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Abstract

Detecting outliers in contingency table is an interesting statistical problem and it poses
additional difficulties due to the polarization of cell counts. The fundamental definition of
’markedly deviant’ cell as an outlier is clearly exploited in this study by introducing a pivot
element to capture the deviations. The present study considers a two-step confirmatory
procedure to detect outliers in I × J contingency table. The procedure deals with (i)
identifying the reliable set of candidate outliers using the deviation from the pivot element
and then (ii) detect those set of outlying cells by examining different type of residuals of
the suitable fitted model. The robustness of the procedure is investigated through a
simulation study along with applications to real datasets.

Keywords: Poisson log-linear model, negative binomial model, diagnostics, residuals, boxplot,
outlier(s).

1. Introduction

In recent years, a great deal of attention has been paid to the accommodation and identi-
fication of unusual observations (outliers) in the data. Outliers may be real errors, or else
accurate but unexpected observations which could shed new light on the phenomenon under
study (Barnett and Lewis (1994)). Unlike in metric case, there exists no clarity in the defini-
tion of outliers for categorical data as the cells are purely frequency or counts of a contingency
table. Outliers are only vaguely described as such cell frequencies which deviate markedly
from the expected value or cause a significant lack of fit. Hence, an attempt has been made
to explain the fundamental meaning of ’markedly deviant’ as a pivotal element by answering;
which cell, from where and, by how much, based on the generic characteristics of the table.

Many classical statistical methods are extremely sensitive even to slight deviations from usual
distributional assumptions. Until now research on outliers in I×J contingency tables has been
restricted mainly to the study on independence. Graphical display such as biplots, mosaic
plots, etc., can also be useful in studying the association between the I rows and J columns
and could be useful in identifying the outlying cells in contingency table (Friendly (2000);
Beh and Lombardo (2014)). Kuhnt (2004) described a procedure to identify outliers based
on the tails of the Poisson distribution and declared a cell as outlier if the actual count falls
in the tails of the distribution.
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Rapallo (2012) studied the pattern of outliers by fitting log-linear model and test the goodness
of fit to specify the notion of outlier with the use of algebraic statistics. Kuhnt, Rapallo, and
Rehage (2014) detected outliers through subsets of cell counts called minimal patterns for
the independence model. Mignone and Rapallo (2018) identified the outlying cells based on
a set of proportions in a contingency table. Sripriya and Srinivasan (2018) has proposed a
new method to detect outliers in two-dimensional tables. However, this study presents an
alternative approach to detect outliers based on the assumption of model independence.

Residual based techniques has been widely used to detect outliers in contingency tables
(Haberman (1973); Fuchs and Kenett (1980); Bradu and Hawkins (1982); Yick and Lee
(1998); Simonoff (1988); Lee and Yick (1999)). Even though, the residual technique has been
used, no cutoff criteria is provided in choosing the maximum residuals and is more heuristic
in nature.

Further, polarization of cell counts is one of the major problem when it comes to outlier
detection. Polarization is basically an uneven distribution of counts in the I × J Table.
Polarization in contingency tables involve presence of counts/frequencies of disparate nature,
such as presence of zero counts, low counts, high counts, and extreme values, etc. Suppose
a table consists of more number of zero counts and very few high counts forming unusual
clusters which could affect the inference of I×J table, in addition to the detection of outliers
(Sripriya, Srinivasan, and Gallo (2019)). Thus, the structure and nature of cell counts in a
contingency table play an important role in the data analysis with the cell counts ranging
from zero to very high frequencies (Sangeetha, Subbiah, Srinivasan, and Nandram (2014)).
Following, Subbiah and Srinivasan (2008) on the sensitivity analysis of 2× 2 tables, location
of polarized counts in the table pose additional challenge in the detection of outliers.

In this paper, we propose a two-step confirmatory procedure to detect potential outliers in
two-way contingency table. Firstly, the method identifies the reliable set of candidate outliers
in I × J table through the deviation from the pivot element. Secondly, the model based
diagnostics is used to obtain the results followed by boxplots to confirm the outlying cells.

2. Proposed method

Consider N sample observations that are cross-classified in an I ×J (=N) contingency table,
and Yk , k = 1, . . . , N . are assumed to be the realizations of random variables. Once a con-
tingency table is constructed, the first interest will be the hypothesis of either homogeneity or
independence depending on the sampling scheme (Agresti (2002)). When the null hypothesis
is rejected, the cell residuals are investigated to identify the cells which deviate greatly from
others. The cell is considered to be an outlier when the observed frequency deviates markedly
from the corresponding expected frequency under the null model.

Let nij be the observed cell frequencies of I × J table, N =
∑I

i=1

∑J
j=1 nij be the total

frequency, and let T = N/k; where k = IJ , be the pivot element through which the markedly
deviant cells are obtained as the candidate set of outliers, denoted by the subset as S. For an
I × J table, calculate the deviations Dij = |T − nij | and examine the deviations Dij for each
row and if any Dij is markedly deviant from the neighbouring cells then that particular cell is
said to be discordant and is included in the subset S. The steps involved in the confirmatory
procedure are as follows:

Step 1: Given an I × J table, locate the set of candidate outliers S, using Dij = |T − nij |.

Step 2: Fit a Poisson Log-Linear model for the data with S as the nature of the data is count.
If the model fits well go to step 3, else step 4.

Step 3: Examine different types of residuals associated with the model and detect the outliers
through boxplot of residuals.

Step 4: Fit a Negative Binomial model and do step 3.
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Residual techniques have been carried out by researchers in order to identify the outlying
cells in a table by considering residuals greater than ∓3. In this heuristic approach, outliers
are identified irrespective of the polarization of cell frequencies and order of the contingency
tables. To overcome this, the box plot of different types of residuals has been considered
to identify the outlying cell. The different diagnostic measures considered are, (i) Response
residual, (ii) Deviance residual, (iii) Pearson residual, and (iv) Deleted residual.

Thus this procedure provides a systematic approach of identifying outliers under conditions
of polarity for varying order of the table. The following section deals with examining the
robustness of proposed procedure as envisaged through a simulation study.

3. Simulation study

The study of over 100 real time datasets available in the literature has shown that polarization
is largely observed in tables of order more than 2×2. However, the study considered tables of
order (3× 3), (4× 4) and (5× 5) with N varying from 50 to 350 for the detection of outliers.
The cell frequencies of the tables are assumed to follow Mult (N, (p1, p2, . . . , pk)) where pi ∼
U(0, 1); i = 1, 2, . . . , k . . . The behaviour of different types of residuals with contaminating the
cells has been observed in the process of diagnostics for outlier detection. Here, contamination
is restricted to single cell at a time and the number of cells to be contaminated are selected
using min{I, J} where I and J be the number of rows and columns respectively. Different
level of contamination α (10% to 100% of row total) are considered and repeated 500 times.
We examined the consistency of correctly identified cells among four different residuals in this
simulation study.

The six different scenarios described below are carried out through a simulation study and
the results are presented in Table 1-6.

Generate 500 tables of size 3×3 andN ranges from 50 to 100. The results reveals that the
response and deleted residuals performs well in detecting the outliers in Poisson model
and the response residuals performs well in Negative Binomial model. The Pearson
residuals yield a poor results in detecting outliers in this approach.

Generate 500 tables of size 3× 3 and N ranges from 100 to 350. The residual analysis
shows that response and deleted residual identified the outliers to a greater level in both
the models and also the four residuals yields better performance in Poisson model than
Negative Binomial model.

Generate 500 4 × 4 tables and N ranges from 50 to 100. The results reveals that all
the four residuals performed poorly in detecting the outliers except response residuals
in Negative Binomial model.

Generate 500 4 × 4 tables and N ranges from 100 to 350. The results reveals that all
the four residuals performed poorly in detecting the outliers in both the models due to
the behaviour of the neighbouring cells and probably even distribution of counts in the
table generated.

Generate 500 5 × 5 tables and N ranges from 50 to 100. The results reveals that all
the four residuals performed poorly in detecting the outliers except response residuals
in Poisson Log-Linear model.

Finally, simulation is carried out by considering 500 tables of size 5 × 5 and N ranges
from 50 to 350. The result showed that all the four residuals performed poorly in
detecting the outliers due to the behaviour of the neighbouring cells and probably even
distribution of counts in the table generated.
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Table 1: Number of outliers detected in 3× 3 with N lying between 50 and 100 (out of 500)
α Poisson Model Negative Binomial
(in %) Response Pearson Deviance Deleted Response Pearson Deviance Deleted

10 08 06 07 05 05 00 00 02
20 11 10 10 198 09 02 11 53
30 13 12 12 210 10 03 13 66
40 18 17 16 248 14 04 16 98
50 24 20 19 256 28 17 27 114
60 200 24 21 267 232 29 30 125
70 253 27 205 311 242 31 112 148
80 256 29 245 340 249 35 144 181
90 256 33 256 364 258 37 178 242
100 290 36 268 402 267 39 187 249

Table 2: Number of outliers detected in 3× 3 with N lying between 100 and 350 (out of 500)
α Poisson Model Negative Binomial
(in %) Response Pearson Deviance Deleted Response Pearson Deviance Deleted

10 04 05 03 06 10 02 03 05
20 05 08 05 86 15 11 12 43
30 06 17 08 135 21 13 13 99
40 09 21 11 176 30 15 16 123
50 15 29 14 188 42 18 19 137
60 27 32 32 230 56 31 34 141
70 93 39 88 255 68 83 96 149
80 114 87 146 264 93 115 127 157
90 153 175 162 299 142 139 138 163
100 238 198 195 368 189 142 144 174

Table 3: Number of outliers detected in 4× 4 with N lying between 50 and 100 (out of 500)
α Poisson Model Negative Binomial
(in %) Response Pearson Deviance Deleted Response Pearson Deviance Deleted

10 08 05 06 08 09 01 02 06
20 14 09 12 19 16 05 11 12
30 25 15 17 56 31 10 18 44
40 29 18 23 76 58 11 21 50
50 32 32 29 88 74 33 30 76
60 37 62 56 96 88 55 55 92
70 46 85 104 106 91 70 101 135
80 67 108 118 152 153 102 114 139
90 86 127 122 154 181 124 129 146
100 93 136 126 162 279 128 131 152
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Table 4: Number of outliers detected in 4× 4 with N lying between 100 and 350 (out of 500)
α Poisson Model Negative Binomial
(in %) Response Pearson Deviance Deleted Response Pearson Deviance Deleted

10 01 01 02 03 10 02 00 01
20 04 02 05 06 15 07 02 03
30 08 06 09 10 19 11 07 05
40 10 11 15 17 26 15 10 12
50 18 20 24 26 34 17 16 15
60 22 27 35 38 48 22 22 26
70 37 34 47 59 57 38 34 41
80 42 48 65 63 68 54 43 54
90 76 65 78 84 74 71 57 67
100 89 72 92 91 79 78 68 81

Table 5: Number of outliers detected in 5× 5 with N lying between 50 and 100 (out of 500)
α Poisson Model Negative Binomial
(in %) Response Pearson Deviance Deleted Response Pearson Deviance Deleted

10 11 01 00 00 03 00 00 01
20 27 03 01 01 05 01 00 03
30 34 10 03 05 11 03 01 08
40 39 18 17 08 16 05 04 13
50 48 21 26 18 27 08 07 23
60 52 28 29 32 39 11 17 34
70 69 31 39 48 48 18 22 47
80 65 39 44 52 52 21 34 53
90 91 41 53 64 67 24 40 61
100 129 42 61 69 72 37 54 68

Table 6: Number of outliers detected in 5× 5 with N lying between 100 and 350 (out of 500)
α Poisson Model Negative Binomial
(in %) Response Pearson Deviance Deleted Response Pearson Deviance Deleted

10 03 02 01 01 04 01 01 02
20 08 04 01 04 07 05 02 04
30 16 10 03 13 15 11 05 07
40 29 15 05 17 28 13 09 13
50 37 21 09 25 35 26 14 16
60 49 27 11 33 42 32 21 19
70 53 35 18 40 57 36 29 38
80 69 42 24 49 68 48 37 51
90 73 58 38 51 72 55 41 63
100 82 64 49 53 84 61 51 79
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Table 7: Percentage of correct classification of non-outlying cells
Scenarios Poisson Model Negative Binomial

I × J N Response Pearson Deviance Deleted Response Pearson Deviance Deleted
3× 3 50 - 100 72 75 79 82 76 79 81 84

100 - 350 83 87 89 91 81 85 91 94
4× 4 50 - 100 77 79 83 87 78 82 88 90

100 - 350 86 89 93 94 83 87 94 95
5× 5 50 - 100 79 81 86 89 76 79 84 89

100 - 350 85 88 92 95 82 87 91 94

Table 8: Student’s enrolment

School/Period 1 2 3 4 5 6 7 8

A 93 96 99 99 147 144 87 87
B 138 141 141 201 189 153 135 114
C 42 45 42 48 54 48 45 45
D 63 63 72 66 78 78 82 63
E 60 60 54 51 51 45 39 36
F 174 165 156 156 153 150 156 159
G 78 69 84 78 54 66 78 78

Source: Yick and Lee (1998)

The study has also considered the percentage of correct classification of non-outlying cells or
inliers in different scenarios considered in the simulation study irrespective of the contamina-
tion level and the same are presented in Table 7. The results revealed that the percentage
of correct classification of inliers improves when N increases irrespective of the order of the
table. Also, the inliers classified in deviance and deleted residuals are comparatively higher in
both Poisson and Negative Binomial model as compared to response and Pearson residuals.

The simulation study has shown that polarization of cell counts is a major issue in the
detection of outliers in I × J contingency tables. Indeed, the use of residuals as a suitable
diagnostic measure under the suitable model with boxplot turns out to be a good choice in
detecting the outlying cells. The present simulation study is restricted to smaller tables and
could be extendedn to modelling higher dimensional tables for detecting outliers. Further to
simulation, the study explored certain well known data to establish the results of simulation.

4. Data analysis

4.1. Student’s enrolment data

The study consist of Student’s enrolment data of Northern Territory, Australia conducted in
seven community schools in eight different periods of the year and presented in the following
table (Yick and Lee (1998)). The primary interest lies in detecting the outlying cells from
the data, if any, before carrying out further analysis.

Following the method outlined in Section (2), deviations from the pivot element identified
the candidate set S = (1, 5), (1, 6), (2, 4), (2, 5) as outliers. In the confirmatory procedure,
Negative Binomial model fits the data well and the four types of residuals detected (1, 5), (1,
6), (2, 4) and (7, 5) as potential outliers and the boxplot of residuals are presented in Fig 1.
The non-aberrant cell (7, 5) is identified as outlier in the residual diagnostic approach and
the cell (2, 5) is not detected due to masking in the identification stage. Upon application of
perturbation diagnostics (Yick and Lee (1998)) produces the cells (1, 5), (1, 6), (2, 4) and (2,
5) as potential outliers. Thus, the identification of outliers from the pivot element appears to
be a resistant to masking effect.
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Table 9: Artificial data

18 41 41 20 21
39 20 20 22 22
24 20 20 16 18
20 20 19 19 19
23 19 20 17 20

Source: Simonoff (1988)

4.2. Artificial data

As a second illustration, we consider 5×5 contingency table from Simonoff (1988) an artificial
data presented in the following table, with induced outliers.

In our method, the deviations from the pivot element identified the candidate set S =
(1, 2), (1, 3), (2, 1) as outliers. In the confirmatory procedure, Poisson model fits the data
well and the four types of residuals detected the cells (1, 1), (1, 2), (1, 3) and (2, 1) as outly-
ing cells and the boxplots are presented in Fig 2. Here the non-aberrant cell (1, 1) is identified
as outliers using the residual approach. The same cells (1, 2), (1, 3), and (2, 1) are found to
be outliers via deleted residuals and (1, 1) being swamped in adjusted residuals by Simonoff
(1988). Thus, the detection with deviation from pivot element is resistant to swamping effect
also.

5. Conclusions

Diagnostics in I×J contingency table has drawn a great deal of attention by the statisticians
for many years but the notion of outliers is not well defined. There is no general agreement
among the statisticians about the detection of outliers due to the polarization of cell frequen-
cies in contingency tables. Such polarized cells in I×J contingency tables has been examined
through the independence of attributes. In this direction, a two phase objective is devised
with the identification of pivot element to examine their deviations and then a confirmatory
approach to identify the outliers a model based diagnostics.

The procedure deals with finding the reliable set of candidate outliers through a distance
measure Dij = |T − nij | and then applying the confirmatory procedure by fitting a suitable
model and the usual diagnostic measures (residuals) followed by boxplot to identify the out-
lying cells. The stability of our proposed methods towards the identification of outliers is
examined through a simulation study. The results have revealed that response and deleted
residuals approach identifies the outliers to a greater extent than compared to other residual
methods. Moreover, it is evident that the results provide an idea on impact of polarization
in the table, and is found to be useful in detecting outliers.

Based on the numerical results, we conclude that the two-step confirmatory procedure as a
combination of suitable diagnostic measure and an appropriate graphical approach through
boxplots could be a viable approach in detecting outlier cells in I×J contingency tables. The
proposed pivot element detection technique is resistant to masking and swamping effects.
The results based on fitting of other generalised linear models with the presence of zero cell
frequencies to detect outliers is under investigation.
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