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Genetics/ Original Article

Genomic prediction with the 
additive-dominant model by 
dimensionality reduction methods
Abstract – The objective of this work was to evaluate the application of 
different dimensionality reduction methods in the additive-dominant model 
and to compare them with the genomic best linear unbiased prediction 
(G-BLUP) method. The dimensionality reduction methods evaluated were: 
principal components regression (PCR), partial least squares (PLS), and 
independent components regression (ICR). A simulated data set composed 
of 1,000 individuals and 2,000 single-nucleotide polymorphisms was used, 
being analyzed in four scenarios: two heritability levels × two genetic 
architectures. To help choose the number of components, the results were 
evaluated as to additive, dominant, and total genomic information. In general, 
PCR showed higher accuracy values than the other methods. However, none 
of the methodologies are able to recover true genomic heritabilities and all of 
them present biased estimates, under- or overestimating the genomic genetic 
values. For the simultaneous estimation of the additive and dominance marker 
effects, the best alternative is to choose the number of components that leads 
the dominance genomic value to a higher accuracy.

Index terms: dominance effect, G-BLUP, independent components 
regression, partial least squares, principal components regression.

Predição genômica com o modelo aditivo-dominante 
por métodos de redução de dimensionalidade
Resumo – O objetivo deste trabalho foi avaliar a aplicação de diferentes métodos 
de redução de dimensionalidade no modelo aditivo-dominante e compará-los 
ao método genômico da melhor predição linear não viesada (G-BLUP). Os 
métodos de redução avaliados foram: regressão via componentes principais 
(PCR), quadrados mínimos parciais (PLS) e regressão via componentes 
independentes (ICR). Utilizou-se um conjunto de dados simulados composto 
por 1.000 indivíduos e 2.000 polimorfismos de nucleotídeo único, analisados 
em quatro cenários: dois níveis de herdabilidade × duas heranças genéticas. 
Para auxiliar na escolha do número de componentes, os resultados foram 
avaliados quanto às informações genômicas aditiva, dominante e total. De 
modo geral, a PCR apresentou maiores valores de acurácia em comparação aos 
demais métodos. No entanto, nenhuma das metodologias consegue capturar 
as herdabilidades genômicas reais e todas apresentam estimativas viesadas, 
tendo subestimado ou superestimado os valores genéticos genômicos. Para 
a estimação simultânea dos efeitos de marcadores aditivos e devidos à 
dominância, a melhor alternativa é a escolha do número de componentes que 
conduz o valor genômico devido à dominância à maior acurácia.

Termos para indexação: efeito de dominância, G-BLUP, regressão via 
componentes independentes, quadrados mínimos parciais, regressão via 
componentes principais.
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Introduction

The genome-wide selection (GWS), conceived by 
Meuwissen (2001), assumes the existence of a linkage 
disequilibrium between markers and quantitative trait 
loci (QTLs), which makes it possible to estimate the 
genomic values of individuals from the estimation 
of marker effects on their phenotype, capturing 
the genotypic information that may influence their 
phenotypic variability (Goddard & Hayes, 2007). 
However, the implementation of GWS to assess 
individual genomic estimated breeding values 
(GEBVs) faces some statistical challenges, such as 
multicollinearity and highly correlated markers, 
which decreases the probability of a single nucleotide 
occurring independently of another in the same 
position of the genome (Gianola et al., 2003). Moreover, 
according to the same authors, due to the high cost 
of individual genotyping techniques, the number of 
individual observations is generally much lower than 
the number of markers.

Several methods – including Bayesian methods as 
the Bayesian least absolute shrinkage and selection 
operator (BLASSO) method, the mixed-model 
method, the genomic best linear unbiased predictor 
(G-BLUP) method, and dimensionality reduction 
methods such as principal components regression 
(PCR), partial least squares (PLS), and independent 
components regression (ICR) – have been applied to 
GWS and are recommended for genomic prediction 
(de los Campos et  al., 2013; Azevedo et  al., 2014, 
2015b). These methodologies guarantee the absence 
of multicollinearity between their components 
and consider the marker effects as fixed, being a 
solution for the statistical problems related to the high 
dimensionality of GWS (Resende et al., 2012).

The dimensionality reduction methods also stand 
out for presenting a great applicability and relatively 
simple theory when compared with the other methods 
applied to GWS (Long et  al., 2011; Azevedo et  al., 
2013). However, those methodologies have only 
considered additive genomic effects (Long et al., 2011; 
Azevedo et al., 2013, 2014, 2015a; Du et al., 2018). 

The inclusion of dominance effects in statistical-
genomic models is essential for the selection of crosses 
and clones, because it is an effective way of increasing 
genetic gain by capitalizing on heterosis (Toro & 
Varona, 2010; Wellmann & Bennewitz, 2012; Denis & 
Bouvet, 2013). Several studies have been conducted on 

the relevance of additive-dominant models in genomic 
prediction (Bennewitz & Meuwissen, 2010; Wellmann 
& Bennewitz, 2012; Vitezica et  al., 2017; Varona 
et  al., 2018), using G-BLUP (Su et  al., 2012; Muñoz 
et al., 2014;  Wang & Da, 2014), regression ridge (RR-
BLUP), and Bayesian methods (Toro & Varona, 2010; 
Zeng et al., 2013; Azevedo et al., 2015b; Almeida Filho 
et al., 2016). However, the methodologies based on the 
dimensionality reduction methods have not yet been 
analyzed under the additive-dominant model.

The objective of this work was to evaluate the 
application of different dimensionality reduction 
methods in the additive-dominant model and to 
compare them with the G-BLUP method.

Materials and Methods

The used data set was simulated by Azevedo 
et  al. (2015b) and described by Costa (2018). A 
population of 5,000 individuals from 100 families, 
generated from the random mating of two linkage 
equilibrium populations, was subjected to five 
generations of random mating without selection, 
mutation, or migration. The final population is an 
advanced generation composite in Hardy-Weinberg 
equilibrium and linkage disequilibrium. For marker 
density, Azevedo et  al. (2015b) simulated a total of 
2,000 equidistant single-nucleotide polymorphisms 
(SNPs) as biallelic markers, separated by 0.10 cM, on 
ten chromosomes. Marker alleles had a minor allele 
frequency greater than 5%. Of the 2,000 markers, 
100 were randomly chosen to be QTLs. The linkage 
disequilibrium between the markers and QTLs was 
calculated according to Goddard et  al. (2011) and 
was equal to 0.95. A total of 1,000 individuals from 
20 full-sib families, with 50 individuals each one, 
were phenotyped for four traits and then genotyped. 
This simulation was made to mimic an elite breeding 
population of plant species with an effective size of 
approximately 40.

Traits were simulated with two genetic architectures: 
one following an infinitesimal model (polygenic 
inheritance) and the other with five major effect genes, 
responsible for 50% of the genetic variability (mixed 
inheritance). In the first genetic architecture, low-
magnitude effects on phenotype were assumed for 
each of the 100 QTLs, whereas, in the second, large 
effects were assigned to 5 QTLs representing 50% of 
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the genetic variability and small effects were assigned 
to the remaining 95 QTLs.

The additive and dominant effects (SNPs and 
QTLs) were normally distributed with zero mean and 
genetic variance according to the desired heritability 
levels. The additive variances were 35, 35, 49, and 49, 
while the dominance variances were approximately 
18, 23, 25, and 33 (Table 1). The simulations assumed 
independence between additive and dominance 
effects. For each trait, the average degree of dominance 
level was approximately 1 (complete dominance) in a 
population with intermediate allele frequencies. The 
obtained genotypic values were within the limits of 
Gmax = 100(m + a) and Gmin = 100(m - a), which 
are the maximum and minimum values, respectively, 
where m is the mean of the genotypic values and a is 
the homozygote genotypic value.

In order to obtain the phenotypic value, an 
environmental effect was added to the genotypic 
value. This effect was obtained from the normal 
distribution N(0, σ2

e), where the σ2
e variance was 

defined according to two levels of narrow-sense 
heritability (additive heritabilities of 0.20 and 0.30, 
respectively) and two levels of broad-sense heritability 
(additive heritability plus dominance heritability of 
0.30 and 0.50, respectively) (Table  1). Heritability 
levels were chosen to represent traits with low and 
moderate heritabilities, in which case GWS is expected 
to be superior to phenotypic selection (Azevedo et al., 
2015b). Therefore, for the populations of full-sib 
families, four scenarios were studied: two broad-sense 
heritability levels of approximately 0.30 and 0.50 × 
two genetic architectures (Table 1). Each scenario was 
simulated ten times.

The general model for genomic selection was given 
by: y = 1μ + Wma + Smd + e, where y is the vector of 
phenotypic observations with dimension I × 1, with I 

being the number of individuals; μ is the general mean 
of the trait and 1 is a vector of the same dimension of y 
where all elements are equal to one; W is the incidence 
matrix of additive effects with dimension I × J, with 
J being the number of markers; ma are the additive 
effects of the markers; S is the incidence matrix of 
the dominance effect with dimension I × J; md are the 
dominance marker effects; and e is the vector of random 
errors with a variance structure given by e~N(0,Ieσ2

e), 
with Ie  being the identity matrix and σ2

e, the residual 
variance. The W and S matrices were coded according 
to Vitezica et  al. (2013) and their juxtaposition was 
defined by the X matrix as X = [W|S] (dimension I 
× 2J) and the marker effects, as m = [ma|md]' (2J × 1). 
For the estimation of these effects, the dimensionality 
reduction methods and G-BLUP were used as detailed 
below.

The PCR method defined the principal components 
(PC) as Z = XP, where Z is the matrix with the first  
nPCR PC, which are orthogonal, and P is the matrix 
with the first nPCR eigenvectors of the variance matrix 
of  (Ferreira, 2018).

The PLS method decomposes the X matrix and the y 
vector simultaneously. For this, the Y and Xj's variables 
are centered on the mean, defining variables U1 and 
V1j, where: u y y

1
� �  and V x xj j j1( ) � � , for j = 1,...,2J, 

respectively. Then, the S1 variable is written as s1 = V1'u1 
(dimension 2J × 1), where V1 = [v11  v12  ...  v12J], and 
applies to the singular value decomposition in the s1 
vector as follows: s1 = L1kq'1, where L1 is a unit matrix 
(2J × 2J) with the first column vector equal

s
1

1
s

to  (normalized s1 vector), k1 is a vector (2J × 1) with 
the first value equal to s

1
 (norm of vector s1), and q1 is 

a scalar equal to 1. The first component, T1, is defined 
by t1 = V1L1 (Garthwaite, 1994). The information about 

Table 1. Description of the scenarios and genetic architectures used for the analysis of the simulated data set, mimicking an 
elite breeding population of plant species(1).

Scenario Genetic architecture(2) σ 
2
a h 

2
a σ 

2
d h 

2
d σ 

2
e

Scenario 1 Polygenic inheritance 35 0.20 18 0.10 124
Scenario 2 Polygenic inheritance 35 0.30 23 0.20   59
Scenario 3 Mixed inheritance 49 0.20 25 0.10 171
Scenario 4 Mixed inheritance 49 0.30 33 0.20   81

(1), simulated additive variances; , narrow-sense heritability; , simulated dominance variances; , proportion of dominance variance to phenotypic variance; 
and , simulated environmental variance. (2)Polygenic inheritance, traits controlled by genes of small effect; and Mixed inheritance, traits controlled by 
genes of small and greater effect.
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variables Xj and Y that are not covered by component  
T1 can be estimated by the residuals of the regression 
between the Xj and T1 variables or, equivalently, by the 
regression between the V1j and T1 latent (unobservable) 
variables (Garthwaite, 1994). 

Therefore, to define the second component, T2, the 
V2(j) and U2 variables were determined, respectively, 
by:  

v v t r
j j2 1 1 1� � � �� � �  and  

u u t p
2 1 1 1
� � � , where v j2� � and 



u
2  are the residuals, and r1 and p1 are the coefficients 

obtained from the regression between u1 and t1 and 
v1(j) and t1, in that order. The S2 variable is defined 
as: s2 = V2'u2, and the procedure applied in s1 is 
repeated to construct the T2 component. The t3,...,tnPLS 

(1≤nPLS≤min(I,2J) - 1) components were determined 
successively and analogously to the above, all being 
considered orthogonal (Garthwaite, 1994).

For ICR, proposed under the context of GWS in 
additive models by Azevedo et  al. (2013), but also 
valid for additive-dominant models, the X data matrix, 
whose values are centered on the mean, is decomposed 
into X = SA', where S(I × min(2J,I) - 1) is the matrix 
of independent components and A(2J × min(2J,I) - 1) 
is the mixture matrix. The A matrix is a function of 
two matrices, K and R; the first is obtained by the 
whitening process, making the covariance matrix 
of X equal to the identity matrix, so that matrix 
A is orthogonal (Yao et  al., 2012), and the second 
is obtained by an iterative algorithm based on the 
principle of maximum entropy (Hyvärinen, 1998). 
After the convergence of this algorithm, the R matrix 
that guarantees the independence of the columns of  
was obtained. Therefore, the independent components 
are defined as S = XKR.

Subsequently, a multiple linear regression was 
performed between the Y variable and the Z, T, 
and S components obtained by PCR, PLS, and ICR, 
respectively. The following predictions were assumed: 

  



 

y Z y T y S� � �� � �, , ,  and  where
� …�
m PCR

m n� �� �1, , ,  
�

…�
m PLS
m n�� �1, , , and

� …�m ICR PCR PLS ICRm n n n n J I� � � � � �� �1 1 2 1, , , , , being   min

are the parameter estimates associated with the 
components and calculated by the ordinary least 
squares method. These estimates – 



� � �
m m m

, ,  and  – 
obtained previously are not associated with the original 
variables (molecular markers), that is, they do not have 
a biological interpretation. The original estimates 
of the marker effects (fixed effects in the reduction 
methods) are given by:   



m P m L R Lpcr PLS
� � �� ��� �, ,

1 and 

 

m KR
ICR

� �  through PCR, PLS, and ICR, respectively 
(Azevedo et  al., 2013). It should be noted that the 
expressions for estimating the marker effects depend 
on the choice of the number of components.

In this work, to determine the number of components 
to be used for PCR, PLS, and ICR, the exhaustive 
criterion adopted by Azevedo et al. (2013, 2014, 2015a) 
in the context of additive models was used. In additive-
dominant models, this criterion consists of choosing 
the number of components that leads to a higher 
accuracy in the prediction of additive (a), dominance 
(d), or total (g = a + d) genomic values. However, ICR, 
even in additive models, requires a high computational 
demand to perform the analyzes by this criterion 
(Costa, 2018). Therefore, an alternative criterion for 
ICR, called optimized criterion, was adopted in the 
present study. It was proposed by Costa (2018) in the 
context of additive models and consists in obtaining 
a number of independent components equal to the 
number of principal components.

G-BLUP was based on an individual-level model 
given by: y = 1μ + Za + Zd + e, where a is the vector 
of the additive genomic effects of the individuals (I × 
1), with an incidence matrix Z (I × 1), for which the 
variance structure is given by a N G

a a
 0

2
, ,�� �  with σa2  

being the additive variance and Ga (I × 1), the additive 
genomic relationship matrix; d is the vector of the 
dominance genomic effects of the individuals, with 
an incidence matrix Z (I × I), for which the variance 
structure is given by d N G

d d
 0

2
, ,�� �  with σ

d

2  being 
the variance due to dominance and Gd (I × I), the 
dominance genomic relationship matrix; and e is the 
vector of random residual effects, with e N I

e e
 0

2
, ,�� �  

where σ
e

2  is the residual variance. Additive and 
dominance genomic values can be estimated via 
mixed-model equations, and the variance components 
� � �

e a d

2 2 2
,  and � �  are estimated by restricted maximum 

likelihood. The individual-level model is equivalent 
to the marker-level model, as: a = Wma and d = Smd, 
where ma and md are the additive and dominance 
marker effects, respectively.

The dimensionality reduction methods and G-BLUP 
were compared through a cross-validation process 
in which the first nine replicates were assumed as 
estimation populations (different populations) used to 
estimate the marker effects (additive or dominance) 
and the tenth replicate was assumed as a population 
of validation. All efficiency measures (heritability, 
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accuracy, regression coefficients between phenotypes 
and simulated genetic values, and relative efficiency in 
relation to G-BLUP) were obtained for each replicate in 
each scenario, considering all three genetic information 
(additive, dominance, or total), and the general results 
were reported as average values. The expressions 
for additive heritability (narrow-sense heritability), 
dominance heritability (proportion of dominance 
variance to phenotypic variance), total heritability 
(broad-sense heritability), accuracy (additive and 
dominance), regression coefficient between phenotypes 
and simulated genetic values (additive and dominance), 
and relative efficiency are shown in Table 2 and were 
also used by Azevedo et al. (2015b).

All computational routines were implemented 
with the R software (R Core Team, 2019), using the 
packages: sommer, for G-BLUP; pls, for PLS and PCR; 
and caret, for ICR. The computer configuration was 
Intel (R) Core (TM) i7-6500, 2.50 GHz, 16 Gb RAM.

Results and Discussion

When the dimensionality reduction methods were 
evaluated only considering the number of components 
based on dominance genomic values, ICR, under 
both the optimized and exhaustive criteria, presented, 
on average, a lower accuracy, followed by PLS and 
lastly by PCR (Tables 3, 4, 5, and 6). Considering 
all scenarios, PLS was, on average, 1.25% more 
efficient than G-BLUP for additive values and 6.5% 
less efficient for dominance values. PCR was, on 
average, 4.25 and 14.75% more efficient than G-BLUP 
for additive and dominance values, respectively. 
Specifically, considering additive effects, PLS was 
more efficient than G-BLUP in scenarios 1 and 2 
of polygenic inheritance, whereas PCR was more 
efficient than G-BLUP in scenarios 1, 2, and 4. 
When considering dominance effects, PLS was more 
efficient than G-BLUP in scenarios 1 and 3, both with 
a heritability of 0.30, and PCR was more efficient than 
G-BLUP in all scenarios. Furthermore, PCR presented 
better results than ICR when explanatory variables 
(molecular markers) only showed a linear dependence 
(Azevedo et al., 2014). Therefore, the obtained results 
suggest that there is a greater proportion of linear 
dependence in the linkage disequilibrium structure 
between loci (Smith, 2020).

In addition to accuracy, other measures that can be 
evaluated are heritability and prediction bias (de los 
Campos et al., 2013; Daetwyler et al., 2013; Gianola, 
2013). The PLS and PCR methods underestimated 
the additive and dominance heritabilities, while 
G-BLUP underestimated additive heritability and 
overestimated dominance heritability in most 
scenarios. Therefore, these methods were not able 
to capture the additive and dominance heritabilities 
that were simulated. Regarding bias, it was defined 
as one minus the regression coefficient between the 
estimated genetic value (additive and dominance) 
and the phenotype, that is, coefficients equal to 1 
indicated nonbiased genomic values. For regression 
coefficients below one (< 1), it was understood that the 

Table 2. Expressions used for calculating the following 
efficiency measures: additive and dominance accuracies 

r r
aa dd


 and � �,  regression coefficients b bya yd


 and � �,  heritabilities 
h

aM dM

2 2
 and h� � , and relative efficiency (ERa and  ERd).

Efficiency measure Genetic information Expression(1)

Accuracy
Additive r a aaa



� � �Cor ,

Dominance r d ddd




� � �Cor ,

Regression coefficients

Additive b
y a

a
ya






�
� �
� �

Cov

Var

,

Dominance b
y d

d
yd





�

� �
� �

Cov

Var

,

Heritability

Additive h
aM

a

a d e

M

M M

2

2

2 2 2
�

� �

�

� � �

Dominance h
dM

d

a d e

M

M M

2

2

2 2 2
�

� �

�

� ��

Total h h hgM am dM

2 2 2� �

Relative efficiency

Additive ER
r

r
a

aa RM

aa

=




 

 G-BLUP

Dominance ER
r

r
d

dd RM

dd

=




 

 G-BLUP

(1)a, vector of the true additive genetic effect of an individual; â, vector of 
the estimate of the additive genetic effect of an individual; d, vector of the 
true dominance genetic effect of an individual; d , vector of the estimate 
of the dominance genetic effect of an individual; y , vector of phenotypes; 
�aM j

J

j j ajp q m2

1

22� �� , additive genomic variance, and �d j j djj

j

M
p q m2

2
2

1
2� � ��� ,  

dominance genomic variance, where J is the number of markers, and pj 

and qj are the allele frequencies of the jth marker; σ
e

2 , error variance; 
r
aaRM


 and r
aaG BLUP
 −

 respectively, additive accuracies of the dimensionality 
reduction methods and of G-BLUP; and r

ddRM
  and r

dd


G-BLUP
,  respectively, 

dominance accuracies of the dimensionality reduction methods and of 
G-BLUP.



6 J.A. da Costa et al.

Pesq. agropec. bras., Brasília, v.55, e01713, 2020
DOI: 10.1590/S1678-3921.pab2020.v55.01713

Table 4. Additive, dominance, and total simulated heritabilities ( hs2 ), number of components (Nc), additive and dominance 
heritabilities ( haM2  and hdM2 ), additive and dominance accuracies ( raa  and r

dd
 ), regression coefficients (  bya and



b
yd

), and relative 
additive and dominance efficiencies (EFa and Efd) obtained for the dimensionality reduction methods and the genomic best 
linear unbiased prediction (G-BLUP) method in scenario 2 of polygenic inheritance (with traits controlled by small gene 
effects), considering the additive, dominance, and total genomic values as targets.

Genomic 
value h

s

2 Method(1) Criterion(2) Nc h
aM

2
r
aa




bya h
dM

2
r
dd




b
yd

EFa EFd

Additive 0.30

ICR
Exhaustive 158±0.00 0.37±0.01 0.62±0.04 1.20±0.06 0.06±0.05 0.25±0.04 1.70±0.09 1.07 0.68

Optimized 270±110 0.38± 0.02 0.62±0.03 1.10± 0.12 0.07±0.01 0.27±0.05 1.50±0.17 1.07 0.73

PCR Exhaustive 270±110 0.32± 0.02 0.68±0.03 0.96± 0.09 0.11±0.04 0.40±0.06 1.40±0.38 1.17 1.08

PLS Exhaustive 4.80±1.60 0.38±0.04 0.66±0.03 0.93± 0.04 0.14±0.04 0.23±0.05 1.30±0.22 1.14 0.62

Dominance 0.20

ICR
Exhaustive 444±0.00 0.35±0.01 0.59±0.03 0.88±0.04 0.09±0.04 0.31±0.03 1.30±0.05 1.02 0.84

Optimized 210±120 0.36± 0.02 0.60±0.03 1.10± 0.12 0.07±0.01 0.26±0.03 1.60±0.17 1.03 0.70

PCR Exhaustive 210±120 0.29±0.07 0.66±0.04 0.98± 0.09 0.09±0.05 0.42±0.04 1.60±0.50 1.14 1.14

PLS Exhaustive 1.00±0.00 0.19±0.02 0.60±0.03 1.00±0.04 0.01±0.01 0.33±0.05 5.50±0.34 1.03 0.89

Total 0.50

ICR
Exhaustive 315±0.00 0.37±0.01 0.61±0.03 1.00±0.06 0.08±0.01 0.29±0.03 1.50±0.08 1.05 0.78

Optimized 280±90 0.36±0.02 0.60±0.03 1.10±0.12 0.07±0.01 0.26±0.03 1.60±0.17 1.03 0.70

PCR Exhaustive 280±90 0.33±0.05 0.68±0.03 0.96± 0.08 0.12±0.04 0.41±0.04 1.30±0.28 1.17 1.11

PLS Exhaustive 2.70±1.10 0.29±0.09 0.65±0.03 0.97± 0.05 0.06±0.05 0.33±0.08 2.70±1.40 1.12 0.89

G-BLUP - - 0.27±0.03 0.58±0.03 0.63±0.12 0.20±0.03 0.37±0.06 3.20±0.54 1.00 1.00

(1)ICR, independent components regression; PCR, principal components regression; and PLS, partial least squares. (2)The exhaustive criterion consists 
in obtaining a number of components equal to the number of components that leads ICR, PCR, and PLS to a higher accuracy. The optimized criterion 
consists in obtaining a number of independent components equal to the number of main components that leads PCR to a higher accuracy.

Table 3. Additive, dominance, and total simulated heritabilities ( h
s

2 ), number of components (Nc), additive and dominance 
heritabilities ( h

aM

2  and h
dM

2 ), additive and dominance accuracies ( r
aa
  and r

dd
 ), regression coefficients (



bya  and 


b
yd

), and 
relative additive and dominance efficiencies (EFa and EFd) obtained for the dimensionality reduction methods and the 
genomic best linear unbiased prediction (G-BLUP) method in scenario 1 of polygenic inheritance (with traits controlled by 
small gene effects), considering the additive, dominance, and total genomic values as targets.

Genomic value h
s

2 Method(1) Criterion(2) Nc h
aM

2
r
aa




bya h
dM

2
r
dd




b
yd EFa EFd

Additive 0.20

ICR
Exhaustive 20±0.00 0.05±0.01 0.58±0.04 1.30± 0.12 0.10±0.01 0.22±0.05 1.80±0.17 1.07 0.71

Optimized 56±22 0.07±0.02 0.57±0.04 1.20± 0.09 0.03±0.01 0.19±0.08 1.70±0.13 1.06 0.61

PCR Exhaustive 56±22 0.12±0.02 0.60±0.03 1.00± 0.10 0.02±0.01 0.32±0.11 2.50±0.70 1.11 1.03

PLS Exhaustive 2.80±1.50 0.22±0.07 0.59±0.05 0.80± 0.09 0.06±0.06 0.31±0.08 2.10±1.10 1.09 1.00

Dominance 0.10

ICR
Exhaustive 211±0.00 0.10±0.01 0.53±0.04 0.89± 0.07 0.04±0.02 0.24±0.05 1.30±0.09 0.98 0.77

Optimized 120±120 0.29± 0.04 0.54±0.03 1.10± 0.23 0.04± 0.01 0.23±0.04 1.50±0.33 1.00 0.74

PCR Exhaustive 120±120 0.16±0.08 0.58±0.03 0.91± 0.20 0.04±0.04 0.37±0.04 1.90±0.76 1.07 1.19

PLS Exhaustive 1.10±0.33 0.13±0.02 0.58±0.04 0.88± 0.06 0.01±0.01 0.33±0.07 4.60±0.83 1.07 1.06

Total 0.30

ICR
Exhaustive 60±0.00 0.07±0.01 0.56±0.04 1.20± 0.09 0.03±0.02 0.19±0.05 1.60±0.13 1.04 0.61

Optimized 78±32 0.29± 0.02 0.54±0.03 1.10± 0.23 0.03± 0.01 0.23±0.04 1.50±0.33 1.00 0.74

PCR Exhaustive 78±32 0.14±0.03 0.60±0.04 0.97± 0.04 0.03±0.01 0.37±0.06 2.10±0.40 1.11 1.19

PLS Exhaustive 1.60±0.53 0.12±0.02 0.59±0.04 0.87± 0.07 0.02±0.01 0.26±0.07 3.50±1.20 1.10 0.84

G-BLUP - - 0.15±0.05 0.54±0.06 0.54± 0.20 0.13±0.06 0.31±0.08 2.90±0.50 1.00 1.00

(1)ICR, independent components regression; PCR, principal components regression; and PLS, partial least squares. (2)The exhaustive criterion consists 
in obtaining a number of components equal to the number of components that leads ICR, PCR, and PLS to a higher accuracy. The optimized criterion 
consists in obtaining a number of independent components equal to the number of main components that leads PCR to a higher accuracy.
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Table 6. Additive, dominance, and total simulated heritabilities ( h
s

2 ), number of components (Nc), additive and dominance 
heritabilities ( h

aM

2  and h
dM

2 ), additive and dominance accuracies ( r
aa
  and r

dd
 ), regression coefficients (



bya  and 


b
yd ), and 

relative additive and dominance efficiencies (EFa and EFd) obtained for the dimensionality reduction methods and the 
genomic best linear unbiased prediction (G-BLUP) method in scenario 4 of mixed inheritance (with traits controlled by 
major and small gene effects), considering the additive, dominance, and total genomic values as targets.

Genomic 
value h

s

2

' Method(1) Criterion(2) Nc h
aM

2
r
aa




bya h
dM

2
r
dd




b
yd

EFa EFd

Additive 0,30
ICR

Exhaustive 203±0.00 0.30±0.01 0.55±0.05 0.96±0.04 0.06±0.01 0.25±0.04 1.40±0.05 0.90 0.61
Optimized 290±140 0.29±0.02 0.54±0.05 0.89±0.11 0.06±0.01 0.25±0.04 1.30±0.15 0.89 0.61

PCR Exhaustive 290±140 0.30±0.08 0.66±0.03 0.82±0.12 0.13±0.07 0.43±0.05 1.10±0.35 1.08 1.05
PLS Exhaustive 4.70± 1.00 0.36±0.04 0.64±0.04 0.78±0.06 0.16±0.03 0.38±0.04 1.00±0.20 1.05 0.93

Domi-
nance 0.20

ICR
Exhaustive 350±0.00 0.28±0.01 0.53±0.04 0.83±0.05 0.08±0.01 0.28±0.04 1.20±0.07 0.87 0.68
Optimized 270±120 0.28±0.02 0.53±0.04 0.89±0.09 0.07±0.09 0.27±0.04 1.30±0.13 0.87 0.66

PCR Exhaustive 270±120 0.29±0.06 0.63±0.03 0.81±0.10 0.12±0.07 0.46±0.03 1.10±0.32 1.03 1.12
PLS Exhaustive 1.10±0.33 0.18±0.11 0.59±0.03 0.88±0.05 0.01±0.01 0.41±0.06 3.90±0.56 0.97 0.76

Total 0.50
ICR

Exhaustive 288±0.00 0.29±0.01 0.54±0.04 0.89±0.04 0.08±0.03 0.26±0.04 1.30±0.06 0.89 0.63
Optimized 280±93 0.23±0.02 0.53±0.05 0.89±0.09 0.07±0.01 0.27±0.04 1.30±0.13 0.87 0.66

PCR Exhaustive 280±93 0.30±0.06 0.65±0.03 0.82±0.10 0.13±0.05 0.45±0.03 1.10±0.27 1.07 1.10
PLS Exhaustive 2.90±1.90 0.28±0.11 0.62±0.04 0.85±0.07 0.09±0.08 0.39±0.10 2.40±1.50 1.02 0.95

G-BLUP - - 0.25±0.06 0.61±0.02 0.74±0.20 0.18±0.04 0.41±0.04 3.20±0.68 1.00 1.00
(1)ICR, independent components regression; PCR, principal components regression; and PLS, partial least squares. (2)The exhaustive criterion consists 
in obtaining a number of components equal to the number of components that leads ICR, PCR, and PLS to a higher accuracy. The optimized criterion 
consists in obtaining a number of independent components equal to the number of main components that leads PCR to a higher accuracy.

Table 5. Additive, dominance, and total simulated heritabilities ( h
s

2 ), number of components (Nc), additive and dominance 
heritabilities ( haM2  and hdM2 ), additive and dominance accuracies ( r

aa
  and r

dd
 ), regression coefficients (  bya  and 



b
yd

), and 
relative additive and dominance efficiencies (EFa and EFd) obtained for the dimensionality reduction methods and the 
genomic best linear unbiased prediction (G-BLUP) method in scenario 3 of mixed inheritance (with traits controlled by 
major and small gene effects), considering the additive, dominance, and total genomic values as targets.

Genomic 
value  hs

2 Method(1) Criterion(2) Nc h
aM

2

 
r
aa


 



bya
   

h
dM

2
r
dd


 



b
yd

EFa EFd

Additive 0.20

ICR
Exhaustive 17±0.00 0.26±0.01 0.55±0.05 1.10± 0.11 0.02±0.01 0.10±0.09 1.60±0.15 0.92 0.29

Optimized 85±67 0.28± 0.02 0.53±0.04 1.00±0.17 0.02±0.02 0.16±0.04 1.50±0.25 0.88 0.46

PCR Exhaustive 85±67 0.12±0.04 0.59±0.04 0.94± 0.15 0.03±0.03 0.31±0.10 2.00±1.50 0.98 0.89

PLS Exhaustive 3.30±1.40 0.26±0.08 0.59± 0.06 0.70± 0.14 0.09±0.05 0.36±0.08 1.30±1.30 0.98 1.03

Domi-
nance 0.10

ICR
Exhaustive 487±0.00 0.16±0.01 0.40±0.04 0.50± 0.05 0.06±0.01 0.22±0.04 0.71±0.07 0.67 0.63

Optimized 170±110 0.23± 0.02 0.48±0.04 0.89±0.18 0.04±0.01 0.21±0.04 1.30±0.26 0.80 0.60

PCR Exhaustive 170±110 0.18±0.07 0.56± 0.05 0.81± 0.16 0.06±0.05 0.40±0.06 1.30±0.63 0.93 1.14

PLS Exhaustive 1.00±0.00 0.12±0.01 0.59± 0.04 0.87± 0.06 0.01± 0.01 0.36±0.04 3.40±0.86 0.98 1.03

Total 0.30

ICR
Exhaustive 18±0.00 0.26±0.01 0.51±0.05 1.10± 0.11 0.02±0.01 0.10±0.09 1.60±0.15 0.85 0.29

Optimized 120±95 0.23±0.02 0.48±0.04 0.89±0.18 0.04±0.01 0.21±0.04 1.60±0.26 0.80 0.60

PCR Exhaustive 120±95 0.14±0.06 0.58± 0.05 0.90± 0.17 0.04±0.04 0.36±0.11 1.60±1.10 0.97 1.03

PLS Exhaustive 1.60±1.30 0.15± 0.07 0.58± 0.05 0.84± 0.11 0.03±0.05 0.29±0.08 2.90±1.30 0.97 0.83

G-BLUP - - 0.14± 0.03 0.60± 0.04 0.71± 0.15 0.13±0.04 0.35±0.07 2.70±0.87 1.00 1.00

(1)ICR, independent components regression; PCR, principal components regression; and PLS, partial least squares. (2)The exhaustive criterion consists 
in obtaining a number of components equal to the number of components that leads ICR, PCR, and PLS to a higher accuracy. The optimized criterion 
consists in obtaining a number of independent components equal to the number of main components that leads PCR to a higher accuracy.
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predicted values had been overestimated, whereas, 
for those above one (> 1), it was concluded that the 
predicted values had been underestimated (Azevedo 
et al., 2015b). The PLS, PCR, and G-BLUP methods 
overestimated the additive values and underestimated 
those due to dominance. In additive models, Azevedo 
et al. (2014) and Azevedo et al. (2015a) found that PCR 
and PLS also led to overestimated additive genomic 
values in the genomic prediction of carcass traits in 
pigs. Although the bias is essential to determine the 
genetic merit of individuals, it does not influence 
their ranking and, subsequently, the selection process 
(Resende et al., 2012).

The main difference between the PCR and PLS 
methods is that PCR uses only the explanatory 
variables (molecular markers) for the construction of 
the components and PLS uses the explanatory variables 
and the response of the variables (phenotypes) 
(Garthwaite, 1994). Since the exhaustive criterion 
aims to choose the number of components associated 
with a higher accuracy, it is expected that PLS 
require fewer components than PCR (Du et al., 2018). 
However, even with a higher number of components, 
PCR provided a reduction of 86.50% in the original 
data in scenario 2, when considering the dominance 
genomic value as a target. It should be noted that cross-
validation was carried out to protect overfitting and 
overparameterization (James et al., 2013). 

On average, higher additive and dominance 
accuracies were observed for ICR (with the exhaustive 
and optimized criteria), PCR, and PLS (Table 7), when 
considering the additive and total genomic values as 
targets. According to Huang & Mackay (2016), the 
additive variance explains a greater proportion of 
genetic variance, even under dominant gene action, 
as shown by the parameterization of the marker 
incidence matrix for additive and dominance effects 
used in the present study. This is because the additive 
variance is maximized initially and the dominance 
variance is the residue of the total genetic variation. 
In this way, Huang & Mackay (2016) showed that 
prioritizing nonadditive gene actions can capture the 
majority of genetic variation. Moreover, Falconer & 
Mackay (1996) reported that an accurate estimation 
of dominance effects can improve genetic gain in 
breeding programs. Therefore, if the interest is 
specifically one of the additive or dominance effects, 
the analysis must be based on the target genomic 

information; however, the obtained results suggest 
that, based on the dominance genomic values, it 
is possible to better estimate both information 
simultaneously. This shows that the effective selection 
of parents, crosses, and clones can occur based only on 
the efficient estimation of the additive and dominance 
effects (Azevedo et al., 2015b).

In additive models, ICR presented better results 
than the other dimensionality reduction methods 
(Azevedo et al., 2013, 2014, 2015a). Although, in the 
present study, the additive-dominant models had 
the worst performance, further researches with ICR 
are still necessary, especially in cases of nonlinear 
dependence between markers. However, ICR requires 
a high computational effort, which is not feasible in the 
genomic prediction of breeding programs, requiring a 
reduction in computational time without a relevant loss 
in the efficiency of the method. In the present work, 
for ICR, the computational time for each replicate in 
each scenario lasted 221 hours using the exhaustive 
criterion, but was drastically reduced to about 0.18 hour 
with the optimized criterion. It is worth mentioning 
that, in most analyzes, this reduction in time did not 
result in a relevant loss of accuracy, as also observed 
for additive models by Costa (2018). The G-BLUP 
method presented a shorter computational analysis 
time of about 0.09 hour, followed by PCR, with 0.10 
hour, and PLS, with 0.12 hour.

The average results of the ICR method showed that, 
considering the dominance genomic value as a target, 
the optimized criterion led to an additive accuracy 
equal to or higher than that of the exhaustive criterion 
in scenario 3 of mixed inheritance and heritability 
of 0.30, with additive accuracies of 0.48 and 0.40, 
respectively. The dominance accuracies obtained by 
the optimized and exhaustive criteria were equal, 
except in the scenario with polygenic inheritance and 
heritability of 0.50; in this case, the additive accuracies 
were 0.26 and 0.31, respectively.

Regarding biases, in general, both the exhaustive 
and the optimized criteria under the additive-dominant 
model led to biased additive and dominance genomic 
values, that is, showing a regression coefficient far 
from 1 (Resende et  al., 2012). In additive models, 
Azevedo et  al. (2014, 2015a) concluded that the ICR 
with the exhaustive criterion also resulted in biased 
additive genomic values. Methods or criteria that lead 
to the same accuracy provide the same classification of 
individuals, even if one results in nonbiased genomic 
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Table 7. Mean results of the ratio between the additive and dominance accuracies of the dimensionality reduction methods 
in relation to the target genomic value (GV) in the evaluated scenario, according to the used criteria.

Scenario(1) Method(2) Criterion(3) GV
Ratio

Additive Dominance

Scenario 1

ICR Exhaustive
Additive 1.00 0.92

Dominance 0.91 1.00
Total 0.97 0.79

ICR Optimized
Additive 0.98 0.79

Dominance 0.93 0.96
Total 0.93 0.96

PCR Exhaustive
Additive 1.00 0.86

Dominance 0.97 1.00
Total 1.00 1.00

PLS Exhaustive
Additive 1.00 0.94

Dominance 0.98 1.00
Total 1.00 0.79

Scenario 2

ICR Exhaustive
Additive 1.00 0.81

Dominance 0.95 1.00
Total 0.98 0.94

ICR Optimized
Additive 1.00 0.87

Dominance 0.97 0.84
Total 0.98 0.84

PCR Exhaustive
Additive 1.00 0.95

Dominance 0.97 1.00
Total 1.00 0.98

PLS Exhaustive
Additive 1.00 0.70

Dominance 0.91 1.00
Total 0.98 1.00

Scenario 3

ICR Exhaustive
Additive 1.00 0.45

Dominance 0.73 1.00
Total 0.93 0.45

ICR Optimized
Additive 0.96 0.73

Dominance 0.87 0.95
Total 0.87 0.95

PCR Exhaustive
Additive 1.00 0.78

Dominance 0.95 1.00
Total 0.98 0.90

PLS Exhaustive
Additive 1.00 1.00

Dominance 1.00 1.00
Total 0.98 0.81

Scenario 4

ICR Exhaustive
Additive 1.00 0.89

Dominance 0.96 1.00
Total 0.98 0.93

ICR Optimized
Additive 0.98 0.89

Dominance 0.96 0.96
Total 0.96 0.96

PCR Exhaustive
Additive 1.00 0.93

Dominance 0.95 1.00
Total 0.98 0.98

PLS Exhaustive
Additive 1.00 0.93

Dominance 0.92 1.00
Total 0.97 0.95

(1)Scenario 1, traits controlled by 375 small gene effects, with polygenic inheritance; scenario 2, traits controlled by small gene effects, with polygenic inheritance; scenario 
3, traits controlled by 398 major and small gene effects, with mixed inheritance; and scenario 4, traits controlled by 413 major and small gene effects, with mixed inheritance. 
(2)ICR, independent components regression; PCR, principal components regression; and PLS, partial least squares. (3)An exhaustive criterion consists in obtaining a number 
of components equal to the number of components that leads ICR, PCR, and PLS to a higher accuracy. The optimized criterion consists in obtaining a number of independent 
components equal to the number of main components that leads PCR to a higher accuracy.
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values and the other in biased genomic values (Resende 
et  al., 2012). However, in the presence of bias, the 
individual’s genetic merit and genetic gain are over- or 
underestimated (Vitezica et al., 2011).

Considering the dominance genomic value as a 
target, the additive heritabilities estimated using the 
optimized criterion were either similar in scenarios 
2 and 4, with a heritability of 0.50, or greater in 
scenarios 1 and 3, with a heritability of 0.30, when 
compared with the exhaustive criterion. Using both 
criteria, the dominance heritability estimates were 
similar in all scenarios. However, ICR was not able 
to capture the additive and dominance heritabilities 
that were simulated. Since the reduction methods 
assume that the markers in the model are fixed effects, 
an alternative for calculating heritability is precisely 
by the estimates of marker effects. However, if the 
genomic values are biased, it is inferred that the effects 
of the markers will also be biased. It is likely that this 
bias exists in the additive-dominance models because 
the estimates of dominance variance are less accurate 
and require much more information to be estimated 
(Toro & Varona, 2010). These results suggest that the 
ICR method was inefficient for estimating additive and 
dominance heritabilities in the evaluated scenarios. 
Regarding the two genetic architectures and the two 
levels of heritability simulated, it was not possible to 
find any pattern in the obtained results.

Conclusions

1. Under the additive-dominant model, the relative 
efficiency of the principal components regression 
is higher in terms of accuracy, compared with the 
genomic best linear unbiased prediction (G-BLUP) and 
the other dimensionality reduction methods evaluated.

2. None of the assessed methods (G-BLUP, principal 
components regression, independent components 
regression, and partial least squares) capture the 
simulated heritabilities and all of them show biased 
additive and dominance genomic values.
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