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Abstract Many multivariate time series observed in

practice are second order nonstationary, i.e. their co-

variance properties vary over time. In addition, missing

observations in such data are encountered in many ap-

plications of interest, due to recording failures or sensor

dropout, hindering successful analysis. This article in-

troduces a novel method for data imputation in mul-

tivariate nonstationary time series, based on the so-

called locally stationary wavelet modelling paradigm.

Our methodology is shown to perform well across a

range of simulation scenarios, with a variety of miss-

ingness structures, as well as being competitive in the

stationary time series setting. We also demonstrate our

technique on data arising in an environmental applica-

tion.

Keywords imputation; local stationarity; missing

data; multivariate time series.

1 Introduction

Time series data arise in a variety of different areas

including finance (Taylor, 2007), biology (Bar-Joseph
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et al, 2003) and energy (Alvarez et al, 2011; Doucoure

et al, 2016). The collection and recording of time series

can be interrupted due to various reasons, including hu-

man error or technical faults with the recording equip-

ment, inducing missingness within the time series. Lit-

tle and Rubin (2002) describe the occurrence of missing

values in data through a number of “missingness mech-

anisms”:

1. Missing completely at random (MCAR) - The prob-

ability of missingness is the same for all units, i.e.

the missing value is not dependent on other vari-

ables.

2. Missing at random (MAR) - The probability of miss-

ingness depends only on available information, i.e.

the missing value depends on other variables.

3. Not missing at random (NMAR) - The missingness

probability depends on the variable itself, i.e. the

missing observation depends on other missing val-

ues.

Regardless of the type of missingness present, further

analysis of the time series such as autocovariance or

spectral estimation can be difficult without first replac-

ing the missing data with appropriate estimates. This

estimation process is called imputation.

There exists a rich literature dedicated to the im-

putation of missing values within stationary time se-

ries; see Pratama et al (2016) for an recent review of

this literature. For univariate time series, explicit con-

sideration of the temporal dependence (autocorrelation

properties) is key for successful imputation. Moritz and

Bartz-Beielstein (2017) discuss various univariate time

series imputation approaches, ranging from simple meth-

ods that replace missing values with the mean to more

advanced approaches that involve spline interpolation
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or model fitting combined with the use of a Kalman

filter.

Popular techniques suitable for multivariate data

such as Multiple Imputation (see e.g. Rubin (1987) or

Audigier et al (2016)), Hot-Deck (Ford, 1983) and

Expectation-Maximisation (EM) (Dempster et al, 1977)

make use of inter-variable correlations to estimate miss-

ing data. Most variants of the EM approach within

the literature are based on assumptions of Gaussianity

(see e.g. Junger and de Leon (2015), Honaker and King

(2010) or Honaker et al (2011)). Alternative methods

have also been developed, combining EM with other

modelling procedures such as PCA fixed-effects mod-

els (Caussinus, 1986) and Gaussian Mixture Models

(Ghahramani and Jordan, 1994). Other model-based

methods for imputation within time series make use

of restrictive classes of statistical models to infer miss-

ing values, such as those based on purely autoregressive

processes (Sridevi et al, 2011).

Other approaches to imputation include those based

on heuristics such as genetic algorithms (Lobato et al,

2015; Tang et al, 2015), or those incorporating machine

learning methodology, ranging from support vector ma-

chines (Wu et al, 2015) and random forests (Stekhoven

and Bühlmann, 2011), to more advanced techniques

such as recurrent neural networks (Cao et al, 2018; Che

et al, 2018) or adversarial networks (Luo et al, 2018;

Yoon et al, 2018). The drawback of many of these ap-

proaches is that they often require training on previously-

seen complete data. However, in many contexts, we only

have access to a single observed multivariate series.

An alternative strategy for coping with missingness

is to estimate the spectral information of the series

in some way. A range of methods have been devel-

oped for spectral estimation in stationary time series

with missing values or irregularly sampled observations

within the time series and signal processing literature.

The Lomb-Scargle periodogram (Lomb, 1976; Scargle,

1982) estimates the Fourier spectrum from the irregu-

larly sampled data but can be subject to strong bias

which hinders its ability to describe slopes within the

spectrum. Variants of this approach have been applied

in a range of different fields including astronomy (Wen

et al, 1999), biology (Van Dongen et al, 1999) and

biomedical engineering (Laguna et al, 1998). Other widely

used techniques involve fitting time series models di-

rectly to the unequally spaced data and using this to

estimate spectral information for stationary processes

(Jones, 1980; Bos et al, 2002; Broersen, 2006).

In practice however, the assumptions imposed by

modelling an observed time series as stationary can

be restrictive and unrealistic. Nonstationary time se-

ries, i.e. series with time-varying second order structure,

are observed in various fields including finance (Stărică

and Granger, 2005; Fryzlewicz et al, 2006), medicine

(Cranstoun et al, 2002) and oceanography (Killick et al,

2013). Hence the ability to impute missing values in

multivariate, nonstationary time series has potential

widespread benefits. Many techniques have been devel-

oped for modelling and analysing complete multivari-

ate, nonstationary data including the locally station-

ary Fourier model (Dahlhaus, 2000), the smooth local-

ized complex exponential (SLEX) model (Ombao et al,

2005) and the multivariate locally stationary wavelet

(mvLSW) framework (Park et al, 2014) but the lit-

erature on how to deal with missingness within such

data is sparse. In the univariate setting, Knight et al

(2012) propose a method for estimating spectral in-

formation of a LSW process containing missing values

where information is estimated at the observed time

locations. However, the problem of spectral estimation

within multivariate, nonstationary time series has not

been widely studied.

In this article, we address the challenging problem of

imputation in the multivariate locally stationary time

series setting and, more specifically, where additional

training data is unavailable. Our approach involves first

estimating the local wavelet spectral matrix of a mvLSW

process with missing observations before forecasting and

backcasting the missing values of the time series using

a multivariate extension of the wavelet forecasting ap-

proach of Fryzlewicz et al (2003). As a final step, we

average the estimates obtained from the forward and

backward pass to obtain an overall estimate of the time

series. Through the use of simulated examples and a

case study, we demonstrate that our method performs

well for a range of realistic missingness scenarios in both

the stationary and nonstationary setting.

This work is organised as follows. Within Section 2,

we review existing methods for modelling locally sta-

tionary time series and forecasting within this context.

In Section 3, we introduce the proposed imputation

method. Section 4 contains a simulation study evaluat-

ing the performance of the proposed imputation method

using synthetic examples. We also describe a case study

using a dataset arising from a Carbon Capture and

Storage facility. Finally, Section 6 includes some con-

cluding remarks.

2 Background

In this section we provide a brief overview of recent

work modelling locally stationary time series. For a

comprehensive review of nonstationary time series more

generally, see Dahlhaus (2012). The section is organ-

ised as follows; we first review existing methods for
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modelling locally stationary time series using the LSW

framework both in a univariate and multivariate con-

text in Section 2.1 before looking at one-step ahead

forecasting in this setting in Section 2.2.

2.1 Modelling locally stationary wavelet processes

Within the univariate setting, the locally stationary

wavelet (LSW) framework introduced by Nason et al

(2000) provides a flexible model for nonstationary time

series that captures the changing second-order struc-

ture of such series. Nason et al (2000) define a LSW

process {Xt,T }t=0,...,T−1, T = 2J ≥ 1 to be a sequence

of (doubly-indexed) stochastic processes that can be

represented as

Xt,T =

∞∑
j=1

∑
k

Wj(k/T )ψj,t−kξj,k. (1)

The vectors ψj =
{
ψj,0, ψj,1, . . . , ψj,Nj−1

}
are discrete

non-decimated wavelets associated with a low- / high-

pass filter pair, {H,G}. The elements of ψj can be cal-

culated using the following expression:

ψ1,n =
∑
k

gn−2kδ0,k = gn for n = 0, 1, . . . , N1 − 1,

ψj+1,n =
∑
k

hn−2kψj,k for n = 0, 1, . . . , Nj+1 − 1.

In the equations above, δ0,k is the Kronecker delta func-

tion and Nj =
(
2j − 1

)
(Nh − 1) + 1 where Nh is the

number of non-zero elements of the filter H = {hk}k∈Z.

{ξj,k}j,k is a sequence of zero-mean, orthonormal ran-

dom variables and {Wj(k/T )} is a set of amplitudes

on which a number of assumptions are imposed to con-

trol the behaviour of the LSW process (see Nason et al

(2000) for further details).

Park et al (2014) introduced the multivariate locally

stationary wavelet (mvLSW) processes as a multivari-

ate extension to the LSW framework.Following Park

et al (2014), a P -variate locally stationary wavelet pro-

cess {Xt,T }t=0,1,...,T−1, T = 2J ≥ 1 has the following

representation

Xt,T =

∞∑
j=1

∑
k

Vj(k/T )ψj,t−kzj,k (2)

where T = 2J ≥ 1{ψj,t−k}j,k is a set of discrete non-

decimated wavelets constructed according to Nason et al

(2000) and Vj(k/T ) is the transfer function matrix.

The random vectors zj,k are uncorrelated, have mean

vector 0 and variance-covariance matrix equal to the

P×P identity matrix. The transfer function matrix con-

sists of Lipschitz continuous functions with Lipschitz

constants, Lj , that satisfy
∑∞
j=1 2jL

(p,q)
j <∞ for each

pair of channels (p, q). The conditions imposed upon

the transfer function matrix control the time-varying

contribution to the variance made by each channel at a

particular scale.

The local wavelet spectral (LWS) matrix is an im-

portant quantity within the mvLSW framework as it

provides a scale-dependent decomposition of the vari-

ance and cross-covariance between channels at a partic-

ular (rescaled) time z. Given a mvLSW signal Xt with

transfer function matrix Vj(k/T ), the LWS matrix is

given by

Sj(z) = Vj(z)Vj(z)
> (3)

for scale j and rescaled time z. Following Park et al

(2014), the local auto- and cross-covariance between

channels p and q are defined as

c(p,p)(u, τ) =

∞∑
j=1

S
(p,p)
j (u)Ψj(τ), (4)

c(p,q)(u, τ) =

∞∑
j=1

S
(p,q)
j (u)Ψj(τ) (5)

where S
(p,p)
j (u) and S

(p,q)
j (u) denote the spectra and

cross-spectra respectively of the series, and Ψj(τ) is

the discrete autocorrelation wavelet defined by Ψj(τ) =∑
k ψj,kψj,k−τ for j ∈ N and τ ∈ Z (Eckley and Nason,

2005).

In practice, the LWS matrix and local auto- and

cross-covariance are unknown for an observed multi-

variate series and need to be estimated. In the complete

data case, where there are no observations missing, the

LWS matrix of a multivariate signal can be estimated

by first calculating the empirical wavelet coefficient vec-

tor dj,k =
∑
tXtψj,k. The raw wavelet periodogram

matrix is then defined as Ij,k = dj,kd
>
j,k.

Park et al (2014) show that the raw wavelet peri-

odogram is a biased and inconsistent estimator of the

true LWS matrix, Sj(z). The bias within the raw wavelet

periodogram can be removed using the inverse of the in-

ner product matrix of discrete autocorrelation wavelets,

A. The elements of A are given by Aj,` =
∑
τ Ψj(τ)Ψ`(τ)

where Ψj(τ) =
∑
k ψjk(0)ψjk(τ) (see Eckley and Na-

son (2005) or Nason et al (2000) for further details).

To obtain consistency, the resulting estimate must be

smoothed in some way, for example using a rectangular

kernel smoother (Park et al, 2014). The local auto- and

cross-covariance can then be estimated by substituting

the estimated LWS matrix Ŝ into Equations (4) and (5)

respectively. The LWS matrix along with the local auto-

and cross-covariance structure are important quantities

within the imputation method we propose in Section 3
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as they are used within the prediction step to estimate

missing values. See Taylor et al (2019) for further de-

tails and an introduction to software that implements

the mvLSW estimation scheme.

In the missing data setting, there exist some time

points for which we do not have an observed value, X,

for one or more channels of the P -variate series. Due to

this, we cannot directly apply the above approach for

estimating the wavelet periodogram and have to mod-

ify the method to allow us to obtain estimates of the

wavelet coefficients at all scales and locations. This will

be discussed further in Section 3.

2.2 Forecasting multivariate locally stationary wavelet

processes

As outlined in Section 1, a key element of the imputa-

tion scheme that we introduce in Section 3 is the ability

to perform one-step ahead forecasts in a locally station-

ary setting. Fryzlewicz et al (2003) introduce a one-step

ahead predictor in the univariate LSW setting which

uses the autocovariance structure of an LSW process to

form generalised Yule-Walker equations. Our approach

is a straightforward extension of the foregoing work to

the multivariate setting that makes use of the mvLSW

model outlined in Section 2.1.

Due to the separable structure of the mvLSW model,

we can form one-step ahead prediction equations for

each channel combination (p, q) using the local auto-

and cross-covariance defined in equations (4) and (5)

respectively. The multivariate prediction equations are

defined by

t−1∑
s=0

b
(p,q)
t−1−s,T c(p,q)

(
s+ n

2T
, s− n

)
=c(p,q)

(
n+ t

2T
, t− n

)
.

(6)

As Fryzlewicz et al (2003) describe in the univariate

setting, the coefficients b
(p,q)
t that solve the prediction

equations can be shown to minimise the mean square

prediction error

MSPE
(
X̂

(p,q)
t,T , X

(p,q)
t,T

)
= E

(
X̂

(p,q)
t,T −X(p,q)

t,T

)2
= b

(p,q)>
t Σ

(p,q)
t,T b

(p,q)
t ,

where b
(p,q)
t = (b

(p,q)
t−1,T , . . . , b

(p,q)
0,T ,−1) and Σ

(p,q)
t,T is the

covariance matrix of X
(p,q)
0,T , . . . , X

(p,q)
t,T .

The one-step ahead predictor of Xt,T given previ-

ous multivariate observations X0,T , . . . ,Xt−1,T is then

given by the m-observation clipped predictor

X̂
(p)
t,T =

∑
q∈{1,...,P}

t−1∑
s=t−m

b
(p,q)
t−1−s;TX

(q)
s,T (7)

for p ∈ {1, . . . , P}, where m is the number of recent

observations used in prediction.

Our proposed imputation approach (introduced in

the next section) uses the one-step ahead prediction in

the mvLSW setting outlined above to replace missing

values in a multivariate locally stationary time series.

3 Imputation for multivariate locally stationary

wavelet processes

In this section we introduce our multivariate imputa-

tion method which uses the local auto- and cross-covariance

structure of a nonstationary time series to estimate

missing observations. The key challenge in this context

is that the usual mvLSW spectral estimation process

cannot be used due to the presence of missingness. For

this reason, the first step of the algorithm involves es-

timating the wavelet periodogram of a mvLSW process

with missing observations, this will be discussed in Sec-

tion 3.1. Using the estimate of the LWS matrix, we then

form the local auto- and cross-covariance structure and

carry out a forward pass of the data where we fore-

cast missing values. To obtain more accurate estimates

of the time series at missing locations, we also imple-

ment a backward pass of the data where we backcast

the missing values. We then average the series obtained

from the forward and backward pass in order to get an

overall estimate. The forecasting and backcasting steps

will be described in Section 3.2 and 3.3 respectively. A

complete overview of the steps carried out in one iter-

ation of the method can be found in Appendix A.

3.1 Spectral Estimation

Suppose we have a P -variate time series of length T =

2J containing missing values which we wish to impute.

The first step of the mvLSWimpute algorithm involves

estimating the LWS matrix of the time series. The pres-

ence of missing values means that we can not use the

usual estimation procedure and have to modify our ap-

proach.

First, we calculate the empirical wavelet coefficient

vector, dj,k, for the time series ensuring that any wavelet

coefficients at scales and locations affected by the ini-

tial missing data will also be missing. The Haar wavelet

is used within the calculation of the empirical wavelet

coefficient vector as this will ensure that more levels of

the wavelet transform will contain information. From

this, we can form the raw wavelet periodogram matrix

as described in Section 2.1. Since the raw wavelet pe-

riodogram will also have entries missing, we need to
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perform an intermediate step to fill in these missing

values before smoothing and correcting as described in

Section 2.1 to obtain an estimate of the LWS matrix.

We note here that other wavelets could be used in the

calculation of the coefficients; for further discussion of

the choice of wavelet in the LSW context, we refer the

reader to Gott and Eckley (2013).

In order to fill in the missing values, for each spec-

tra and cross-spectra we linearly interpolate the peri-

odogram values at the levels in which we have some

information present. For the coarsest levels of the pe-

riodogram where the coefficients are all missing, we re-

place them in a different manner. To do this, we take

the coarsest level of the periodogram that contains in-

formation and recursively apply the wavelet filter equa-

tions. This process generates coefficients that allow us

to replace the values in the coarsest levels of the peri-

odogram.

To obtain an estimate of the LWS matrix, we cor-

rect the periodogram by multiplying by A−1 and then

smooth the result using a running mean smoother with

window length b
√
T c, implemented in the mvLSW R pack-

age (Taylor et al (2017)). This estimate can then be

substituted into equations (4) and (5) to form the local

auto and cross-covariance which are used in the fore-

casting and backcasting steps of the algorithm.

3.2 Forecasting

In order to replace missing data in the time series, we

first carry out a forward pass of the series where we

use the one-step ahead multivariate wavelet forecasting

approach outlined in Section 2.2. A missing index is

defined to be a timepoint at which one or more channels

of the P -variate time series has missing values present.

For each missing index i, we forecast the missing

values sequentially in the following way. First, calculate

the local auto- and cross-covariance using the estimated

spectra from time 1 to time i−1 and equations (4) and

(5).

For each channel combination (p, q) where p, q ∈
{1, . . . , P}, form the prediction equations using the lo-

cal auto- and cross-covariance at certain locations and

lags, as in equation (6). Solving the prediction equa-

tions allows us to obtain b(p,q) vectors used to predict

the values of the series at time i using the one-step

ahead predictor defined in equation (7). The channels

of the multivariate time series that contain missing data

at time i are then replaced by the corresponding pre-

dicted values from the forecasting step.

It is important to note that, for efficiency, we use a

clipped predictor in the forecasting step in which only

the most recent m observations are used in the predic-

tion, similar to Fryzlewicz et al (2003) in the univariate

setting.

3.3 Backcasting

After carrying out the forward pass of the data, the

next step is to backcast the missing values sequentially.

This backcasting step is included in order to improve

the accuracy of the imputation method since this al-

lows us to incorporate information from both sides of

the missing observation in our estimation. Similar to

the approach of Trindade (2003), we can form back-

ward Yule-Walker equations in the mvLSW setting by

beginning at time T and again using the multivariate

wavelet forecasting approach from Section 2.2, but en-

suring to order the spectral values in this case. Note

that the backward pass is carried out independently to

the forward pass and does not depend on the imputed

time series obtained in the previous step.

For each missing index i (considered in descending

order), we proceed as in the forecasting case and form

the local auto- and cross-covariance using the estimated

spectra from time T to i + 1. As in the forward pass,

for each channel combination (p, q), we can solve the

prediction equations using the local auto- and cross-

covariance to obtain the b(p,q) vectors. However, the

one-step ahead predictor has a slightly different form

in the backcasting step:

X̂
(p)
t,T =

∑
q∈{1,...,P}

t+1∑
s=t+m

b
(p,q)
t+1−s;TX

(q)
s,T (8)

for p ∈ {1, . . . , P}. The one-step ahead predictor in

equation (8) is then used to backcast the value of the

time series at index i and then any missing entries

within channels are replaced using their corresponding

predicted values.

After carrying out the forward and backward pass

independently, we obtain two imputed time series which

are then averaged to get an overall estimate of the time

series. The process can then be iterated but from the

second iteration onwards the spectral estimation step

no longer requires linear interpolation and the LWS

matrix can now be estimated using equation (3). The

forecasting and backcasting steps remain the same and

we again average to obtain an updated estimate of the

time series.

4 Simulated performance of mvLSWimpute

We now assess the performance of our proposed mul-

tivariate imputation method through a range of simu-
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lated data examples. The generating series used within

the simulation study exhibit varying degrees of nonsta-

tionarity and dependence. These have been chosen to

test the ability of our method to impute missing values

in multivariate, nonstationary time series. A number of

different scenarios have been chosen for the missingness

structure in order to mimic situations arising in prac-

tice.

For datasets containing missing entries, traditional

analysis based on complete cases has proven to be rea-

sonably accurate provided that the amount of missing

values is small (Graham, 2009). However, such methods

yield poor results when the proportion of missing en-

tries increases. To evaluate the performance of the pro-

posed method as the amount of missingness increases,

we remove 10%, 20%, 30% and 40% of values from the

generating series at random, either from all channels

simultaneously or from one channel independently. In

practice, time series obtained from industrial applica-

tions can contain gaps that may extend over hours or

even days due to faults in the recording equipment or

human error. In order to reflect this, we also consider

the case where information is missing from one or more

variables of the time series for a period of 20 consec-

utive time points. As a third scenario, we also include

the situation where the missingness occurs in bursts up

to length 20 before the signal returns to normal for a

set period of time.

For all missingness scenarios, the coefficients of the

generating series randomly switch at set times in order

to test the ability of the imputation methods to deal

with slowly and rapidly evolving dependence within a

signal. The time series used in each case have the fol-

lowing forms:

• Slowly changing structure: Trivariate signal of length

T = 512, two changes in the generating coefficients

of the series, occurring at time 150 and 300.

• Rapidly changing structure: Trivariate signal of length

T = 512, four changes in the generating coefficients

of the series, occurring at time 100, 200, 300 and

400.

The first example we consider is a mvLSW process

with changing spectral structure, chosen in such a way

that there is strong coherence between channels of the

signal. In this case, the example consists of two un-

derlying classes with differing LWS matrices as defined

below

Class 1 : S
(1,2)
j (z) =


5 for j = 1,

−6 for j = 2,

−4 for j = 5.

S
(1,3)
j (z) =

{
2 for j = 3,

−4 for j = 4.

S
(2,3)
j (z) = −6 for j = 2.

Class 2 : S
(1,2)
j (z) =


−5 for j = 1,

6 for j = 2,

4 for j = 5.

S
(1,3)
j (z) =

{
8 for j = 3,

4 for j = 4.

S
(2,3)
j (z) = 6 for j = 2.

Figure 1(a) displays a dataset simulated from this pro-

cess using the different dependence structures describe

above. The second example we examine is a time-varying

vector autoregressive moving average process with three

different classes defined by the following coefficient ma-

trices

Class 1 : Xt =

 0.4 0.1 −0.2

0.1 0.3 −0.3

−0.2 −0.3 −0.2

Xt−1 + Zt+

 1 0.8 0.4

0.8 1 0.1

0.4 0.1 1

Zt−1

Class 2 : Xt =

−0.3 −0.2 0.3
−0.2 −0.3 0.1

0.3 0.1 0.2

Xt−1 + Zt+

 1 −0.6 0.3

−0.6 1 −0.3

0.3 −0.3 1

Zt−1

Class 3 : Xt =

−0.6 0.4 0.1

0.4 0.2 0.3

0.1 0.3 0.5

Xt−1 + Zt+

 1 0.2 −0.7

0.2 1 0.6

−0.7 0.6 1

Zt−1

where Zt and Zt−1 are zero-mean multivariate nor-

mal realisations, distributed with class-dependent co-

variances

Σ1 =

1 0 0

0 1 0

0 0 1

 , Σ2 = Σ3 =

3 0 0

0 3 0

0 0 3


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(a) Slow changes, mvLSW process (b) Rapid changes, vector autoregressive moving average series

(c) Slow changes, vector autoregressive series (d) Stationary vector moving average series

Fig. 1: Example realisations of generating processes for the different scenarios used in the simulation study. (a), (c)

Slowly evolving dependence, class changes at time 150 and 300; (b) Rapidly changing dependence structure, class

changes at time 100, 200, 300 and 400; (d) Stationary signal, no changes in the generating coefficient matrices of

the process.

for classes 1-3 respectively. The signal switches ran-

domly between each of the three classes at different

times depending on whether we are considering slowly

or rapidly evolving dependence. This ensures that the

intra- and cross-channel dependence of the process changes

over time (see Figure 1(b)).

The third example we consider is a time-varying vec-

tor autoregressive process with two classes defined by

the following coefficient matrices

Class 1 : Xt =

 0.3 0.2 −0.2

0.2 0.4 −0.2

−0.2 −0.2 −0.1

Xt−1+

 0.4 −0.2 0.3

−0.2 −0.4 0.1

0.3 0.1 −0.2

Xt−2 + ε1

Class 2 : Xt =

 0.2 −0.2 0

−0.2 0.4 −0.2

0 −0.2 0.2

Xt−1+

−0.1 0 0

0 −0.4 0.3

0 0.3 0.3

Xt−2 + ε2

where the innovation vectors εi are zero-mean multi-

variate normal realisations, distributed with per-class

covariances

Σε1 =

 1 0.2 0

0.2 1 0.1

0 0.1 1

 , Σε2 =

 5 1.2 2

1.2 5 1.5

2 1.5 5

 .

A realisation of such a process can be seen in Fig-

ure 1(c).

Within the simulation study, we compare our method

to a range of multivariate imputation approaches, some

of which assume that the data follow a (time-constant)

multivariate normal distribution. For this reason, we

also include a stationary example where the coefficients

of the moving average process do not change over time.

The coefficient matrices for this process are defined as

follows

Xt=Zt+

 1 0.5 −0.2

0.5 1 0.3

−0.2 0.3 1

Zt−1+

 1 −0.4 0.2

−0.4 1 −0.6

0.2 −0.6 1

Zt−2

+

 1 0.1 −0.5

0.1 1 −0.3

−0.5 −0.3 1

Zt−3



8 R. Wilson et al.

where Zt−1,Zt−2 and Zt−3 are zero-mean, multivariate

normal realisations, with covariances given by

Σ =

2 0 0

0 2 0

0 0 2

 .

An example of this stationary process can be found in

Figure 1(d).

4.1 Competitor methods

In the simulation study, we compare our method with

a number of alternative multivariate imputation ap-

proaches, suitable for one single realisation of a multi-

variate process. Firstly we consider the modified Expectation-

Maximization (EM) approach of Junger and de Leon

(2015) implemented in the R package mtsdi (Junger

and de Leon, 2018). Within this method, cross-channel

correlations are taken into account within the multi-

variate normal modelling structure and inter-time be-

haviour is accounted for using a level estimation step

in which temporal behaviour of each of the univariate

time series is estimated. In the mtsdi package, a num-

ber of different methods are implemented for estimating

the level of the univariate time series. For all simulated

examples, we fit a cubic spline to each univariate com-

ponent where the number of degrees of freedom of each

spline is chosen by cross-validation.

Secondly, we compare against the multiple imputa-

tion method that combines Expectation-Maximization

with bootstrapping proposed by Honaker and King (2010),

available in the Amelia II R package (Honaker et al,

2015), see also Honaker et al (2011) for implementation

details. As this is a multiple imputation approach, the

method produces m completed datasets which are then

averaged to obtain a final imputed dataset. Within the

simulations, we choose m = 5 as this is suggested to

be suitable unless the rate of missingness is very high

(Schafer and Olsen, 1998; Honaker et al, 2011). As both

of these methods assume that the data can be modelled

using a multivariate normal distribution, we would ex-

pect them to perform poorly in cases where the under-

lying time series is highly nonstationary.

As we wish to impute missing values in a multi-

variate, nonstationary time series, it is important to

compare our method to a range of other model-based

approaches available in the literature. Specifically, we

apply the iterative PCA multiple imputation method of

Audigier et al (2016), which is available in the missMDA

R package; see Josse and Husson (2016) and Husson

and Josse (2018) for more details. Within the simu-

lations, we apply the regularised iterative PCA algo-

rithm with the number of random initializations set to

10 and the default parameters. In addition, we com-

pare to the non-parametric random forest imputation

method (Stekhoven and Bühlmann, 2011) implemented

in the R package missForest (Stekhoven, 2013) where

again we use the default parameters.

Since our method involves using a one-step ahead

forecasting and backcasting step within the mvLSW

framework, as a direct comparison to this we also ap-

ply the vector autoregressive prediction approach from

the R package MTS (Tsay, 2015), described in the text

Tsay (2013). For each missing index, the approach fits

a vector autoregressive process to the available obser-

vations and then produces one-step ahead forecasts to

predict the missing values. In an attempt to ensure fair

comparison with our proposed method, we implement

the vector autoregression prediction performing a back-

ward pass of the data and combine the estimates from

the forecasting and backcasting steps by averaging, sim-

ilar to the mvLSWimpute method. This is denoted VAR-

fb. For completeness, we also include the results from

applying one-step ahead forecasting only within this

setting (denoted VAR-f). Our proposed mvLSWimpute

method was implemented using modifications to the

code in the wavethresh (Nason, 2016) and mvLSW (Tay-

lor et al, 2017) R packages which perform estimation of

multivariate LSW process quantities.

4.2 Evaluation measures

For each of the missingness scenarios and dependence

structures described in Section 4, K = 100 realiza-

tions of the test signals are simulated and four different

evaluation measures are considered. In order to assess

the performance of the imputation methods, we con-

sider a modified version of the Root Mean Square Error

(RMSE) and Mean Absolute Error (MAE). The ma-

jority of the simulated examples we consider contain

changes in variability over time; this volatility affects

the standard RMSE and MAE and makes it difficult to

directly compare results for slowly and rapidly evolving

dependence. For this reason, we scale the results over

time using the true standard deviation.

Let σt,P denote the true standard deviation of the

signal at time t for channel P . The calculations of the

modified RMSE and MAE only include the predicted

values at the missing time points and not the full time

series. Let N denote the total number of missing values

across all channels and timepoints, tmis = {t1, t2, . . .}
contain the timepoints where observations are miss-

ing and Pmis = {Pt1 , Pt2 , . . .} denote the corresponding

channels which are affected. Then the modified RMSE
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can be defined by

RMSE =
1

N

∑
b∈Pmis

∑
s∈tmis

(Xb
s,T − X̂b

s,T )2

σ2
s,b

, (9)

and the modified MAE as

MAE =
1

N

∑
b∈Pmis

∑
s∈tmis

|Xb
s,T − X̂b

s,T |
σs,b

. (10)

In addition to this, we also rank the imputation

methods based on the modified RMSE and MAE re-

sults. For each of the K = 100 realizations carried out,

we track which of the imputation methods gives the

lowest scaled RMSE and MAE and sum the results.

The imputation results for each of the examples de-

scribed above (as in Figure 1) can be seen in Tables

1-5. For each example, we consider 10%, 20%, 30% and

40% missingness at random as well as chunks of 20 con-

secutive time points missing and bursts of missingness

up to length 20. A description of how the bursts of

missingness are generated can be found in Appendix

B. Note that we include the results for the situation

where the missingness occurs in all channels simulta-

neously. In each case, we record the modified RMSE,

modified MAE and rankings over the K = 100 real-

izations based on these errors (as described above); the

numbers within the brackets represent the standard de-

viation of these quantities.

When we consider rapidly evolving dependence within

the time varying vector autoregressive moving average

setting (Table 1), it can be seen that the mvLSWimpute

method performs well both in terms of the modified er-

ror measures and the rankings when percentages of the

data are missing at random. On the other hand, the

competitor methods which rely on the assumption of

an underlying stationary model cannot cope with the

changing dependence structure. Note that the addition

of a backcasting step into the vector autoregressive pre-

diction approach (VAR-fb) provides an improvement in

performance. However, it can be seen that the results

weaken when we look at more extreme missingness sce-

narios such as bursts or chunks missing. When imput-

ing missing values in areas of a signal where consecu-

tive time points are missing, perhaps unsurprisingly all

methods =struggle to accurately reconstruct the depen-

dence behaviour within these areas.

We next turn to consider the stationary moving av-

erage process (Table 2). It can be seen that the

mvLSWimpute approach again produces more accurate

results followed by both VAR-fb and mtsdi. Despite

the competitor methods being designed for imputation

within stationary time series, the mvLSWimpute method

outperforms them both in terms of the modified error

measures and the rankings.

As expected, for the mvLSW process exhibiting slowly

varying spectral structure the mvLSWimpute method per-

forms strongly across all evaluation measures. We re-

port the full results for this scenario in Table 3 of Ap-

pendix B. For the slowly evolving vector autoregressive

series, the mvLSWimpute method consistently performs

better than the competitors. However, the VAR-fb ap-

proach also performs well in this setting due to the un-

derlying model used for the one step ahead predictions

being designed for this scenario. In this case, the results

produced are comparable to mvLSWimpute in terms of

the modified RMSE and MAE. Again, we report the

full results for this example in Table 4 of Appendix B.

Note that in nearly all cases across the examples,

mvLSWimpute performs consistently well in terms of the

error measures considered, despite some of the competi-

tor methods being designed specifically for imputation

within those scenarios. We also observe that the use of a

backcasting step within both the mvLSW and VAR im-

putation methods improves their performance, justify-

ing its inclusion. However, it should be noted here that

the VAR-f and VAR-fb methods struggled with fitting

models when missingness occurs near the start (respec-

tively end) of the series, due to the number of obser-

vations available for parameter estimation; this limits

practical use of these techniques in many contexts and

reflects similar experiences remarked by other authors,

see for example Knight et al (2020). For the scenarios

discussed above, missingness in one channel only was

also considered and similar performance was observed.

The results for the vector autoregressive moving aver-

age setting are included in Table 5 of Appendix B.

5 Case study

In the previous section, we evaluated the performance

of our multivariate imputation method against a range

of alternatives for a variety of simulated scenarios. We

now consider an application related to health-related

motion analysis.

The reduction in cost and size of accelerometers

over the past decade has led to the use of these de-

vices in many areas of scientific research, e.g. sport

science (Troiano et al, 2014), engineering component

calibration (Yin and Huang, 2014) and computer se-

curity (Mayrhofer and Gellersen, 2009). Accelerometer

data are particularly useful in cases when the measure-

ment of other meaningful physiological signals is dif-

ficult or obtrusive. As such, the have gained popular-

ity in disease-related assessment, for example analysis

of sleep disorders (Van Hees et al, 2015), obesity and

other cardiometabolic biomarkers (Brocklebank et al,
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Table 1: Performance of the imputation methods over K = 100 realizations of vector moving average, autoregressive

series with rapidly changing dependence structure for different missingness scenarios occurring simultaneously

across all channels, using the evaluation measures described in the text. Numbers in brackets represent the standard

deviation of estimation errors. Bold numbers indicate best result.

10% 20% 30% 40% Chunks Bursts

Method Scaled by true standard deviation - RMSE

mvLSWimpute-f 1.67 (0.13) 1.76 (0.10) 1.80 (0.10) 1.88 (0.10) 2.02 (0.52) 1.81 (0.16)
mvLSWimpute-fb 1.45 (0.11) 1.54 (0.09) 1.60 (0.09) 1.70 (0.09) 2.00 (0.52) 1.62 (0.14)

mtsdi 1.69 (0.12) 1.74 (0.11) 1.78 (0.10) 1.89 (0.11) 2.33 (0.64) 1.82 (0.18)
Amelia 2.40 (0.19) 2.42 (0.14) 2.41 (0.14) 2.44 (0.14) 2.36 (0.51) 2.37 (0.22)
VAR-f 1.75 (0.15) 1.84 (0.11) 1.90 (0.12) 1.98 (0.11) 2.05 (0.53) 1.84 (0.16)

VAR-fb 1.54 (0.12) 1.65 (0.09) 1.71 (0.10) 1.82 (0.09) 2.02 (0.52) 1.68 (0.16)
PCA 2.10 (0.18) 2.12 (0.13) 2.11 (0.13) 2.15 (0.13) 2.07 (0.53) 2.07 (0.20)

Random forest 2.19 (0.21) 2.19 (0.14) 2.21 (0.15) 2.26 (0.18) 2.15 (0.54) 2.16 (0.22)

Method Scaled by true standard deviation - MAE

mvLSWimpute-f 1.32 (0.10) 1.39 (0.08) 1.42 (0.08) 1.48 (0.07) 1.61 (0.43) 1.42 (0.13)
mvLSWimpute-fb 1.14 (0.09) 1.22 (0.07) 1.26 (0.07) 1.34 (0.07) 1.59 (0.43) 1.27 (0.11)

mtsdi 1.34 (0.10) 1.37 (0.09) 1.41 (0.07) 1.48 (0.08) 1.86 (0.52) 1.44 (0.14)
Amelia 1.89 (0.15) 1.91 (0.11) 1.91 (0.11) 1.92 (0.11) 1.90 (0.42) 1.87 (0.17)
VAR-f 1.38 (0.11) 1.45 (0.09) 1.50 (0.09) 1.56 (0.08) 1.64 (0.44) 1.46 (0.13)

VAR-fb 1.21 (0.09) 1.30 (0.07) 1.35 (0.08) 1.43 (0.07) 1.62 (0.43) 1.33 (0.13)
PCA 1.65 (0.14) 1.67 (0.10) 1.66 (0.10) 1.68 (0.10) 1.66 (0.44) 1.64 (0.16)

Random forest 1.72 (0.16) 1.72 (0.11) 1.74 (0.12) 1.78 (0.15) 1.73 (0.44) 1.71 (0.17)

Method Ranking - RMSE

mvLSWimpute-f 0 0 0 0 19 0
mvLSWimpute-fb 92 95 99 97 27 80

mtsdi 0 0 0 1 3 2
Amelia 0 0 0 0 2 0
VAR-f 0 0 0 0 11 0

VAR-fb 8 5 1 2 17 18
PCA 0 0 0 0 7 0

Random forest 0 0 0 0 14 0

Method Ranking - MAE

mvLSWimpute-f 1 0 0 0 20 1
mvLSWimpute-fb 90 98 98 99 28 77

mtsdi 0 0 0 1 5 3
Amelia 0 0 0 0 3 0
VAR-f 0 0 0 0 9 0

VAR-fb 9 2 2 0 15 19
PCA 0 0 0 0 7 0

Random forest 0 0 0 0 13 0

2015; Augustin et al, 2017) and post-diagnosis changes

in physiology (Sekine et al, 2004; McDonald et al, 2019).

The benefits of wavelet-based accelerometry analy-

sis has been well-established in the scientific literature,

see Bidargaddi et al (2007) or Godfrey et al (2008);

since accelerometry data often represents movements

at different frequencies over time. It is also acknowl-

edged that accelerometry signals are nonstationary in

nature (Preece et al, 2009a,b).

It has been suggested in many studies that attempts

to draw conclusions from accelerometer signals can be

hindered by the presence of missingness within the data,

and missing entries should be replaced with suitable es-

timates before further analysis can take place, partic-

ularly in the case of such data collected from smart-

phones (Barnett et al, 2018). Within this section, we

focus on the problem of imputing missing values in ac-

celerometer data arising from an experiment in which



A wavelet-based approach for imputation in nonstationary multivariate time series 11

Table 2: Performance of the imputation methods over K = 100 realizations of stationary vector moving average

series for different missingness scenarios occurring simultaneously across all channels, using the evaluation measures

described in the text. Numbers in brackets represent the standard deviation of estimation errors. Bold numbers

indicate best result.

10% 20% 30% 40% Chunks Bursts

Method Scaled by true standard deviation - RMSE

mvLSWimpute-f 1.81 (0.12) 1.89 (0.09) 1.94 (0.07) 2.00 (0.07) 2.14 (0.26) 1.97 (0.15)
mvLSWimpute-fb 1.63 (0.11) 1.71 (0.09) 1.77 (0.06) 1.83 (0.07) 2.13 (0.25) 1.81 (0.14)

mtsdi 1.71 (0.11) 1.79 (0.10) 1.89 (0.10) 2.02 (0.12) 2.33 (0.31) 1.94 (0.19)
Amelia 2.36 (0.15) 2.41 (0.11) 2.42 (0.10) 2.42 (0.10) 2.41 (0.26) 2.43 (0.18)
VAR-f 1.83 (0.12) 1.91 (0.10) 1.96 (0.08) 2.03 (0.08) 2.19 (0.26) 2.01 (0.16)

VAR-fb 1.66 (0.11) 1.75 (0.09) 1.81 (0.07) 1.89 (0.08) 2.16 (0.26) 1.85 (0.14)
PCA 2.15 (0.14) 2.21 (0.10) 2.21 (0.08) 2.22 (0.10) 2.20 (0.25) 2.20 (0.16)

Random forest 2.30 (0.19) 2.37 (0.18) 2.35 (0.17) 2.37 (0.16) 2.39 (0.35) 2.35 (0.23)

Method Scaled by true standard deviation - MAE

mvLSWimpute-f 1.44 (0.10) 1.51 (0.08) 1.54 (0.06) 1.59 (0.06) 1.73 (0.23) 1.56 (0.11)
mvLSWimpute-fb 1.29 (0.09) 1.36 (0.07) 1.40 (0.05) 1.45 (0.06) 1.72 (0.22) 1.43 (0.11)

mtsdi 1.36 (0.09) 1.43 (0.08) 1.49 (0.07) 1.58 (0.08) 1.86 (0.25) 1.52 (0.14)
Amelia 1.89 (0.13) 1.93 (0.09) 1.93 (0.07) 1.93 (0.09) 1.94 (0.24) 1.94 (0.16)
VAR-f 1.45 (0.10) 1.52 (0.08) 1.56 (0.06) 1.61 (0.07) 1.78 (0.23) 1.59 (0.12)

VAR-fb 1.32 (0.09) 1.39 (0.07) 1.44 (0.05) 1.50 (0.07) 1.76 (0.23) 1.47 (0.11)
PCA 1.72 (0.12) 1.76 (0.09) 1.76 (0.06) 1.77 (0.09) 1.79 (0.23) 1.76 (0.14)

Random forest 1.84 (0.16) 1.90 (0.15) 1.88 (0.14) 1.90 (0.13) 1.95 (0.31) 1.88 (0.20)

Method Ranking - RMSE

mvLSWimpute-f 1 0 0 0 26 1
mvLSWimpute-fb 67 79 84 95 31 71

mtsdi 12 8 6 0 11 14
Amelia 0 0 0 0 0 0
VAR-f 0 0 0 0 5 1

VAR-fb 20 13 10 5 13 13
PCA 0 0 0 0 3 0

Random forest 0 0 0 0 11 0

Method Ranking - MAE

mvLSWimpute-f 1 0 0 0 25 1
mvLSWimpute 63 78 90 92 30 68

mtsdi 12 9 5 4 10 17
Amelia 0 0 0 0 0 0
VAR-f 0 0 0 0 10 0

VAR-fb 24 13 5 4 10 14
PCA 0 0 0 0 4 0

Random forest 0 0 0 0 11 0

subjects were asked to perform a sequence of prede-

termined activities or postures. Such gait and postural

transition analyses are important in assessing patients’

balance after neurological episodes such as strokes (Janssen

et al, 2008). In particular, we consider recordings in a

period of high activity for the first subject in the HAPT

smartphone dataset (Reyes-Ortiz et al, 2016), obtained

from the UCI data repository1(Dua and Graff, 2017). In

what follows we first difference the data to remove any

trend, as is commonplace prior to secondary analysis

(Ahrabian et al, 2017).

The resulting data we analyze is a trivariate signal of

length T = 2048. Accelerometer data is often blighted

by missingness, which usually occurs in bursts or chunks

1 https://archive.ics.uci.edu/ml/datasets.php
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across all axes (see e.g. Ae Lee and Gill (2018) for a

discussion of missingness patterns and imputation of

accelerometry in a different modelling setting). To this

end, we induce bursts of missingness of length l = 30

with spacings of d = 350 according to the procedure in

Appendix B. Figure 2(a) shows the accelerometer mea-

surements over time for three sensors, with locations of

missingness shown with red triangles (Figure 2(b)).

We apply the mvLSW-based imputation approach

with m = 2 points considered in the clipped predic-

tor for both the forecasting and backcasting steps. For

comparison, we apply the mtsdi method and the VAR-

fb approach (with p = 2) as, of the existing methods,

these performed better in the simulation study.

The imputation results for each of the methods are

shown in Figure 3 for the first burst of missingness (be-

tween time indices t = 50 and t = 80). Missing values

are denoted with back dots, whilst imputed values for

mtsdi are denoted by red crosses, those for the VAR-

fb method are given in blue ‘plusses’ and those for the

mvLSWimpute method are denoted by green triangles.

It can be seen that, whilst the imputation results

for all three methods are quite similar, the mvLSWimpute

method produces the most visually reliable estimate for

the missing data. In particular, the mtsdi method does

not track any variation in the volatility of the series,

the estimates being essentially constant over time. The

VAR-fb method, whilst better, tends to produce some

significantly over-/underestimated values for the series.

Our mvLSWimpute technique is able to strike a balance

between accurate imputation and the changing dynam-

ics of the data. We observed similar behaviour of the

methods for different axes and gaps.

Next we consider the VAR-fb and mvLSWimpute meth-

ods with p = 2 and m = 2 respectively. However, in

some settings, accelerometer data will feature longer

temporal dependence, see for example the study in Khan

et al (2013). When modelling the HAR dataset m > 2

for our mvLSWimpute approach, we observed similarly

accurate results; on the other hand, the VAR-fb method

suffered from drastically variable data estimates for dif-

fering p, with the error often increasing 100-fold.

The overall aim of an analysis with accelerometer

data is to, typically, perform activity recognition and

analysis that could be used to provide health inter-

ventions. It is therefore important to be able to re-

place missing values with reasonable estimates which

will then allow further analysis to be carried out. Our

mvLSW imputation approach can be used as a first

step to infill any missing values before attempting to

predict activity levels or other secondary analysis tasks

of interest.

6 Concluding remarks

In this work, we have introduced a wavelet-based im-

putation method that can be used to replace missing

values within a multivariate, nonstationary time series.

We compared the performance of our method against

existing imputation approaches using simulated data

examples and a smartphone accelerometer dataset. The

simulated data examples demonstrate that the use of

a backcasting step within imputation can improve the

performance of the prediction methods. The case study

shows that our method can be used to successfully im-

pute missing values within time series containing both

nonstationarity and seasonality, resulting in a more re-

liable imputation estimate compared to existing ap-

proaches.

In practice, we have found that, as with other com-

petitor methods, the performance of our approach suf-

fers when we have extreme scenarios such as chunks of

consecutive time points missing or bursts of missing-

ness. An avenue for future research could be to look at

ways in which we could improve the imputation results

for these cases.
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for Doctoral Training. Eckley also gratefully acknowledges the
financial support of EPSRC grant EP/N031938/1.

An R package implementing the imputation method in
this article will be publicly available in due course.

A Overview of the mvLSWimpute algorithm

In this section we provide an algorithmic overview of our pro-
posed imputation technique for multivariate nonstationary
time series. More specifically, Algorithm 1 outlines the steps
involved in one iteration of our mvLSWimpute methodology.

B Additional simulation results

In this appendix, we present the results for some of the sim-
ulated examples in Section 4. Specifically, we include the im-
putation results for slowly evolving mvLSW and vector au-
toregressive series with missingness occurring simultaneously
across all channels; these can be found in Tables 3 and 4
respectively. Finally, Table 5 contains the results for vector
moving average, autoregressive series with rapidly changing
dependence structure, where missingness occurs across one
channel only.

Bursts of missingness

Here we describe how we generated bursts of missingness for
the examples in the main text. For all the simulations de-
scribed in Section 4, we generate 5 bursts of missingness that
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Fig. 2: Time series plots of the accelerometer readings for the three sensors (axes) over the same time period: (a)

original series; (b) series with induced missingness – red triangles show locations of missing datapoints.
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Fig. 3: Imputation results for the first period of missingness in the trivariate accelerometry signal from the case

study: missing values denoted by black dots; imputed values for the mtsdi, VAR-fb and mvLSWimpute methods

shown by red crosses (×), blue plusses (+) and green triangles ( ).

have maximum length l = 20 and are a minimum of d = 70
timepoints apart. First, we randomly sample 50% of the in-

dices without replacement which form the set of candidate
locations for missing data. Next, we select the start location
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1: Spectral estimation step
Estimate the LWS matrix of the signal containing
missing data in the following way:
(a) Estimate the raw wavelet periodogram keeping any

missing values intact; any wavelet coefficients
affected by the initial missing values will also be
missing.

(b) For each spectra and cross-spectra, linearly
interpolate the missing wavelet coefficients by level
of the periodogram.

(c) Recursively apply the wavelet filter equations to the
coarsest level of the periodogram that contains
information to replace any levels that consist solely
of missing values.

(d) Smooth the periodogram using a running mean
smoother and correct using the inverse of the inner
product matrix of discrete autocorrelation wavelets
A.

2: Forecasting step
For each missing index i, forecast the missing value in
the following way:
(a) Consider the spectra obtained in Step 1 from time 1

to time i− 1.
(b) Form the local auto- and cross-covariance by

substituting estimated spectra from time 1 to i− 1
into Equations (4) and (5).

(c) For each channel combination (p, q), solve the
prediction equations given in Equation (6) to obtain
b(p,q).

(d) Use b(p,q) vectors along with the clipped predictor
in Equation (7) to estimate the value of the time
series at missing index i.

3: Backcasting step
For each missing index i, backcast the missing value in
the following way:
(a) Consider the spectra obtained in Step 1 from time T

to time i + 1.
(b) Form the local auto and cross-covariance by

substituting estimated spectra from time T to i + 1
into Equations (4) and (5).

(c) For each channel combination (p, q), solve the
prediction equations given in Equation (6) to obtain
b(p,q).

(d) Use b(p,q) vectors along with the clipped predictor
in Equation (8) to estimate the value of the time
series at missing index i.

4: Averaging step
Average the estimates of the time series obtained from
the forward pass described in Step 2 and the backward
pass described in Step 3.

Alg. 1: One iteration of the mvLSWimpute algorithm.

for the first burst by sampling an index k between 30 and
70. The start locations s of the bursts are then defined by
k + l(n − 1) + d(n − 1) where n ∈ {1, . . . , 5} and the end
locations are determined by s + l. For each of the bursts, the
missing indices are chosen by selecting the candidate loca-
tions (determined in Step 1) that are between the start and
end point of the burst. An example time series containing
bursts of missingness can be seen in Figure 4, the filled red
triangles represent the locations of the missing values.
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Table 3: Performance of the imputation methods over K = 100 realizations of mvLSW process with slowly evolving

dependence for different missingness scenarios occurring simultaneously across all channels, using the evaluation

measures described in the text. Numbers in brackets represent the standard deviation of estimation errors. Bold

numbers indicate best result.
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PCA 1.00 (0.07) 1.00 (0.05) 1.00 (0.04) 0.99 (0.04) 1.02 (0.14) 0.99 (0.08)

Random forest 1.06 (0.09) 1.06 (0.09) 1.06 (0.07) 1.04 (0.05) 1.08 (0.15) 1.04 (0.09)

Method Scaled by true standard deviation - MAE
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Table 4: Performance of the imputation methods over K = 100 realizations of vector autoregressive series with

slowly evolving dependence structure for different missingness scenarios occurring simultaneously across all chan-

nels, using the evaluation measures described in the text. Numbers in brackets represent the standard deviation

of estimation errors. Bold numbers indicate best result.

10% 20% 30% 40% Chunks Bursts

Method Scaled by true standard deviation - RMSE
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VAR-fb 1.06 (0.08) 1.09 (0.05) 1.10 (0.05) 1.13 (0.04) 1.15 (0.20) 1.10 (0.08)
PCA 1.16 (0.08) 1.17 (0.05) 1.16 (0.06) 1.17 (0.04) 1.17 (0.18) 1.17 (0.08)

Random forest 1.24 (0.12) 1.26 (0.12) 1.27 (0.11) 1.27 (0.10) 1.21 (0.17) 1.25 (0.12)

Method Scaled by true standard deviation - MAE

mvLSWimpute-f 0.88 (0.07) 0.90 (0.04) 0.91 (0.04) 0.92 (0.03) 0.94 (0.14) 0.90 (0.06)
mvLSWimpute-fb 0.82 (0.06) 0.85 (0.04) 0.86 (0.04) 0.88 (0.03) 0.93 (0.14) 0.86 (0.07)
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Random forest 0.99 (0.10) 1.00 (0.09) 1.01 (0.08) 1.01 (0.08) 0.99 (0.20) 0.99 (0.10)

Method Ranking - RMSE

mvLSWimpute-f 0 0 0 0 22 2
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Amelia 0 0 0 0 2 0
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Method Ranking - MAE
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Table 5: Performance of the imputation methods over K = 100 realizations of vector moving average, autoregressive

series with rapidly changing dependence structure for different missingness scenarios occurring across one channel,

using the evaluation measures described in the text. Numbers in brackets represent the standard deviation of

estimation errors. Bold numbers indicate best result.

10% 20% 30% 40% Chunks Bursts

Method Scaled by true standard deviation - RMSE
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VAR-fb 1.50 (0.16) 1.52 (0.11) 1.55 (0.11) 1.59 (0.10) 1.82 (0.49) 1.60 (0.17)
PCA 2.02 (0.22) 1.99 (0.16) 2.03 (0.16) 2.05 (0.16) 2.02 (0.50) 2.00 (0.29)

Random forest 2.07 (0.23) 2.07 (0.17) 2.09 (0.16) 2.14 (0.15) 2.13 (0.47) 2.09 (0.30)

Method Scaled by true standard deviation - MAE

mvLSWimpute-f 1.30 (0.16) 1.30 (0.11) 1.32 (0.10) 1.36 (0.09) 1.49 (0.45) 1.36 (0.17)
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