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Abstract

Image thresholding is a challenging task due to its sensitivity to en-
vironmental variations and degradation in the quality of the captured
image. Although many image thresholding methods have been in-
troduced, most of them require the fine tuning of a thresholding pa-
rameter that is not suitable for single-shot structured light (SSSL)
based projector-camera applications. In this paper, we introduce a
locally adaptive thresholding method with automatic parameter se-
lection based on the local statistics of the distinct image partitions.
For assessing the proposed scheme, we introduce an evaluation
that relies on mapping SSSL patterns between the camera and pro-
jector spaces. Experimental results demonstrate the effectiveness
of the proposed technique by maintaining the thresholding accuracy
of the baseline method, without the need to fine tune the obtained
thresholding parameter or any noticeable change in the qualitative
results.

1 Introduction

As a fundamental and challenging problem in the field of com-
puter vision, 3D reconstruction has been an active area of research
for decades [1], and projector-camera systems are one means to
achieve this goal. The key step in creating a 3D reconstructed point-
cloud for a scene is to have enough information to do so, where the
most fundamental information for inferring scene geometry is a set
of pixel correspondences. For projector-camera systems the projec-
tor is able to influence the scene via structured light (SL), for which
there are two well known SL approaches, namely multi-shot SL [2],
and single-shot SL [3]. Although the multi-shot SL generates dense
pixel correspondances, they require multiple pattern to be projected
over time, which limits their applicability to a static configuration
setup. In contrast, single-shot SL approach lifts this limitation by
only requiring a single scene capture, but at a cost of sparser pixel
correspondences. In [3], the single-shot structured light (SSSL) ap-
proach captures and binarizes the projected pattern, hence image
binarization will impact the quality of the whole SSSL process.

There is a significant literature on image thresholding, including
in the SSSL context, and both global [4–6] and local [7–9] image
thresholding methods have been used [10, 11]. In global threshold-
ing [4, 5] a single constant is used to threshold every pixel in the
image, causing the method to suffer from a susceptibility to spatial
intensity variations. On the other hand, local image thresholding-
based methods [7–9] are more robust to intensity variations, since
they utilize a locally determined threshold for every pixel in the im-
age. However, these methods [8, 9] usually need a parameter fine-
tuning step to accommodate environmental variations, which is ei-
ther time consuming or itself subject to error.

In this paper, we introduce a locally adaptive thresholding
method that partitions a camera image into distinct blocks and ex-
tracts local statistics from each block. Next, we show that every
pixel in the image can be thresholded based on the local average
multiplied by a hyper parameter that can be estimated based on a
novel closed form expression. The proposed technique leverages
a block smoothing process for the thresholds to avoid the blocking
artifacts that may be caused due to block partitioning the image. A
new evaluation strategy is introduced for the first time, to the best of
our knowledge, which maps the thresholded camera pixels into the
projector space and therefore the binary SSSL patterns are consid-
ered as the ground truth. Quantitative and qualitative experimental
results demonstrate the effectiveness of the proposed thresholding
scheme compared to the baseline that requires parameter fine tun-
ing.

Fig. 1: Block diagram of the local thresholding method, where IC
and I′C are the input and thresholded camera image, and T is the
thresholding map for every pixel. Neighborhood size of the smooth-
ing filter is 3×3.

2 Background

In the literature, there exist various image thresholding methods
that have been proposed [4, 5, 8, 9]. For instance, Otsu’s method
[4], which is a global thresholding method, aimed to maximize the
between class variance in order to set a global threshold. How-
ever, it cannot be used in projector-camera systems SSSL applica-
tions, due to the varying illumination of the scene and the distortion
caused by the shape of the object. Hence, the adaptive thresholding
methods in which a local threshold is set for each pixel (so called
locally adaptive thresholding) are of interest to the target applica-
tion, such as the methods in [8, 9]. Reader would also be referred
to [12, 13] for more information on different types of related image
thresholding methods.

Sauvola and Pietikäinen’s Method: In this section, a brief
overview on Sauvola and Pietikäinen (SP) method in [8] is pre-
sented, which is originally developed for document image thresh-
olding. Given an input camera image IC, this method uses the local
mean m(x,y) and the local standard deviation δ (x,y) computed at
the (x,y)th pixel location to set a value, T (x,y), for thresholding the
(x,y)th camera pixel. More specifically, the following relationship is
used to obtain T (x,y):

T (x,y) = m(x,y)
(

1− k
(

1− δ (x,y)
R

))
(1)

where R is the dynamic range of the image pixels, which is a way
to standardize the pixel intensities in the image, and k is the bias
parameter. An illustration of SP’s thresholding method on a sample
image is shown in Fig. 1. It is noted that in the context of projector-
camera systems, the parameter k changes with different surfaces
and different illuminations. Therefore, fine tuning this parameter is
very time consuming and is not possible to do during the SSSL
process.

3 Proposed Method

Unlike SP’s method that requires fine tuning for the parameter k
in (1) for every image, our proposed method aims to obtain auto-
matically an optimal k in order to adaptively threshold each image
pixel within a local region. Fig. 2 shows the overall architecture of
the proposed method. In this method, IC is firstly smoothed by us-
ing an average filter that leverages the integral image technique [9],
which increases the speed of the filtering process. Afterwards, the
smoothed image is partitioned into a number of distinct blocks,with
relative size of three times the cells in the projector pattern, IP, and
based on the average value of the 10th and 90th percentiles of each
block, the algorithm assigns a specific k to each block as follows:

k(u,v) =
Γ(u,v)−M(u,v)

4R
(2)

where R is the image dynamic range, k(u,v) is the adjusted bias
value for the (u,v)th block. Based on the majority of white or black



Fig. 2: Block diagram of our proposed method, where K-map is
produced, and based on K-map a threshold map, T , is achieved.
Neighborhood size of the filter is the same as SP and the block size
are three times the cell sizes in the projector pattern, IP

pixels in each block we wish to set the threshold above or below
M(u,v). However, in order to prevent falling far from M(u,v) and have
worse threshold set for the block, we need to slightly reduce the
range of variation for k(u,v). Therefore, we divided the nominator of
(2) by the constant 4R. Additionally, Γ(u,v) is defined as

Γ(u,v) =
p10th(u,v)+ p90th(u,v)

2
(3)

where M(u,v) is the mean of the (u,v)th block, and p10th and p90th

are the 10th and 90th percentiles of the pixel intensities within the
same block, respectively.

After defining k for each block, a K-map that defines the thresh-
olds per pixel is created as shown in Fig. 2. In order to avoid the
blocking artifacts, a smooth version of the K-map is constructed us-
ing the average filter, which we denote it by K̂. Finally, the smoothed
K-map, i.e., K̂, which has the values of k corresponding to each pixel
in the image, is then used to create the threshold map, T , by:

T (x,y) = m(x,y)
(

1− K̂(x,y)
(

1− δ (x,y)
R

))
(4)

where m(x,y) and δ (x,y) are the local mean and local standard de-
viation of each pixel, and K̂(x,y) is the bias parameter by which we
decide how far below or above m(x,y) we need the threshold to be
set. The usual values for the parameter k suggested in [8, 13] and
in (1) would not necessarily be the optimum value for the SSSL ap-
plication. On the other hand, as can be seen in (2)-(4) our method
can compute K̂(x,y) automatically and therefore is robust to several
environmental challenges, such as shadows and distortions.

Finally, the thresholded image, I′C, is achieved by applying the
acquired threshold map, T , on the camera image, IC, as follows:

I′C(x,y) =

{
1, if IC(x,y)≥ T (x,y)
0, if IC(x,y)< T (x,y)

(5)

4 Experimental Results

For the experimental setup, we have used a Flea 3 camera with
resolution of 2448x2048 and Christie Digital projector with resolu-
tion of 1920x1200. We tested the proposed method using SSSL
patterns projected on three different 3D-printed objects named by
Wolf Head, Zigzag [14] and Building Facade [14].

Evaluation Methodology: Fig. 3 shows a diagram for our pro-
posed evaluation methodology. To evaluate the local thresholding
techniques, we first generate a dense set of pixel-correspondences
between the camera and projector images, φgt , using a multi-shot
graycode structured light patterns [15]. Our assessment strategy is
based on mapping a thresholded pixel in a given camera image into
the projector space leveraging the dense set of correspondences,
φgt , and then compare the mapped value to that in the original bi-
nary projector pattern, Ip. Considering the original SSSL binary pat-
tern, IP, that needs to be projected on the surface as the ground-
truth image due to it not being affected by the surface geometry
deformation and every pixel has a specific binary value. This ap-
proach will help us having a rich set of pixels to compare with the
ground-truth.

Fig. 3: Block diagram of the evaluation process, where IC, I′C, and
I′CP are the captured camera image, the thresholded camera image,
and the mapped thresholded camera image that is used to compare
with the pattern IP and evaluate the accuracy, respectively.

To apply this strategy, given an input SSSL camera image,
IC, we obtain the binarized image, I′C, by applying our proposed
method, or any other thresholding method in comparison. Based
on the acquired pixel-correspondences between the camera and
projector images, φgt , we map the binarized camera image, I′C, into
the projector space, I′CP. Next, for every pixel location, (x,y), in I′C
when all the neighboring camera pixels that are within η×η region
centred around (x,y), ℵx,y, have the same value, then we assume
this correspondence is a valid pixel to compare the mapped ver-
sion, I′CP, with that in the projector pattern, IP. This process can be
expressed as follows:

G(x,y) =

{
1, if I′C(x,y) = I′C(m,n)|∀(m,n) ∈ℵx,y

0, otherwise
(6)

where G(x,y) is the set of valid pixel-correspondences that can be
used to assess I′CP(x,y) against IP(x,y), and the dimensions of the
neighborhood η×η are set to 3×3 in this evaluation.

It is worth mentioning that checking the validity of pixels in φgt
is performed before mapping I′C to I′CP. In other words, the validity
is checked in the camera space on thresholded image, I′C, and then
mapped to the projector space, I′CP, for evaluation.

After obtaining the valid set of correspondences, G, and map-
ping I′C to I′CP, in order to complete the evaluation process we need
to assess whether a given pixel has been binarized correctly or not.
To this end, let the sets of True and False pixel-correspondences be
defined as follows:

R = 〈(x,y) | I′CP(x,y) = IP(x,y) , G(x,y) = 1〉 (7)

W = 〈(x,y) | I′CP(x,y) 6= IP(x,y) , G(x,y) = 1〉 (8)

where R and W are the sets of correctly and incorrectly thresholded
pixels, respectively. We use the pixel thresholding error rate (ξ ) that
can be expressed as:

ξ =
|W |

|R|+ |W |
×100% (9)

where | · | indicates the cardinality of the set. The metric ξ can infer
the percentage of incorrectly thresholded pixels from the total num-
ber of valid correspondences. In the rest of this section, we utilize
the proposed evaluation methodology to compare the thresholding
error rate of the proposed scheme with that of SP’s method [8].

Qualitative Results: Fig. 4 shows the different qualitative results of
SP’s method [8] and the proposed method. As shown in this Figure,
one can observe that the proposed method is less prone to thresh-
olding the symbols in the black squares which is helpful for next
steps in SSSL process. Additionally, both methods seem to have
errors on edges and discontinuities in the image which is expected.
This figure also represents the results of the proposed method with
the correspondences incorrectly thresholded and marked as red
crosses on three objects: Wolf Head, Building Facade and Zigzag.

It should be noted that the inherent material of the object in
front of the setup is also affecting the final results. As can be ob-
served from Fig. 4, the proposed method and the method in com-
parison generate a higher number of incorrect correspondences on
the Building Facade than that on the Wolf’s Head.This is due to ma-
terial that Building Facade [14] has been built of is more reflective
than Wolf’s Head.

Quantitative Results: Fig. 5 shows the effect of changing the value
of k on the error rate, ξ in (9), for SP method, and the error rate pro-
vided by the proposed method at the average estimated parameter
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Fig. 4: Sample qualitative results for SP’s method vs our proposed
method on three different surfaces, where a marker with red color
denotes incorrect thresholded pixels. Note that SP’s method re-
quires adjusting k to 0.2, 0.1 and 0.0 for the Wolf Head, ZigZag and
Building Facade, respectively, for generating the best results.

Fig. 5: Effect of changing k = [−0.3,−0.2, ...,0.3] on the error rate,
ξ , for the SP’s method, and the error rate provided by the proposed
method at the average estimated parameter K̂.

K̂, where the three target surfaces are used. As shown, setting k for
SP’s method further from the optimum value in both directions can
hugely increase the error rate.

Table. 1 shows the error rate comparison between the proposed
method and the SP method. As shown in the table, the error rate of
the proposed method is close to that of the SP’s method, which has
been tuned its k value to the lowest error rate in Fig. 5. Although
there is not a significant difference in error between the two meth-
ods, due to automatic tuning of the hyper parameter k, our method
is expected to offer a superior performance than the SP method
with regards to our SSSL application, during which no interference
from the user is needed.

5 Conclusion

In this paper, we have proposed a method to adaptively threshold
a grayscale SSSL image using the local statistics of the image par-
titions. Our proposed method has the capability of automatically
obtaining all the parameters needed for thresholding the image. To
quantify the error rate of the thresholding methods, we have intro-
duced a new evaluation methodology that has leveraged a dense
set of correspondences generated from a multi-shot structured light
system to map a thresholded camera pixel to the projector space.
We have demonstrated that the proposed method maintains the er-
ror rate of the baseline state-of-the-art method, while achieves a
close qualitative results without parameter fine tuning.

Table 1: Error rate, ξ , for the proposed method and the method in
[8].

Surface Method ξ

Wolf Head SP [8] 0.01%
Proposed 0.03%

Zigzag SP [8] 0.62%
Proposed 0.64%

Building Facade SP [8] 0.58%
Proposed 0.62%

Acknowledgments

This research was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC-CRD), and Christie
Digital Systems Inc.

References

[1] A. Gruen and E. P. Baltsavias, “Close-range photogrammetry
meets machine vision,” in SPIE, vol. 1395, 1990.

[2] J. Geng, “Structured-light 3d surface imaging: a tutorial,” Ad-
vances in Optics and Photonics, vol. 3, no. 2, pp. 128–160,
2011.

[3] R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and
J. Nissano, “Structured light using pseudorandom codes,”
IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 20, no. 3, pp. 322–327, 1998.

[4] N. Otsu, “A threshold selection method from gray-level his-
tograms,” IEEE Trans. on Systems, Man, and Cybernetics,
vol. 9, no. 1, pp. 62–66, 1979.

[5] T. Pun, “A new method for grey-level picture thresholding using
the entropy of the histogram,” Signal Processing, vol. 2, no. 3,
pp. 223–237, 1980.

[6] P. Lavoie, D. Ionescu, and E. M. Petriu, “3-d object model
recovery from 2-d images using structured light,” in IEEE In-
strumentation and Measurement Technology Conference and
IMEKO Tec, vol. 1, 1996, pp. 377–382 vol.1.

[7] W. Niblack, An Introduction to Digital Image Processing. DNK:
Strandberg Publishing Company, 1985.

[8] J. Sauvola and M. Pietikäinen, “Adaptive document image bi-
narization,” Pattern Recognition, vol. 33, no. 2, pp. 225–236,
2000.

[9] D. Bradley and G. Roth, “Adaptive thresholding using the inte-
gral image,” J. Graphics Tools, vol. 12, no. 2, pp. 13–21, 2007.

[10] S. Tang, X. Zhang, Z. Song, L. Song, and H. Zeng, “Robust
pattern decoding in shape-coded structured light,” Optics and
Lasers in Engineering, vol. 96, pp. 50–62, 2017.

[11] K. Yang, Z. Ling, J. Li, X. Gao, L. Xie, and Z. Bai, “Color
m-array shape reconstruction of using grid points and cen-
ter points,” in Int. Conf. Inf. Optics and Photonics (CIOP), vol.
11209, 2019.

[12] G. Phonsa and K. Manu, “A survey: Image segmentation tech-
niques,” in Harmony Search and Nature Inspired Optimization
Algorithms. Springer, 2019, pp. 1123–1140.

[13] M. Sezgin and B. Sankur, “Survey over image thresholding
techniques and quantitative performance evaluation,” J. Elec-
tronic imaging, vol. 13, no. 1, pp. 146–166, 2004.

[14] F. Li, H. Sekkati, J. Deglint, C. Scharfenberger, M. Lamm,
D. Clausi, J. Zelek, and A. Wong, “Simultaneous projector-
camera self-calibration for three-dimensional reconstruction
and projection mapping,” IEEE Trans. on Computational Imag-
ing, vol. 3, no. 1, pp. 74–83, 2017.

[15] J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies
in structured light systems,” Pattern Recognition, vol. 37, pp.
827–849, 2004.


	Introduction
	Background
	Proposed Method
	Experimental Results
	Conclusion

