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Abstract

Over the past years, researchers have proposed various methods
to discover causal relationships among time-series data as well as
algorithms to fill in missing entries in time-series data. Little to no
work has been done in combining the two strategies for the purpose
of learning causal relationships using unevenly sampled multivari-
ate time-series data. In this paper, we examine how the causal
parameters learnt from unevenly sampled data (with missing en-
tries) deviates from the parameters learnt using the evenly sampled
data (without missing entries). However, to obtain the causal re-
lationship from a given time-series requires evenly sampled data,
which suggests filling the missing data values before obtaining the
causal parameters. Therefore, the proposed method is based on
applying a Gaussian Process Regression (GPR) model for miss-
ing data recovery, followed by several pairwise Granger causality
equations in Vector Autoregssive form to fit the recovered data and
obtain the causal parameters. Experimental results show that the
causal parameters generated by using GPR data filling offers much
lower RMSE than the dummy model (fill with last seen entry) un-
der all missing values percentage, suggesting that GPR data filling
can better preserve the causal relationships when compared with
dummy data filling, thus should be considered when dealing with
unevenly sampled time-series causality learning.

1 Introduction

Modelling time-series data is an important problem in the field of
causal discovery. Due to the complicated nature of time-series data
(i.e. seasonal, trend, stochastic term, interventions etc.) it is dif-
ficult enough to work with. To make the problem even more chal-
lenging missing data are often ubiquitous in many real world data
[1]. Evenly sampled time-series data is essential for causal discov-
ery. But it is often difficult to obtain this regularly samples data in
the many industry sectors due to varies reasons (i.e. hardware lim-
itation, cost of maintenance etc.). Thus, methods to fill in missing
values are required before preceding with causal learning.

Gaussian Processes (GP) is a very powerful non-parametric al-
gorithm that can be applied to solve both complicated regression
and classification problems [2]. Generally speaking the GP algo-
rithm is mainly applied in the area of supervised learning [2] while
there are also some work done in areas like un-supervised learning
[3] and reinforcement learning [4]. The application for the paper will
be in the area of filling missing values which is under supervised
learning umbrella.

There are mainly two types of approaches for time series data
filling [5]. The first category is the parametric approach, which is to
simply consider a linear (or high degree polynomial function) and
find the line of best fit of the training dataset. This approach is sim-
ple but at the same time, the degree of order must be defined in
advance. In real world datasets it is often very challenging to find a
single line of best fit to represent the entire dataset, suggesting that
the first approach is not as practical as one would hoped when deal-
ing with complicated real world datasets. In contrast to the first cate-
gory, the non-parametric approach gives a prior probability to every
possible function where higher probabilities are given to functions
that we have higher confidence in (based on the training dataset).
Gaussian process can be used to generalize the Gaussian prob-
ability distribution, and allows us to compute and select functions
from an uncountable infinite set of possible functions.

In this paper, we perform missing data recovery using Gaus-
sian Process Regression technique for filling missing values in time-
series data to obtain pairwise Granger Causality parameters. In ad-
dition, we compare the quality of filling the missed data by compar-
ing the Granger causality parameters estimated using original time-
series data against its GPR filled version where the RMSE values
under each filling percentage is calculated. The same procedure is

Fig. 1: The proposed pipeline for Granger causality from irregularly
sampled data, where GPR and Dummy methods refer to the Gaus-
sian process regression method and filling data with the last seen
value, respectively.

repeated using dummy filling and the two sets of RMSE values are
compared for evaluation of the performance.

2 Proposed Method

Figure 1 illustrates the proposed pipeline in order to study the per-
formance of causal discovery with irregularly sampled data. Given a
multivariate time-series data, the proposed method randomly drops
X% of the original data entry and the missing values is then filled
using either (a) Gaussian Process Regression (Section 2.1) or (b)
Dummy model approach in which the data is filled with last seen
entry. Next, the two recovered datasets are then used to obtain
the parameters of the pairwise Granger Causality (Section 2.2). Fi-
nally, the root mean square error (RMSE) for each filling technique
is calculated with respect to the causal parameters obtained from
the original dataset.

2.1 Gaussian Process Regression for Data Filling

Although the GP requires an entire training set to perform prediction
and lose efficiency with higher dimensions [6], it offers probabilistic
predictions and allow the incorporation of different kernels which
leads to flexibility in implementation.

In [2], it was stated that GP process can be interpreted with two
views: weight-space view and function-space view. A quick dis-
cussion regarding GP’s hyper-parameters as well as GP sampling
function is also included. However, for more details about GPR the
reader is referred to [2].

Weight-Space View: The equation from the Bayesian analysis of
the standard linear regression model can be written as [2]:

f (xt) = xt
Tw (1)

y = f (xt) + εi (2)

where w is the weight vector, εi is the noise term and it follows a
normal distribution in such εt ∼ N (0,σε

2) with 0 mean and σε
2 as

the variance from the Bayes’ rule. The posterior distribution can be
obtained as [7]:

p(w|yt, Xt) α p(yt|Xt,w)p(w) (3)

p(w|yt, Xt) =N (σε
−2 A−1

t Xtyt, A−1
t ) (4)

where At = ∑−1 +σε
−2XtXT

t , ∑ is the covariance matrix and we
want to predict yt for a new input point xt with the information ob-
tained prior to instant t. Please refer to the original paper for detailed
derivation [8].

The form shown above is often referred to as the weight space
view of regression [7]. In order to predict the y∗ at new point x∗,



we can average over all the possible parameter values that are pro-
vided by the function f , predicting f (x∗) = y∗ + ε∗. Again without
going into the actual derivation, the predictive distribution with re-
spect to the Gaussian posterior can be written as [7]:

p( f (x∗)|x∗, Xt,yt) =
∫

p( f (x∗)|x∗,w)p(w|X,y)dw (5)

After performing integration equation (5) can be expressed as [7]:

p( f (x∗)|x∗, Xt,yt) =N (σε
−2x∗T A−1X,y, X∗T A−1x∗) (6)

Weights are first generated from this posterior distribution and
the final predictions are generated using the weight generated pre-
viously. The term can be generalized from 1-dimensional spacing
to higher dimensional space [2]. The model now becomes :

f (x) = φ(x)Tw (7)

where φ(x) = (1, x, x2, x3, ..., xn). The predictive distribution then be-
comes [2]:

p( f (x∗)|x∗, X,y) ∼N (σn
−2φ(x∗)T A−1φy,φ(x∗)T A−1φ(x∗)) (8)

Function-Space View: Another way to understand the GP algo-
rithm is to focus directly on its distribution over functions [2]. As
stated previously, GP algorithm defines a distribution over several
functions: if we pick any two (or more) points inside a function,
our observations at the selected points follows a joint multivariate
Gaussian distribution [9]. In [2], the Gaussian process is defined as
a collection of random variables, any finite number of which have a
joint Gaussian distribution. Similar to the assumption made in linear
regression, we can write the Gaussian Process regression equation
as:

y = f (x) + ε (9)

where the noise term ε ∼ N (0,σ2
ε ), reflects the randomness or un-

certainty of our observation. Based on the definition provided, we
can specify a Gaussian Process by its mean function and covari-
ance matrix function, thus Gaussian process can be expressed as
follow :

f (x) ∼ GP(m(x),k(x, x′)) (10)

where m(x) is the mean function and the k(x, x′) is the covariance
function (also known as the kernel function) for the randomly se-
lected two points x and x′. Equations 2.1 can be expressed as
following :

m(x) = E[ f (x)] (11)

k(x, x′) = E[( f (x)−m(x))( f (x′)−m(x′)] (12)

To simplify calculation equation the prior mean function is often
set to m(x) = 0. This can reduce heavy posterior computations via
covariance function [7]. The covariance function, k, is more com-
monly referred to as the kernel of the GP algorithm [10]. There are
many kernel functions available and the choice of which kernel func-
tion to use is based on the prior knowledge of the data (i.e. infor-
mation such as will variable b be effected when variable a is larger,if
so to what degree etc.). The choice of the kernel function is also
based on factors such as the smoothness and the cycle patterns of
the observed values.

Hyper-Parameter-Based Kernels: The hyper-parameters refer to
the pre-defined constant terms inside the kernel functions. Since
there are many possible kernel functions, there will be different
hyper-parameters for each kernel function. A simple example will
be given in this report to communicate the idea of hyper-parameters
but please bare in mind that this is only one type of kernel function
alongside with its hyper-parameters. Readers are encouraged to
explore more kernel functions if interested. A very popular kernel
function is the radial basis function kernel, or RBF kernel in short
[11]. The kernel function can be expressed as the follow:

k(x, x′) = σ2
f exp(−‖x− x′‖2

2λ2 ) (13)

where ‖ · ‖ denotes the euclidean distance. Term x and x′ are the
two points passed into the kernel function. There are two hyper-
parameters inside the radial basis kernel function: λ and σ2

f . The

term λ refers to the length scale while the term σ2
f is the data vari-

ance of the kernel function. These two hyper-parameters can be in-
creased or decreased to better fit the working dataset. Usually this
is an iterative process for user should test out values before finding
the most optimal hyper-parameter values for the working dataset.
The GP can then be used to draw prior functions once the mean
function and the kernel functions are selected.

Sampling From GP: Let X∗ be a matrix that contains all the new
input points where x∗i , i = 1,2, ...,n. The kernel function in (13) are
constructed for all the pairs between the input points. The expres-
sion can be displayed in a matrix form as follow [7]:

K(X∗, X∗) =


k(x∗1 , x∗1) k(x∗1 , x∗2) · · · k(x∗1 , x∗n)
k(x∗2 , x∗1) k(x∗2 , x∗2) · · · k(x∗2 , x∗n)

...
...

. . .
...

k(x∗n, x∗1) k(x∗n, x∗2) · · · k(x∗n, x∗n)

 (14)

Where k(x∗1 , x∗2) is the kernel function constructed using point x∗1
and x∗2 selected from X∗ which contains all input values.
To simplify the equation obtained from (10), the mean function m(x)
is set to 0 and (14) is substituted. The following term for a normal
distribution is obtained as [7]:

f (x∗) ∼N (0,K(X∗, X∗)) (15)

Where the notation f (x∗) represents the samples from the de-
fined function. Our observed values defined in previous section is
Dt = {(xi,yi)|i = 1,2, ...,n} and we would like to draw new entry X∗’s
predictions from function f (x∗) using the posterior distribution. Let
xt (value at instant t) be the value drawn from X∗. Then the matrix
form of the distribution can be expressed as follows [7]:[

yt
f (x∗)

]
=N

(
0,
[

K(xt, xt) + σ2
ε I K(xt, x∗

)
K(x∗, xt) K(x∗, x∗)

]
) (16)

where σ is the noise level term and I is the identify matrix. By im-
plementing the Gaussian Identities Theorem for conditional distri-
bution p( f (x∗)|Xt,yt, X∗) provided in [2], we can rewrite equations
(16) and (8) as the following expression:

f (x∗)|X∗, xt,yt ∼N
(
mt(x),kt(x, x′)

)
(17)

where the mean function and the kernel function in equations (11)
and (12), respectively, can now be expressed as follow [7, 12]:

mt(x) = K(X∗, xt)[K(xt, xt) + σ2
ε I]−1yt (18)

kt(x, x′) = K(X∗, X∗)− K(X∗, xt)K(X∗, X∗)−1K(xt, X∗) (19)

The sample functions f (x∗) can now be sampled using (18) and
(19) stated above.

2.2 Granger Causality

The concept of Granger Causality [13] is commonly adapted in
the area of cause-effect relationships in time-series analysis. The
Granger causality is a concept that is made out of two fundamental
principals that can be summarized as follows:

1. Only the input/intervention from the past can Granger cause
the outcome in the future. Future input/intervention cannot
Granger cause any past values.

2. If having information about variable A can improve the pre-
dictability of variable B, then variable A Granger causes vari-
able B.

The most straight forward method to exterminate Granger
causality is the vector autoregressive (VAR) model [14]. A pairwise
lag-n VAR model can be written as follow:

yt = α1yt−1 + ...+ αnyt−n + β1xt−1 + ...+ βnxt−n + µt+C+ ε (20)

where µ, C and ε are the slope, a constant and noise term, respec-
tively, and yt is the time-series value of dependent variable at time
t, xt−i is the time-series of the independent variable x at time t− i,
and α and β are their corresponding parameter values, respectively.



Fig. 2: Simplified diagram for engine components in the PHM08
dataset [15].

Fig. 3: Comparison between GP Regression prediction, dummy
prediction and ground truth value for engine 1 sensor 7 that con-
tains 50% missing values, where the PHM08 dataset is used.

3 Experimental Results

Data Description: In order to validate the performance of re-
covery of the proposed method, we use a public dataset called
the Prognostics and Health Management (PHM08) system dataset
[15, 16]. The PHM08 [15] is a turbofan engine degradation simula-
tion dataset created by NASA using the Commercial Modular Aero
Propulsion System Simulation Tool (C-MAPSS). The engine is sim-
ulated to failure point and the average sensor/operational measure-
ments are recorded for each cycle. Engines inside the training set
lasted anywhere from 130 cycles to 362 cycles before failure point.

Although the ground truth data for causality is not available for
this PHM08 dataset, it is safe to make the assumption that causal-
ity relationships did exist in between these sensor measurements.
In real world scenario it is often rare to spot breakdown of a com-
plicated system caused by all intermediate components fail at one
instant. It is more common to have breakdown of one component
(sensor) which leads to failure of surrounding components and ul-
timately leads to the malfunctioning of the system. Figure 2 is an
illustration of a simplified jet engine diagram. The first 11 engines
in the first training set of the PHM08 [15] dataset are selected for
this experiment. There are 9 constant sensor readings (with little to
no fluctuation) out of the given 24 time-series, thus are neglected
for this experiment and the remainder 15 sensor data are used.

Discussion: To evaluate the proposed scheme, as we indicated in
Figure 1, the selected data is dropped by 10%, 20%,..., or 80% of
its’ original entries to simulate an unevenly sparsely sampled time-
series data. Gaussian Process Regression1 is then used to recov-
ery those missing values and finally the recovered multivariate time-
series data is feed into the VARs model2 to calculate the causality
parameters. Those parameter values are then compared against
the parameter values obtained from the original dataset and the av-
erage RMSE, for all the considered engines, values are recorded
under each missing value percentage. The same test is repeated
using the dummy filling which is to fill in the value with the last seen
entry.

Figure 3 shows the comparison between the GP Regression
prediction, Dummy model prediction and the ground truth values for
engine 1 sensor 7 with 50% missing data. It is clear that GPR is
able to follow the changes in the time-series data better than the
dummy model. In addition GPR filling is able to provide smoothing
effect to reduce noise level. The RMSE values in predicting the
causal parameters for the proposed method and the dummy model
under different filling percentage are also summarized and plotted
in Figure 4. As shown in this figure, the GPR filled data can better
preserve the pairwise causal relationships in the original data when
compared against the dummy approach.

1GPR function in pymc3 is used https://github.com/pymc-devs/pymc3
2VARs package in R is used https://cran.r-project.org/web/packages/

vars/vars.pdf

Fig. 4: RMSE Comparison Between GPR Filling and Dummy Filling
wrt Pairwise Granger Causality Parameters

4 Conclusion

In this paper, we have studied the ability of Gaussian Process Re-
gression to recover missing time-series data values for the pur-
pose of determining the pairwise Granger causality. The proposed
method has been tested by using the PHM08 dataset subjected to
different missing value percentages can effect the causal parameter
values obtained from pairwise Granger causality. The results show
that the Gaussian Process recovered data is better preserved for
the pairwise Granger causality relations when compared to those
obtained by the dummy filling.
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