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Abstract. This paper presents the design and implementation of a scalable com-
pute platform for processing large data sets in the scope of the EU H2020 project
PROCESS. We are presenting requirements of the platform, related works, infras-
tructure with focus on the compute components and finally results of our work.
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1 INTRODUCTION

Despite continuous increases in the computing power of HPC systems, even the
largest system on the latest edition of the TOP500 list [20] still provides less then
0.5 exaFLOP (in full precision). At the outset of the PROCESS project this figure
was even lower (about 0.1 exaFLOP) [19]. It therefore seemed clear to us that – at
least initially – reaching exascale computing capabilities would require a combination
of multiple HPC systems. As we can see, this premise holds true to this day, and
even when we finally break the exaFLOP barrier, the number of such systems will
be highly limited – thus, combining the power of many sites would remain prudent
in many cases. It is also important to notice that it is not always possible to quickly
move data between computing sites; hence, the ability to bring computations to
data remains an important issue.

Running tasks in such combined systems is fraught with multiple challenges.
The basic one relates to the heterogeneity of the environment, as each system is
operated by a different entity. This heterogeneity may involve access mechanisms
(protocols, credential types) as well as software installed on clusters (OS type and
version, queuing system). Additionally, each cluster usually runs its workloads in
internal private LANs which do not allow inbound connections from the Internet
(due to mechanisms such as NAT). This, in turn, places additional restrictions upon
the designed infrastructure, such as the lack of direct P2P communication between
jobs running on different clusters. One of the main goals of the project was to
provide a mechanism which would allow running jobs on multiple sites and move
data around freely.

In order to manage such heterogeneous systems, it is also crucial [14] to provide
a highly scalable platform, able to process large quantities of data (although issues
related to maintenance of such data have been described in a separate paper [23]).
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Finally, we need to take into account that some sites in a distributed computational
environment may be based on traditional HPC paradigms (such as the Prometheus
cluster at Cyfronet, or CoolMUC and SuperMUC-NG at Leibniz-Rechenzentrum)
while others may be Cloud-based (in the presented case, this includes the Institute
of Informatics of the Slovak Academy of Sciences and other compatible private and
community clouds such as those provided in the scope of the European Open Science
Cloud; EOSC). This further elevates the level of heterogeneity [8].

2 A SHORT OVERVIEW OF RESEARCH ON EXASCALE SYSTEM

A systematic analysis of needs and profits of exascale computing systems was ini-
tiated by the U.S. DOE in a series of workshops on scientific grand challenges in
2007 [22]. Workshops were focused on the grand challenges of specific scientific
domains and on the role for scientific computing in addressing those challenges.
A summary of discussions during those scientific meeting is presented in [6]. It
also gives an initial set of requirements for exascale systems, however, it is mostly
concentrated on the computing aspect leaving aside big data aspects. Dongarra
et al. in [9] analysed the approaches used to implement peta- and exa-scale compt-
ing pointing out that completely uncoordinated development model will not provide
the software needed to support the unprecedented parallelism required for peta/
exascale computation and presented the idea of the International Exascale Software
Project. In this paper, the development of appropriate open-source software tools
was clearly indicated as an important factor in quest for high performance and pro-
ductivity. The focus was mostly on proper usage of new processors architectures of
large parallel computers.

The need for considering together exascale computing and big data was pre-
sented by Reed and Dongarra in [18]; after overview of main area for exascale
computing like biology, particle physics, climate science, cosmology, astrophysics,
material science, they have analysed technical challenges in advanced computing
including software elaboration, and overview a number of national and international
projects. The ideas presented in this paper are reflected in the Big Data and Ex-
treme Scale computing Project [1] and in the ECP – Exascale Computing Project [2].
On the basis of the achievements of these projects, an international group of scien-
tists [5] elaborated a set of recommendations for successful approaches for software
ecosystem convergence in big, logically centralized facilities that execute large-scale
simulations and models and/or perform large-scale data analytics. In our research,
we are going to take them into account having in mind that our solutions should be
appropriate for exascale computing and data analytics on distributed systems.

The recently published paper [16] presents results of a study of possible con-
vergence of big data coming from distributed scientific instruments and sensors and
high performance computing appropriate for coming era of next-generation data
centric computing. The study was performed in the framework of the EU project
SAGE. The authors have elaborated an advanced storage system which has been
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implemented and installed at the Jülich Supercomputing Center. It is a very in-
teresting and important solution, however, it does not address usage of distributed
computing resources.

3 REQUIREMENTS

The ultimate goal of PROCESS is to provide a versatile solution well suited for
a wide range of use cases from multiple domains, both scientific and business-
oriented. To achieve this goal we had to collect a set of requirements from each
use case, and combine them into an integrated set applicable to all of them.

3.1 Hardware Requirements

The hardware resources are basis for any IT system. In this subsection we are pre-
senting the set of hardware-related requirements such as providing sufficient access
to: HPC resources, Cloud resources, accelerated computing resources (including the
GPGPUS), external infrastructure reachable via API, data storage on the order of
1 PB (distributed).

3.2 Software Requirements

As hardware alone is not sufficient to provide the services sought by scientists, our
platform also has to support a wide range of software tools. The common tools for
machine learning and deep learning are essential for wide range of medical applica-
tions, but also others such as business oriented. Python development environment
with support for Jupyter notebooks allows simplification of the Use Case codes
developments. Apache Spark, Hadoop and HBase frameworks are necessary to pro-
cess the big data sets. Support for containers such as Docker and Singularity allows
packaging of the codes alongside required dependences for streamlined deployment.
Secure access to and extraction from external data resources is of course also crucial
for any use case. Finally, we need to provide appropriate support for programming
languages and tools needed by the provided use cases’ codes such as: Java environ-
ment, Grid support, Matlab environment, Large-scale modelling, Predictive analytic
methods, Probabilistic risk calculation tools.

3.3 Execution Models

We have analyzed all these requirements and in our conclusions got a set of specific
Execution Models, namely: Deep Learning, Exascale Data Management, Exascale
Data Extraction, Probabilistic Analysis, Calibration and finally the Pre- and Post-
Processing.

All those models had to be reflected in the the PROCESS system architecture –
both general as well as Compute parts specific.
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4 OVERVIEW OF COMPUTING COMPONENTS

While preparing such a complex system we have carefully taken into account the
current state of the art in various respects, relevant to the integrated system and
its computing components in particular. This analysis is presented in the following
subsections.

4.1 Interactive Execution Environment

Several solutions already exist to support interactive execution of large-scale com-
putations on hybrid underlying infrastructures. This subsection provides a basic
description of the available mechanisms and tools which support creation and shar-
ing of executable documents for data analysis. In this section we also provide
a brief introduction to scripting notebooks, in particular their integration with
HPC infrastructures in order to support building extreme large computing ser-
vices as well as their extensions mechanisms needed to add support specific to the
PROCESS project. We also present the results of comparison of their functional-
ity. This section partially extends the work submitted to KUKDM 2018 confer-
ence [13].

During our studies we have analysed multiple notebook-based solutions, a sum-
mary of which is presented in Table 1.

Name Large Data Sets Infrastructure

R Notebook
Using custom libraries (e.g. for
Apache SPARK)

Using custom libraries (e.g. com-
municating with HPC queuing
systems)

DataBricks
The whole platform is based on
Apache SPARK

Available only on AWS or Azure

Beaker Using additional custom libraries
No specific support for HPC;
docker version available

Jupyter Using additional custom libraries
No mature solution for HPC;
docker version available

Cloud Datalab
Support for Google data services
(e.g. BigQuery, Cloud Machine
Learning Engine, etc.)

Only GCP

Zeppelin Native support for Apache Spark
Possible to run on HPC using
connection to YARN cluster

Table 1. Interactive execution environment comparison

Although there exist many interactive execution environments that could be
considered for extension to match PROCESS requirements, many also have impor-
tant drawbacks. DataBricks and Cloud Datalab require to be run on specific cloud
resources. Zeppelin and DataBricks are based on the Apache SPARK solution which
potentially limits their usage to that platform. RNotebooks seems to be promising,
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however some important features are only available with the commercial version of
Rstudio. BeakerX (the successor to Beaker) and Cloud Data are actually based on
the Jupyter solution, which appears to be the most popular base for building such
environments.

The goal of the Interactive Execution Environment is to bridge the gap between
users of computational services (who are not expected to be familiar with the com-
plexity of developing and executing extreme large scale computational tasks with
the use of modern HPC infrastructures) and the underlying hardware resources.
Accordingly, the IEE is envisioned as an interface layer where applications can be
accessed and their results browsed in a coherent manner by domain scientists taking
part in the PROCESS project and beyond.

The following properties are regarded as particularly desirable:

• A means of implementing the “focus on services and forget about infrastruc-
tures” concept;

• Providing two ways of accessing the underlying computational resources:
through a user-friendly GUI and programmatically, via a dedicated RESTful
API;

• Embeddability in an external environment (such as Jupyter) via API integration;

• Interfacing computational clouds and traditional HPC (batch job submission)
and public cloud access libraries, as appropriate.

The features which need to be provided by the environment are as follows:

• Deployment of computational tasks on the available resources,

• Infrastructure monitoring services,

• User-friendly access to PROCESS datasets,

• Security management (users, groups, roles),

• Administrative services (billing and logging),

• Integration with external tools via standardized APIs.

Following discussions with use case developers and the project’s architecture
team, the following tools, described further in this paper, have been identified as us-
able in the context of the PROCESS project – in addition to the previously discussed
notebook solutions, which can function as an embedded feature in a comprehensive
GUI.

4.2 EurValve Model Execution Environment

The EurValve [7] Model Execution Environment (shown in Figure 1) is an execution
environment for data processing pipelines. Originally conceived in the context of the
EurValve project, the goal was to develop a decision support system for procedures
related to heart valve abnormalities, enabling clinicians to decide upon the optimal
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course of action for any specific patient (i.e. choose between medication/surgery
and advise on the possible strategies and outcomes of the latter). While the afore-
mentioned DSS does not, by itself, involve large-scale processing, it is based on
a knowledge base whose production is one of the principal goals of EurValve. As-
sembling this knowledge base calls for processing a vast array of patient data (for
both prospective and retrospective patients) through the use of dedicated pipelines,
consisting of multiple services and making use of various types of supercomputing
infrastructures (both traditional batch HPC and cloud models).

Figure 1. EurValve Model Execution Environment (MEE) architecture

4.3 Rimrock Execution Environment

Rimrock stands for Robust Remote Process Controller Controller [4] shown in Fig-
ure 2 is a service that simplifies interaction with remote HPC servers. It can execute
applications in batch mode or start an interactive application, where output can be
fetched online and new input sent using a simple REST interface. What is more,
by using a dedicated REST interface users are able to submit new jobs to the
infrastructure. This solution would support efficient creation and sharing of exe-
cutable documents for analysis of heterogeneous research datasets. RIMROCK is
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currently actively used in production in the Polish nationwide HPC infrastructure
called PLGrid [17].

Figure 2. Rimrock architecture

4.4 Atmosphere Cloud Platform

Atmosphere [3], shown in Figure 3, is a hybrid cloud environment facilitating devel-
opment and sharing of computational services wrapped as cloud virtual machines,
with access to external data sources. Atmosphere supports the entire cloud service
development lifecycle and provides a set of pluggable interfaces which can be in-
cluded in portals and web applications. It is compatible with a wide range cloud
middleware packages from open-source and commercial vendors, and provides inter-
faces to both public and private cloud resources in the form of a technology-agnostic
UI and RESTful APIs.

Figure 3. The architecture of atmosphere

4.5 Benchmarking and Monitoring Services

We have analyzed multiple monitoring solutions including Nagios, Zabbix, Icinga,
Munin, Cacti, Ganglia, Collectd, Elastic Stack, Grafana, NFDUMP with NfSen and
ntopng.
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While detailed analysis is out of scope of this paper, we initially identified three
candidates for this task: Zabbix, Nagios and Icinga, as they are all mature solutions
and possess the required properties. Other available solutions, while usable, would
only address a subset of the presented requirements; consequently, their usage would
require integration of multiple distinct components, with its attendant impact on
the stability of the integrated solution deployed in PROCESS.

Upon further analysis we finally chose Zabbix as the best solution (shown in
Figure 4). Icinga 2 (current version of Icinga) was rejected due to not being as
mature and well-established as either Zabbix or Nagios. As for Nagios Core, it offers
great alerting capabilities, however it does not provide the same level of support for
online resource monitoring, and its configuration is based on text files, requiring more
complex integration. In contrast, Zabbix’s configuration is based on an RDBMS
(like MariaDB/MySQL) and could be modified via an API. With over 19 years of
history and constant development/testing, as well as a wide range of users including
large corporations representing a wide spectrum of domains such as banking/finance,
health, IT and telecommunication, Zabbix is regarded as a mature solution.

Figure 4. Monitoring architecture

5 CONCEPT OF COMPUTING ARCHITECTURE

The overall architecture of the PROCESS Platform [15] is presented in a separate
paper [24]. In this section we focus solely on the computing components and glue
code connecting them to one another as well as to external services.
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While this aspect represents only part of the bigger platform, due to the inherent
complexity of an exascale-capable system we had to design a solution composed of
multiple layers, namely:

• API for third-party services (like external Portals),

• Web UI for domain scientists (to configure pipelines),

• Connectors for HPC and Cloud backend APIs,

• The aforementioned backend APIs themselves (Rimrock [4] and Cloudify [10]),

• Containers suitable for specific HPC/Cloud resources [12],

• Underlying HPC and Cloud e-Infrastructures.

6 BUILDING THE COMPUTING PLATFORM

6.1 IEE

The Interactive Execution Environment (IEE) is a platform which enables execution
of HPC applications – including the PROCESS pilot use cases – in a heterogeneous
infrastructure which comprises multiple computing sites based on various comput-
ing paradigms (such as “classic” batch-oriented HPC, interactive cloud computing
and more). The basic architecture of the environment is schematically depicted in
Figure 5. The IEE user interface serves as the entry point for the platform. Compu-
tations which rely on batch access to HPC sites are processed by a dedicated service
called Rimrock, which can delegate operations to the underlying resources while
exposing a RESTful API for IEE (and other tools) to use. In addition, IEE features
integration with the Cloudify cloud platform, which enables scheduling cloud VMs
from it.

In the context of validating the PROCESS architecture (and that of IEE in
particular), we decided to focus on the full pipeline for the use case which involves
processing the LOFAR dataset. This enables the means to select the HPC Site and
then facilitate the process of staging in data from the LOFAR Long Term Archives
and moving it to the relevant site, running relevant computation using site-specific
settings (Queuing and Container systems) and finally staging out the results.

For this case we decided to utilize two separate HPC sites: the Prometheus
supercomputing cluster at ACC Cyfronet AGH in Kraków (same as for the first
prototype), as well as the SuperMUC-NG Cluster at LRZ in Garching bei München.
In addition to those HPC sites, to showcase the full capabilities of the platform, we
also included a demo of an additional application from another use case (Ancillary
pricing for airline revenue management) deployed on the OpenStack cloud at UISAV
in Bratislava via the Cloudify component.

Use case applications are organized as projects composed of multiple steps, each
of which involves either processing (computations) or is related to data transfer (in
particular, staging in the relevant data using the PROCESS data storage infrastruc-
ture, or accessing results of computational tasks for visualization and download).
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Figure 5. Schematic depiction of the IEE architecture, including its integration with HPC
and data storage sites

6.2 Rimrock

The Rimrock component enables running batch scripts on an HPC infrastructure via
a convenient REST API. In the scope of the PROCESS project we use it to spawn
relevant use case computational components in the form of containers. The container
technology is proper for each site, so in the case of Prometheus it is Singularity and
in the case of SuperMUC-NG it is Charlie Cloud [21].

A schematic overview of the Rimrock architecture is presented in Figure 7. The
service is invoked from the IEE component described in Section 6.1.

6.3 Cloudify Orchestration Service

Service orchestration is often understood as the process of automated configuration,
deployment and other management activities of services and applications in the
cloud. It can automate execution of different service workflows, including deploy-
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Figure 6. IEE user workbench

ment, initialization, start/stop, scaling, healing of services based on standardized
descriptions of composed services, relations between components and their require-
ments. In the PROCESS project, we use the OASIS TOSCA standard for service
description and Cloudify for orchestration.

Cloudify (https://docs.cloudify.co/4.5.0/about/) is an open source cloud
orchestration platform, designed to automate the deployment, configuration and
remediation of application and network services across hybrid cloud and stack envi-
ronments. It uses OASIS TOSCA templates written in YAML (called blueprints in
Cloudify) for defining applications, services and dependences among them. These
blueprint files describe also the execution plans for the lifecycle of the application for
installing, starting, terminating, orchestrating and monitoring the application stack.
Cloudify uses the blueprint as input that describes the deployment plan and is re-
sponsible for executing it on the cloud environment. Figure 8 shows the architecture
of the Cloudify orchestration service.

Cloudify has its own console, see Figure 9, but for integrating with other services,
it is more comfortable using its REST API. Cloudify has completed REST API for
all operations related to service orchestration. This REST API can be divided into
several sections, the most important ones are the following:

Blueprint: management of TOSCA templates, e.g. upload, download, list, delete.

Deployment: deployment of services and management of already deployed ser-
vices.

Execution: executing workflows defined in TOSCA templates on concrete deploy-
ment, e.g. install, restart, uninstall.

The details of REST API is described at https://docs.cloudify.co/4.5.0/

developer/apis/rest-service/.

https://docs.cloudify.co/4.5.0/about/
https://docs.cloudify.co/4.5.0/developer/apis/rest-service/
https://docs.cloudify.co/4.5.0/developer/apis/rest-service/


872 J. Meizner, P. Nowakowski, J. Kapala, P. Wojtowicz, M. Bubak, V. Tran et al.

Figure 7. Schematic depiction of Rimrock, including Compute and Storage resources

The API is used by command-line clients (CLI) or scientific gateways (GUI)
for deployment and management of services. The services need to be described
in TOSCA templates (blueprints) and uploaded to the Cloudify server before de-
ployment using blueprint API. After that, the users can deploy/undeploy instances
of services described in the blueprints via deployment API or execute a specific
workflow, e.g. restart the service running in the cloud.

Currently Cloudify is integrated with the data micro-infrastructure and IEE.
A blueprint has been created for dynamic deployment of new nodes in the cloud
and adding them to the Kubernetes cluster for the data micro-infrastructure. The
use case of Ancillary pricing for airline revenue management runs in the Cloud using
the Cloudify orchestration service. By communicating with the Cloudify API, IEE
can manage the execution of the use case in the Cloud.

7 PLATFORM USAGE BY THE USE CASES

In this section we present the ways in which the PROCESS computing platform has
been integrated with the use cases considered in the project.
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Figure 8. Architecture of Cloudify orchestration service

Figure 9. Cloudify console

7.1 Content-Based Search and Classification

The goal of this use case is to improve performance of AI-based medical image
analysis using GPU-accelerated distributed computing backed by HPC resources.
As the original code was prepared as a Docker container, part of our work was to
port it to the Singularity format which is designed for multi-tenant environments.

The basic workflow used for this use case is presented in Figure 10.

7.2 Square Kilometre Array (SKA)

The SKA use case goal is to prepare the computational platform and domain codes
for extreme challenges of the SKA radiotelescope when it is available, by using
existing datasets procured using the LOFAR telescope.
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Figure 10. Content-based search and classification use case

Given that LOFAR produces large volumes of data even in its present state,
and that this data is stored in multiple locations, this use case obviously presents
a challenge for the data transfer subsystem, but at the same time sufficient com-
putational resources must be provided to quickly process incoming data, as well as
enable multi-site execution to bring computation nearer to the data.

Additionally, as the process of querying for the right data is complex and requires
broad domain knowledge, we have decided to provide scientists who possess such
knowledge with a familiar environment. To this end we have undertaken an effort
to integrate the existing LOFAR Portal with IEE using a specialized REST API, as
shown in Figure 11.

Figure 11. Square Kilometre Array (SKA) use case

7.3 Ancillary Pricing for Airline Revenue Management

This use case differs a bit from the others as it is a business-oriented one. This
imposes additional constraints on the compute platform such as the requirement to
build a platform that could be easily reproduced in a commercial environment.

To this end we have decided to provide a platform based on cloud resources.
The service was deployed using the cloud infrastructure in Slovakia, however such
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an environment can be adapted to work with other cloud providers to fulfill the
said requirements. The infrastructure utilizes the Cloudify component, as shown in
Figure 12.

Figure 12. Ancillary pricing for airline revenue management use case

7.4 Agro-Copernicus

Finally, Agro-Copernicus is an example of a use case that features the use of a pro-
prietary component called PROMET, which, due to licensing restrictions, cannot
be directly accessed in a fashion similar to other use case codes. The only access
mechanism is available via the provided REST API used to control computation,
where the code itself is treated as a black box. This solution is shown in Figure 13.

Figure 13. Agro-Copernicus use case

The mechanism can be reused for a wide range of software delivered in the
Software as a Service model, as long as the proper API is available.
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8 CONCLUSIONS AND FUTURE WORK

In this paper we have presented the work performed in the scope of the PROCESS
Project from the beginning until close to its conclusion. This includes state of the art
analysis, requirement gathering, platform design and implementation, and, finally,
integration with use case codes.

The platform has already been validated using four different use cases, but it is
also capable of providing support for other applications, whether based on traditional
HPC resources, computing clouds or external services exposing proper APIs.

By the end of the project we aim to provide a unified and straightforward mech-
anism enabling deployment of all platform components to a containerized environ-
ment. In the future we will also seek to further extend the range of supporting cases,
as well as make the platform ready for even more powerful upcoming infrastructures.

Within the project we will also continue to follow the containerization approach
for scalable HPC applications and will integrate the EASEY framework described
in [11], which enables also non-computing experts to easily deploy their applications
inside a Charliecloud container through the PROCESS ecosystem.
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[24] Bobák, M.—Hluchý, L.—Habala, O.—Tran, V.—Cushing, R.—
Valkering, O.—Belloum, A.—Graziani, M.—Müller, H.—
Madougou, S.—Maassen, J.: Reference Exascale Architecture (Extended
Version). Computing and Informatics, Vol. 39, 2020, No. 4, pp. 644–677, doi:
10.31577/cai 2020 4 644.

Jan Meizner has graduated majoring in federated IT security
systems. Since then he has been working at ACC Cyfronet AGH
on many EU and national projects involving a wide range of
subjects, including computational medicine. His work focuses on
IT security, operations of cloud and HPC infrastructures, as well
as building software for such infrastructures. Currently involved
also in Sano Centre for Computational Medicine, focusing on the
operations of IT systems, as well as a range of IT security tasks,
including identity management and data security.

https://doi.org/10.1109/eScience.2019.00063
https://doi.org/10.1016/j.parco.2018.03.002
http://www.plgrid.pl/en
https://doi.org/10.1145/2699414
https://www.top500.org/lists/top500/list/2017/11/
https://www.top500.org/lists/top500/list/2020/06/
https://hpc.github.io/charliecloud/
https://science.osti.gov/ascr/Community-Resources/Workshops-and-Conferences/Grand-Challenges
https://science.osti.gov/ascr/Community-Resources/Workshops-and-Conferences/Grand-Challenges
https://doi.org/10.31577/cai_2020_4_724
https://doi.org/10.31577/cai_2020_4_644


Towards Exascale Computing Architecture and Its Prototype 879

Piotr Nowakowski is Research Programmer at the Academic
Computing Centre CYFRONET AGH and Senior Data Scien-
tist at the Sano Centre for Computational Medicine. He spe-
cializes in design and development of distributed environments
for computational science, and he has participated in a range
of national and international research initiatives, including EU-
funded projects – most recently VPH-Share, EurValve and PRO-
CESS. He is the author or co-author of over 100 scientific pub-
lications.

Jan Kapala received his B.Sc. degree in computer science from
AGH University of Technology, Krakow, Poland in 2020 and now
he is pursuing the M.Sc. degree in the M.Sc. programme Com-
puter Science and Intelligent Systems: Artificial Intelligence and
Data Analysis. Both his B.Sc. thesis and ongoing M.Sc. thesis
are focused on reinforcement learning agents. He is Software En-
gineer at Academic Computer Centre CYFRONET AGH. His
main interest is artificial intelligence.

Patryk Wojtowicz received his B.Sc. degree in computer
science from AGH University of Technology, Krakow, Poland
in 2020 and now he is pursuing the M.Sc. degree. His B.Sc.
thesis and ongoing M.Sc. thesis are both focused on intelligent
reinforcement learning agents. He is involved in development of
the interactive execution environment platform in the PROCESS
project at Academic Computer Centre CYFRONET AGH. His
deep interests are artificial intelligence and its ethical aspects,
and data science.

Marian Bubak obtained his M.Sc. in technical physics and his
Ph.D. in computer science from the AGH University of Scien-
ce and Technology, Krakow, Poland. He is the Scientific Af-
fairs Director and President of the Management Board of the
Sano – Centre for Computational Personalised Medicine – Inter-
national Research Foundation (https://sano.science/). He
also leads the Laboratory of Information Methods in Medicine
at ACC Cyfronet AGH, he is a staff member of the Department
of Computer Science AGH, and the Professor of Distributed Sys-
tem Engineering (emeritus) at the Institute of Informatics of the

University of Amsterdam. His research interests include parallel and distributed comput-
ing and quantum computing. He served key roles in about 15 EU-funded projects and
authored about 230 papers. He is a member of editorial boards of FGCS, Bio-Algorithms
and Med-Systems, and Computer Science Journal.

https://sano.science/


880 J. Meizner, P. Nowakowski, J. Kapala, P. Wojtowicz, M. Bubak, V. Tran et al.

Viet Tran is Senior Researcher of the Institute of Informatics,
Slovak Academy of Sciences (IISAS). His primary research fields
are complex distributed information processing, grid and cloud
computing, system deployment and security. He received his
M.Sc. degree in informatics and information technology, Ph.D.
degree in applied informatics from the Slovak University of Tech-
nology (STU) in Bratislava, Slovakia. He actively participates
on preparations and solving a number of EU IST RTD 4th, 5th,
6th, 7th FP and EU H2020 projects such as PROCESS, DEEP-
HybridDataCloud, EOSC-Hub and EOSC-Synergy. He is the

author or co-author of over 100 scientific publications.

Martin Bob�ak is Scientist at the Institute of Informatics, Slo-
vak Academy of Sciences, Bratislava, Slovakia, in the Depart-
ment of Parallel and Distributed Information Processing. He
started working at the institute in 2013, defended his disser-
tation thesis at the institute in 2017, became Member of the
Scientific Board of the institute, and Guest Handling Editor in
the CC Journal Computing and Informatics. His field of re-
search is cloud computing and the architectures of distributed
cloud-based applications. He is the author of numerous scien-
tific publications and has participated in several European and
Slovak R & D projects.

Maximilian H�ob is Associate Scientist in the Munich Net-
work Management Team at Ludwig-Maximilians-University Mu-
nich and Co-Coordinator of the PROCESS project, in which he
also contributes to two Use Cases in the area of data manage-
ment and agricultural simulation based on the Copernicus data
sets. His research focuses on large scale system architectures and
performance-aware containerization of HPC applications.


