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Abstract

The reported accuracy of recent state-of-the-art text detection
methods, mostly deep learning approaches, is in the order of 80%
to 90% on standard benchmark datasets. These methods have re-
laxed some of the restrictions of structured text and environment
(i.e., “in the wild”) which are usually required for classical OCR
to properly function. Even with this relaxation, there are still cir-
cumstances where these state-of-the-art methods fail. Several re-
maining challenges in wild images, like in-plane-rotation, illumina-
tion reflection, partial occlusion, complex font styles, and perspec-
tive distortion, cause exciting methods to perform poorly. In or-
der to evaluate current approaches in a formal way, we standard-
ize the datasets and metrics for comparison which had made com-
parison between these methods difficult in the past. We use three
benchmark datasets for our evaluations: ICDAR13, ICDAR15, and
COCO-Text V2.0. The objective of the paper is to quantify the cur-
rent shortcomings and to identify the challenges for future text de-
tection research.

1 Introduction

Detecting and recognizing text in the wild images are challenging
problems in the field of computer vision [1, 2]. “In the wild” refers
to problems where the structured environment and text are of wide
variations. Examples include street signs, store signs, advertise-
ments, or text identifying sport players, to name a few. Reading text
from scene images can be carried-out using two fundamental tasks:

• Text detection that localizes text in the image, and
• Text recognition that converts localized text or a cropped word

image into a text string.

They face common challenging problems that can be categorized
as:

• Text diversity: images that contain text with different colors,
fonts, orientations and languages.

• Scene complexity: images that include scene elements of
similar appearance to text, such as signs, bricks and symbols.

• Distortion factors: text images distorted due to the effect of
motion blurriness, images of low resolution, surface geome-
try, perspective distortion and partial occlusion [1, 3, 4].

This paper focuses on the text detection task, which is more chal-
lenging than text recognition due to the large variance of text shape
and complicated backgrounds. The methods before the deep learn-
ing era, typically identify a character or text component candidates
using connected component-based approaches or sliding window-
based methods, which used hand-craft features like MSER [5] or
SWT [6] as basic components. However, the detection performance
of these classical machine learning-based methods is still far from
satisfactory.

Recently, deep learning-based methods have been shown to
outperform in detecting challenging text in scene images. These
methods usually adopt general object detection frameworks such as
SSD [7], YOLO [8], Faster R-CNN [9], or segmentation frameworks
like FCN [10] and Mask R-CNN [11]. Most deep learning-based text
detectors that detect text at the word level have difficulties in finding
curved, extremely long, or highly deformed words by using a single
bounding box [12].

This paper aims to highlight on the preceding challenges by
reviewing recent advances in deep learning applied to scene text
detection, and evaluating some of the best state of the art meth-
ods: EAST [13], Pixellink [14], CRAFT [12], and PMTD [15]. The
methods are evaluated on three challenging datasets, including the
COCO-Text V2.0 [16], using a consistent methodology that contains
several important challenges in the scene text detection.

2 Literature Review

In this section, a brief literature review on deep learning-based
scene text detection techniques is presented. Table 1 offers a com-
parison among some of the recent state of the art text detection
methods.

2.1 Regression-based Text Detection

Several methods [13, 28] adopted a general object detection
regression-based (RB) framework, such as SSD [7] or Faster R-
CNN [9], for text detection. They regard text regions as objects and
predict candidate bounding boxes for text regions directly. For ex-
ample, TextBoxes [28] modified the single-shot descriptor (SSD) [7]
kernels by applying long default anchors and filters to handle the
significant variation of aspect ratios of text instances to detect the
various type of text shapes. Unlike TextBoxes, deep matching prior
network (DMPNet) in [29] introduced quadrilateral sliding windows
to handle detecting text under multiple orientations. There are many
regression-based methods [22, 24] that have tried to solve the de-
tection challenges of rotated and arbitrarily shaped text; for instance
EAST [13] proposed a fast and accurate text detector, which makes
dense predictions processed using locality-aware Non-Maximum
Suppression (NMS) to detect multi-oriented text in an image with-
out using manually designed anchors. Liao et al. [24] extended
TextBoxes to TextBoxes++ by improving the network structure and
the training process. Textboxes++ replaced the rectangle bound-
ing boxes of text to quadrilateral to detect arbitrary-oriented text.
RB methods usually have a simple post-processing framework to
handle multi-oriented text. However, due to structural limitations in
these methods it is not easy to represent accurate bounding boxes
for arbitrary text shapes.

2.2 Segmentation-based Text Detection

Segmentation-based (SB) methods [14, 17, 23] classify text regions
at the pixel level, making it possible to do word-level or character-
level detection. They usually modify a segmentation framework
like FCN [10] and Mask R-CNN [11]; for example, Zhang et al.
[17] adopted FCN to predict the salient map of text regions, and
TextSnake [23] adopts FCN as a base detector and extract text in-
stances by detecting and assembling local components.

The preceding methods are trained to detect words in images,
however it is challenging to use words as the basic unit for scene
text detection as individual text characters may be represented in ar-
bitrary shapes, therefore some recent text detection methods have
trained deep learning models to detect text at the character-level
[12, 18, 19]. For example, in [18] a saliency map of text regions,
given by a dedicated segmentation network, uses character-level
annotations to generate multi-oriented text bounding boxes. Later,
Seglink [19] was trained to search for small text elements (seg-
ments) in the image and to link these segments to create word
boxes using an additional post-processing step. Recently, CRAFT
[12] used a weakly-supervised framework to detect individual char-
acters in arbitrarily shaped text, which enables it to achieve the state
of the art on benchmark datasets. Because text may appear in
arbitrary shapes, recent methods usually adopted a segmentation
framework as their backbone architecture, outperforming regression
based methods in terms of multi-oriented text in several benchmark
datasets. However, these types of methods require complex and
time-consuming post-processing steps to produce the final detec-
tion result.

2.3 Hybrid Methods

Hybrid methods [15, 25, 26] use a combination of both segmen-
tation and regression-based approaches for improving the perfor-



Table 1: Selected recent deep learning-based text detection methods.

Method Model Category Architecture Detection Target Text-shape CodeRB SB Hy MOT CT
Zhang et al. [17] MOTD – 3 – FCN W 3 – –
Yao et al. [18] STDH – 3 – FCN W 3 – 3
Shi et al. [19] SegLink 3 – – SSD C,W 3 – –
He et al. [20] SSTD – – 3 SSD W 3 – –
Hu et al. [21] Wordsup – 3 – FCN C 3 – –
Zhou et al.* [13] EAST 3 – – FCN W,T 3 – 3
Ma et al. [22] RRPN 3 – – Faster R-CNN W 3 – –
Long et al. [23] TextSnake – 3 – U-Net W 3 3 3
Liao et al. [24] TextBoxes++ 3 – – SSD W 3 – 3
Deng et al.* [14] Pixellink 3 – – FCN W 3 – 3
Liao et al. [25] RRD – – 3 SSD W 3 – –
Lyu et al. [26] MOSTD – – 3 FCN W 3 – –
Baek et al.*[12] CRAFT – 3 – U-Net C,W 3 3 3
Liu et al.* [15] PMTD – – 3 Mask-RCNN W 3 3 3
Liu et al. [27] MB – 3 – Mask-RCNN W 3 3 3

Note: *Methods have been considered for evaluation, W: Word, T: Text-line, C: Character, Hy:Hybrid Methods, MOT: Multi-Oriented Text, CT:Curved Text.

Table 2: Text detection datasets used for evaluation in this paper.

Dataset Language Year # Images # Text instance Text Shape Annotation level
Total Train Test Total Train Test H CT MO Char Word

ICDAR2013 [30] EN 2013 462 229 233 1944 849 1095 3 – – – 3
ICDAR2015 [31] EN 2015 1500 1000 500 17548 122318 5230 3 3 3 – 3
COCO-Text [32] EN 2014 63686 43686 20000 145859 118309 27550 3 3 3 – 3
COCO-Text V2.0 [32] EN 2014 63686 43686 20000 239506 – – 3 3 3 – 3

Note: H: Horizontal, MO: Multi-Oriented, CT: Curved Text, EN: English.

mance of scene text detection, benefiting from the simple post-
processing pipeline of regression-based methods, and the arbitrary-
shape detection ability of segmentation based methods. For exam-
ple, Lyu et al. [26] presented a method that can handle considerable
variations in aspect ratio by grouping corner points to generate text
boxes. Recently, based on the Mask R-CNN framework, Liu et al.
[15] proposed the pyramid mask text detector (PMTD) for scene text
detection, which achieved the state of the art performance in bench-
mark datasets [30, 31, 33]. PMTD assigns a soft pyramid label, i.e.,
a real value between 0 and 1, for each pixel in a text instance, and
then reinterprets the obtained 2D soft mask into 3D space. How-
ever, hybrid methods have a complex framework and require more
time for training compared to SB and RB approaches.

3 Experimental Results and Discussion

In this section, an experimental evaluation for a selected number of
state-of-the-art methods [12–15] is conducted that covers the cat-
egories in Section 2. Table 2 shows the benchmark datasets that
have been used for this evaluation. The datasets are described as
follows:

ICDAR2013: This dataset [30] includes word-level annotations us-
ing rectangular boxes, which contains 229 and 233 images for train-
ing and testing, respectively. Most of the text instances of this
dataset are horizontal and high-resolution.

ICDAR2015: This dataset [31] contains 1000 images for training
and 500 images for testing. The annotations of this dataset are at
the word-level represented using quadrilateral boxes. This dataset
is more challenging in terms of orientation, illumination variation and
complex background of text instances than ICDAR13 [30]. Most of
the images in this dataset are from indoors environment.

COCO-Text: As shown in Table 2, when comparing this dataset
[32] to the previous ones, this is the largest and the most challeng-
ing text detection dataset, which consists of 43,686 training images
and 10,000 validation images [16, 18]. As in ICDAR13, the text im-
ages in this dataset are annotated in a word-level using rectangle
bounding boxes. The text instances of this dataset are captured
from different scenes: outdoor, sports field, grocery stores, etc. In

this paper, we use the second version of this dataset, i.e., COCO-
Text V2.01, for evaluation of detection approaches, as it contains
239,506 annotated text instances within 63,686 images.

Evaluation Metrics: For quantitative evaluation, we use the IC-
DAR15 IoU Metric [31], which is obtained for the jth ground-truth
and ith detection bounding box as follow:

IOU =
Area(G j ∩Di)

Area(G j ∪Di)
(1)

where a threshold of IOU ≥ 0.5 is used for counting a correct detec-
tion for calculating the precision and recall. As in [12–15], we also
use the H-mean (F-score) that is a function in the precision (P) and
recall (R), and it is defined as follow:

H-mean = 2
P×R
P+R

(2)

For evaluation of scene text detection, recent deep learning-
based methods, consisting of PMTD2 [15] , CRAFT3 [12], EAST4

[13], and Pixellink5 [14] have been selected. For an unbiased eval-
uation of existing approaches, we used the pre-trained models on
ICDAR15 [31] directly from the authors’ GitHub pages.

Generalization: One of the important characteristics of a scene
text detector is to be generalizable, which shows how a trained
model on one dataset is capable of detecting challenging text on
other datasets. This evaluation strategy is an attempt to close the
gap in evaluating text detection methods that are used to mainly
trained and evaluated on a specific dataset. Therefore, to evaluate
the generalization ability for the methods under consideration, we
not only compare the detection performance of each model on IC-
DAR15 [31], which its training subset has been used for training the
models but also on ICDAR13 [30] and COCO-Text v2.0 [16] test and
validation subsets, respectively.

1https://bgshih.github.io/cocotext/#h2-explorer
2https://github.com/jjprincess/PMTD
3https://github.com/clovaai/CRAFT-pytorch
4https://github.com/ZJULearning/pixel_link
5https://github.com/argman/EAST

https://bgshih.github.io/cocotext/#h2-explorer
https://github.com/jjprincess/PMTD
https://github.com/clovaai/CRAFT-pytorch
https://github.com/ZJULearning/pixel_link
https://github.com/argman/EAST


Challenges: One shortcoming of scene text detection datasets is
that the challenges of each text instance in images are not labeled.
To address this issue, we conduct an experiment to compare each
method on some of these challenges.

Detection Precision: We would like to study how the detectors per-
form while increasing the IOU threshold for counting a true positive
detection. Thus, we compute the H-mean at IOU thresholds be-
tween 0 and 1 to provide an evaluation of how a method is accurate
under various constraints.

3.1 Quantitative Results

To evaluate the generalization ability of the methods, we compare
the detection performance on ICDAR13 [30], ICDAR15 [31] and
COCO-Text v2.0 [16] datasets. Table 3 illustrates the detection per-
formance of the methods in [12–15]. Although the ICDAR13 is less
challenging compared to ICDAR15, the detection performance of all
methods decreased on ICDAR13 dataset that have not been used
during training these methods. PMTD [15] had the minimum decline
of about 0.6%, and Pixellink [14] that was the second-best methods
in ICDAR15 had a maximum decrease of approximately 20%. How-
ever, all methods experienced a significant decrease in detection
performance on COCO-Text dataset, which shows these models do
not yet provide a generalization capability on a challenging dataset
without being fine-tuned on part of the same dataset.

3.2 Qualitative Results

Figure 1 illustrates the detection performance for the studied meth-
ods on some challenging samples from ICDAR13, ICDAR15, and
COCO-Text datasets. The detection results illustrate that the per-
formance of all methods is far from perfect under challenging cases
like difficult fonts, illumination variation, in-plane rotation, and low
contrast text instances, especially when we have a combination of
challenges affecting text instances. However, Hybrid regression and
segmentation based methods, like PMTD [15], achieved the best
H-mean values on all the three datasets, as they were able to han-
dle better multi-oriented text, and methods that detect text at the
character level, as in CRAFT [12], can perform better in detecting
irregular shape text.

3.3 Discussion

To compare the precision of detection for each method, Figure 2
shows the H-mean computed at 0≤ IOU ≤ 1. Overall, (1) decreas-
ing the IOU threshold below 0.5 has a little effect on H-mean val-
ues of the detectors when evaluated on ICDAR13 and ICDAR15
datasets, but for COCO-Text dataset, due to the more difficult text
instances in this dataset (Figure 2c) H-mean values are almost sat-
urated for IOU < 0.4. (2) increasing the IOU-threshold over 0.6
results in rapidly reducing H-mean values offered by the detectors
for all three datasets, which means the detected bounding box is
not suitable, especially for text recognition task that usually requires
an accurate localized text.

More specifically, for ICDAR13 (Figure 2a) the detection perfor-
mance of all methods started from a relatively high H-mean similar
to ICDAR15 (Figure 2b), because this dataset contains more hor-
izontal and high-resolution text instances that are less challenging
compared to that of ICDAR15 dataset. However, all methods ex-
perienced different H-mean curves in this dataset by increasing the
IOU-threshold. For example, ICDAR13 dataset (Figure 2a) EAST
[13] detector outperforms the PMTD [15] for IOU-thresholds > 0.8;
because EAST detector uses a scale-invariant property that allows
detecting more accurately text instances at different scales that are
abundant in ICDAR13 dataset. Further, Pixellink [14] that ranked
second on ICDAR15 has the worst detection performance on IC-
DAR13. This poor performance is also can be seen in challenging
cases of the qualitative results in Figure 1.

The COCO-Text V2.0 [16] dataset is a good example of study-
ing the generalization and precision performance of each method
under adverse situations as it has more samples of text captured in
the wild. Overall, as shown also in Table 3, all methods offer poor H-
mean performance on this dataset (Figure 2c). For example, PMTD
and CRAFT shown better performance than [13, 14] for IOU< 0.7.
Since CRAFT is character-based methods, it performed better in
localizing difficult-font words with individual characters. However,
it is not robust to large-scale text due to the single-scale property

of it. In addition, generally, the H-means of the detectors are de-
clined to the half, from ∼ 60% to below of ∼ 30%, for IOU-threshold
≥ 0.7. We can also see this poor performance in the selected sam-
ple challenging cases in Figure 1, especially in the first row of the
mentioned dataset.

4 Conclusion

Most recent deep learning-based methods have used multiple
datasets and various evaluation metrics, which make the com-
parisons among the reported results difficult. In this paper, we
experimented with comparing the performance of state-of-the-art
scene text detection methods under adverse situations. By apply-
ing the pre-trained model provided by researchers, we showed that
these methods do not offer the generalization capability on unseen
datasets, and there are several challenges in the wild images, like
in-plane-rotation, illumination reflection, partial occlusion, complex
font styles, and perspective distortion, which most of the studied
methods performed poorly. This study highlights also on the im-
portance for having more descriptive annotations for text instances
to allow future detectors to be trained and evaluated against more
challenging conditions.
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