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Abstract

Resolution enhancement of a given video sequence is known as
video super-resolution. We propose an end-to-end trainable video
super-resolution method as an extension of the recently developed
edge-informed single image super-resolution algorithm. A two-stage
adversarial-based convolutional neural network that incorporates
temporal information along with the current frame’s structural infor-
mation will be used. The edge information in each frame along
with optical flow technique for motion estimation among frames will
be applied. Promising results on validation datasets will be pre-
sented. All of the video results in this paper are accessible at:
https://bit.ly/2HWaIHT

1 Introduction

Naturally, there is always a demand for higher quality and higher
resolution images or videos. The level of image detail is crucial for
the performance of many computer vision algorithms. When resolu-
tion cannot be improved either because of cost or hardware physical
limits, one can resort to resolution enhancement algorithms. Even
when superior equipment is available, such algorithms provide an
inexpensive alternative. The process of producing a high-resolution
(HR) image given a single low-resolution (LR) image is called Single
Image Super-Resolution (SISR) [1–7]. The problem of recovering a
HR video from a given LR one is known as Video Super-Resolution
(VSR) [8–14]. Resizing of an image or video does not translate
into an increase in its resolution. In fact, resizing should be accom-
panied by approximations to frequencies higher than those repre-
sentable at original size, and at a higher signal to noise ratio. In-
terpolation techniques generally blur important edge information in
images or videos.

In recent years, deep learning techniques have shown to be
very promising for a variety of image and video enhancement tasks,
including super-resolution [9, 10]. One possible approach to per-
form video super-resolution is to apply SISR on each frame of a
given video. This may result in various artifacts such as flickering
effects, if frames of the video are considered independent of each
other. Using temporal information is a natural step to preserve tem-
poral consistency. Some recent deep learning VSR methods have
applied concatenated frames [15] and some have applied Recurrent
Neural Networks (RNNs) to preserve temporal consistency [16].

In this manuscript, we propose an end-to-end trainable video
super-resolution method which is an extension of [17, 18] that has
been recently applied to single image super-resolution. Our method
uses temporal information as well as single frame structural infor-
mation to construct high resolution frames of a video. The frames
are temporally consistent with each other and are of higher qual-
ity compared to its corresponding frame-wise single image super-
resolution. To achieve this goal, we incorporated temporal informa-
tion using optical flow to track pixels in an adversarial network. The
adversarial networks are chosen for this task as they have histor-
ically shown better performance in generating sharp and realistic
output. To further increase the temporal consistency, we provided
an extra condition on the output of the discriminator. We provided
the previous frame along with the earlier input to the discriminator
to make the output of the discriminator dependent on the previous
frame to impose temporal consistency.
The major contributions of this paper are as follows.

1. We proposed an adversarial based two-stage network that
incorporates temporal information along with the structural
information of current frame to generate outputs that are re-
alistic in nature when considered independently and are also
temporally consistent when taken as a frame of the given
video.

2. Along with providing temporal information to the generator to
create sharp, realistic and temporally consistent output, we
added an extra condition on the discriminator that ensures
temporal consistency.

3. We trained our model on the REDS (REalistic and Dynamic
Scenes) dataset and compared our results with the bicu-
bic interpolation and the frame-by-frame single image super-
resolution method both quantitatively and qualitatively.

2 Related Work

Super-resolution is an ill-posed inverse problem. Classical interpo-
lation methods such as bicubic interpolation have been tradition-
ally used for resizing a given single image. Single image Super-
Resolution (SISR) is also a highly studied problem in the context
of deep learning schemes. Deep learning-based SISR was first
introduced in SRCNN [2] that requires a predefined upsampling op-
erator. Ledig et al introduced SRGAN [19] that uses a GAN-based
framework for generating realistic images [20]. There were other
improvements made in SISR using deep learning such as introduc-
tion of upsampling layers [21], back-projection [22] and progressive
upsampling [4]. Nazeri et al [17] have used an edge-informed two
stage network to address the SISR problem as a specific case of
an image inpainting problem.

Similar to SISR, video super-resolution is also an extensively
studied problem. Earlier traditional methods include [23, 24] as-
sume an affine transformation exist between adjacent frames. Fur-
ther, Protter et al. [25] generalized the non-local means framework
for video SR in order to handle complex motion patterns in videos.

Since the introduction of SRCNN [2], deep learning methods
have also evolved as a tool to address VSR. Most of these tech-
niques include a two step framework such as the one used in [26]
by Kappelar et al. Optical flow is first estimated and then com-
pensated frames are fed into a convolutional neural network that
constructs a high-resolution frame. Several other methods such as
[27] have also used optical flow to estimate relative motion between
images. They have then performed warping temporal alignment.
The DUF method in [15] has used implicit motion compensation for
video super-resolution. EDVR in [28] has used deformable convo-
lutional networks for video super-resolution. Haris et al have used
a recurrent architecture for video super-resolution task [22].

3 Proposed Method

We propose a video super-resolution framework that consists of two
stages: (i) Edge enhancement, i.e., generation of a high resolution
edge map of the given low resolution frame, (ii) Image completion,
i.e., generation of a high resolution frame of the given low resolu-
tion frame. Similar to [17], both stages have their own adversarial
model consisting of a generator-discriminator pair. Let G1 and D1
be the generator and discriminator of edge enhancement stage re-
spectively and G2 and D2 be the generator and discriminator of the
image completion stage. Our method uses the temporal informa-
tion from the previous frames along with spatial information from
the current frame in order to reconstruct high resolution frames that
are temporally consistent. The temporal information is provided in
the generator and discriminator pair for both edge generation and
image completion stages. This modification will be explained in the
following sections.

3.1 Incorporating Temporal Information

One way to incorporate temporal information in VSR is to provide
the previous frame along with current frame as an input to the model.
Given a low resolution frame ILR, we denote its previous frame as
ÎLR. Our goal is to create a reconstructed/predicted high resolution
image Îpred of the previous low resolution frame to be passed to the
network. For the very first frame that has no previous frame, we use
its bicubic interpolated high resolution image as its previous frame.

To further enhance the model, in addition to providing the re-
constructed high resolution previous frame as a prior, we also cal-
culate and pass the optical flow vector corresponding to the video
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Fig. 1: Schematic architecture of the proposed edge enhancement stage

sequence. The calculated optical flow vectors FHR will be computed
in between the interpolated versions of low resolution previous and
current frame, using bicubic interpolation. We then warp the pre-
dicted previous frame Îpred using the optical flow vector FHR to ob-
tain a warped reconstructed previous frame Îwarp. For the very first
frame of the video, we assume the optical flow vectors are zero.
The process of calculating Îwarp can be summarized as

FHR = OpticalFlow
(

UpSample(ILR),UpSample(ÎLR)
)
, (1)

Îwarp = Warp(Îpred ,F
HR), (2)

where ILR and ÎLR are the current and previous low resolution frames,
respectively, for which an optical flow vector is being computed. Up-
Sample is an upscaling module, which is a bicubic interpolation ker-
nel for a zooming factor of 4 in our experiments. Finally, Warp is a
forward warping transformation applied to Îpred given the high reso-
lution flow vector FHR.

We provide the warped predicted previous frame Îwarp as a prior
by concatenating it with other inputs of the model. All the other in-
puts relating to the generator and discriminator for both edge gen-
eration and image completion stages will be explained in their re-
spective sections. The estimated Îwarp is provided to the generator
and the discriminator at both stages. In this fashion, the generator
aims to generate an output which is spatially and temporally con-
sistent and the discriminator checks whether the output is spatially
and temporally consistent or not.

3.2 Edge Enhancement

The high resolution edge map of the current frame is reconstructed
at the edge enhancement stage, similar to [17]. Let ILR and CLR

denote the current low resolution frame and its corresponding low
resolution edge map, respectively. We have also included an addi-
tional nearest neighbour module to resize ILR and CLR to the same
size as the high resolution image, see Figure 1. The generator of
the edge enhancement stage G1 predicts the high resolution edge
map Cpred of the current low resolution frame by taking the inputs
ILR, CLR and warped reconstructed previous frame Îwarp, i.e.,

Cpred = G1(ILR,CLR, Îwarp). (3)

The architecture of our proposed edge enhancement stage is shown
in Figure 1. The hinge adversarial loss [29] is used in the generator
G1 and discriminator D1 of the edge enhancement stage, defined
similar to [17] as

LG1 =−EILR

[
D1(Cpred, I

LR, Îwarp)
]
, (4)

and

LD1 = E(Cgt,ILR)

[
max(0,1−D1(Cgt, ILR, Îwarp))

]
+

EILR

[
max(0,1+D1(Cpred, I

LR, Îwarp))
]
,

where Cgt represents the ground truth high resolution edge map.
We have used a feature matching loss Lfm for our edge enhance-
ment generator. This feature matching loss compares activation
maps in the intermediate layers of the discriminator. The constraint
here is on the generator to predict and produce results which have
edge maps similar to ground-truth high resolution edge maps. The
feature matching loss is defined as

Lfm = E
[
∑

i

1
Ni
||D(i)

1 (Cgt)−D(i)
1 (Cpred)||

1

]
, (5)

where Ni is the number of elements in the ith activation layer, and
D(i)

1 is the activation in the ith layer of the discriminator. Spectral
normalization (SN) [29] further stabilizes training by scaling down
weight matrices by their respective largest singular values. We ap-
ply SN to both the generator and discriminator [30, 31]. The final
joint loss objective for G1 with regularization parameters λG1 and
λFM becomes

ℑG1 = λG1LG1 +λfmLfm, (6)

where we choose λG1 = 1 and λfm = 10 for all experiments.

3.3 Image Completion

During the image completion stage, the current low resolution frame
ILR is initially converted into an incomplete high resolution frame
represented by ÏHR using a fixed fractionally strided convolution ker-
nel, see Figure 2. This has the effect of adding empty rows and
columns in-between pixels. In order to increase the size of ILR by a
factor of 4, we used a 4× 4 kernel K with all the values equal to 0
except the top left value which was set to 1. The value of stride was
set to 1/4. The incomplete high resolution ÏHR computed as

ÏHR = ILR ∗K (7)

was passed to the image completion network generator G2 along
with Cpred and Îwarp as inputs to generate the predicted high resolu-
tion current frame Ipred, i.e.,

Ipred = G2(ÏHR,Cpred, Îwarp). (8)

The generator G2 was trained with a combination of hinge loss,
`1 loss Lfm, perceptual loss [32], and style loss, similar to [17]. The
architecture of our proposed image completion stage is shown in
Figure 2. The hinge loss ensures that the images generated by gen-
erator are of realistic nature. Similar to the losses given in Equation
(4) for image edge generation stage, at the image completion stage
we define

LG2 = ECpred

[
D2(Ipred,Cpred, Îwarp)

]
, (9)

LD2 = E(Igt,Cpred)

[
max(0,1−D2(Igt,Cpred, Îwarp))

]
+

ECpred

[
max(0,1+D2(Ipred,Cpred, Îwarp))

]
,



Fig. 2: The architecture of the proposed image completion stage

in which Igt is the ground-truth high resolution frame.
The perceptual loss Lperc that we used in our objective mini-

mizes the L1 distance between feature maps generated from inter-
mediate layers of VGG-19 trained on the ImageNet dataset [33].
This loss provides an additional constraint on the generator to pro-
duce high resolution images that are perceptually similar to the
ground truth. The perceptual loss is defined as

Lperc = E
[
∑

i

1
Ni
|| φi(Igt)−φi(Ipred) ||1

]
, (10)

where Ni is the number of elements in the ith activation of VGG-
19. Expressions φi(Igt) and φi(Ipred) represent the feature maps of
Igt and Ipred respectively, corresponding to the ith activation layer of
VGG-19. The feature matching loss also encourages the percep-
tual similarity between the generated and ground truth images but
perceptual loss is shown to be much effective for image generation
task and adding feature matching loss along with perceptual loss
might be redundant [32–34].

While the perceptual loss Lperc encourages perceptual similarity
between generated and ground images, the style loss Lstyle tends to
maintain the texture similarity by minimizing the `1 distance between
the Gram matrices of the intermediate feature maps. The style loss
is defined as

Lstyle = E
[
∑

j
|| Gφ

j (Igt)−Gφ

j (Ipred) ||1
]
, (11)

in which Gφ

j represents the Gram matrix constructed from activation
maps φ j [17]. The main purpose to adding the style loss was to mit-
igate the“checkerboard” artifact caused by transpose convolutions
[35] as shown by Sajjadi et al. [34]. For both style and perceptual
loss we extract feature maps from relu11, relu21, relu31, relu41 and
relu51 of VGG-19. The proposed total combined objective for the
image completion stage is

ℑG2 = λl1L`1 +λG2LG2 +λpLperc +λsLstyle. (12)

In our experiments, we used parameters λ`1 = 1, λG2 = λp = 0.1, and
λs = 250 that seemed to be effective for the video super-resolution
task. The schematic diagram of the proposed method of generating
HR video from LR video is shown in Figure 3.

3.4 Histogram Matching

In our proposed method, we have added a histogram matching
(HM) step as additional post-processing step. After the high resolu-
tion frame Ipred is generated by G2, we perform histogram matching
(HM) on Ipred , to match the histogram of the bicubic interpolated
copy of the low resolution current frame that has the same size as
the generated high resolution frame. In our experiments, we real-
ized that this post processing step increased quality of the results.

Fig. 3: Schematic diagram of the proposed method. Note that for
every frame number t in a video, ILR

(t) represents t th low resolution

frame, CLR
(t) is the low resolution edge map, Îwarp(t) is the warped

high resolution previous frame (t−1), finally Ipred(t) and Cpred(t) are
the predicted high resolution t th frame and its corresponding edge
map, respectively.

4 Experimental Results

4.1 Dataset

We used REDS (REalistic and Dynamic Scenes) data [36] which
is a high quality (720p) video dataset, for the training and testing.
REDS training contains 24,000 frames taken from 240 videos, while
validation set contains 30,000 frames taken from 30 videos. Each
video has 100 frames of 1280× 720× 3 size. We have selected 4
videos (000, 011, 015, 020) from validation and used them for testing
purpose. This dataset is also known as REDS_S4 dataset. The rest
of the videos from training and validation set are used for training.

4.2 Training Details

For the edge generation stage relating to generator G1 we used
Canny edge detection. Its hyper-parameters are minimum and max-
imum Hysteresis thresholding value and Sobel kernel size. We
chose values 100, 200 and 3 for the former mentioned parameters
respectively. We used Adam optimizer [37] for the generator and
discriminator at both stages with a learning rate of 0.00001. The
value of β1 and β2 were 0.9 and 0.99 respectively. We trained the
model for both stages separately. For the edge enhancement stage
we trained our model for 21 epochs. For the image completion
stage, our model was trained for 15 epochs.



Fig. 4: Qualitative comparison of our model with respect to other methods on REDS_S4 dataset, from left to right
Bicubic, SISR [17], SISR [17]+ HM, Proposed, Proposed + HM, and Ground Truth, [HM stands for Histogram Matching]

4.2.1 Two-step Training for Improved Stability

Our model required warped reconstructed previous frame as a prior.
At the very first step that no reconstructed frames are available, we
can use bicubic interpolation to obtain an estimate of high resolution
frames. We notice that during the initial training, the reconstructed
images usually appear as random noise. If we use these poor qual-
ity images as a reconstructed frame and pass them as a prior after
warping them using optical flow, the training will be unstable. To
handle this, we first used actual ground truth high resolution previ-
ous frames for the warping and provided these warped actual high
resolution previous frames as a prior. After some epochs when the
model has been trained sufficiently to generate good quality high
resolution frames, we started training the model using warped re-
constructed previous frame as a prior.

4.2.2 Qualitative Evaluation

The qualitative comparison of our method along with Histogram
matching (HM) compared to the bicubic interpolation and frame by
frame edge-informed single image super-resolution (SISR) method
[17] and SISR[17] + HM on RED_S4 dataset is presented in Figure
4. We can observe that the displayed video frames of our proposed
method in Figure 4 are superior and closer to ground truth in terms
of quality, sharpness, and are more realistic in nature. All of the
video results are accessible at: https://bit.ly/2HWaIHT

4.2.3 Quantitative Evaluation

The quantitative comparison of our proposed method along with
Histogram matching (HM) compared to bicubic interpolation and
frame-by-frame edge-informed single image super-resolution (SISR)
method [17] & SISR [17] + HM on RED_S4 dataset is presented in
Tables 1 and 2 with respect to SSIM and PSNR.

Method, Video # 000 011 015 020
Bicubic 0.6489 0.7261 0.8034 0.7386
SISR [17] 0.6607 0.7278 0.8113 0.7186
SISR [17] + HM 0.6676 0.7469 0.8180 0.7258
Proposed 0.7426 0.7469 0.8562 0.7908
Proposed + HM 0.7460 0.8104 0.8553 0.7922

Table 1: Quantitative evaluation with respect to SSIM of various
methods with our proposed model on REDS_S4 dataset

Method, Video # 000 011 015 020
Bicubic 24.55 26.06 28.52 25.41
SISR [17] 22.76 22.87 27.28 23.03
SISR [17] + HM 23.90 25.01 28.36 23.99
Ours 24.35 25.13 28.87 24.74
Ours + HM 25.73 26.93 29.64 25.66

Table 2: Quantitative evaluation with respect to PSNR of various
methods with our proposed model on REDS_S4 dataset

5 Conclusions

We proposed a novel Edge-VSR method that includes a two-stage
trainable network able to generate high quality results with temporal
consistency. In extensive experiments we have shown that our pro-
posed method outperformed the baseline i.e. frame-by-frame edge
informed SISR [17] and bicubic interpolation.

Acknowledgements

This research was supported by an NSERC-DDG & was completed
during remote internship of A.S. at Ontario Tech.

https://bit.ly/2HWaIHT


References

[1] M. Haris, M. R. Widyanto, and H. Nobuhara, “Inception learn-
ing super-resolution,” Applied optics, vol. 56, no. 22, pp. 6043–
6048, 2017.

[2] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-
resolution using deep convolutional networks,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 38,
no. 2, pp. 295–307, 2015.

[3] M. Ebrahimi and E. R. Vrscay, “Regularization schemes involv-
ing self-similarity in imaging inverse problems,” in Proceed-
ings of Applied Inverse Problems (AIP), DOI:10.1088/1742-
6596/124/1/012021, 12 pages, University of British Columbia,
Vancouver, Canada, June 2007.

[4] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep lapla-
cian pyramid networks for fast and accurate super-resolution,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 624–632.

[5] M. Ebrahimi and E. R. Vrscay, “Solving the inverse problem
of image zooming using “self-examples”,” in Lecture Notes in
Computer Science, Proceedings of The International Confer-
ence on Image Analysis and Recognition ICIAR, vol. 4633.
Montreal, Canada: Springer, August 2007, pp. 117–130.

[6] M. Ebrahimi and S. Bohun, “Single image super-resolution via
non-local normalized graph laplacian regularization: A self-
similarity tribute,” Communications in Nonlinear Science and
Numerical Simulation, vol. 93, p. 105508, 2021.

[7] M. Ebrahimi and E. R. Vrscay, “Nonlocal-means single-frame
image zooming,” in Proceedings in Applied Mathematics and
Mechanics (PAMM), 6th International Congress on Indus-
trial and Applied Mathematics, ICIAM, vol. 7, no. ’1, Zurich,
Switzerland, July 2007, pp. 2 020 067–2 020 068.

[8] D. C. Garcia, C. Dorea, and R. L. de Queiroz, “Super resolution
for multiview images using depth information,” IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 22,
no. 9, pp. 1249–1256, 2012.

[9] L. Wang, Y. Guo, L. Liu, Z. Lin, X. Deng, and W. An, “Deep
video super-resolution using hr optical flow estimation,” IEEE
Transactions on Image Processing, vol. 29, pp. 4323–4336,
2020.

[10] M. Haris, G. Shakhnarovich, and N. Ukita, “Recurrent back-
projection network for video super-resolution,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 3897–3906.

[11] M. S. Sajjadi, R. Vemulapalli, and M. Brown, “Frame-recurrent
video super-resolution,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2018, pp.
6626–6634.

[12] M. Ebrahimi and A. L. Martel, “A PDE approach to coupled
super-resolution with non-parametric motion,” in Lecture Notes
in Computer Science, Proceedings of Energy Minimization
Methods in Computer Vision and Pattern Recognition (EMM-
CVPR), D. Cremers, Y. Boykov, A. Blake, and F. R. Schmidt,
Eds., vol. 5681. Bonn, Germany: Springer-Verlag, August
2009, pp. 112–125.

[13] M. Ebrahimi, E. R. Vrscay, and A. L. Martel, “Coupled multi-
frame super-resolution with diffusive motion model and total
variation regularization,” in Proceedings of The International
Workshop on Local and Non-Local Approximation in Image
Processing (LNLA), J. Astola, K. Egiazarian, and V. Katkovnik,
Eds. Tuusula, Finland: Tampere International Center for Sig-
nal Processing, August 2009, pp. 62–69.

[14] M. Ebrahimi and E. R. Vrscay, “Multi-frame super-resolution
with no explicit motion estimation,” in Proceedings of The Inter-
national Conference on Image Processing, Computer Vision,
and Pattern Recognition, IPCV, Las Vegas, Nevada, USA, July
2008, pp. 455–459.

[15] Y. Jo, S. Wug Oh, J. Kang, and S. Joo Kim, “Deep video super-
resolution network using dynamic upsampling filters without
explicit motion compensation,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2018, pp.
3224–3232.

[16] Y. Huang, W. Wang, and L. Wang, “Bidirectional recurrent con-
volutional networks for multi-frame super-resolution,” in Ad-
vances in Neural Information Processing Systems, 2015, pp.
235–243.

[17] K. Nazeri, H. Thasarathan, and M. Ebrahimi, “Edge-informed
single image super-resolution,” in Proceedings of the IEEE In-
ternational Conference on Computer Vision Workshops, 2019,
pp. 0–0.

[18] K. Nazeri, E. Ng, T. Joseph, F. Qureshi, and M. Ebrahimi,
“Edgeconnect: Generative image inpainting with adversarial
edge learning,” in Proceedings of ICCV Workshops (Advances
in Image Manipulation), https://arxiv.org/abs/1901.00212,
Seoul, Korea, November 2019.

[19] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,
A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-
realistic single image super-resolution using a generative ad-
versarial network,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 4681–
4690.

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative ad-
versarial nets,” in Advances in Neural Information Processing
Systems, 2014, pp. 2672–2680.

[21] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neu-
ral network,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2016, pp. 1874–1883.

[22] M. Haris, G. Shakhnarovich, and N. Ukita, “Deep back-
projection networks for super-resolution,” in Proceedings of the
IEEE conference on computer vision and pattern recognition,
2018, pp. 1664–1673.

[23] R. R. Schultz and R. L. Stevenson, “Extraction of high-
resolution frames from video sequences,” IEEE transactions
on image processing, vol. 5, no. 6, pp. 996–1011, 1996.

[24] R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Joint map
registration and high-resolution image estimation using a se-
quence of undersampled images,” IEEE transactions on Image
Processing, vol. 6, no. 12, pp. 1621–1633, 1997.

[25] M. Protter, M. Elad, H. Takeda, and P. Milanfar, “Generalizing
the nonlocal-means to super-resolution reconstruction,” IEEE
Transactions on image processing, vol. 18, no. 1, pp. 36–51,
2008.

[26] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, “Video
super-resolution with convolutional neural networks,” IEEE
Transactions on Computational Imaging, vol. 2, no. 2, pp. 109–
122, 2016.

[27] J. Caballero, C. Ledig, A. Aitken, A. Acosta, J. Totz, Z. Wang,
and W. Shi, “Real-time video super-resolution with spatio-
temporal networks and motion compensation,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 4778–4787.

[28] X. Wang, K. C. Chan, K. Yu, C. Dong, and C. Change Loy,
“Edvr: Video restoration with enhanced deformable convolu-
tional networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2019,
pp. 0–0.

[29] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spec-
tral normalization for generative adversarial networks,” arXiv
preprint arXiv:1802.05957, 2018.

[30] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-
attention generative adversarial networks,” in International
Conference on Machine Learning, 2019, pp. 7354–7363.



[31] A. Odena, J. Buckman, C. Olsson, T. B. Brown, C. Olah,
C. Raffel, and I. Goodfellow, “Is generator conditioning causally
related to gan performance?” arXiv preprint arXiv:1802.08768,
2018.

[32] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-
time style transfer and super-resolution,” in European confer-
ence on computer vision. Springer, 2016, pp. 694–711.

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al.,
“Imagenet large scale visual recognition challenge,” Interna-
tional journal of computer vision, vol. 115, no. 3, pp. 211–252,
2015.

[34] M. S. Sajjadi, B. Scholkopf, and M. H. EnhanceNet, “Sin-
gle image super-resolution through automated texture synthe-
sis,” Max-Planck-Institute for Intelligent Systems Spemanstr,
vol. 23, 2016.

[35] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and
checkerboard artifacts. distill (2016),” 2016.

[36] S. Nah, S. Baik, S. Hong, G. Moon, S. Son, R. Timofte, and
K. Mu Lee, “Ntire 2019 challenge on video deblurring and
super-resolution: Dataset and study,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, 2019, pp. 0–0.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.


	Introduction
	Related Work
	Proposed Method
	Incorporating Temporal Information
	Edge Enhancement
	Image Completion
	Histogram Matching

	Experimental Results
	Dataset
	Training Details
	Two-step Training for Improved Stability
	Qualitative Evaluation
	Quantitative Evaluation


	Conclusions

