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Abstract
Recent state-of-the-art scene text recognition methods are primar-
ily based on Recurrent Neural Networks (RNNs), however, these
methods require one-dimensional (1D) features and are not de-
signed for recognizing irregular-text instances due to the loss of
spatial information present in the original two-dimensional (2D) im-
ages. In this paper, we leverage a Transformer-based architecture
for recognizing both regular and irregular text-in-the-wild images.
The proposed method takes advantage of using a 2D positional
encoder with the Transformer architecture to better preserve the
spatial information of 2D image features than previous methods.
The experiments on popular benchmarks, including the challeng-
ing COCO-Text dataset, demonstrate that the proposed scene text
recognition method outperformed the state-of-the-art in most cases,
especially on irregular-text recognition.

1 Introduction
Scene text recognition aims to convert detected text or an image
patch of words into characters or words. Since the properties of
scene text will generally be quite different from those of scanned
documents, it is difficult to develop an effective text recognition
method based on classical OCR or handwriting recognition meth-
ods, such as [1–3]. This difficulty stems from images captured in
the wild including various challenging conditions [4] such as images
of low resolution [5, 6], lightning extremes [5, 6], environmental con-
ditions [7, 8], fonts [7–9], orientation [9], languages [10] and lexicons
[5, 6].

Scene text recognition methods [11–16] have mainly utilized
deep convolutional neural networks (DCNNs) [17, 18] and Recur-
rent Neural Networks (RNNs) [19], frameworks that are inspired
from natural language processing. Some methods [12–14] have
used connectionist temporal classification (CTC) [20], and others
[15, 16], adopted an attention mechanism [21] for the prediction of
character sequences. Although these methods [12–14] achieved
good performance on regular-text datasets, containing primarily ex-
amples of horizontal text, their accuracy declines on irregular text
datasets [6, 7, 9, 22] that contain curved and multi-oriented text.

Several recent methods [11, 12, 15, 16] have attempted to over-
come the irregular-text challenge using rectification [23, 24]. For
instance, Shi et al. [11, 15] proposed a text recognition system that
combined attention-based sequence and a STN module to rectify
irregular text, followed by a RNN for word recognition. However, the
resulting recognition accuracy remains far from expectations.

The Transformer’s architecture [25] is a novel framework, intro-
duced first for natural language processing (NLP), taking advan-
tage of both convolutional neural networks (CNNs) and RNNs. The
architecture is less sensitive to the position of input sequences,
compared to RNN and LSTM frameworks that contain inductive
bias [26], because position information is not inherently encoded
among the input set of sequences. The specific reason is that the
self-attention and feed-forward network (FFN) layers used in Trans-
former make it permutative equivalent, i.e., it computes the output
of each element in the input sequence independently. Although the
1D Positional Encoding (PE) technique used in Transformer [25] is
able to address the permutation equivalent problem that may exist
in natural language processing related 1D sequences, it is not ca-
pable of capturing the horizontal and vertical features generated by
the CNNs for a 2D input image [27].

In this paper, we first extend the transformer architecture of [25]
to be applicable to the recognition of 2D text images without relying
on text rectification. To that end, in our proposed method we adopt
a generalization of the original transformer’s 1D encoding [25] to be
applicable for the 2D image feature by extending the positional en-
coder from 1D to 2D. Experimental results show that the proposed
scene text recognition architecture provides higher accuracy than
that of the state-of-the-art techniques on seven out of eight chal-
lenging datasets.

2 Background

Transformer’s architecture has been initially introduced in [28]
for machine translation by using a new attention-based mecha-
nism. This architecture introduces self-attention layers, which scan
through each element of a sequence and update it by measuring
the relationship between this element and the whole sequence [28].
The main advantages of attention-based models in transformer are
their parallel computations suitability at lower memory cost, which
makes them more suitable than recurrent neural networks (RNNs)
[19, 29] on learning from long sequences. This transformer archi-
tecture [28] has been later exploited in natural language processing
(NLP) [30, 31] and it has been recently integrated in several suc-
cessful applications in speech recognition [32] and computer vision
[33–35].

By dropping the PE layer, the Transformer’s architecture can
be viewed as a stack of N blocks (Bn|n = 1,2, ..N), which each block
consists of a self-attention An(·) and Feed-Forward Fn(·) layers. The
self-attention layer, the key defining part of Transformer, is a normal
attention block that allows the model to learn and access informa-
tion of the past hidden layers. Let x = [x1,x2, ...,xt ]

> ∈ Rt×d , within
t and d denote the length and dimension of the input sequence.
Each row of the self-attention function A1(x) can be demonstrated
as a weighted sum of the value matrix V ∈ Rt×d , with the weights
determined by similarity scores between the key matrix K ∈ Rt×d

and query matrix Q ∈ Rt×d as follows:

A1(x) = Softmax
(QK>√

d

)
V,

Q = [q1,q2, ...,qt ]
>, qi =Wqxi +bq,

K = [k1,k2, ...,kt ]
>, ki =Wkxi +bk,

V = [v1,v2, ...,vt ]
>, vi =Wvxi +bv,

(1)

where W and b are the weight and bias parameters introduced in
A1(·). As seen in Figure 1, Rather than only computing the atten-
tion once, the multi-head mechanism runs through the scaled dot-
product attention in (1) multiple times in parallel.

3 Methodology

Figure 1 illustrates the proposed architecture for scene text recogni-
tion that inherited from the standard Transformer’s architecture [25].
We can categorize it into two main modules: encoder and decoder.
The main role of the encoder is to extract high-level 2D feature rep-
resentations of an input image, and the decoder is used to convert
these feature maps to a sequence of characters.

3.1 Encoder

The proposed encoder module utilizes the multi-head self-attention
mechanism presented in Section 2, as well as three main sub-
blocks that are as follows: (a) CNN Feature Extraction, (b) Spatial
2D-Positional Encoding, and (c) Feed-forward network (FFN), which
can be described as follows.

CNN Feature Extraction: A CNN first processes the input image
to extract a compact feature representation and learn a 2D repre-
sentation of an input image. We adopt a modified ResNet-31 archi-
tecture [18] for the CNN backbone. During implementation, all the
input images are converted into grayscale and resized to 32× 100
pixels.

Spatial 2D-Positional Encoding: Transformer is permutation
equivalent [36], so some extra care is required to retain the 2D
structure of the image. To that effect, in our proposed models we
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Fig. 1: The proposed text recognition using transformer architec-
ture, where Ne and Nd denote the number of layers in the encoder
and decoder. Unlike [25], our proposed architecture utilizes 2D po-
sitional encoding, a ResNet-31 backbone and a FFN layer.

adopt a generalization of the original transformer’s 1D encoding [25]
to be applicable for the 2D image feature by adding a fixed 2D po-
sitional encoding Φ(·) made of sinuses of different frequencies as
follows:

Φ(x,y,2i) = sin
(

x · c4i/d
)
,

Φ(x,y,2i+1) = cos
(

x · c4i/d
)
,

Φ(x,y,2 j+d/2) = sin
(

y · c4 j/d
)
,

Φ(x,y,2 j+1+d/2) = cos
(

y · c4 j/d
)
. (2)

where c = 10−4, x and y specify the horizontal and vertical positions,
and i, j ∈ [0,d/4] and d denotes the dimension. The PE signals in
(2) are added to the 2D feature outputs of the CNN block in Figure
1. We then concatenate the encoded CNN features to get the final
d-channel positional encoding.

Feed-Forward Network (FFN) Layers: Here, we used a modified
version of the FFN layer in the original transformer [25] to make it
more robust in capturing the features generated by the encoder’s
multi-head self-attention mechanism. The modified FFN consists of
2 layers of 1×1 convolutions with ReLU activations [37] followed by
a residual connection after the 2 layers.

3.2 Decoder

The decoder module we used follows the standard architecture of
the transformer in [25]. Its main role is to use an autoregressive
model to predict the decoded sequence of characters by attending
the visual features generated by the encoder to predict the next
sequence of characters.

4 Experimental Results

In this section, we present an experimental evaluation for the pro-
posed method and a selected state-of-the-art scene text recognition
[11–16] techniques on recent public datasets [5–9, 22, 38] that in-
clude wide variety of challenges.

Datasets: We use two type of datasets for evaluating the recog-
nition results (1) regular-text recognition datasets: IIIT5k [5], SVT
[39], ICDAR03 [38] and ICDAR13 [8] that mainly contain horizontal
text, and (2) irregular-text recognition datasets: ICDAR15 [7], SVT-
P [22], CUT80 [9] and COCO-Text [6], which contain multi-oriented
and curved text, and these datasets are more challenging than reg-
ular datasets.

Evaluation Metrics: Word recognition accuracy (WRA) is a com-
monly used evaluation metric, due to its application in our daily life
instead of character recognition accuracy, for assessing the text
recognition schemes [11–13, 15, 16]. Given a set of cropped word
images, WRA is defined as follow:

WRA (%) =
No. of Correctly Recognized Words

Total Number of Words
×100 (3)

Quantitative Results: By applying the proposed architecture in
Figure 1 on benchmark datasets, we trained our model on 36
classes of characters. Table 1 shows a comparison in terms of
the WRA for the proposed method vs the methods in considera-
tion. As seen from this table, the proposed model achieves com-
petitive WRA results compared to most of the state-of-the-art meth-
ods in different datasets. For three regular-text dataset, SVT [39],
ICDAR03 [38] and ICDAR13 [8], it outperformed all the state-of-the-
art methods with WRA of 89.34%, 95.85% and 93.89%, respec-
tively. Furthermore, it achieved the best performance on SVT-P
[22] dataset, which contains only curved and irregular text, with
a large margin of 4% compared to all other methods. This per-
formance demonstrates the strength of the Transformer network in
recognizing arbitrary shapes of text compared to RNN-based meth-
ods even without using a text rectification module. Unlike the recent
Transformer-based scene text recognition method in [27] that de-
pends on ResNet-101 and adaptive 2D PE module, the proposed
method utilizes a lighter backbone architecture, namely ResNet-31,
and fixed 2D PE as can be seen in (2).

Qualitative Results: Figure 2 shows the qualitative performances
for the proposed methods on some failure cases that provide by
[16], which all the methods in [11–16] failed on these images. As
shown in Figure 2(a), the proposed method recognized correctly all
these images that mostly contain irregular text. We also show some
failure cases of our proposed model in Figure 2(b), which it mainly
failed in images that contain occluded characters. It worth noting
that despite the proposed scheme offers "guice" for the sample la-
belled as "guide", this partially occluded example looks for several
humans as "guice" as well, which indicates a noisy ground truth
data and the robustness of our model to partial-occlusion.

5 Conclusion

In this paper, we have presented a new scene text recognition ar-
chitecture based on integrating a 2D positional encoder with the
Transformer. Furthermore, we have proposed a new feed-forward-
network layer in the encoder module to make it more robust in cap-
turing the features generated by the encoder’s self-attention mech-
anism. The new proposed scene text recognition architecture bet-
ter preserves the spatial information in 2D image features than the
prior methods. Experimental results on eight public datasets have
demonstrated that the proposed scene text recognition method has
offered higher WRA than six recent state-of-the-art RNN-based
models in most of the cases, specially on irregular-text recognition
datasets. Since the Transformer’s architecture requires more com-
putations than RNN-based frameworks in the inference time, we
would like to optimize the speed of the proposed Transformer’s to
make it faster in scene text recognition.
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