLa/RPE ratio (p = 0.0002) and sRPE (p < 

0.0001) across sessions. Non-linear regression analysis revealed a very large negative relationship 

between HLa/RPE ratio and sRPE (r = −0.70, p < 0.0001). These results support the hypothesis that 

sRPE is a sensitive tool that provides information on accumulated fatigue, in addition to training 

intensity. Exercise scientists without access to HLa measurements may now be able to gain insights 

into accumulated fatigue during periods of increased training by using sRPE. 
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1. Introduction 

It is well known that adaptive responses to training programs are dependent on the frequency, 

intensity and time of training (e.g., the FIT principle). Training intensity is arguably the most complex 

aspect of training program design. The careful monitoring of training intensity is useful to maximize 

performance gains and minimize side-effects, such as non-functional overreaching, injury, and illness 

[1,2]. 

Training intensity can be monitored [3] by many objective physiological markers, such as heart 

rate (HR), oxygen consumption (VO2), and blood lactate concentration (HLa). There has been much 

discussion surrounding which physiological measure may be best for monitoring, in particular, the 

effects indicative of maladaptive states, such as non-functional overreaching [3]. One frequent 

observation during periods of heavy training is a markedly reduced maximal HLa concentration, 

while submaximal values remain unchanged or slightly reduced [4]. Acute increases in training 

workload can lead to acute glycogen depletion, which has been shown to correlate with decreases in 

average [5] and maximal [6] HLa concentration. As HLa is a byproduct of glycogenolysis, average 

and maximal HLa concentrations may be used as a surrogate to estimate decreases in muscle 

glycogen concentration. High exercise intensities or durations during consecutive training days have 

been shown to lower muscle glycogen levels and decrease HLa concentration, resulting in fatigue 
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and hindering athletic performance [5,7]. Although monitoring HLa concentrations is potentially 

useful for estimating glycogen depletion and monitoring training intensity, it is costly and time-

consuming, and can only partially account for changes in muscle glycogen. A simpler and more 

affordable way would be preferred. Less costly and more accessible subjective methods, such as the 

rating of perceived exertion (RPE) and session RPE (sRPE), have become attractive [8–11]. Previous 

research has shown that sRPE is a reliable tool for predicting exercise intensity compared to more 

direct measurements, such as HR and HLa concentration [9,12,13]. Within the concept of the training 

impulse (TRIMP) [14] score, individuals are asked, typically thirty minutes after completing a 

training session, how their workout felt [9,10]. Subsequently, to quantify the exercise training load, 

sRPE is multiplied by the duration of training. Thus, the sRPE-derived training load may be used as 

an indicator of internal training load [15]. Recent evidence suggests that sRPE not only provides 

information related to intensity, but also conveys information about progressive fatigue [16]. In 

particular, sRPE provides information on accumulated fatigue that is not available from accepted 

markers of internal training intensity, such as HR and HLa concentration. In our view, both the 

momentary RPE and sRPE are understood primarily as surrogates of exercise intensity. If exercise 

intensity is the only use of sRPE, then it should not drift when longer training bouts are used (e.g., 

increased fatigue). A previous study [16] suggested that sRPE progressively increased during a 

course of prolonged exercise training (within days) although objective measures of intensity, such as 

pace, HR and HLa concentration did not change, which was also noted by Foster and colleagues [10]. 

The present study represents a further exploration of these findings (between days). 

Since the process of monitoring training is intended to provide coaches and athletes with 

information about the entire response to training [1], a better understanding of how sRPE responds 

under different circumstances would be helpful to optimize the use of this very simple method of 

training monitoring. Therefore, the purpose of this study was to examine the effects of progressive 

fatigue that occur in response to heavier-than-normal training on sRPE, with the intent of exploring 

its potential as a marker of fatigue. The study was designed to test the hypothesis that sRPE for a 

given exercise bout would increase with progressive fatigue, whether from a longer exercise bout, or 

from successive days of harder-than-usual bouts.   

2. Materials and Methods  

2.1. Participants 

Twelve physically active (>150 minutes at moderate intensity per week) college-age students (six 

males; six females) provided written informed consent and completed the protocol approved by the 

Institutional Review Board for the Protection of Human Subjects of the University of Wisconsin-La 

Crosse (approval number: 45CFR46; date: 8 September 2016). The subjects were students recruited 

from the University community, limiting the sample to those who exercised regularly to avoid a large 

training effect from participation in the protocol. 

2.2. Procedures 

Subjects were familiarized with the Borg Category Ratio (0–10) RPE [11] and the session RPE 

(sRPE) [9,10] scales before the beginning of the study. Each subject completed a maximal incremental 

test on an electrically braked cycle ergometer (Lode Excalibur, Groningen, Netherlands) with 

respiratory gas exchange (AEI Moxus, Pittsburg, PA, USA) to evaluate peak VO2 (VO2peak), maximal 

HR (HRmax) and peak power output (PPO). They were tested >3 h postprandial, had refrained from 

alcohol consumption and heavy exercise >24 h prior to testing, and abstained from caffeine 

consumption >6 h prior to testing. The initial power output was 25W and was increased by 25W every 

2 min until volitional fatigue. Subjects were instructed to maintain a pedaling rate of 60–80 

revolutions per minute. Subsequently, the subjects completed thirty-minute and sixty-minute 

interval workouts on the same electrically braked cycle ergometer. The cycle ergometer was chosen 

for convenience with the measurements and for controlling the workload. 
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PPO was used to determine each subject’s training workloads. In the first week (Monday = S1; 

Tuesday = S2; Wednesday = S3) there were three thirty-minute intermittent training sessions with the 

fourth day (Thursday = S4) being a sixty-minute session (the thirty-minute session repeated twice). Based 

on preliminary pilot testing, the session duration was considered adequate to test the effects of fatigue on 

sRPE in moderately-to-well-trained individuals. Each session started with a five-minute warm-up at 25% 

PPO followed by 5 min at 50% PPO, 25% PPO for 2 min, 75% PPO for 5 min, 25% PPO for 2 min, 100% 

PPO for 2 min, 25% PPO for 2 min and 50% of PPO for 7 min, which finished the thirty-minute training 

session. Interval exercise was chosen because interval training is frequently used to improve the 

effectiveness of training and make training sessions more interesting. After three days off, the second 

week consisted of three sixty-minute intermittent training session days (Monday = S5; Tuesday = S6; 

Wednesday = S7) with the last day (Thursday = S8) being the original thirty-minute workout (e.g., S1). The 

schematic power output for a thirty-minute session is shown in Figure 1.  

 

Figure 1. Individualized schematic training session percentages of peak power output. 

Based on previous work [17], a 50% PPO approximates the ventilatory threshold and a 75% PPO 

approximates the respiratory compensation threshold. During the two-week training period, the 

subjects were instructed to “train easily” on days when they did not come to the laboratory. If subjects 

reported heavy exercise (e.g., intermural sports) when we inquired about their pre-testing training 

habits, the session was deferred to another time. During training, HR was measured using 

radiotelemetry (Polar, Electro OY, Kempele, Finland) at rest and at the end of each minute and was 

expressed as a percent of HRmax (%HRmax). HLa concentration was measured using dry chemistry 

(Lactate Plus, Nova Biomedical Corporation, Waltham, MA, USA). RPE was measured using the Borg 

CR-10 scale at 5, 10, 17, 21, and 30 min during the thirty-minute training sessions and at 5, 10, 17, 21, 

30, 40, 47, 51 and 60 min during the sixty-minute training sessions. For this study, HR, HLa 

concentration and RPE were averaged in order to obtain a single mean value for each training session. 

Further, the HLa/RPE ratio of each training session was calculated as an index of fatigue [18]. Thirty 

minutes after the completion of the training session, sRPE was obtained by asking “how hard was 

your workout?” [9,10]. 

2.3. Statistical Analysis 

Stata statistical software version 14.1 (Stata-Corp, College Station, TX, USA) was used for statistical 

analysis. Means, standard deviations (SD) and 95% confidence intervals (95%CI) were calculated for all 

variables. A multilevel model regression (or hierarchical linear model) was performed to examine the 

effects of progressive fatigue on subjective and objective training intensity markers. Subjects were 

considered as the random effect, whereas the training sessions were treated as the fixed effect. The models 

were fitted using the residual maximum likelihood to account for the small sample. The contrast method 
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was used to test whether the dependent variable (i.e., sRPE, HLa concentration) means of each session 

were identical. The contrast method tests include ANOVA-style tests of the main effects used to make 

comparisons against the reference categories (S1, S4 and reverse adjacent training session). Bonferroni 

post-hoc tests were used for multiple-comparison adjustments across all terms. Non-linear regression 

analysis was used to analyze the relationship between HLa/RPE ratio and sRPE. The magnitude of 

correlations was defined by the following criteria: trivial (less than 0.10), small (from 0.10 to 0.29), 

moderate (from 0.30 to 0.49), large (from 0.50 to 0.69), very large (from 0.70 to 0.89), and almost perfect 

(from 0.90 to 1.0) [19]. The root-mean-squared error (RMSE) was also calculated for the non-linear 

regression analysis. Statistical significance was set at p < 0.05. 

3. Results 

Descriptive statistics for the subjects are presented in Table 1.  

Table 1. Descriptive characteristics of the subjects (mean ± standard deviation (SD)). 

Characteristics Females (n = 6) Males (n = 6) 

Age (years) 21.2 ± 3.0 21.2 ± 2.9 

Mass (kg) 67.5 ± 8.8 76.8 ± 5.7 

Height (cm) 171.0 ± 8.6 176.1 ± 4.1 

Peak Power Output (W) 190.5 ± 24.6 258.5 ± 31.0 

VO2peak (mL/kg/min) 46.8 ± 2.6 51.8 ± 6.1 

 

The mixed effects linear regression analysis showed significant differences for %HRmax (F7,77 = 

3.34, p = 0.004), HLa concentration (F7,77 = 5.04, p = 0.0001), average RPE (F7,77 = 7.98, p < 0.0001), 

HLa/RPE (F7,77 = 4.71, p = 0.0002) and sRPE (F7,77 = 10.33, p < 0.0001) across training sessions. 

Comparisons after Bonferroni corrections between the training sessions against the reference 

categories are shown in Figure 2 and 3.  

 

 

a) 
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Figure 2. Means and 95% confidence intervals (95%CI) of (a) percent of maximal heart rate (%HRmax), 

(b) blood lactate concentration (HLa) and (c) rating of perceived exertion (RPE) across the eight 

training sessions. ˟: Significantly (p < 0.05) different from session 1; #: significantly (p < 0.05) different 

from session 4; ♦: significantly (p < 0.05) different from reverse adjacent session. 

b) 

c) 
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Figure 3. Means and 95% confidence intervals (95%CI) of the (a) ratio of blood lactate concentration 

to ratings of perceived exertion (HLa/RPE ratio) and (b) session rating of perceived exertion (sRPE) 

across the eight training sessions. ˟: Significantly (p < 0.05) different from session 1; #: significantly (p 

< 0.05) different from session 4; ♦: significantly (p < 0.05) different from reverse adjacent session. 

Non-linear regression analysis revealed a very large negative relationship between HLa/RPE ratio 

and sRPE ratings for the intermittent training sessions (r = −0.70, RMSE = 0.59, p < 0.0001) (Figure 4). 

a) 

b) 
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Figure 4. Relationship between the ratio of blood lactate concentration to ratings of perceived exertion 

(HLa/RPE ratio) and the session rating of perceived exertion (sRPE). The black dots represent all 

subjects’ training sessions; the black line represents the predicted mean; the grey shaded area 

represents the 95% confidence interval of the predicted mean. 

4. Discussion 

The purpose of this study was to examine the effects of progressive fatigue occurring in response 

to heavier-than-normal training on sRPE. The results of this study demonstrate that, at a constant 

external training intensity, sRPE increases with session duration and sequential days, which may 

provide more information on accumulated fatigue, supplementary to information regarding internal 

training intensity [9,10]. 

Training session %HRmax mean values were relatively constant over the two-week period. 

However, S3 and S8 were significantly lower than S4. We hypothesize that this difference in training 

%HRmax could be due to the effects of the lengths of the two workouts (thirty-minute versus sixty-

minute). It has been demonstrated that the connection between HR responses and training intensity 

is influenced by several factors, such as duration, frequency, and training status. Previous studies 

have demonstrated that HR at a fixed submaximal exercise intensity is augmented with increasing 

bout duration, in presence of overtraining or with a lack of conditioning, but conversely decreases as 

aerobic fitness improves [20,21]. Lamberts et al. [22] have shown that, under controlled conditions in 

which the training status does not change, submaximal HR might vary ±7 bpm when the exercise 

intensity is approximately 90% of HRmax. In our study, subjects performed intermittent training 

sessions (25–100% of PPO). Although high intensities were reached momentarily during the training 

sessions, HR was submaximal and relatively constant throughout the two-week period. Furthermore, 

the difference between the training session HR ranged from 1 to 5 bpm, which is within the 

magnitude of day-to-day variation previously suggested [22]. 

Monitoring HLa concentration is a common method to evaluate responses to training. As the 

intensity of exercise increases, HLa concentration increases, at least beyond the commonly accepted 

‘lactate threshold’. This increase in HLa concentration illustrates a reliance on the glycolytic process, 

which is the breakdown of glucose or glycogen into lactate [23]. In our study, the accumulated HLa 

concentration of S7 and S8 were significantly lower than S1. A similar trend in muscle glycogen 

decrease was found after successive days of heavier-than-normal exertion [5]. The decrease in HLa 

concentration observed here paralleled the progressive decrease in muscle glycogen. We have shown 
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that an acute increase in training intensity or a workload that is likely to cause acute glycogen 

depletion typically leads to decreases in HLa concentration at fixed workloads [6]. As glycogen 

depletion has been thought to contribute to fatigue during high intensity exercise and might be part 

of the overtraining syndrome [24], we could assume that the decrease in HLa concentration found in 

our study could be due to the effects of accumulated fatigue present during longer training bouts and 

during a sequence of longer training bouts. This hypothesis could be further explained by the 

significant differences found between S5 and S6. In fact, the subjects had 96 h of rest before 

performing S5 and, therefore, it could be inferred that they had enough time for adequate glycogen 

resynthesis. 

Training RPE mean values were relatively constant over the two-week period, with values 

ranging from 3.3 to 4.2. To the best of our knowledge, only a few studies have investigated the effects 

of consecutive match or controlled training days on RPE [25,26]. Gescheit et al. [25] reported no 

significant differences in RPE during four consecutive days of prolonged tennis match play in trained 

players. The authors inferred that the player’s RPE remained constant over the four days due to the 

potential of pacing and tactical modifications (e.g., downregulation of exercise intensity to maintain 

perceived effort). Haddad et al. [26] investigated the influence of fatigue, stress, muscle soreness and 

sleep on RPE during submaximal effort. They showed that RPE during a submaximal exercise was 

not influenced by sleep, stress, fatigue, and delayed onset muscle soreness during a ten-minute 

standardized submaximal warm-up with young soccer players. However, in our study, we found 

significant differences between the very last training sessions and the reference sessions. The 

significant differences found between S6 and S7, with respect to S1, might be due to accumulated 

fatigue at the end of the two-week period, whereas the significant differences found between S3 

versus S4 and S7 versus S8 might be due to the paired effects of weekly accumulated fatigue and the 

impact of the session duration. 

Although the 0–10 RPE scale has been shown to have strong positive correlation with HLa 

concentration during exercise [11], there is evidence to support the concept that the RPE–HLa 

relationship is altered during extended cycling at a steady workload [27], and during repeated bouts 

of exercise [16]. This alteration does not seem to be influenced by recovery time between bouts (up 

to 3.5h) [28]. Several studies have shown that the HLa/RPE ratio might be considered a useful method 

to detect the effects of training programs and the occurrence of short-term overreaching [18,29]. 

Snyder et al. [18] used the HLa/RPE ratio to detect over-reached status in competitive cyclists, by 

showing that the HLa/RPE ratio decreased for all workloads following two weeks of intensive 

interval training. Accordingly, our results showed a similar altered relationship between RPE and 

HLa concentration over the two-week training period. As we found significant differences in 

HLa/RPE between S6, S7 and S8 versus S1, we infer that the decrease in HLa/RPE could be due to the 

paired effects of HLa concentration decrease and RPE increase at the end of the two-week training 

period. Therefore, HLa/RPE could be a useful surrogate for monitoring accumulated fatigue over 

prolonged periods of training. However, future studies should investigate its consistency and 

reliability. 

Regarding sRPE, the present findings support the hypothesis that sRPE may significantly 

increase as a longer-than-usual training load progresses. Overall, the sixty-minute intermittent 

training sessions showed significantly higher sRPE with respect to the thirty-minute sessions. The 

results support the concept that sRPE reflects information beyond the internal intensity of exercise 

and whether acutely (during a sixty-minute or thirty-minute workout), or sub-acutely (during 3 

consecutive days of higher-than-usual training), this may reflect accumulating fatigue, in addition to 

exercise intensity. Herman et al. [30] have also shown that sRPE increases after progressive fatigue 

from continuous bouts of exercise. Fusco et al. [16] have shown that sRPE may provide information 

about accumulated fatigue during a single prolonged training bout, while other markers of intensity, 

such as HR and HLa concentration, remained constant. In this study, the workouts were formatted 

in a fashion that strained the subjects enough during the sixty-minute sessions to elicit a decrease in 

HLa concentration and an increase in sRPE. Based on our results, it might be assumed that the 

decrease in HLa concentration, paired with the increase in sRPE, could be a potential indicator that 
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the subjects were unable to replenish their muscle glycogen stores adequately between the hard 

workouts, especially at the end of the second week. Therefore, sRPE might be a sensitive tool for 

monitoring the internal training load that provides further information on accumulated fatigue. This 

hypothesis might be further explained by the significantly large negative relationship between 

HLa/RPE and sRPE. 

Despite the findings of this study, some limits need to be acknowledged. Firstly, we were limited 

to using HLa concentration and HLa/RPE as surrogate measurements for muscle glycogen 

concentrations. To get a more accurate depiction of physiological fatigue, it would be beneficial to 

replicate this study in a setting that allows for the direct measurement of muscle glycogen. 

Furthermore, the subjects’ diets were not controlled, and consequently, it would be beneficial to carry 

out other studies with subjects on a specific diet, such as a high carbohydrate intake designed to 

maintain carbohydrate reserves. Finally, as during the sixty-minute training sessions there was a 

significant increase in sRPE, paired with a significant decrease in HLa concentration, it is worthwhile 

to speculate whether the data would likely have more clearly supported our hypothesis if the sixty-

minute sessions were extended for a longer time (either acutely or for more days) [31]. Even so, this 

study provides evidence that sRPE provides information that is more complex than simply providing 

a marker of exercise intensity. Therefore, future studies are required to explore the effectiveness of 

sRPE as a simple method for monitoring accumulated fatigue and avoiding inadequate recovery or 

overtraining. 

5. Conclusions 

In conclusion, the results support the concept that sRPE is a sensitive tool that may detect 

accumulated fatigue across multiple training days, in addition to being a surrogate marker of exercise 

intensity. Coaches, health scientists and practitioners without access to HLa concentration 

measurements may gain insight into accumulated fatigue during periods of increased training by 

using sRPE in order to avoid inadequate recovery or overtraining.  
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