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Abstract. Data exposure and privacy violations may happen when data is ex-
changed between organizations. Data anonymization gives promising results for
limiting such dangers. In order to maintain privacy, different methods of k-ano-
nymization and l-diversity have been widely used. But for larger datasets, the
results are not very promising. The main problem with existing anonymization
algorithms is high information loss and high running time. To overcome this prob-
lem, this paper proposes new models, namely Improved k-Anonymization (IKA)
and Improved l-Diversity (ILD). IKA model takes large k-value using a symmetric
as well as an asymmetric anonymizing algorithm. Then IKA is further categorized
into Improved Symmetric k-Anonymization (ISKA) and Improved Asymmetric k-
Anonymization (IAKA). After anonymizing data using IKA, ILD model is used
to increase privacy. ILD will make the data more diverse and thereby increasing
privacy. This paper presents the implementation of the proposed IKA and ILD
model using real-time big candidate election dataset, which is acquired from the
Madhya Pradesh State Election Commission, India (MPSEC) along with Apache
Storm. This paper also compares the proposed model with existing algorithms, i.e.
Fast clustering-based Anonymization for Data Streams (FADS), Fast Anonymiza-
tion for Data Stream (FAST), Map Reduce Anonymization (MRA) and Scalable
k-Anonymization (SKA). The experimental results show that the proposed models
IKA and ILD have remarkable improvement of information loss and significantly
enhanced the performance in terms of running time over the existing approaches
along with maintaining the privacy-utility trade-off.
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1 INTRODUCTION

Data analytics and data stockpiling process is mostly connected with big data.
Presently there is an exponential growth of information, which is gathered, put
away, and passed on within organizations and over the web. The sudden ascent of
information has brought interest towards big data use, analytics, and raised scholas-
tic intrigue. A brief check of google trends on the search interest has been an overall
increase in activity since January 2011, with maximum attention being reached
around October 2017, as shown in Figure 1. Big data is considered having massive
information volume and complex information structures [1]. Few illustrations of big
data are social and business site information, cell phone call records, geological data,
web search tool information, smart card information, and so forth.

Figure 1. Search popularity of big data, source: Google trends (January 31, 2019)

Big data gives us benefits in various fields, for example in medicine, biology [2],
banking [3], and social websites, and so on where a huge amount of data is col-
lected. Now challenges are rising regarding its privacy and usage. One of the
noteworthy utilization of big data use is offering data to various associations and
analysts to comprehend social changes and make forecasts [4]. Approved associa-
tions, for example government organizations, banking sectors, medicinal research,
have sensitive attributes in their dataset, where data distributing may cause data
leakage for research purposes [5]. Differential privacy [6, 7, 21] with its expansions [8]
seemed ten years back, which drives another bearing for protection saving. Subse-
quently, protection and privacy have to turn into an overall issue for present-day
scientists. The significant issue in such a distribution is the disclosure of sensi-
tive information, which is very bothersome [9]. Therefore, before the distribution
of this information, adequate caution must be taken to conceal the sensitive de-
tails. To accomplish this, there should be a balance between privacy and utility
of information. For this various algorithms has been proposed, but for a smaller
dataset, like k-anonymization [16, 19, 20, 36], l-diversity [22] and t-closeness [10].
All these algorithms are based on the basic assumption that the records are free
from each other and anonymization can be entirely autonomous. The widely used
algorithm for data anonymization is k-anonymity [11]. For example, consider the
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multidimensional patient dataset shown in Table 1 that contains personal data of
the patient. The personal data of the patient consists of four disjoint sets of data:
explicit identifier (EI), quasi-identifiers (QI), sensitive data (SD), and non-sensitive
data (NSD). In Table 1, EI attribute is name, QI attributes are age, pin code, SD
attribute is a disease and NSD attribute is job. QI are those which alone cannot
provide information about an individual, but when QI is linked with the external
information, it can recognize the individual by connecting them. Generalization and
suppression play a crucial role in anonymization. Generalization is a technique of
replacing more specific values with generic and semantically similar values. General-
ization can be applied at cell or the tuple or the attribute levels. Generalization uses
the concept of the domain generalization and value generalization. Each attribute
in the multidimensional database is a domain. In suppression, quasi-identifiers are
replaced by *, and thereby it increases the privacy of database. Thus the size of the
database and content of the database is reduced. k-anonymity checks that if one
record in the dataset has some value of QI then at least k−1 other records also have
the same QI values [12, 17, 18]. The equivalency among the data tries to maintain
anonymity by k times [10]. Table 2 represents patient dataset after anonymization.
As an instance of patient C = 〈“Carl”; 52; “flu”〉, this instance is generalized and
suppressed to gc = 〈∗; [50− 60]; “Respiratory infection”〉.

Name Age Pincode Job Disease

Anand 45 400052 Writer Flu
Bharti 47 400058 Writer Pneumonia
Carl 52 400032 Lawyer Flu
Diana 53 400045 Artist Stomach ulcers
Emily 64 100032 Lawyer Stomach infection
Fatima 67 100053 Lawyer Hepatitis
Garvin 62 200045 Writer Stomach cancer

Table 1. Patient table

Name Age Pincode Job Disease

∗ 40 > && > 50 40**** Writer Respiratory infection
∗ 40 > && > 50 40**** Writer Illness
∗ 50 > && > 60 40**** Lawyer Respiratory infection
∗ 50 > && > 60 40**** Artist Stomach disease
∗ 60 > && > 70 10**** Lawyer Stomach disease
∗ 60 > && > 70 10**** Lawyer Liver disease
∗ 60 > && > 70 20**** Writer Illness

Table 2. After anonymization of patient table

One of the essential clarifications for the big data find the difficulty in k-ano-
nymization. It works on a single-dimensional function [1]. The k-anonymity and
l-diversity follow one group for all information, which significantly diminishes the
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obtained information, and sometimes the anonymized data is not replaced by an im-
mediate parent; instead, it is replaced by a super parent. Implementing k-anonymity
generalization in big dataset gives weak anonymization.

The multi-dimensional operation is supported by top-down generalization
(TDG). The TDG strategy was proposed because of LKC privacy where L, K, C
are thresholds [28]. That is used for centralization and distributed anonymization
in multi-dimensional activity [13]. So applying multi-dimensional operation on it
becomes multi-dimensional top-down generalization (MDTDG) [14, 15]. As a major
task of anonymization, all k-anonymity methods implement the grouping process.
Information typically assembled into proportionate or comparative records, known
as compressions. The information loss rate decreases by using this technique.

Zakerzadeh et al. [30] introduced a new cluster-based algorithm for anonymizing
numerical data streams using window processing known as fast anonymizing algo-
rithm for numerical streaming data (FAANST). The main drawback of FAANST is
that some tuples may remain in the system more than allowable time constraint. In
addition, the time complexity of the algorithm is O(n2) and not efficient for data
streaming [7]. Another weakness of FAANST is that it does not support categorical
data. To remove this drawback another algorithm was introduced by Guo et al.,
FADS algorithm [31] for data stream anonymization, in which the time complexity
of the approaches is O(s), which is linear to the stream size s, also the space com-
plexity is O(c), which is constrained by a constant c. The main drawback of the
FADS is that the algorithm does not check the remaining time of tuples that hold in
the buffer in each round and that are outputted once they are probably taken into
consideration to have expired. The other critical weakness of FADS is that it is not
parallel and cannot handle a large number of data streams in tolerable time. Mo-
hammadian et al. proposed FAST [32] to overcome the drawbacks of FADS. FAST
protects the privacy of big data stream using parallel anonymization algorithm. It
speeds up anonymization of data streams. A proactive heuristic approach was pro-
posed in order to publish data before a specific expiration time passed. Proactive
time expiration heuristic is applied to publish data before they are being expired. It
works efficiently on a smaller dataset. Drawbacks of the FAST algorithm is that for
the larger dataset, it results in high information loss, and the time complexity of the
algorithm is comparatively high, i.e. O(n log n). Another drawback of this algorithm
is that for anonymization purpose it takes super parent node for replacement instead
of the current parent node to enhance running time which also causes high infor-
mation loss. Zakerzadeh et al. [35] discusses the multidimensional k-anonymization
Mondrian algorithm [34] and then proposes an anonymization technique for MapRe-
duce framework: MRA. They proposed two versions of MRA. In the first version,
a single global file is shared between all the nodes. The size of this file becomes
larger and larger after each iteration as each node uses the same global file to up-
date the equivalence class after each iteration. In the second version, there is no
shared global file, but instead, it generates chunks of files distributed among all the
nodes. Multiple iterations and file management are the major drawbacks of this
technique, and as the number of iterations increases the performance decreases. In
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addition, the time complexity of the algorithm is O(n2). To overcome this, Mehta
et al. proposed an SKA approach using MapReduce [36]. SKA divides the input
dataset into smaller equivalence classes based on all the attributes of the dataset.
Classes are merged gradually (one at a time) in order to make it large, enough to
fulfill k-anonymity condition. These steps were repeated for all classes. SKA takes
advantage of Hadoop’s data distribution (Map) phase in the class division and sort
and shuffling phase in class merging; hence, it works with lesser number of iterations,
compared with the existing approach [35]. The time complexity of the algorithm is
O(n log n). Lack of diversity and high information loss are the major drawbacks of
this work.

As per the literature review of various big data privacy mechanisms, it is ob-
served that existing privacy mechanisms are suffering the issues of high information
loss and high running time for big data. Privacy on streaming data is still a chal-
lenge and needs to be solved. Thus in this work, the focus is on the development
of privacy-preserving mechanism to reduce information loss and to reduce the time
taken for streaming/batch big data.

1.1 Contribution

1. To improve the time efficiency of privacy preservation algorithms in comparison
with the existing approaches (FADS, FAST, MRA, and SKA).

2. Proposed Improved Symmetric k-Anonymization (ISKA) and proposed Impro-
ved Asymmetric k-Anonymization (IAKA) reduce the information loss in com-
parison with existing approaches.

3. Achieving higher k-value guaranteed the strongest privacy.

4. Achieving high data utility with the same level of privacy compared with existing
approaches.

1.2 Organization of the Paper

The flow of paper after the introduction is, initially, Section 2 discusses the proposed
model. Section 3 presents an understanding of different datasets which are used in
the experiment, Section 4 covers results and discussion, and Section 5 concludes the
paper with a future scope.

2 PROPOSED MODEL

Data protection is a key factor; everyone wants data to be secured as far as privacy
would not incline towards losing the prominence of information [23, 24, 25, 27].
Privacy here implies hiding the actual data in such a way that analytics operations
can still be performed on the data but without losing the utility of data. The privacy
breach of users in any organization can be prevented using the proposed IKA and
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ILD model. This model can be used for both batch and streaming dataset. The
results obtained using this model are more optimized in terms of running time and
information loss as compared to that of the results obtained using the existing FADS,
FAST, MRA, and SKA algorithms. From protection and security point of view, it
guarantees that data subjects (i.e., people) have maintainable control over their data.
Figure 2 represents the proposed model, in the pre-processing phase of data, the data
is cleaned, and all the missing values and irrelevant values are expelled. In further
steps, the data is anonymized by using IKA, which is categorized into two parts
ISKA and IAKA. Here higher values of k represent the strongest privacy and these
algorithms also resolve the suppression issue of the information loss, i.e., the child
node is directly replaced by a super parent instead of replacing it by an immediate
parent. Then the anonymized dataset is diversified using proposed ILD model. ILD
applied to the result obtained after anonymization so that it certifies that there
are at least two or more unique sensitive values in each equivalence class with no
attribute disclosure.

Figure 2. Proposed model
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2.1 Data Pre-Processing

The data obtained contains duplicate values, additional data of the same individual
or missing values. It makes the data pre-processing a vital task. The primary goal
of data pre-processing is to create an appropriate analysis suitable for the dataset.
Data pre-processing maintains a strategic distance from the duplicate data and the
missing values as indicated by the past recorded information. Likewise, it lessens the
memory and normalizes the values that are put away in a database. For achieving
anonymity, there is a need to erase the identifiers and adjust the quasi-identifiers
and keep the sensitive attribute. The exactness of the attributes must be considered
to choose which property is a sensitive attribute, identifier, or quasi-identifiers and
care must be taken to select which feature is the sensitive attribute, which is the
identifier and which is a quasi-identifier. Likewise, immaterial characteristics and
qualities with no significance have to be erased. In the information pre-processing,
the goal is to accomplish more advancement. Few attributes should be erased as they
are neither material nor essential. The first procedure in this model is to eliminate
data uncertainty by using information pre-processing. By breaking down the data,
there is a realization that information has no noisy value.

2.2 Proposed IKA Model

The proposed model works in the direction of falsifying the generalized data, which
will make data more generalized as well as distorted. Existing work has a signif-
icant drawback of a higher degree of suppression in case of categorical attribute
where values were replaced by their super parent instead of immediate parent that
causes more information loss. Referring to Figure 3, the value “Local govt.” should
be replaced by the class of immediate parent (govt.), but instead, the superclass
(work-class) is considered for generalization in the existing algorithms. There are
following main reasons for this kind of high degree generalization that the individual
(end-user) has specified the work-class as just local (instead of Local govt.) to the
algorithm and it did not perceive it as a given workplace (because it is not match-
ing with any of the nodes in the tree, i.e., Private, Govt. (Local gov., State gov.,
Federal gov.), Self emp., Without pay) so it directly went to the superclass which is
“work-class” class. The proposed symmetric and asymmetric IKA model using the
MDTDG technique overcomes those drawbacks. MDTDG generalizes a table which
satisfies the anonymity requirement along with preserving its utility for classifica-
tion. MDTDG compresses data to the topmost level, which is generalized by QI
attributes [26, 29]. It takes various possible cases into account, for example if a user
enters only local as its work class the algorithm will consider different possible values
for same work-class (keeping account of different possible values for a single domain
such as “local”, “local government”, “local gov” for “Local Gov.” work-class do-
main). The information loss rate decreased by using this technique. The proposed
model generalizes k-anonymity into two different types of generalization for getting
accurate results.
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Figure 3. Taxonomy tree for work-class

2.2.1 Symmetric Anonymization

In any given dataset there is always one possible k value at a time symmetrically
applied to the whole dataset. Symmetric anonymization takes equal k intervals to
achieve privacy.

2.2.2 Asymmetric Anonymization

In this type of anonymization, the value of k will vary at a time. Asymmetric
anonymization takes unequal k intervals to achieve privacy. The greater value of k
is directly proportional to higher privacy. Asymmetric anonymization is able to
achieve a higher k value as compared to symmetric anonymization. So the proposed
framework endeavors to accomplish optimal k value as the higher is the k value; the
more is the privacy.

The proposed Algorithm 1 is designed for both symmetric and asymmetric
anonymization and tested for batch data and real-time stream data as well. The
following topology used in proposed work, in which one spout (data source) and
two Bolts Bolt1 and Bolt2 are used in FIS algorithm. In Figure 4 initially, input
data stream s is sent into a spout that emits the data stream tuples. These tuples
from spout are then sent to Bolt1. It then makes Set of “delta” tuples at a time
and then it inserts into Set named SOT . This set is fed as output to next bolt,
i.e. Bolt2. In Bolt2, removal of k-anonymized clusters takes place, which is present
longer than Tkc. In Bolt2 function named Publish(SOT ) is called. After several
steps, the output received from Bolt2 is the k-anonymized tuples on which further
processing will take place in Algorithms 2, 3 and 4.

In Bolt2, pick one tuple T from SOT and publish that tuple by calling
PublishTuple() with SOT and T as parameters.

Algorithm 4 describes the Procedure of PublishTuple(SOT , T ). It is attempting
to anonymize tuple T . At first, the system discovers its k− 1 closest tuples in SOT
and embeds them in the new cluster called NEW and generalizes it into gNEW .
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Algorithm 1 Proposed IKA and ILD algorithms

INPUT: Given dataset
OUTPUT: Improved k-anonymized and l-diversity data file

1. Step 1: cleaning(data, A) // Read the data from input file row-wise in a loop

2. If ((len(row) < actual row length) OR ( ‘?’ in row) OR (‘ ’ in row))

Continue

Else

Writerow(row)

3. Step 2a: Asymmetric Anonymization(data, A)

a1: Sort according to the values of attribute A

a2: FIS (S, k, δ, Tkc, Te,NumofExecutors)

Goto step 5

Or

Step 2b: Symmetric Anonymization(data, A)

b1: Sort according to the values of attribute A

b2: K = kgen(data, A)

b3: FIS (S, k, δ, Tkc, Te,NumofExecutors)

Goto step 5

4. Step 3: kgen(data, A)

D = distinct values for attribute A

For each value in D

(a) Count[value] = 0

For each row in data

(b) Count[row[A]]+ = 1

(c) Max = count[D[0]]

For each value in D

(d) Max = max(Max, count[value])

(e) Return Max

5. Step 5: ILD Model(data) For each equivalence class in data {
If every value of a sensitive attribute in an equivalence class is equal

{
Add tuple from next equivalence class to current equivalence class, change some
values for an attribute to achieve anonymity

}}
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Figure 4. Topology for FIS

Algorithm 2 FIS (S, k, δ, Tkc, Te,NumofExecutors)

While |S| 6= 0 do

1. In Bolt1 δ tuples are read from Spout and insert them into SOT ;

2. Output this SOT to Bolt2;

3. In Bolt2, all the clusters which exist longer than Tkc are removed;

4. Publish (SOT );

End while

Then a reusable cluster with minimum information loss Ckbest that covers tuple T ,
is chosen from SKC. If Ckbest exists and has smaller information loss compared
to NEW , tuple T is published with Ckbest generalization and time of Ckbest is
updated. Then other k−1 tuples that remain in SOT are checked whether they can
be processed in another round or must be suppressed and published immediately.

Algorithm 3 Publish (SOT )

1. Pick the first tuple from SOT and call it T ;

2. PublishTuple(SOT , T );

If tuple T does not match with any cluster in SKC which has less information
loss than NEW , tuple T and its neighbors are published with NEW generalization
gNEW . Then, gNEW is inserted in SKC . Alternate tuples in SOT are checked
for remaining time. If they have enough time to process, they are passed to SOT
otherwise they will be suppressed and published. Figure 5 represents the flow chart
of a streaming algorithm.

2.3 Proposed ILD model

Another motivation behind the proposed model is to accomplish variety in the sen-
sitive attribute. Here to achieve the privacy, information is classified. Initially, the
IKA model has been applied in the dataset and then the sensitive attribute is diver-
sified by the proposed ILD model. The proposed ILD model is an improvement of
l-diversity. For each equivalence class in data value of a sensitive attribute are less
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Algorithm 4 PublishTuple(SOT , T )

1. Step 1: Select k–1 unique tuple from SOT that are closest to T

(a) Insert them into cluster NEW

(b) Generalize NEW into gNEW .

2. Step 2: For each cluster Ck which covers T

(a) Calculate the ILoss,

(b) Choose a cluster with less ILoss

(c) Call the Ckbest cluster.

(d) If Ckbest exists and Ckbest produces less ILoss than gNEW then

i Publish T with Ckbest generalization;
ii Update round time estimation;
iii Synchronized(Ckbest)
{ Update Ckbestpublishtime }

iv Do in SOT for every tuple t
if (current time − arrival time + estimated round time) < Te then
Synchronized(S)
{ Insert t as the first element of S; }

else
Suppression and publication of t;

end if
end for

else

i Publication of NEW with gNEW ;
ii Update of round time estimation;

iii Synchronized(SKCt)
{ Insert gNEW into SKC and set its time of publication; }

iv Do in (SOT − Setnew) for every tuple t
if (current time − arrival time + estimated round time) < Te then
Synchronized(S)
{

Insert t as the first element of S;
}

else
Suppression and publication of t;

end if
end for

end if
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Figure 5. Flowchart for stream data (Algorithms 2, 3 and 4)
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than or equal to a threshold value of l then the proposed ILD model adds a different
sensitive attribute tuple from the nearest equivalence class to a current equivalence
class to achieve required threshold l-diversity. The proposed ILD model decreases
the probability of attribute disclosure as compared to l diversity.

Table 3 represents an example of an anonymizing dataset of healthcare, which
has a sensitive attribute is the disease. In the healthcare dataset having two equiv-
alence classes, tuple 1–5 represents one equivalence class, and tuple 6–10 represents
another equivalence class in the same dataset. Equivalence class 1 represents two-
diversity, and equivalence class 2 represents three-diversity in the sensitive attribute.
After applying the proposed ILD model in healthcare dataset in Table 4, to main-
tain the required threshold of 3-diversity in each equivalence class, the proposed
ILD model adds a different sensitive attribute from the nearest equivalence class to
a current equivalence class. Thus, the proposed ILD model increases diversity which
also increases the privacy level.

S. No.
Non-Sensitive Attributes Sensitive Attribute
Zip Code Age Nationality Disease

1 130** < 30 * Cancer
2 130** < 30 * Cancer
3 130** < 30 * Corona
4 130** < 30 * Cancer
5 130** < 30 * Cancer

6 130** 3* * Heart Disease
7 130** 3* * Heart Disease
8 130** 3* * Cancer
9 130** 3* * Cancer
10 130** 3* * Corona

Table 3. l-diversity before ILD model

S. No.
Non-Sensitive Attributes Sensitive Attribute
Zip Code Age Nationality Disease

1 130** < 30 * Cancer
2 130** < 30 * Cancer
3 130** < 30 * Corona
4 130** < 30 * Heart Disease
5 130** < 30 * Cancer

6 130** 3* * Heart Disease
7 130** 3* * Heart Disease
8 130** 3* * Cancer
9 130** 3* * Cancer
10 130** 3* * Corona

Table 4. l-diversity after ILD model
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3 DATASET USED

For the experimental purpose, this work used three datasets: the poker dataset,
adult dataset and MPSEC dataset.

3.1 Poker Dataset

The poker dataset [37], collected from UCI, has 11 numerical attributes and millions
of instances. Here the first ten predictive attributes are used as quasi-identifiers and
t class variable is used as the sensitive attribute.

3.2 Adult Dataset

The adult dataset [38], collected from UCI, has 14 numerical and categorical at-
tributes and 48 842 instances. This dataset is widely used for the privacy-preserving
purpose. Here the sensitive attribute in the dataset is age (numerical) and profession
(categorical).

3.3 MPSEC Dataset

This is for the first time when the proposed methodology has been implemented
on a newly collected dataset from Madhya Pradesh State Election Commission
(MPSEC), Bhopal, India. It is state voter and candidate dataset. It consists of
34 attributes. After pre-processing, 12 useful attributes were extracted, specifically
age, district code, candidate name, gender, category, mobile no., candidate designa-
tion, ward no., votes, marital status, auto-id, and occupation. In the proposed work,
“Occupation” is considered a sensitive attribute. The dataset has a candidate name
and mobile number as EI attributes and the rest of the attributes are QI. We find
the interesting patterns from MPSEC datasets, if combined with the demographic
data, the percentage of people who were eligible and voted in the elections can be
calculated. The correlation and dependency between the caste of the voters and the
winning candidate can also be found. The co-dependency between the female candi-
dates and their occupations might be detected. The percentage of female candidates
amongst total candidates can be calculated. If combined with Aadhar card data,
the voting pattern between the reserved category and unreserved category voters
can be found. The percentage of different age groups standing for election can be
detected, whether it has more of the young candidates or older candidates. Table 5
represents the number of tuples and the corresponding data size of MPSEC dataset
for experiment purpose.

4 RESULTS AND DISCUSSION

The platform used for the deployment is HP Z840 workstation. It consists of 64-bit
dual-core processors and 8 GB of RAM. Apache storm combination with Python is
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MPSEC Dataset

Number of Tuples Size

35 000 4 MB

100 000 10.5 MB

1 million 104.2 MB

10 million 1.01 GB

100 million 10.4 GB

Table 5. MPSEC dataset

used to implement the proposed algorithms in the multi-node environment. The
multi-node environment created by using 5 workstations. Each workstation has
40 cores. In our experiments, 40 cores are used for the name node, and 160 cores
are used for worker nodes for implementing the proposed algorithms. The param-
eters used for comparison are completeness, running time, and information loss.
Existing methods – FADS, FAST, MRA, and SKA – are implemented in the same
environment. The proposed algorithms have been applied to MPSEC dataset, adult
dataset [37], and poker dataset [38]. The proposed algorithms can also be applied
to any other datasets which require the privacy mechanism.

4.1 Completeness

Completeness describes whether the data is fully anonymized or not. In the asym-
metric algorithm, all data is generalized in an asymmetric way so that IAKA achieves
100 percentage completeness. The value of k achieved is 1 523. In ISKA, symmetric
grouping value from k is changed. If (new k < gen. k) < 100 percentage complete-
ness, data is only generalized, not anonymized, and it can be easily predictable, if
(new k >= gen. k). Here also, ISKA tries to achieve 100 percentage completeness,
the value of k achieved is 1 283. The proposed model gives a better result with
large dataset having higher k value. The higher k value guaranteed the strongest
privacy.

4.2 Running Time

The running time complexity of IAKA and ISKA is described as follows, both the
algorithms having mainly three functions. The first function is distance function,
which is used for calculating the distance between two tuples, for finding the best
nearest tuples for anonymization purpose. It is used by symmetric and asym-
metric intervals for ISKA and IAKA algorithms, respectively. Distance function
loop variable is incremented by a constant amount of time for both algorithms,
which represents the time complexity of the distance variable being O(n). The
second function is the information loss function, and it is used to find the best
optimal cluster, which is having minimum information loss. Similar to distance
function, the information loss function is incremented by a constant amount of
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time. The time complexity of the information loss function is O(n). The third
function checks the expiration time of tuple, whether the time since tuple arrived
is less than that of proactive heuristic and generalizes them within those time lim-
its. This function takes a constant amount of time. So the overall time complex-
ity of the proposed algorithms IAKA and ISKA is O(n). After IAKA and ISKA
algorithms, the proposed ILD algorithm maintains the required threshold of di-
versity in each equivalence class. In the proposed ILD model, diversity function
loop variable is incremented by a constant amount of time, which represents the
time complexity of the diversity function being O(n). So the overall time com-
plexity of the proposed ILD algorithm is O(n). The time complexity of the pro-
posed IKA and ILD algorithms found to be O(n) where n = number of tuples
of a given attribute. The proposed algorithms work on a lesser number of iter-
ations: only three iterations in the case of both the algorithms of IKA and four
iterations in the case of ILD algorithm. The comparison of time complexity of the
proposed algorithms with the existing methods is shown in Table 6. The proposed
work and the existing methods FADS, FAST, MRA and SKA have been imple-
mented in the same experimental environment. In the experiment the anonymity
degree k varied from 10 to 640 and the diversity level l is set to 6 in this proposed
work.

The IAKA and ISKA are more efficient than the existing algorithms (FADS,
FAST, MRA, SKA). The disadvantage of the FADS is that the algorithm does not
take a look at the remaining time of tuples that are kept within the buffer in each
round and are outputted once they are probably taken into consideration to have
expired. The critical weakness of FADS and FAST is that they are not able to
handle a larger dataset of 10M size. The major drawbacks of MRA are multiple
iterations and file management, and as the number of iterations increases the per-
formance decreases. In addition, the time complexity of the MRA is very high, i.e.
O(n2). The time complexity of the SKA algorithm is also high, i.e. O(n log n). Lack
of diversity is the major drawback of SKA, which causes attribute discloser. To
overcome the FADS weakness the proposed algorithms check the expiration time
of tuple, whether the time since tuple arrived is less than that of proactive heuris-
tic and generalize them within that time limits. The running time has improved
due to the proposed IKA and ILD algorithms which take only fewer iterations and
execute on the multi-node environment of big data. The proposed improved algo-
rithms are efficient to handle large database and proposed ILD model maintains
at least 6 diversity in each equivalence class what overcomes attribute discloser.
Comparing both algorithms of IKA, IAKA is more efficient as it is taking less run-
ning time as compared to ISKA. The running time declines with the increasing
number of tuples or records, mostly because fewer iterations are required to sat-
isfy privacy requirements. Tables 7, 8, 9 show the running time of MRA, SKA,
IAKA and ISKA on 1M, 10M and 100M dataset with respect to different k val-
ues, respectively. In Table 7, when the value of k is 10 on MPSEC 1M dataset
then the running time of IAKA and ISKA is 335 and 328 seconds and when the
value of k is 640 the running time of IAKA and ISKA is 305 and 302.3 seconds,
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S. No. Algorithms Time Complexity Remark

1 FADS

O(s), which is linear
to the stream size s
also the space complexity
is O(c), which is
constrained by a constant c.

FADS algorithm does
not check the remaining
time of tuples and FADS
is not parallel and cannot
handle a larger dataset
of 10M size.

2 FAST O(n log n)

Large dataset results
in high information
loss and cannot handle
a larger dataset
of 10M size.

3
MRA (Map
Reduce-based
Anonymization)

O(n2)

Multiple iterations
and file management
are the major drawbacks
of this technique and as
the number of iterations
increases the performance
degrades.

4
SKA (Scalable
k-Anonymization)

O(n log n)

Lack of diversity and
high information loss
are the major drawbacks
of this work.

5
Proposed IKA
and ILD
algorithms

O(n)
In the proposed algorithms
complexity decreases due to
lesser number of iterations.

Table 6. Comparison of time complexity of proposed algorithms with competing or exist-
ing methods

respectively. In Table 8, when the value of k is 10 on MPSEC 10M dataset then
the running time of IAKA and ISKA is 2 070.2 and 1 989.3 seconds and when the
value of k is 640 the running time of IAKA and ISKA is 1 641.5 and 1 555.8 seconds,
respectively. ISKA performs best in running time and both IAKA and ISKA algo-
rithms are outperformed as compared to the existing MRA and SKA algorithms.
When the value of k is higher, i.e. higher privacy, then running time goes down in
all the algorithms due to low computational cost required, similarly to Tables 7,
8, and 9, it is representing the running time on MPSEC 100M dataset, respec-
tively. This work also finds an interesting pattern that the running time values
of on MPSEC 10M and 100M dataset are not increasing proportionally as com-
pared to Table 7, these running time values are much smaller by using our proposed
algorithms. So our proposed algorithms take less running time as compared to
the existing algorithms for larger datasets. Table 10 shows the running time of
FADS, FAST, IAKA and ISKA on 1M dataset in which IAKA repeatedly performs
best.
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Value of Running Time in Seconds
k MRA SKA IAKA ISKA

10 1 200 675 335 328
20 1 189 541 330.2 327.5
40 1 089 500 326.3 324.3
80 1 000 472 321.2 320

160 920 421 317.3 316.2
320 880 400 310 308.2
640 812 398 305 302.3

Table 7. Running time comparison of MRA, SKA, IAKA, and ISKA on MPSEC 1M
dataset in seconds

Value of Running Time in Seconds
k MRA SKA IAKA ISKA

10 8 000 4 010 2 070.2 1 989.3
20 7 800 3 900 2 000.2 1 965.1
40 7 100 3 508 1 905.3 1 845.8
80 6 600 3 280 1 857.6 1 780.3

160 6 200 3 121 1 779.8 1 697.4
320 5 807 2 872 1 701 1 623.2
640 5 410 2 710 1 641.5 1 555.8

Table 8. Running time comparison of MRA, SKA, IAKA, and ISKA on MPSEC 10M
dataset in seconds

4.2.1 Comparison of IAKA and ISKA Algorithms with Existing Batch
Data Anonymization Algorithms MRA and SKA

The average running times on 1M, 10M, and 100M datasets are depicted in Figures 6,
7, and 8, respectively. As can be seen in the figures, both IAKA and ISKA have
smaller running time than that of MRA and SKA. And SKA has smaller running
time than that of MRA [35, 36] because SKA performs the task in less number

Value of Running Time in Seconds ∗ 10
k MRA SKA IAKA ISKA

10 7 800 3 840 1 980.2 1 909
20 7 100 3 509 1 920.5 1 875.8
40 5 200 2 690 1 797.2 1 745
80 4 100 2 150 1 791.8 1 680.6

160 4 400 2 198 1 699.2 1 588.4
320 4 120 2 098 1 600.8 1 505.6
640 3 900 1 850 1 541.8 1 432.2

Table 9. Running time comparison of MRA, SKA, IAKA, and ISKA on MPSEC 100M
dataset in seconds ∗ 10
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Value of Running Time in Seconds
k FADS FAST IAKA ISKA

10 610 422.3 335 328
20 608.5 419.5 330.2 327.5
40 609 417 326.3 324.3
80 607 415 321.2 320

160 608 411.3 317.3 316.2
320 607.5 410 310 308.2
640 607 409.3 305 302.3

Table 10. Running time comparison of FADS, FAST, IAKA, and ISKA on MPSEC 1M
dataset in seconds

of iterations than that of MRA. In the case of ISKA, there will be no overhead
for checking the distance between the tuples as it is concerned more with equal-
sized cluster, but on the nearness degree of tuples in the dataset. On the other
hand, IAKA is related more with nearness of data than with the equality of cluster
sizes. This requires to calculate the distance between the tuple of interest and the
generalized cluster to decide whether the tuple can be inserted in that cluster or
not which results in more running time of IAKA and relatively less running time of
ISKA.

Figure 6. Running time of MRA, SKA, IAKA, and ISKA on MPSEC 1M dataset

4.2.2 Comparison of IAKA and ISKA Algorithms with Existing Stream
Data Anonymization Algorithms FADS and FAST

The average running time on 1M synthetically generated MPSEC stream dataset
are depicted in Figure 9. As can be seen in this figure, both IAKA and ISKA
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Figure 7. Running time of MRA, SKA, IAKA, and ISKA on MPSEC 10M dataset

Figure 8. Running time of MRA, SKA, IAKA, and ISKA on MPSEC 100M dataset

have smaller running time than that of FADS and FAST. And FAST has smaller
running time than that of FADS [31, 32]. FAST have smaller running time than
that of FADS as its implementation uses the concept of multithreading. IAKA has
larger running time than ISKA and the reasons are the same as mentioned in the
Section 4.2.1.

4.3 Information Loss

Information loss is a term that is shown in Equation (1). In this equation, lower ij
and upper ij represent lower and upper bound of attribute j in tuple i after general-
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Figure 9. Running time of FADS, FAST, IAKA, and ISKA on MPSEC 1M dataset

ization, respectively, minj and maxj represent the minimum and maximum values,
respectively, taken by attribute j over all records.

I =
n∑

i=1

m∑
j=1

|upper ij − lower ij|
n.m|Max j −Minj|

. (1)

In the experiment, the anonymity degree k varied from 10 to 640, and the di-
versity level l is set to 6 in this proposed work. The reported values (except for
the information loss) are averaged over two runs. Tables 11, 12, 13 show the infor-
mation loss of MRA, SKA, IAKA and ISKA on 1M, 10M and 100M dataset with
respect to different k values, respectively. In Table 11, when the value of k is 10
on MPSEC 1M dataset then the information loss of IAKA and ISKA is 18 and 21
percentage, and when the value of k is 640 the information loss of IAKA and ISKA
is 27.39 and 28.97 percent, respectively. In the case of existing algorithms MRA
and SKA in the same table, when the value of k is 10 on MPSEC 1M dataset then
the information loss is 33.4 and 29.84 percent, and when the value of k is 640 the
information loss is 54.40 and 44.87 percent, respectively. The proposed algorithms
show better performance regarding the information loss as compared to the existing
methods. In Table 12, when the value of k is 10 on MPSEC 10M dataset then
the information loss of IAKA and ISKA is 15.28 and 17.89 percent, and when the
value of k is 640 the information loss of IAKA and ISKA is 24.18 and 25.07 per-
cent, respectively. In the case of existing algorithms MRA and SKA in the same
table, when the value of k is 10 on MPSEC 10M dataset then the information loss
is 31.2 and 25.9 percent, and when the value of k is 640 the information loss is
48.80 and 41.08 percent, respectively. As compared to Table 11, data size is in-
creasing 1M to 10M, information loss is decreasing and proposed algorithms IAKA
and ISKA show incredible performance, as compared to the existing algorithms.
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In Table 13, when the value of k is 10 on MPSEC 100M dataset then the infor-
mation loss of IAKA and ISKA is 12.8 and 14 percent, and when the value of k
is 640 the information loss of IAKA and ISKA is 21.91 and 24.58 percent, respec-
tively. In the case of existing algorithms MRA and SKA in the same table, when
the value of k is 10 on MPSEC 100M dataset then the information loss is 27.12
and 19.41 percent, and when the value of k is 640 the information loss is 45.01
and 41.47 percent, respectively. It is clear that as data size increases, information
loss decreases due to the large crowd effect. It is also observed that IAKA out-
performs ISKA, MRA and SKA in terms of information loss. ISKA also presents
remarkable improvements in terms of information loss as compared to existing meth-
ods.

In Table 14, there is a considerable difference in the information loss of our pro-
posed IAKA and ISKA algorithms with streaming data FADS and FAST algorithm.
This is because the FADS and FAST algorithms fail to take full advantage of the
entire data, because of their inability to merge the values across big data chunks.
Typically, a larger difference is expected if the data is split into more chunks. An-
other drawback of a FAST algorithm for anonymizing data is that it takes super
parent node for replacement instead of the current parent node for categorical at-
tribute to enhance time which results in high information loss. The drawback of
MRA and SKA also is high information loss. Among IAKA and ISKA, IAKA has
less information loss than that of ISKA because, in ISKA, the size of each cluster
has to be the same and in order to satisfy this property it sometimes has to com-
promise over the nearness of the tuples in the cluster which is otherwise done for
less information loss in the anonymized data. On the other hand, the IAKA does
not impose any condition on the size of the cluster but concentrates more on the
nearness of the data in the cluster that results in less information loss. Another ef-
ficiency of proposed IAKA and ISKA of IKA model is using the MDTDG technique
for categorical attributes, so information loss rate decreased. The proposed algo-
rithms also utilize the large crowd effects, i.e. the same amount of privacy applied
to larger dataset. It is also able to achieve low information loss and privacy-utility
trade-off.

Value of Information Loss in Percentage
k MRA SKA IAKA ISKA

10 33.4 29.84 18 21
20 38.57 32.08 20 22.4
40 41.72 36.12 21.32 23.6
80 44.08 38.27 23.87 24.74

160 47.40 39.9 25.18 25.75
320 51.81 41.87 26.43 27.88
640 54.40 44.87 27.39 28.97

Table 11. Information loss comparison of MRA, SKA, IAKA, and ISKA on MPSEC 1M
dataset
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Value of Information Loss in Percentage
k MRA SKA IAKA ISKA

10 31.2 25.9 15.28 17.89
20 36.01 29.8 17.87 19.72
40 39.92 34 19.08 21
80 42.02 36 20.87 22.57

160 44.08 37.01 21.84 23.27
320 46.09 39.84 22.70 24.89
640 48.80 41.08 24.18 25.07

Table 12. Information loss comparison of MRA, SKA, IAKA, and ISKA on MPSEC 10M
dataset

Value of Information Loss in Percentage
k MRA SKA IAKA ISKA

10 27.12 19.41 12.8 14
20 32.5 24.05 13.49 16.72
40 37.61 30.58 16.19 19.29
80 40.8 32.41 18.09 21.08

160 43.21 38.48 19.18 22.39
320 44.75 40 20.04 23.68
640 45.01 41.57 21.91 24.58

Table 13. Information loss comparison of MRA, SKA, IAKA, and ISKA on MPSEC 100M
dataset

4.3.1 Comparison of IAKA and ISKA Algorithms with Existing Batch
Data Anonymization Algorithms MRA and SKA

The average information loss on 1M, 10M and 100M MPSEC datasets are depicted
in Figures 10, 11 and 12, respectively. As can be seen in the figures, both IAKA
and ISKA outperformed SKA and MRA. SKA outperformed MRA [35, 36]. The
reason is that the former algorithm uses the proactive heuristic variable to maintain

Value of Information Loss in Percentage
k FADS FAST IAKA ISKA

10 38 31 18 21
20 42 33.4 20 22.4
40 47 35.8 21.32 23.6
80 49 39.2 23.87 24.74

160 51 43 25.18 25.75
320 57 45.5 26.43 27.88
640 65.3 51 27.39 28.97

Table 14. Information loss comparison of FADS, FAST, IAKA, and ISKA on MPSEC 1M
dataset
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the relativity of the data to the situation. As the size of dataset increases the
information loss decreases due to large crowd effect.

Figure 10. Information loss of MRA, SKA, IAKA, and ISKA on MPSEC 1M dataset

Figure 11. Information loss of MRA, SKA, IAKA, and ISKA on MPSEC 10M dataset



IKA and ILD Approaches for Privacy-Preserving Big Data Publishing 561

Figure 12. Information loss of MRA, SKA, IAKA, and ISKA on MPSEC 100M dataset

4.3.2 Comparison of IAKA and ISKA Algorithms with Existing Stream
Data Anonymization Algorithms FADS and FAST on Synthetically
Generated Stream Data

The average information loss on 1M synthetic MPSEC stream data is depicted in
Figure 13. As can be seen in the figure, IAKA and ISKA perform better than
FADS and FAST. FAST outperformed FADS [31, 32]. Here for stream data, we are
comparing only till 1M dataset as no other previous papers have considered dataset
over that size. Here also, IAKA performs better than ISKA and the reasons are the
same as mentioned in Section 4.3.1.

4.4 Comparison of Proposed Algorithms Using Different Datasets

Proposed IKA and ILD algorithms have also been applied to adult dataset [37]
and poker dataset [38]. Tables 15 and 16 show the comparison of proposed IAKA
and ISKA algorithms used with different datasets (adult dataset, poker dataset)
of 10M size. The proposed IAKA and ISKA and the existing methods, MRA
and SKA, are implemented in the same experiment environment using different
dataset, i.e. adult dataset and poker dataset. In this experiment, anonymity de-
gree k is set to 80, i.e. most widely used value, and the diversity level l is set
to 6. Table 15 represents the running time comparison of MRA, SKA, IAKA,
and ISKA on different datasets in which the performance of ISKA is best with
all three datasets. Both the proposed algorithms of IKA have an optimum time
complexity, i.e. only O(n), and the reason is already discussed in Section 4.2. The
major drawbacks of MRA are multiple iterations and file management, and as the
number of iterations increases performance decreases. In addition, the time com-
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Figure 13. Information loss of FADS, FAST, IAKA, and ISKA on MPSEC 1M dataset

plexity of the MRA is very high, i.e. O(n2). The time complexity of the SKA
algorithm is O(n log n). Lack of diversity and high information loss are the ma-
jor drawbacks of SKA. Table 16 represents information loss comparison of MRA,
SKA, IAKA, and ISKA on different datasets, in which performance of IAKA is
the best with all three datasets because IAKA concentrates more on the nearness
of the data in the cluster and it does not impose any condition on the size of the
cluster that results in less information loss. ISKA also shows the significant re-
duction in information loss because both algorithms of IKA model use MDTDG
technique for categorical attributes and also utilize the large crowd effects. So both
algorithms of IKA are able to achieve low information loss and privacy-utility trade-
off.

Name of Running Time in Seconds
Dataset MRA SKA IAKA ISKA

Adult Dataset [38] 7 135 3 415 1 975.2 1 916.3
Poker Dataset [37] 6 830 3 329 1 956.2 1 899.1
MPSEC Dataset 6 600 3 280 1 857.6 1 780.3

Table 15. Running time comparison of MRA, SKA, IAKA, and ISKA on different 10M
size datasets in seconds where value of k = 80

5 CONCLUSION

This paper addresses the issue of high information loss and high running time of
anonymization algorithms of big data. This paper proposed the IKA and ILD model
and applied them to the MPSEC dataset and successfully achieved high k-value
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Name of Information Loss in Percentage
Dataset MRA SKA IAKA ISKA

Adult Dataset [38] 47.31 40.16 21.95 23.89
Poker Dataset [37] 45.02 38.9 21.89 23.31
MPSEC Dataset 42.02 36 20.87 22.57

Table 16. Information loss comparison of MRA, SKA, IAKA, and ISKA on different 10M
size datasets in percentage where value of k = 80

(k value 1 523 in asymmetric, k value 1 283 in symmetric) with the maintained
diversity in the sensitive attribute. As shown in the experimental result, 100 per-
centage completeness has been achieved, that is the data was fully anonymized,
and the time complexity is O(n). ISKA proves to be more efficient since the run-
ning time is less when compared to IAKA and other existing algorithms FADS,
FAST, MRA and SKA. The running time has improved because the proposed IKA
and ILD algorithms takes fewer iterations and execute on the multi-node environ-
ment of big data. ISKA and IAKA algorithms have reduced remarkable information
loss in comparison with the existing methods FADS, FAST in case of stream data.
They are better than MRA and SKA in case of batch data and IAKA performs
best regarding the information loss. The proposed IKA and ILD models maintain
the privacy-utility trade-off. The improvement in this model is that rather than
anonymizing batch data and streaming data differently with a bunch of algorithms,
it is better to achieve the combined functionalities in the single algorithm. The pro-
posed IKA and ILD algorithms can also be applied to any datasets which require
privacy mechanism. These proposed algorithms are useful for healthcare, sensor
networks, online flight reservation systems, marketing and other commercial com-
panies to grow their business. As their database contains personal information,
it is vulnerable to provide direct access to researchers and analysts. Since in this
case the privacy of individuals is leaked, it can pose a threat and it is also ille-
gal. The future work for this approach is directed towards creating a new model
which deals with privacy issues of correlative data for big data publication pur-
poses.

Acknowledgement

We are grateful to the Madhya Pradesh State Election Commission, India, for their
enthusiastic and constant support and for providing us with the real-time big dataset
needed for the research work. We also acknowledge the concern of the Madhya
Pradesh Council of Science and Technology, Bhopal, India and providing us funds
to carry out this research work.



564 P. Jain, M. Gyanchandani, N. Khare

REFERENCES

[1] Al-Zobbi, M.—Shahrestani, S.—Ruan, C.: Sensitivity-Based Anonymization of
Big Data. 2016 IEEE 41st Conference on Local Computer Networks Workshops (LCN
Workshops), Dubai, 2016, pp. 58–64, doi: 10.1109/LCN.2016.029.

[2] Marx, V.: The Big Challenges of Big Data. Nature, Vol. 498, 2013, pp. 255–256,
doi: 10.1038/498255a.

[3] Sánchez, D.—Mart́ınez, S.—Domingo-Ferrer, J.: Comment on “Unique in
the Shopping Mall: On the Reidentifiability of Credit Card Metadata”. Science,
Vol. 351, 2016, No. 6279, pp. 1274–1276, doi: 10.1126/science.aad9295.

[4] Yu, S.—Guo, S. (Eds.): Big Data Concepts, Theories, and Applications. Springer,
Cham, 2016, doi: 10.1007/978-3-319-27763-9.

[5] Xu, L.—Jiang, C.—Wang, J.—Yuan, J.—Ren, Y.: Information Security in
Big Data: Privacy and Data Mining. IEEE Access, Vol. 2, 2014, pp. 1149–1176, doi:
10.1109/ACCESS.2014.2362522.

[6] Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., We-
gener, I. (Eds.): Automata, Languages, and Programming (ICALP 2006). Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 4052, 2006, pp. 1–12,
doi: 10.1007/11787006 1.

[7] Dwork, C.—McSherry, F.—Nissim, K.—Smith, A. D.: Calibrating Noise to
Sensitivity in Private Data Analysis. In: Halevi, S., Rabin, T. (Eds.): Theory of
Cryptography (TCC 2006). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 3876, 2006, 2006, pp. 265–284, doi: 10.1007/11681878 14.

[8] Geng, Q.—Viswanath, P.: Optimal Noise Adding Mechanisms for Approximate
Differential Privacy. IEEE Transactions Information Theory, Vol. 62, 2016, No. 2,
pp. 952–969, doi: 10.1109/TIT.2015.2504972.

[9] Qu, Y.—Yu, S.—Gao, L.—Niu, J.: Big Dataset Privacy Preserving Through
Sensitive Attribute-Based Grouping. 2017 IEEE International Conference on Com-
munications (ICC), Paris, France, 2017, pp. 1–6, doi: 10.1109/ICC.2017.7997113.

[10] Tripathy, B. K.—Mitra, A.: An Algorithm to Achieve k-Anonymity and l-Di-
versity Anonymisation in Social Networks. 2012 Fourth International Conference
on Computational Aspects of Social Networks (CASoN), Sao Carlos, Brazil, 2012,
pp. 126–131, doi: 10.1109/CASoN.2012.6412390.

[11] Sweeney, L.: Achieving k-Anonymity Privacy Protection Using Generalization and
Suppression. International Journal of Uncertainty, Fuzziness, and Knowledge-Based
Systems, Vol. 10, 2002, pp. 571–588, doi: 10.1142/S021848850200165X.

[12] Sweeney, L.: k-Anonymity: A Model for Protecting Privacy. International Jour-
nal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 10, 2002, No. 5,
pp. 557–570, doi: 10.1142/S0218488502001648.

[13] Machanavajjhala, A.—Kifer, D.—Gehrke, J.—Venkitasubramaniam, M.:
L-Diversity: Privacy Beyond k-Anonymity. ACM Transactions on Knowledge
Discovery from Data (TKDD), Vol. 1, March 2007, No. 1, pp. 1–52, doi:
10.1145/1217299.1217302.

https://doi.org/10.1109/LCN.2016.029
https://doi.org/10.1038/498255a
https://doi.org/10.1126/science.aad9295
https://doi.org/10.1007/978-3-319-27763-9
https://doi.org/10.1109/ACCESS.2014.2362522
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11681878_14
https://doi.org/10.1109/TIT.2015.2504972
https://doi.org/10.1109/ICC.2017.7997113
https://doi.org/10.1109/CASoN.2012.6412390
https://doi.org/10.1142/S021848850200165X
https://doi.org/10.1142/S0218488502001648
https://doi.org/10.1145/1217299.1217302


IKA and ILD Approaches for Privacy-Preserving Big Data Publishing 565

[14] Samet, H.: Foundations of Multidimensional and Metric Data Structures. The Mor-
gan Kaufmann Series in Computer Graphics and Geometric Modeling, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, 2005.

[15] Fung, B. C. M.—Wang, K.—Yu, P. S.: Top-Down Specialization for Informa-
tion and Privacy Preservation. 21st International Conference on Data Engineering
(ICDE ’05), Tokyo, Japan, 2005, pp. 205–216, doi: 10.1109/ICDE.2005.143.

[16] Fung, B. C. M.—Wang, K.—Chen, R.—Yu, P. S.: Privacy-Preserving Data
Publishing: A Survey of Recent Developments. ACM Computing Surveys, Vol. 42,
2010, No. 4, Art. No. 14, pp. 1–53, doi: 10.1145/1749603.1749605.

[17] Liu, X.—Xie, Q.—Wang, L.: A Personalized Extended (a, k)-Anonymity Model.
2015 Third International Conference on Advanced Cloud and Big Data (CBD),
Yangzhou, China, 2015, pp. 234–240, doi: 10.1109/CBD.2015.45.

[18] Guo, L.—Guo, S.—Wu, X.: Privacy Preserving Market Basket Data Analysis.
In: Kok, J. N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D.,
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